JP2015086414A - Method for manufacturing oriented electromagnetic steel sheet - Google Patents

Method for manufacturing oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2015086414A
JP2015086414A JP2013224293A JP2013224293A JP2015086414A JP 2015086414 A JP2015086414 A JP 2015086414A JP 2013224293 A JP2013224293 A JP 2013224293A JP 2013224293 A JP2013224293 A JP 2013224293A JP 2015086414 A JP2015086414 A JP 2015086414A
Authority
JP
Japan
Prior art keywords
annealing
less
steel sheet
mass
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013224293A
Other languages
Japanese (ja)
Other versions
JP6146262B2 (en
Inventor
早川 康之
Yasuyuki Hayakawa
康之 早川
智幸 大久保
Tomoyuki Okubo
智幸 大久保
渡邉 誠
Makoto Watanabe
誠 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013224293A priority Critical patent/JP6146262B2/en
Publication of JP2015086414A publication Critical patent/JP2015086414A/en
Application granted granted Critical
Publication of JP6146262B2 publication Critical patent/JP6146262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for providing an oriented electromagnetic steel sheet having less iron loss.SOLUTION: SnOor SnO is contained in a range of 2 to 10 mass% to 100 mass% of MgO in an annealing separation agent and a furnace tension is 11.8 MPa (1.2 kgf/mm) or less during flatness annealing.

Description

本発明は、鉄損の小さい方向性電磁鋼板を得ることができる方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet capable of obtaining a grain-oriented electrical steel sheet having a small iron loss.

方向性電磁鋼板は、変圧器や発電機の鉄心材料として用いられる軟磁性材料で、方向性電磁鋼板の鉄損低減や磁歪騒音低減を実現するためには、被膜張力を確保する必要があり、その観点から、フォルステライトを主体とする下地被膜による張力付与が重要である。   The grain-oriented electrical steel sheet is a soft magnetic material used as a core material for transformers and generators, and in order to reduce the iron loss and magnetostriction noise of the grain-oriented electrical steel sheet, it is necessary to secure film tension. From this point of view, it is important to apply tension with a base film mainly composed of forsterite.

従来より、下地被膜に関しては、被膜外観と密着性の観点からの改善方法が種々提案されている。例えば、焼鈍分離剤の主成分MgOに添加物を混合させる方法が知られている。   Conventionally, various methods for improving the coating film from the viewpoint of coating appearance and adhesion have been proposed. For example, a method of mixing an additive with the main component MgO of the annealing separator is known.

すなわち、焼鈍分離剤の主成分MgOに添加物を混合させる方法として、特許文献1には、MgOにTiO2を添加する方法が、特許文献2には、MgOにSr化合物を添加する方法が、そして特許文献3には、MgOに、TiO2、SnO2およびSr化合物を複合添加する方法が、それぞれ提案されている。 That is, as a method of mixing an additive with the main component MgO of the annealing separator, Patent Document 1 discloses a method of adding TiO 2 to MgO, and Patent Document 2 discloses a method of adding an Sr compound to MgO. Patent Document 3 proposes a method of adding TiO 2 , SnO 2 and Sr compound to MgO in combination.

特公昭51-12451号公報Japanese Patent Publication No.51-12451 特公昭57-32716号公報Japanese Patent Publication No.57-32716 特開平9-291313号公報JP-A-9-291313

しかしながら、従来の方法では、被膜外観と被膜密着性確保の観点における優位性に主眼がおかれていて、方向性電磁鋼板の鉄損低減や磁歪騒音低減を実現するために重要な被膜張力の観点からの改善は、注目されていなかった。
ここで、方向性電磁鋼板の製造工程中、下地被膜は、最終仕上焼鈍時に形成されるものであるが、最終仕上焼鈍では同時に、二次再結晶を完了させる必要がある。
すなわち、被膜張力を改善する効果があるものであっても、二次再結晶に対しては悪影響を及ぼすことがあり、両者の最適条件が揃わない場合がある。特に、分解温度が二次再結晶温度と重なる物質のSnO2やSnOについては、被膜張力を改善する効果があることが分かっていても、その添加量を増やすと、二次再結晶がしにくくなることが知られており、通常、添加量は、MgOに対し、3%以下に抑えられている。
However, the conventional method focuses on the superiority in terms of ensuring the appearance of the coating and the adhesion of the coating, and the viewpoint of coating tension that is important in order to reduce the iron loss and magnetostriction noise of the grain-oriented electrical steel sheet. The improvement from was not noticed.
Here, during the production process of the grain-oriented electrical steel sheet, the undercoat is formed at the time of final finish annealing, but it is necessary to complete secondary recrystallization at the same time in the final finish annealing.
That is, even if it has the effect of improving the film tension, it may adversely affect secondary recrystallization, and the optimal conditions for both may not be met. In particular, SnO 2 and SnO, which have a decomposition temperature that overlaps with the secondary recrystallization temperature, are known to have an effect of improving the film tension. Usually, the addition amount is suppressed to 3% or less with respect to MgO.

本発明は、上記した問題を有利に解決するもので、焼鈍分離剤中に、SnO2またはSnOをMgOに対し、質量%で2〜10%含有させ、かつ圧延方向の下地被膜張力を3MPa以上確保することで、鉄損の低い方向性電磁鋼板を得ることができる製造方法を提案することを目的とする。 The present invention advantageously solves the above-mentioned problems. In the annealing separator, SnO 2 or SnO is contained in an amount of 2 to 10% by mass with respect to MgO, and the undercoat film tension in the rolling direction is 3 MPa or more. It aims at proposing the manufacturing method which can obtain a grain-oriented electrical steel sheet with a low iron loss by ensuring.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.10%以下、Si:2.0〜4.5%およびMn:0.01〜0.5%を含有すると共に、sol.Alを100質量ppm以下、S、SeおよびNをそれぞれ50質量ppm以下に低減し、残部はFeおよび不可避的不純物の組成からなる鋼スラブに、1300℃以下の低温スラブ加熱を施したのち、熱延板焼鈍を行い、ついで、冷間圧延を施して最終板厚とした後、連続式の一次再結晶焼鈍を施して脱炭焼鈍を行い、さらに、MgOを主体とする焼鈍分離剤を塗布して下地被膜を形成するバッチ式の最終仕上焼鈍を行った後、平坦化焼鈍を行う方向性電磁鋼板の製造方法において、
上記焼鈍分離剤中に、SnO2および/またはSnOをMgO:100質量%に対し、2〜10質量%の範囲で含有させると共に、
上記平坦化焼鈍の際、炉内張力を、11.8MPa(1.2kgf/mm2)以下
とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.10% or less, Si: 2.0-4.5%, and Mn: 0.01-0.5%, sol.Al is reduced to 100 mass ppm or less, and S, Se, and N are reduced to 50 mass ppm or less, respectively. After the steel slab composed of Fe and inevitable impurities is subjected to low-temperature slab heating of 1300 ° C or lower, hot-rolled sheet annealing is performed, and then cold rolling is performed to obtain a final sheet thickness. , Continuous primary recrystallization annealing and decarburization annealing, and after applying batch final finishing annealing to form an undercoat by applying an annealing separator mainly composed of MgO, flattening annealing In the method for producing a grain-oriented electrical steel sheet,
In the annealing separator, SnO 2 and / or SnO is contained in a range of 2 to 10% by mass with respect to MgO: 100% by mass,
A method for producing a grain-oriented electrical steel sheet in which the furnace tension is 11.8 MPa (1.2 kgf / mm 2 ) or less during the flattening annealing.

2.前記鋼スラブに、さらに、Snを0.15質量%以下含有させた前記1に記載の方向性電磁鋼板の製造方法。 2. 2. The method for producing a grain-oriented electrical steel sheet according to 1 above, wherein the steel slab further contains 0.15% by mass or less of Sn.

3.前記鋼スラブが、さらに質量%で、
Ni:0.005〜1.50%、
Sb:0.005〜0.50%、
Cu:0.01〜0.50%、
P:0.005〜0.50%、
Cr:0.01〜1.50%および
Mo:0.01〜0.50%
のうちから選んだ少なくとも1種を含有する組成からなる前記1または2に記載の方向性電磁鋼板の製造方法。
3. The steel slab is further mass%,
Ni: 0.005-1.50%,
Sb: 0.005-0.50%,
Cu: 0.01 to 0.50%,
P: 0.005-0.50%,
Cr: 0.01-1.50% and
Mo: 0.01-0.50%
3. The method for producing a grain-oriented electrical steel sheet according to the above 1 or 2, comprising a composition containing at least one selected from the above.

本発明によれば、被膜張力を改善する効果があるSnO2またはSnOを、焼鈍分離剤中に多く含有させることが可能となる。その結果、鉄損の小さい方向性電磁鋼板を得ることができるので、その工業的価値は極めて高い。 According to the present invention, a large amount of SnO 2 or SnO having an effect of improving the film tension can be contained in the annealing separator. As a result, a grain-oriented electrical steel sheet with small iron loss can be obtained, and its industrial value is extremely high.

反り量と被膜張力との関係を示す図である。It is a figure which shows the relationship between curvature amount and film tension. SnO2/MgOの値と被膜張力および鉄損との関係を示す図である。It is a diagram showing the relationship between SnO 2 / MgO values and film tension and iron loss. 平坦化焼鈍時の炉内張力と鉄損との関係を示す図である。It is a figure which shows the relationship between the furnace tension at the time of planarization annealing, and an iron loss. 平坦化焼鈍時の炉内張力と被膜張力との関係を示す図である。It is a figure which shows the relationship between the furnace tension at the time of planarization annealing, and a film tension.

以下、本発明を具体的に説明する。
まず、本発明を由来するに至った実験結果について説明する。なお、鋼板成分、焼鈍分離剤の成分に関する「%およびppm」表示は特に断らない限り質量%および質量ppmを意味するものとする。
発明者らは、鉄損の小さい方向性電磁鋼板を得るに当たって、下地被膜張力の改善に着目し、下地被膜張力を改善する方策について鋭意検討した。その結果、発明者らは、被膜形成に有用であることが知られ、AlNなどのインヒビターを鋼スラブ中に含有させる方法では添加量や脱炭焼鈍の条件などに制約の多かった、SnO2の適用を想起し、試みることとした。
Hereinafter, the present invention will be specifically described.
First, the experimental results that led to the present invention will be described. In addition, unless otherwise indicated, the "% and ppm" display regarding a steel plate component and the component of an annealing separator shall mean the mass% and the mass ppm.
The inventors paid attention to the improvement of the undercoat tension in earning the grain-oriented electrical steel sheet with a small iron loss, and have intensively studied the measures for improving the undercoat tension. As a result, we are known to be useful in film formation, an inhibitor such as AlN were often constrained like the amount and decarburization annealing conditions in a manner to be contained in the steel slab, the SnO 2 I recalled and tried to apply it.

(実験1)
C:0.025%、Si:3.3%、Mn:0.06%、Sb:0.03%を含有し、Alを70ppm、Nを40ppmとし、S、Seおよび0を20ppm以下に低減した、インヒビターフリーの成分系の鋼スラブを、1210℃に加熱し、熱間圧延して2.7mm厚に仕上げた。続いて、熱延板焼鈍を、1065℃で30秒保持し、1000〜750℃を冷却速度:20℃/秒、750〜300℃を冷却速度:40℃/秒で急冷する条件で行った。熱延板焼鈍後、最高到達温度が220℃の冷間圧延を行って、0.29mmの最終板厚に仕上げた。
(Experiment 1)
Inhibitor-free component system containing C: 0.025%, Si: 3.3%, Mn: 0.06%, Sb: 0.03%, Al 70ppm, N 40ppm, S, Se and 0 reduced to 20ppm or less The steel slab was heated to 1210 ° C. and hot rolled to a thickness of 2.7 mm. Subsequently, hot-rolled sheet annealing was performed at a temperature of 1065 ° C. for 30 seconds, 1000 to 750 ° C. being cooled at a cooling rate of 20 ° C./second, and 750 to 300 ° C. being rapidly cooled at a cooling rate of 40 ° C./second. After hot-rolled sheet annealing, it was cold-rolled at a maximum temperature of 220 ° C. and finished to a final thickness of 0.29 mm.

続いて、連続式の脱炭焼鈍を、露点:53℃、水素:55体積%、窒素:45体積%の雰囲気にて、840℃で100秒均熱する条件で行った。
さらに、MgO:100%に対して、TiO2:3%、SrSO4:1.6%、Mg2SO4:1.2%を添加したMgOを主体とする焼鈍分離剤に対して、さらに、SnO2を添加し、SnO2の含有量を種々変更する実験を行った。
Subsequently, continuous decarburization annealing was performed in an atmosphere of dew point: 53 ° C., hydrogen: 55% by volume, nitrogen: 45% by volume, and soaking at 840 ° C. for 100 seconds.
Furthermore, SnO 2 is added to the annealing separator mainly composed of MgO containing TiO 2 : 3%, SrSO 4 : 1.6%, Mg 2 SO 4 : 1.2% with respect to MgO: 100%. Then, various experiments were conducted to change the content of SnO 2 .

焼鈍分離剤を塗布後は、最終仕上焼鈍を、水素雰囲気にて1200℃で10時間保持する方法で行い、最後に、乾燥した窒素と水素の混合雰囲気にて、835℃で20秒の平坦化焼鈍を行って、形状矯正を行った。平坦化焼鈍際の炉内張力は、8.8MPa(0.91kgf/mm2)とした。
なお、下地被膜張力を評価するため、コーティングは行わなかった。
After applying the annealing separator, final finish annealing is performed by holding at 1200 ° C for 10 hours in a hydrogen atmosphere, and finally flattening at 835 ° C for 20 seconds in a dry nitrogen and hydrogen mixed atmosphere Annealing was performed to correct the shape. The furnace tension during the flattening annealing was 8.8 MPa (0.91 kgf / mm 2 ).
In order to evaluate the base film tension, coating was not performed.

得られた製品板を用いて、圧延方向の磁束密度(B8)と鉄損(W17/50)を測定した。さらに、被膜張力を評価するため、圧延方向に280mm、幅方向に30mmのサンプルを切り出し、片面の下地被膜を酸洗で除去し、以下に示す(1)式を用いて反り量の測定値から被膜張力を算出した。
σ’=Ed/2R ・・・(1)
ここに、(1)式中、
E:ヤング率
d:板厚(mm)
R≒L/2a (曲率半径)
a:反り量(mm)
L:反り測定長さ
σ’:被膜張力
をそれぞれ意味し、
上記実験では、
反り測定長さ(L)を250mmとし、
Eの値は132GPaを用いた。
Using the obtained product plate, the magnetic flux density (B 8 ) and iron loss (W 17/50 ) in the rolling direction were measured. Furthermore, in order to evaluate the film tension, a sample of 280 mm in the rolling direction and 30 mm in the width direction was cut out, the base film on one side was removed by pickling, and from the measured amount of warpage using the following formula (1) The film tension was calculated.
σ ′ = Ed / 2R (1)
Where (1)
E: Young's modulus d: Plate thickness (mm)
R≈L 2 / 2a (curvature radius)
a: Warpage (mm)
L: Warpage measurement length σ ′: film tension means
In the above experiment,
Warp measurement length (L) is 250mm,
The value of E was 132 GPa.

RD方向(圧延方向)とTD方向(圧延方向に直角な方向)のそれぞれの反り量と被膜張力との関係を図1に示す。なお、実験1での製品板の磁束密度(B8)は、全条件で1.92〜1.93Tが確保されていることが確認されている。 FIG. 1 shows the relationship between the amount of warpage in each of the RD direction (rolling direction) and TD direction (direction perpendicular to the rolling direction) and the film tension. It has been confirmed that the magnetic flux density (B 8 ) of the product plate in Experiment 1 is 1.92 to 1.93 T under all conditions.

図2に、SnO2の含有量、被膜張力、鉄損の関係を示す。SnO2の含有量が、MgO:100%に対して2〜10%の範囲になると、W17/50=1.00W/kg以下の良好な鉄損が得られており、かつその範囲で3MPa以上の被膜張力が確保できていることが分かる。 FIG. 2 shows the relationship between SnO 2 content, film tension, and iron loss. When the SnO 2 content is in the range of 2 to 10% with respect to MgO: 100%, a good iron loss of W 17/50 = 1.00 W / kg or less is obtained, and 3 MPa or more in that range. It can be seen that the coating tension can be secured.

他方、被膜の外観を観察すると、MgO:100%に対し、SnO2の含有量が12%以上になった場合に、被膜欠損(キラキラ)が発生した。従来では、SnO2の分解に伴う酸素の放出により、インヒビター成分の表面酸化が促進されて二次再結晶不良が発生したが、本発明のように、インヒビターフリー成分を用いる方法では、被膜張力の観点からの最適添加量は8%であり、二次再結晶発現に関係なく増量が可能であることが分かった。 On the other hand, when the appearance of the film was observed, film defects (glitter) occurred when the SnO 2 content was 12% or more with respect to MgO: 100%. Conventionally, due to the release of oxygen accompanying the decomposition of SnO 2 , surface oxidation of the inhibitor component was promoted and secondary recrystallization failure occurred. However, in the method using the inhibitor-free component as in the present invention, the film tension is reduced. The optimum addition amount from the viewpoint was 8%, and it was found that the amount could be increased regardless of the occurrence of secondary recrystallization.

さらに、被膜張力確保の観点から、平坦化焼鈍における炉内張力と素材成分の関係に関しても留意する必要があることが分かった。
被膜張力は、高温にて被膜形成後、常温まで冷却した際の被膜と地鉄の収縮の程度の違い、すなわち、熱膨張係数の差によって発生するものであるが、平坦化焼鈍では、鋼板の形状を矯正する必要があり、張力付与が必須である反面、必要以上の張力を付与して鋼板が伸びると、熱膨張係数差に起因する被膜張力が減殺されてしまう。従って、本発明では、被膜張力確保の観点から、平坦化焼鈍の際に炉内で鋼板に付与する張力を11.8MPa(1.21kgf/mm2)以下とすることが肝要である。
Furthermore, it has been found that it is necessary to pay attention to the relationship between the in-furnace tension and the material component in the flattening annealing from the viewpoint of securing the film tension.
The film tension is generated by the difference in the degree of contraction between the film and the base iron when cooled to room temperature after the film is formed at a high temperature, that is, the difference in thermal expansion coefficient. While it is necessary to correct the shape and to apply tension, if the steel sheet is stretched by applying more tension than necessary, the film tension due to the difference in thermal expansion coefficient is diminished. Therefore, in the present invention, from the viewpoint of securing the film tension, it is important that the tension applied to the steel sheet in the furnace during the flattening annealing is 11.8 MPa (1.21 kgf / mm 2 ) or less.

また、鋼板の伸びを抑制するため、鋼板自体の熱間強度確保も、被膜張力確保のために有効である。
特に、Snの添加は、熱間強度を向上し、平坦化焼鈍における鋼板の伸びを抑制し、被膜張力を向上する効果があるため、添加量が多いほうが有利である。しかしながら、Snを鋼スラブに含有させる場合、あまりに多量の含有は、熱間での脆化を引き起こし、へゲが発生しやすくなる作用もあるため、鋼スラブへの含有量は、0.15%以下にするのが好ましい。
Moreover, in order to suppress the elongation of the steel sheet, securing the hot strength of the steel sheet itself is also effective for securing the film tension.
In particular, the addition of Sn has an effect of improving the hot strength, suppressing the elongation of the steel sheet in the flattening annealing, and improving the film tension, so that the addition amount is advantageous. However, when Sn is contained in the steel slab, too much content causes hot embrittlement and has the effect of causing hesitation, so the content in the steel slab is 0.15% or less. It is preferable to do this.

一方、本発明に従う鋼板成分の場合、焼鈍分離剤中へのSnO2の添加は、鋼板中のSn含有量を増やす手段として有効である。ここに、焼鈍分離剤中のSnO2の含有量が、MnO:100%に対して、8%の場合、鋼板中のSn含有量は約0.03%上昇するが、その際のSnは、被膜張力強化のほか、比抵抗向上にも、Siとほぼ同等の効果がある。
このため、鋼板中のSn含有量をへゲが発生しにくい0.05%までとなるように、焼鈍分離剤中にSnO2の形で添加する手段は、鉄損を小さくするための極めて有効な手段と考えられる。
On the other hand, in the case of the steel plate component according to the present invention, the addition of SnO 2 to the annealing separator is effective as a means for increasing the Sn content in the steel plate. Here, when the SnO 2 content in the annealing separator is 8% with respect to MnO: 100%, the Sn content in the steel sheet increases by about 0.03%, but the Sn at that time is the film tension. In addition to strengthening, it has almost the same effect as Si in improving specific resistance.
For this reason, the means for adding SnO 2 in the annealing separator in the form of SnO 2 is an extremely effective means for reducing iron loss so that the Sn content in the steel sheet is 0.05%, which is less likely to cause hege. it is conceivable that.

以降、本発明のその他の構成要件について、その規定理由を説明する。
本発明における鋼スラブは、公知の方法、例えば、製鋼−連続鋳造(あるいは、造塊−分塊圧延)によって製造される。その際、鋼スラブの成分組成については、以下のように規定される。
Cは、炭化物制御によって一次再結晶集合組織を改善するために有用な元素であるため、0.10%以下に規定する。C含有量が、これよりも大きくなると製品板となるまでに脱炭するのが困難になって、製品板にて磁気時効が起こり、磁気特性が低下するからである。
Hereinafter, the reasons for defining the other constituent elements of the present invention will be described.
The steel slab in this invention is manufactured by a well-known method, for example, steel making-continuous casting (or ingot-making-bundling rolling). At that time, the component composition of the steel slab is defined as follows.
C is an element useful for improving the primary recrystallization texture by controlling carbides, so it is specified to be 0.10% or less. If the C content is higher than this, it becomes difficult to decarburize until the product plate is obtained, magnetic aging occurs in the product plate, and the magnetic properties are deteriorated.

Siは、電気抵抗を高めることで鉄損を低減するのに有用な元素であり、その効果を得るために2.0%以上添加する。一方、4.5%を超えると、冷間圧延中に割れるなどのトラブルが生じて通板が困難になるため、上限を4.5%に規定する。   Si is an element useful for reducing iron loss by increasing electric resistance, and is added in an amount of 2.0% or more to obtain the effect. On the other hand, if it exceeds 4.5%, troubles such as cracking occur during cold rolling and it becomes difficult to pass the sheet, so the upper limit is specified to 4.5%.

Mnは、熱間圧延時の加工性を向上する効果があるため、0.01%以上添加する。一方、0.5%を超えると、一次再結晶集合組織が悪化し、ゴス方位に集積した二次再結晶粒が得られにくくなって、磁気特性が低下する。このため、0.5%以下に規定する。   Mn has an effect of improving workability during hot rolling, so 0.01% or more is added. On the other hand, if it exceeds 0.5%, the primary recrystallized texture deteriorates, and it becomes difficult to obtain secondary recrystallized grains accumulated in the Goth orientation, and the magnetic properties are deteriorated. For this reason, it is specified to be 0.5% or less.

本発明では、インヒビター元素であるAlは100ppm以下、また、N、S、Seについては50ppm以下、好ましくは30ppm以下に低減することが、良好に二次再結晶させる上で重要である。また、その他の窒化物形成元素であるTi、Nb、B、TaおよびV等についても、それぞれ50ppm以下に低減することが鉄損の劣化を防ぎ、良好な加工性を確保する上で有効である。   In the present invention, the inhibitor element Al is reduced to 100 ppm or less, and N, S, and Se are reduced to 50 ppm or less, preferably 30 ppm or less. Also, other nitride-forming elements such as Ti, Nb, B, Ta, and V are each reduced to 50 ppm or less, which is effective in preventing deterioration of iron loss and ensuring good workability. .

鉄損を低減する目的で、鋼スラブにSnを添加してもよいが、熱間圧延時に脆化を引き起こしてヘゲが発生しやすくなるため、鋼スラブに添加する際のSn含有量は、0.15%以下とするのが好ましいことは先にも述べたとおりである。   For the purpose of reducing iron loss, Sn may be added to the steel slab, but since it becomes easy to generate scabs due to embrittlement during hot rolling, the Sn content when added to the steel slab is As described above, it is preferably 0.15% or less.

本発明では、熱延板組織を改善して磁気特性を向上させるために、Niを添加することができる。ここに、Niの添加量が0.005%未満であると磁気特性の向上量が小さくなる一方で、1.50%を超えると、二次再結晶が不安定になって磁気特性が劣化するので、添加量は、0.005〜1.50%とするのが好ましい。   In the present invention, Ni can be added to improve the hot rolled sheet structure and improve the magnetic properties. Here, if the amount of Ni added is less than 0.005%, the amount of improvement in magnetic properties becomes small. On the other hand, if it exceeds 1.50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate. Is preferably 0.005 to 1.50%.

さらに、本発明では、鉄損特性を向上させる目的で、Sb:O.005〜0.50%、Cu:0.01〜0.50%、P:O.005〜0.50%、Cr:O.01〜1.50%およびMo:O.01〜0.50%のうち一種をそれぞれ単独で、または二種以上を複合して添加することができる。それぞれの添加量が下限量より少ない場合には鉄損向上効果がない一方で、上限量を超えると二次再結晶粒の発達が抑制される。   Furthermore, in the present invention, for the purpose of improving iron loss characteristics, Sb: O.005 to 0.50%, Cu: 0.01 to 0.50%, P: O.005 to 0.50%, Cr: O.01 to 1.50%, and Mo : One of O.01 to 0.50% can be added alone, or two or more can be added in combination. When the addition amount is less than the lower limit amount, there is no effect of improving the iron loss, while when the upper limit amount is exceeded, the development of secondary recrystallized grains is suppressed.

上記成分を含有する鋼スラブは、溶製し、造塊・分塊法あるいは連続鋳造法で鋼スラブにしてもよいし、直接鋳造法で100mm以下の厚さの薄鋳片にしてもよい。
このような鋼スラブあるいは薄鋳片を1300℃以下に加熱(低温スラブ加熱)して熱間圧延し、熱延板焼鈍を行う。熱延板焼鈍を行った後、圧延(冷間圧延あるいは温間圧延)を行って、冷延板とする。圧延の際の鋼板の温度を100〜250℃に上昇させること、あるいは、冷間圧延の途中で100〜250℃での時効処理を1回または複数回行うことは、ゴス方位の組織を発達させる上で有効である。
The steel slab containing the above components may be melted and formed into a steel slab by the ingot-making / bundling method or the continuous casting method, or may be a thin cast piece having a thickness of 100 mm or less by the direct casting method.
Such steel slabs or thin cast slabs are heated to 1300 ° C. or lower (low temperature slab heating) and hot-rolled to perform hot-rolled sheet annealing. After performing hot-rolled sheet annealing, rolling (cold rolling or warm rolling) is performed to obtain a cold-rolled sheet. Increasing the temperature of the steel sheet during rolling to 100 to 250 ° C., or performing aging treatment at 100 to 250 ° C. one or more times during cold rolling develops a structure of Goss orientation. Effective above.

続いて、連続式の脱炭焼鈍を行う。連続式の脱炭焼鈍は、750〜900℃の湿潤水素雰囲気にて行い、Cを50ppm以下、好ましくは30ppm以下に低減するようにする。
脱炭焼鈍後にはMgOを主体とする焼鈍分離剤を塗布した後、下地被膜(フォルステライト被膜)を形成させるバッチ式の最終仕上焼鈍を行う。
本発明では、鉄損を小さくするため、焼鈍分離剤中にSnO2をMgO:100%に対して、〜10%の範囲で含有させて、3MPa以上の被膜張力を確保する。2%未満では被膜張力を確保できず、鉄損の低減が不十分になる一方で、10%を超えると被膜形成不良が発生しやすくなるからである。なお、本発明では、SnO2の代わりにSnOを用いても同様の効果が得られる。また、本発明において、MgOを主体とするとは、焼鈍分離剤中にMgOが内数で50質量%以上含まれていることを言い、本発明に規定する以外の残部は、通常、焼鈍分離剤として用いられているものおよび不可避的不純物である。
Subsequently, continuous decarburization annealing is performed. Continuous decarburization annealing is performed in a wet hydrogen atmosphere at 750 to 900 ° C., and C is reduced to 50 ppm or less, preferably 30 ppm or less.
After decarburization annealing, after applying an annealing separator mainly composed of MgO, batch type final finishing annealing for forming a base film (forsterite film) is performed.
In the present invention, in order to reduce the iron loss, SnO 2 is contained in the annealing separator in a range of 2 to 10% with respect to MgO: 100% to ensure a film tension of 3 MPa or more. If it is less than 2%, the film tension cannot be secured, and the iron loss is insufficiently reduced. On the other hand, if it exceeds 10%, a film formation failure tends to occur. In the present invention, the same effect can be obtained by using SnO instead of SnO 2 . In the present invention, MgO as a main component means that MgO is contained in the annealing separator in an amount of 50% by mass or more, and the remainder other than that prescribed in the present invention is usually an annealing separator. Is used as an inevitable impurity.

本発明では、最終仕上焼鈍の際の温度を、フォルステライト被膜形成のため、1000℃以上とするのが好ましい。
さらに、最終仕上焼鈍後には、平坦化焼鈍を行って鋼板の形状を矯正する。平坦化焼鈍の際に、炉内で鋼板に付与する張力を11.8MPa(1.2kgf/mm2)以下とすると、鋼板の伸びを抑制して被膜張力を確保する上で有効であるため、本発明では、平坦化焼鈍の際に、炉内で鋼板に付与する張力(炉内張力)を11.8MPa(1.2kgf/mm2)以下とする。なお、炉内張力以外の平坦化焼鈍の条件は、常法に従えば良い。
In the present invention, the temperature at the final finish annealing is preferably set to 1000 ° C. or more for forming the forsterite film.
Further, after the final finish annealing, flattening annealing is performed to correct the shape of the steel sheet. In the case of flattening annealing, if the tension applied to the steel sheet in the furnace is 11.8 MPa (1.2 kgf / mm 2 ) or less, it is effective in suppressing the elongation of the steel sheet and ensuring the film tension. In the flattening annealing, the tension applied to the steel sheet in the furnace (in-furnace tension) is set to 11.8 MPa (1.2 kgf / mm 2 ) or less. The conditions for the flattening annealing other than the in-furnace tension may follow a conventional method.

また、鋼スラブ中にSnを添加したり、あるいは焼鈍分離剤中にSnO2またはSnOを含有させるようにしたりすることも、鋼板の伸びを抑制して被膜張力を強化するのに有効である。
平坦化焼鈍を行った後に、鋼板の表面に絶縁コーティングを施してもよい。特に、鉄損を小さくするためには、燐酸塩とコロイダルシリカを混合させた張力コーティングを行うのが好ましい。
Further, adding Sn to the steel slab or adding SnO 2 or SnO to the annealing separator is effective for suppressing the elongation of the steel sheet and strengthening the coating tension.
After performing the flattening annealing, an insulating coating may be applied to the surface of the steel plate. In particular, in order to reduce the iron loss, it is preferable to perform tension coating in which phosphate and colloidal silica are mixed.

(実施例1)
C:0.024%、Si:3.3%、Mn:0.05%を含有し、Alを75ppm、Nを41ppmとし、S、Seおよび0を20ppm以下に低減したインヒビターフリーの成分系の鋼スラブA、およびC:0.024%,Si:3.3%、Mn:0.05%、Sn:O.05%を含有し、Al:70ppm、Nを40ppmとし、S、Seおよび0を20ppm以下に低減したインヒビターフリーの成分系の鋼スラブBを、それぞれ1220℃に加熱して熱間圧延し、2.5mm厚に仕上げた。ついで、熱延板焼鈍を、1025℃で30秒保持し、1000〜750℃を冷却速度:20℃/秒、750〜300℃を冷却速度:40℃/秒で急冷する条件で行った。熱延板焼鈍後、最高到達温度が200℃の冷間圧延を行って0.26mmの最終板厚に仕上げた。
続いて、連続式の脱炭焼鈍を、露点:53℃、水素:55体積%、窒素:45体積%の雰囲気にて、840℃で100秒保持する条件で行った。
さらに、MgO:100%に対して、TiO2:3%、SrSO4:1.6%、Mg2SO4:1.2%を添加したMgOを主体とする焼鈍分離剤に、さらに、SnO2を添加し、SnO2の含有量を、MgO:100%に対して8%とする実験を行った。
最終仕上焼鈍は、水素雰囲気にて、1200℃で10時間保持する条件で行った。
最終仕上焼鈍後、乾燥した窒素と水素の混合雰囲気にて、850℃で30秒保持する平坦化焼鈍を行い、形状矯正を施した。平坦化焼鈍における炉内張力を、5.9〜12.7MPa(0.6〜1.31(kgf/mm2))の範囲で変化させた。
かようにして得られた製品板を用いて、圧延方向の磁束密度(B8)と鉄損(W17/50)を測定した。さらに、被膜張力を評価するため、圧延方向に280mm、幅方向に30mmのサンプルを切り出し、片面の下地被膜を酸洗で除去し、前掲した(1)式を用いて反り量の測定値から被膜張力を算出した。
製品の磁束密度の測定結果は、1.92〜1.94Tの範囲であった。
また、図3に、平坦化焼鈍時の炉内張力と鉄損との関係を示す。さらに、図4に、平坦化焼鈍時の炉内張力と被膜張力との関係を示す。
Example 1
Inhibitor-free steel slabs A and C containing 0.024%, Si: 3.3%, Mn: 0.05%, Al 75 ppm, N 41 ppm, S, Se and 0 reduced to 20 ppm or less : Inhibitor-free component system containing 0.024%, Si: 3.3%, Mn: 0.05%, Sn: 0.05%, Al: 70ppm, N: 40ppm, S, Se and 0 reduced to 20ppm or less Steel slabs B were each heated to 1220 ° C. and hot-rolled to a thickness of 2.5 mm. Subsequently, hot-rolled sheet annealing was performed at 1025 ° C. for 30 seconds, 1000 to 750 ° C. at a cooling rate of 20 ° C./second, and 750 to 300 ° C. at a cooling rate of 40 ° C./second. After hot-rolled sheet annealing, it was cold-rolled at a maximum temperature of 200 ° C and finished to a final thickness of 0.26 mm.
Subsequently, continuous decarburization annealing was performed in an atmosphere of dew point: 53 ° C., hydrogen: 55% by volume, and nitrogen: 45% by volume under the conditions of holding at 840 ° C. for 100 seconds.
Furthermore, SnO 2 was further added to the annealing separator mainly composed of MgO added with TiO 2 : 3%, SrSO 4 : 1.6%, Mg 2 SO 4 : 1.2% with respect to MgO: 100%, An experiment was conducted in which the SnO 2 content was 8% with respect to MgO: 100%.
The final finish annealing was performed in a hydrogen atmosphere at 1200 ° C. for 10 hours.
After the final finish annealing, flattening annealing was performed for 30 seconds at 850 ° C. in a dry nitrogen and hydrogen mixed atmosphere to correct the shape. The in-furnace tension in the flattening annealing was changed in the range of 5.9 to 12.7 MPa (0.6 to 1.31 (kgf / mm 2 )).
Using the product plate thus obtained, the magnetic flux density (B 8 ) and iron loss (W 17/50 ) in the rolling direction were measured. Furthermore, in order to evaluate the film tension, a sample of 280 mm in the rolling direction and 30 mm in the width direction was cut out, the base film on one side was removed by pickling, and the film was measured from the measured amount of warpage using the above formula (1). The tension was calculated.
The measurement results of the magnetic flux density of the product ranged from 1.92 to 1.94T.
FIG. 3 shows the relationship between the furnace tension and the iron loss at the time of flattening annealing. Further, FIG. 4 shows the relationship between the furnace tension and the film tension during flattening annealing.

図3によれば、平坦化焼鈍時の炉内張力を11.8MPa(1.2kgf/mm2)以下とし、同時にSnを添加することで鉄損が小さくなることが分かる。また、図4によれば、平坦化焼鈍時の炉内張力を11.8MPa(1.2kgf/mm2)以下とし、同時にSnを添加することで被膜張力が増大することが分かる。 According to FIG. 3, it can be seen that the core loss during the flattening annealing is set to 11.8 MPa (1.2 kgf / mm 2 ) or less, and at the same time, Sn is added to reduce the iron loss. Further, according to FIG. 4, it can be seen that the in-furnace tension during the flattening annealing is set to 11.8 MPa (1.2 kgf / mm 2 ) or less, and at the same time, Sn is added to increase the film tension.

(実施例2)
表1に示される成分の鋼スラブを1230℃に加熱し、熱間圧延して2.4mmに仕上げた。熱延板焼鈍を、1050℃で30秒保持し、1000〜750℃を20℃/秒、750〜300℃を40℃/秒で急冷する条件で行った。熱延板焼鈍後、最高到達温度が220℃の冷間圧延を行って0.26mmの最終板厚に仕上げた。
続いて、連続式の脱炭焼鈍を、露点:55℃、水素:55体積%、窒素:45体積%の雰囲気にて、850℃で100秒保持する方法で行った。
さらに、MgO:100%に対して、TiO2:3%、SrSO4:1.6%、Mg2SO4:1.2%を添加したMgOを主体とする焼鈍分離剤に対し、さらに、SnOを添加し、SnOの含有量を、MgO:100%に対し、5%とする実験を行った。
最終仕上焼鈍は、水素雰囲気にて、1200℃で10時間保持する方法で行った。
最終仕上焼鈍後、乾燥した窒素と水素の混合雰囲気にて、850℃で30秒保持する平坦化焼鈍を行い、形状矯正した。平坦化焼鈍における炉内張力は6.9MPa(0.7kgf/mm2)で行った。
かようにして得られた製品板を用い、圧延方向の磁束密度(B8)と鉄損(W17/50)を測定した。
かかる評価により得られた結果を、表1に併記する。
(Example 2)
Steel slabs having the components shown in Table 1 were heated to 1230 ° C. and hot-rolled to a finish of 2.4 mm. Hot-rolled sheet annealing was performed under the conditions of holding at 1050 ° C. for 30 seconds, rapidly cooling 1000 to 750 ° C. at 20 ° C./second and 750 to 300 ° C. at 40 ° C./second. After hot-rolled sheet annealing, it was cold-rolled with a maximum temperature of 220 ° C. to a final thickness of 0.26 mm.
Subsequently, continuous decarburization annealing was performed by a method of holding at 850 ° C. for 100 seconds in an atmosphere of dew point: 55 ° C., hydrogen: 55 vol%, and nitrogen: 45 vol%.
Furthermore, SnO is further added to the annealing separator mainly composed of MgO added with TiO 2 : 3%, SrSO 4 : 1.6%, Mg 2 SO 4 : 1.2% with respect to MgO: 100%. An experiment was conducted in which the SnO content was 5% with respect to MgO: 100%.
The final finish annealing was performed by a method of holding at 1200 ° C. for 10 hours in a hydrogen atmosphere.
After the final finish annealing, flattening annealing was performed for 30 seconds at 850 ° C. in a dry nitrogen and hydrogen mixed atmosphere to correct the shape. The furnace tension during flattening annealing was 6.9 MPa (0.7 kgf / mm 2 ).
Using the product plate thus obtained, the magnetic flux density (B 8 ) and iron loss (W 17/50 ) in the rolling direction were measured.
The results obtained by this evaluation are also shown in Table 1.

Figure 2015086414
Figure 2015086414

表1によれば、本発明で規定されるインヒビターフリー成分の鋼スラブにおいて、平坦化焼鈍時の炉内張力を11.8MPa(1.2kgf/mm2)以下とし、同時にSnOを添加することで鉄損が改善できることが分かる。 According to Table 1, in the steel slab with the inhibitor-free component specified in the present invention, the furnace tension during flattening annealing is 11.8 MPa (1.2 kgf / mm 2 ) or less, and at the same time, iron loss is achieved by adding SnO. Can be improved.

Claims (3)

質量%で、C:0.10%以下、Si:2.0〜4.5%およびMn:0.01〜0.5%を含有すると共に、sol.Alを100質量ppm以下、S、SeおよびNをそれぞれ50質量ppm以下に低減し、残部はFeおよび不可避的不純物の組成からなる鋼スラブに、1300℃以下の低温スラブ加熱を施したのち、熱延板焼鈍を行い、ついで、冷間圧延を施して最終板厚とした後、連続式の一次再結晶焼鈍を施して脱炭焼鈍を行い、さらに、MgOを主体とする焼鈍分離剤を塗布して下地被膜を形成するバッチ式の最終仕上焼鈍を行った後、平坦化焼鈍を行う方向性電磁鋼板の製造方法において、
上記焼鈍分離剤中に、SnO2および/またはSnOをMgO:100質量%に対し、2〜10質量%の範囲で含有させると共に、
上記平坦化焼鈍の際、炉内張力を、11.8MPa(1.2kgf/mm2)以下
とする方向性電磁鋼板の製造方法。
In mass%, C: 0.10% or less, Si: 2.0-4.5%, and Mn: 0.01-0.5%, sol.Al is reduced to 100 mass ppm or less, and S, Se, and N are reduced to 50 mass ppm or less, respectively. After the steel slab composed of Fe and inevitable impurities is subjected to low-temperature slab heating of 1300 ° C or lower, hot-rolled sheet annealing is performed, and then cold rolling is performed to obtain a final sheet thickness. , Continuous primary recrystallization annealing and decarburization annealing, and after applying batch final finishing annealing to form an undercoat by applying an annealing separator mainly composed of MgO, flattening annealing In the method for producing a grain-oriented electrical steel sheet,
In the annealing separator, SnO 2 and / or SnO is contained in a range of 2 to 10% by mass with respect to MgO: 100% by mass,
A method for producing a grain-oriented electrical steel sheet in which the furnace tension is 11.8 MPa (1.2 kgf / mm 2 ) or less during the flattening annealing.
前記鋼スラブに、さらに、Snを0.15質量%以下含有させた請求項1に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the steel slab further contains 0.15 mass% or less of Sn. 前記鋼スラブが、さらに質量%で、
Ni:0.005〜1.50%、
Sb:0.005〜0.50%、
Cu:0.01〜0.50%、
P:0.005〜0.50%、
Cr:0.01〜1.50%および
Mo:0.01〜0.50%
のうちから選んだ少なくとも1種を含有する組成からなる請求項1または2に記載の方向性電磁鋼板の製造方法。
The steel slab is further mass%,
Ni: 0.005-1.50%,
Sb: 0.005-0.50%,
Cu: 0.01 to 0.50%,
P: 0.005-0.50%,
Cr: 0.01-1.50% and
Mo: 0.01-0.50%
The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, comprising a composition containing at least one selected from the above.
JP2013224293A 2013-10-29 2013-10-29 Method for producing grain-oriented electrical steel sheet Active JP6146262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013224293A JP6146262B2 (en) 2013-10-29 2013-10-29 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224293A JP6146262B2 (en) 2013-10-29 2013-10-29 Method for producing grain-oriented electrical steel sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017006913A Division JP6458813B2 (en) 2017-01-18 2017-01-18 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2015086414A true JP2015086414A (en) 2015-05-07
JP6146262B2 JP6146262B2 (en) 2017-06-14

Family

ID=53049547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224293A Active JP6146262B2 (en) 2013-10-29 2013-10-29 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6146262B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066035A (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP2019178413A (en) * 2018-03-30 2019-10-17 Jfeスチール株式会社 Processing method of grain-oriented electromagnetic steel sheet
JP2019183271A (en) * 2018-03-30 2019-10-24 Jfeスチール株式会社 Production method of grain-oriented electromagnetic steel sheet
JP2020056080A (en) * 2018-10-03 2020-04-09 日本製鉄株式会社 Grain oriented electrical steel, grain oriented electrical steel for wound core transformer, method for manufacturing wound core, and method for manufacturing wound core transformer
CN111868272A (en) * 2018-03-20 2020-10-30 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
CN114106593A (en) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102390830B1 (en) * 2019-12-20 2022-04-25 주식회사 포스코 Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193132A (en) * 2001-12-28 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP2003213338A (en) * 2002-01-28 2003-07-30 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property and film property
JP2013087305A (en) * 2011-10-14 2013-05-13 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, method for production thereof, and transformer
JP2013087299A (en) * 2011-10-13 2013-05-13 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193132A (en) * 2001-12-28 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP2003213338A (en) * 2002-01-28 2003-07-30 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property and film property
JP2013087299A (en) * 2011-10-13 2013-05-13 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet
JP2013087305A (en) * 2011-10-14 2013-05-13 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, method for production thereof, and transformer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066035A (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN111868272A (en) * 2018-03-20 2020-10-30 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
CN111868272B (en) * 2018-03-20 2022-11-15 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP2019178413A (en) * 2018-03-30 2019-10-17 Jfeスチール株式会社 Processing method of grain-oriented electromagnetic steel sheet
JP2019183271A (en) * 2018-03-30 2019-10-24 Jfeスチール株式会社 Production method of grain-oriented electromagnetic steel sheet
JP2020056080A (en) * 2018-10-03 2020-04-09 日本製鉄株式会社 Grain oriented electrical steel, grain oriented electrical steel for wound core transformer, method for manufacturing wound core, and method for manufacturing wound core transformer
JP7299464B2 (en) 2018-10-03 2023-06-28 日本製鉄株式会社 Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound core transformer, method for manufacturing wound core, and method for manufacturing wound core transformer
CN114106593A (en) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP6146262B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP6451967B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6146262B2 (en) Method for producing grain-oriented electrical steel sheet
JP5772410B2 (en) Method for producing grain-oriented electrical steel sheet
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5780013B2 (en) Method for producing non-oriented electrical steel sheet
JP6020863B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2011115120A1 (en) Method for producing directional electromagnetic steel sheet
JP6119959B2 (en) Method for producing grain-oriented electrical steel sheet
JP2011190485A (en) Method for producing oriented electrical steel sheet
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP5757693B2 (en) Low iron loss unidirectional electrical steel sheet manufacturing method
JPWO2016129015A1 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2006274405A (en) Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
JP7398444B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP5332946B2 (en) Coil winding method after nitriding of nitriding grain-oriented electrical steel sheet
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
WO2016111088A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
JP5375694B2 (en) Method for producing grain-oriented electrical steel sheet
JP6458813B2 (en) Method for producing grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP7221481B6 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP4608514B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP3893759B2 (en) Method for producing grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6146262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250