JP2013087299A - Method for producing grain-oriented electromagnetic steel sheet - Google Patents

Method for producing grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2013087299A
JP2013087299A JP2011226133A JP2011226133A JP2013087299A JP 2013087299 A JP2013087299 A JP 2013087299A JP 2011226133 A JP2011226133 A JP 2011226133A JP 2011226133 A JP2011226133 A JP 2011226133A JP 2013087299 A JP2013087299 A JP 2013087299A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
electron beam
grain
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011226133A
Other languages
Japanese (ja)
Other versions
JP5906654B2 (en
Inventor
Yasuyuki Hayakawa
康之 早川
Takeshi Kijima
剛 木島
Tomoyuki Okubo
智幸 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011226133A priority Critical patent/JP5906654B2/en
Publication of JP2013087299A publication Critical patent/JP2013087299A/en
Application granted granted Critical
Publication of JP5906654B2 publication Critical patent/JP5906654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for realizing decreased iron loss of a grain-oriented electromagnetic steel sheet, secured interlaminar resistance and retained appearance of the steel sheet, by avoiding the damage of an insulating film associated with laser or electron beam irradiation, in a method for producing the grain-oriented electromagnetic steel sheet in which magnetic domain refinement processing is performed after flattening annealing by using the laser or electron beam irradiation.SOLUTION: The method for producing the grain-oriented electromagnetic steel sheet comprises: performing finish annealing to a coil with a winding diameter of ≥700 mm by an inner diameter and forming a forsterite film on a surface of the steel sheet; subsequently performing a flattening annealing treatment, in which an insulation coating essentially comprising phosphate and silica is applied, wherein the flattening annealing treatment is performed at a temperature of ≥850°C, and the tension applied to the steel sheet in an annealing furnace is adjusted to ≤10 MPa; and subsequently performing the magnetic domain refinement processing by emitting the laser or electron beam in a direction intersecting with a rolling direction of the steel sheet.

Description

本発明は、レーザーまたは電子ビームを照射する磁区細分化処理を施すことにより鉄損を改善した方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet in which iron loss is improved by performing a magnetic domain subdivision treatment that irradiates a laser or an electron beam.

方向性電磁鋼板は、主にトランスの鉄心として利用され、磁化特性に優れていること、特に鉄損が低いことが求められている。
そのためには、鋼板中の二次再結晶粒を、(110)[001]方位(いわゆる、ゴス方位)に高度に揃えることや、製品鋼板中の不純物を低減することが重要である。しかしながら、結晶方位を制御することや、不純物を低減することは、製造コストとの兼ね合い等で限界がある。そこで、鋼板の表面に対して物理的な手法で不均一性を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
例えば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に線状の高転位密度領域を導入し、磁区幅を狭くすることで、鋼板の鉄損を低減する技術が提案されている。また、特許文献2には、電子ビームの照射により磁区幅を制御する技術が提案されている。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
For this purpose, it is important to highly align the secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel sheet. However, controlling the crystal orientation and reducing impurities are limited in view of the manufacturing cost. Therefore, a technique for reducing the iron loss by introducing non-uniformity to the surface of the steel sheet by a physical method and subdividing the width of the magnetic domain, that is, a magnetic domain subdivision technique has been developed.
For example, Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating the final product plate with a laser, introducing a linear high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width. ing. Patent Document 2 proposes a technique for controlling the magnetic domain width by electron beam irradiation.

上記したレーザーまたは電子ビーム照射による磁区細分化処理は、仕上げ焼鈍を施して、さらに絶縁被膜の焼付けを兼ねた平坦化焼鈍を施した後に行われることが多い。
このような磁区細分化処理を行った場合は、電子ビーム等のビーム径を小さく、出力を絞った条件に制御することで、鋼板に付与された絶縁被膜の損傷を最小限に抑制している。
The above-mentioned magnetic domain fragmentation treatment by laser or electron beam irradiation is often performed after finishing annealing and further performing planarization annealing also serving as baking of the insulating film.
When such magnetic domain subdivision processing is performed, the damage to the insulating coating applied to the steel sheet is minimized by controlling the conditions such that the beam diameter of the electron beam or the like is reduced and the output is reduced. .

特公昭57−2252号公報Japanese Patent Publication No.57-2252 特公平6−72266号公報Japanese Patent Publication No. 6-72266

しかしながら、近年の二次再結晶粒の方位集積度の先鋭化という要求によって、磁区細分化処理前における磁区幅は、一層広がる傾向にある。そして、この磁区幅の拡大は、磁区細分化のための入射エネルギーを、一段と高くしている。
すなわち、従来の方法で電子ビームを照射し磁区細分化を施した材料は、その磁区細分化処理による絶縁被膜の損傷が避けられない。そこで、再び被膜をコーティングする必要が生じるため、再コーティングに伴う生産性の低下およびコストアップなどの問題が生じる。
However, due to the recent demand for sharpening of the orientational integration degree of secondary recrystallized grains, the domain width before the domain refinement process tends to be further widened. And the expansion of the magnetic domain width further increases the incident energy for magnetic domain subdivision.
That is, in the material that has been subjected to magnetic domain subdivision by irradiating an electron beam by a conventional method, damage to the insulating film due to the magnetic domain subdivision treatment is inevitable. Therefore, since it becomes necessary to coat the film again, problems such as a decrease in productivity and an increase in cost due to recoating occur.

本発明は、上記した現状に鑑み開発されたもので、レーザーまたは電子ビーム照射を用いて、平坦化焼鈍後に磁区細分化処理を施す方向性電磁鋼板の製造方法において、レーザーまたは電子ビーム照射に伴う絶縁被膜の損傷を回避することで、鋼板の鉄損低減、層間抵抗の確保および鋼板外観の維持を実現する方法を提供することを目的とする。   The present invention has been developed in view of the above-described present situation. In a method of manufacturing a grain-oriented electrical steel sheet that is subjected to magnetic domain subdivision treatment after flattening annealing using laser or electron beam irradiation, the present invention is accompanied by laser or electron beam irradiation. It aims at providing the method of implement | achieving the iron loss reduction of a steel plate, the ensuring of interlayer resistance, and the maintenance of a steel plate external appearance by avoiding the damage of an insulating film.

発明者らは、上記した課題を解決するために、その方途を鋭意究明したところ、レーザーあるいは電子ビームの照射に先立ち、平坦化焼鈍と同時に絶縁コーティングを行い、かつ平坦化焼鈍での、均熱温度を高めることおよび炉内における鋼板に対する付与張力を低下させること、さらには、仕上焼鈍時のコイルの巻取り径を大きくすることが、絶縁被膜の損傷回避に極めて有効であることを知見し、本発明を完成するに到った。
本発明は上記知見に立脚するものである。
In order to solve the above-mentioned problems, the inventors diligently studied the method, and prior to the laser or electron beam irradiation, the insulating coating was performed simultaneously with the flattening annealing, and the soaking in the flattening annealing was performed. Finding that increasing the temperature and lowering the tension applied to the steel sheet in the furnace, and further increasing the coil winding diameter during finish annealing are extremely effective in avoiding damage to the insulation coating, The present invention has been completed.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.方向性電磁鋼板の製造方法において、
仕上焼鈍を、コイルの巻取り径が内径で700mm以上として行い、鋼板の表面にフォルステライト被膜を形成した後、
引き続く平坦化焼鈍処理を施す際に、リン酸塩およびシリカを主体とする絶縁コーティング処理を施すものとし、上記平坦化焼鈍処理の温度を850℃以上で、かつ焼鈍炉内における鋼板に対する付与張力を10MPa以下とし、
その後、上記鋼板の圧延方向と交差する向きにレーザーまたは電子ビームを照射して磁区細分化処理を行うことを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. In the manufacturing method of grain-oriented electrical steel sheet,
Finish annealing is performed with the coil winding diameter of 700 mm or more inside diameter, and after forming the forsterite film on the surface of the steel sheet,
When the subsequent flattening annealing treatment is performed, an insulating coating treatment mainly composed of phosphate and silica is applied, the temperature of the flattening annealing treatment is 850 ° C. or higher, and the applied tension to the steel plate in the annealing furnace is 10MPa or less,
Then, a magnetic domain refinement process is performed by irradiating a laser or an electron beam in a direction intersecting with the rolling direction of the steel sheet, thereby producing a grain-oriented electrical steel sheet.

本発明によれば、レーザーあるいは電子ビームを用いた磁区細分化処理に伴なう絶縁被膜の損傷を効果的に回避して、低鉄損、高層間抵抗でかつ外観にも優れた方向性電磁鋼板を得ることができる。   According to the present invention, a directional electromagnetic wave having a low iron loss, a high interlayer resistance, and an excellent appearance can be effectively avoided by effectively damaging the insulating coating accompanying a magnetic domain subdivision process using a laser or an electron beam. A steel plate can be obtained.

各平坦化焼鈍温度における外観と層間抵抗値とを示したグラフである。It is the graph which showed the external appearance and interlayer resistance value in each planarization annealing temperature. 平坦化焼鈍温度を820℃および880℃とした場合の、炉内張力と電子ビーム照射後の鉄損値との関係を示したグラフである。It is the graph which showed the relationship between the furnace tension and the iron loss value after electron beam irradiation when planarization annealing temperature is 820 ° C and 880 ° C. 仕上焼鈍時のコイル径(試料の長手方向での採取位置)と、鉄損W17/50(W/kg)との関係を示したグラフである。It is the graph which showed the relationship between the coil diameter (finishing position in the longitudinal direction of a sample) at the time of finish annealing, and iron loss W17 / 50 (W / kg).

以下、本発明の方法について、詳しく説明する。
本発明では、仕上げ焼鈍を経たフォルステライト被膜を有する方向性電磁鋼板に、平坦化焼鈍を絶縁コーティング処理と併せて施し、ついで鋼板の圧延方向と交差する向きにレーザーあるいは電子ビームを照射する磁区細分化処理を施すに当り、平坦化焼鈍の温度を高め、かつ焼鈍炉内における鋼板に対する付与張力(以下、単に炉内張力という)を低減することで、レーザーまたは電子ビーム照射に伴う絶縁被膜の損傷を回避して、鋼板の鉄損低減を実現することに特徴がある。
そこで、以下、絶縁被膜の損傷に対する平坦化焼鈍条件の影響について調査した結果に基づいて、本発明を詳しく説明する。
Hereinafter, the method of the present invention will be described in detail.
In the present invention, magnetic domain subdivision is applied to a grain-oriented electrical steel sheet having a forsterite film that has undergone finish annealing, along with planarization annealing in combination with an insulating coating treatment, and then irradiating a laser or electron beam in a direction that intersects the rolling direction of the steel sheet. In order to increase the flattening annealing temperature and reduce the tension applied to the steel plate in the annealing furnace (hereinafter simply referred to as the furnace tension), the damage to the insulation coating due to laser or electron beam irradiation This is characterized in that the iron loss of the steel sheet is reduced.
Therefore, the present invention will be described in detail below based on the results of investigation on the influence of the planarization annealing condition on the damage of the insulating coating.

Siを3.3質量%含み、仕上焼鈍をコイル内径(直径)が500mmで外径が1800mmのコイルとして行なうことにより、二次再結晶が完了した仕上焼鈍済みのフォルステライト被膜を有する方向性電磁鋼板コイルを用いて、平坦化焼鈍の均熱温度(以下、単に平坦化焼鈍温度という)を変化させる実験を行った。その際、均熱時間は10sとし、炉内張力は8.8MPa(0.9kgf/mm2)の一定値とした。また、平坦化焼鈍に供する試料は、仕上焼鈍時のコイル径が1000mmとなる位置(曲率半径で500mm)となる位置から採取した。 A grain-oriented electrical steel sheet coil with a forsterite film that has been subjected to finish annealing and has undergone secondary recrystallization by performing finish annealing as a coil with a coil inner diameter (diameter) of 500 mm and an outer diameter of 1800 mm. Was used to change the soaking temperature of flattening annealing (hereinafter simply referred to as flattening annealing temperature). At that time, the soaking time was 10 s, and the furnace tension was a constant value of 8.8 MPa (0.9 kgf / mm 2 ). Further, a sample to be subjected to flattening annealing was collected from a position where the coil diameter at the time of finish annealing was 1000 mm (the radius of curvature was 500 mm).

ついで、平坦化焼鈍後のサンプルについて、電子ビームを圧延方向に対し直角方向に走査し、加速電圧:150kV、ビーム電流値:0.5mA、ビーム径:0.2mmおよびビーム走査速度:5m/sの各条件で、圧延方向に6mmピッチで照射した。この時の絶縁被膜の損傷程度を、目視による外観および層間抵抗値で評価した。
図1に、各平坦化焼鈍温度における外観の評価結果と層間抵抗値の測定結果とを示す。図1に示したように、平坦化焼鈍温度を高めることによって、電子ビームの照射痕も消滅し、層間抵抗値も増大して、被膜の損傷が軽減することが分かる。なお、目視検査により行った鋼板外観の評価基準は、後述する実施例と同様である。
Next, the sample after flattening annealing was scanned with an electron beam in a direction perpendicular to the rolling direction, acceleration voltage: 150 kV, beam current value: 0.5 mA, beam diameter: 0.2 mm, and beam scanning speed: 5 m / s. Under the conditions, irradiation was performed at a pitch of 6 mm in the rolling direction. The degree of damage to the insulating coating at this time was evaluated by visual appearance and interlayer resistance.
In FIG. 1, the external appearance evaluation result in each planarization annealing temperature and the measurement result of an interlayer resistance value are shown. As shown in FIG. 1, it can be seen that by increasing the flattening annealing temperature, the electron beam irradiation traces disappear, the interlayer resistance value also increases, and damage to the coating is reduced. In addition, the evaluation criteria of the steel plate external appearance performed by visual inspection are the same as the Example mentioned later.

次に、平坦化焼鈍時の炉内張力の影響を調査するために、平坦化焼鈍温度を820℃および880℃に高めた場合について、炉内張力を変化させる実験を行った。その際、平坦化焼鈍温度を変更する実験と同様の条件で、電子ビームを照射した。
図2に、平坦化焼鈍温度を820℃および880℃とした場合の、炉内張力と電子ビーム照射後の鉄損値との関係を示す。同図に示したとおり、平坦化焼鈍温度を880℃とした場合、炉内張力が10MPa以下になると、急激に鉄損値が低減している。これは、炉内張力が高い場合、平坦化焼鈍を高温化するとクリープ変形により鉄損の劣化が増大するものの、炉内張力が低い場合には、むしろ平坦化焼鈍を高温化する方が鋼板内部の歪が有効に解放されて鉄損が改善されるものと考えている。
Next, in order to investigate the influence of the furnace tension during flattening annealing, an experiment was conducted in which the furnace tension was changed when the flattening annealing temperature was increased to 820 ° C and 880 ° C. In that case, the electron beam was irradiated on the same conditions as the experiment which changes the planarization annealing temperature.
FIG. 2 shows the relationship between the furnace tension and the iron loss value after electron beam irradiation when the planarization annealing temperatures are 820 ° C. and 880 ° C. As shown in the figure, when the flattening annealing temperature is set to 880 ° C., the iron loss value is drastically reduced when the furnace tension becomes 10 MPa or less. This is because when the furnace tension is high, increasing the temperature of flattening annealing increases the deterioration of iron loss due to creep deformation. It is thought that the iron loss will be improved by effectively releasing the distortion.

さらに、前記コイルの長手方向の複数の位置で採取した試料のそれぞれについて、平坦化焼鈍温度を820℃および880℃とし、炉内張力を7.8MPa(0.8kgf/mm2)とした平坦化焼鈍を行い、この試料に電子ビームを圧延方向に対し直角方向に走査し、加速電圧:150kV、ビーム電流値:0.5mA、ビーム径:0.2mmおよびビーム走査速度:5m/sの各条件で、圧延方向に6mmピッチで照射した後の鉄損値(W17/50)を測定した。
図3に、仕上焼鈍時のコイル径(試料の長手方向での採取位置)と、鉄損W17/50(W/kg)との関係を示す。同図に示したとおり、平坦化焼鈍が880℃であって、かつ、コイル径が700mm以上、特に1000mm以上で鉄損が著しく向上していることがわかる。
Further, with respect to each of the samples collected at a plurality of positions in the longitudinal direction of the coil, the flattening annealing temperature was set to 820 ° C and 880 ° C, and the furnace tension was set to 7.8 MPa (0.8 kgf / mm 2 ). This sample was scanned with an electron beam in a direction perpendicular to the rolling direction, under the conditions of acceleration voltage: 150 kV, beam current value: 0.5 mA, beam diameter: 0.2 mm, and beam scanning speed: 5 m / s. The iron loss value (W 17/50 ) after irradiation at 6 mm pitch was measured.
FIG. 3 shows the relationship between the coil diameter at the time of finish annealing (the sampling position in the longitudinal direction of the sample) and the iron loss W 17/50 (W / kg). As shown in the figure, it can be seen that the iron loss is remarkably improved when the flattening annealing is 880 ° C. and the coil diameter is 700 mm or more, particularly 1000 mm or more.

本発明における平坦化焼鈍には、二次再結晶が完了した鋼板に対し、高温の焼鈍炉内において、コロイダルシリカとリン酸塩を主体とした絶縁コーティングを行って絶縁被膜を形成し、鋼板と絶縁被膜との熱膨張差を利用して鋼板に張力を付与することで、鋼板の鉄損を低減させるという重要な役割がある。   In the flattening annealing in the present invention, an insulating coating is formed by performing an insulating coating mainly composed of colloidal silica and phosphate in a high-temperature annealing furnace on the steel plate that has undergone secondary recrystallization, There is an important role of reducing the iron loss of the steel sheet by applying tension to the steel sheet using the difference in thermal expansion with the insulating coating.

また、本発明におけるリン酸塩被膜の存在形態としては、通常の平坦化焼鈍温度である800〜840℃の範囲の場合、SiO2-MgO-P2O5系の非晶質被膜であり、850℃以上に高温化すると、一部のリン酸塩が結晶化した被膜となる。この結晶化被膜が、絶縁被膜全体の剛性を高め、レーザーあるいは電子ビーム照射に伴なう熱歪に、耐性を生じさせるものと考えている。 In addition, as the presence form of the phosphate coating in the present invention, in the case of a range of 800 to 840 ° C. which is a normal planarization annealing temperature, it is a SiO 2 —MgO—P 2 O 5 based amorphous coating, When the temperature is raised to 850 ° C. or higher, a film in which some of the phosphate is crystallized is formed. It is believed that this crystallized film increases the rigidity of the entire insulating film and provides resistance to thermal strain accompanying laser or electron beam irradiation.

なお、本発明における絶縁コーティングは、コロイダルシリカとリン酸塩を主体として行われるが、リン酸塩としては具体的には、リン酸マグネシウム、リン酸アルミニウムなどが挙げられる。また、その比率は、リン酸塩の含有量として30〜70質量%程度が好ましい。無水クロム酸も被膜の安定性を高めるために添加することが可能であり、その場合、10質量%以下程度が好ましい。さらに、コーティング液の塗布量は10.0〜15.0g/m2の範囲が好ましい。 The insulating coating in the present invention is mainly composed of colloidal silica and phosphate. Specific examples of the phosphate include magnesium phosphate and aluminum phosphate. The ratio is preferably about 30 to 70% by mass as the phosphate content. Chromic anhydride can also be added to increase the stability of the coating, and in that case, it is preferably about 10% by mass or less. Further, the coating amount of the coating liquid is preferably in the range of 10.0~15.0g / m 2.

また、平坦化焼鈍を施す際には、鋼板に張力を付与することで、焼鈍時に発生する巻きぐせを矯正する作用を有する。
平坦化焼鈍前における鋼板表面には、フォルステライト被膜(フォルステライト(Mg2SiO4)を主体とした下地被膜)が形成されている。このフォルステライト被膜は、鋼板とリン酸塩やコロイダルシリカを主体とした絶縁被膜とを接着する、いわゆるバインダーの役割を果たしている。しかしながら、平坦化焼鈍を高温化した場合、焼鈍炉内で鋼板に付与される張力によって、鋼板がクリープ変形して伸長する。その際、フォルステライト被膜は、鋼板に比して、著しく変形が困難なセラミック質であるため、鋼板の伸長に追随できない。そのため、被膜が損傷して鋼板に及ぼす張力が減少し、鉄損が劣化してしまうことになる。
従って、平坦化焼鈍温度を高めた場合には、炉内張力を低減する必要があるものの、高温化により、鋼板の強度が低下するため、少ない張力で充分矯正することが可能である。
Moreover, when performing planarization annealing, it has the effect | action which corrects the curl which generate | occur | produces at the time of annealing by providing tension | tensile_strength to a steel plate.
A forsterite film (a base film mainly composed of forsterite (Mg 2 SiO 4 )) is formed on the surface of the steel plate before the flattening annealing. This forsterite film serves as a so-called binder that bonds a steel sheet and an insulating film mainly composed of phosphate or colloidal silica. However, when the flattening annealing is performed at a high temperature, the steel plate creeps and expands due to the tension applied to the steel plate in the annealing furnace. At that time, the forsterite film is a ceramic material that is extremely difficult to deform as compared with the steel plate, and therefore cannot follow the elongation of the steel plate. For this reason, the coating is damaged, the tension applied to the steel sheet is reduced, and the iron loss is deteriorated.
Therefore, when the flattening annealing temperature is raised, the tension in the furnace needs to be reduced, but the strength of the steel sheet is lowered due to the higher temperature, so that it can be sufficiently corrected with a small tension.

具体的には、焼鈍温度を850℃以上の高温とし、通板時の炉内張力を、通常より低い10MPa(1.02kgf/mm)以下に低減することで、磁区細分化処理時の絶縁被膜の損傷を防止し、かつ充分な被膜密着性を確保して、磁区細分化効果を最大限に発揮することができる絶縁被膜を有する方向性電磁鋼板が得られる。なお、通常の通板時の焼鈍温度は、820℃程度、炉内張力は、12MPa(1.22kgf/mm)程度である。 Specifically, the annealing temperature is set to a high temperature of 850 ° C or higher, and the furnace tension during feeding is reduced to 10MPa (1.02kgf / mm 2 ) or less, which is lower than usual. It is possible to obtain a grain-oriented electrical steel sheet having an insulating coating that can prevent damage to the substrate and secure sufficient coating adhesion to maximize the magnetic domain fragmentation effect. In addition, the annealing temperature during normal feeding is about 820 ° C., and the furnace tension is about 12 MPa (1.22 kgf / mm 2 ).

本発明におけるフォルステライト被膜形成用の焼鈍分離剤としては、MgOを主体としていれば、特に制限はないがTiO2,MgSO4,SrSO4等を含むものが有利に適合する。 The annealing separator for forming a forsterite film in the present invention is not particularly limited as long as it is mainly composed of MgO, but those containing TiO 2 , MgSO 4 , SrSO 4 and the like are advantageously suitable.

本発明において、レーザーあるいは電子ビーム照射を用いて、鋼板に与える歪は、鋼板の圧延方向と交差する向きに、連続または断続した線状で導入する。すなわち、本発明で線状とは、不連続(点線状)を含むものとする。なお、この線状の歪み導入領域は、例えば圧延方向に1mm以上20mm以下の間隔を置いて反復して形成することが好ましい。   In the present invention, the strain applied to the steel sheet using laser or electron beam irradiation is introduced in a continuous or intermittent line shape in a direction crossing the rolling direction of the steel sheet. That is, in the present invention, the term “linear” includes discontinuities (dotted lines). In addition, it is preferable to form this linear distortion | strain introduction area | region repeatedly, for example in the rolling direction at intervals of 1 mm or more and 20 mm or less.

本発明では、レーザーまたは電子ビームの照射を、仕上焼鈍とリン酸塩およびシリカを主体とする絶縁コーティング処理を兼ねた平坦化焼鈍の後に行う。ここに、方向性電磁鋼板の特徴であるゴス方位の二次再結晶粒を成長させるための仕上焼鈍や、絶縁コーティング処理(平坦化焼鈍)など、いずれも高温での熱処理が必要である。しかしながら、電子ビームの照射後にこのような高温処理を行うと、電子ビーム照射に起因した熱歪によって鋼板に付与された圧縮応力が高温処理によって解消されてしまい、磁区細分化効果が減じてしまうことになる。従って、本発明では、絶縁被膜形成等の高温処理をレーザーまたは電子ビーム処理前に実施する必要がある。   In the present invention, laser or electron beam irradiation is performed after finish annealing and planarization annealing that serves as an insulating coating mainly composed of phosphate and silica. Here, heat treatment at a high temperature is required, such as finish annealing for growing secondary recrystallized grains having goth orientation, which is a characteristic of grain-oriented electrical steel sheets, and insulating coating treatment (planarization annealing). However, if such a high temperature treatment is performed after the electron beam irradiation, the compressive stress applied to the steel sheet due to the thermal strain caused by the electron beam irradiation is eliminated by the high temperature treatment, and the magnetic domain fragmentation effect is reduced. become. Therefore, in the present invention, it is necessary to perform a high-temperature treatment such as formation of an insulating film before the laser or electron beam treatment.

本発明で用いるレーザーの光源としては、従来公知の連続波レーザー、パルスレーザーのいずれでも良く、YAGレーザーやCOレーザー等、種類も問わない。また、照射痕は線状でも点状でも構わないが、これら照射痕の方向は、鋼板の圧延方向に対して、90°から45°をなす範囲の方向であることが好ましい。
なお、近年、使用されるようになってきたグリーンレーザーマーカーは、照射精度の面で特に好適である。
The laser light source used in the present invention may be a conventionally known continuous wave laser or pulse laser, and may be of any type, such as a YAG laser or a CO 2 laser. The irradiation marks may be linear or point-like, but the direction of these irradiation marks is preferably in the range of 90 ° to 45 ° with respect to the rolling direction of the steel sheet.
In addition, the green laser marker that has come to be used in recent years is particularly suitable in terms of irradiation accuracy.

グリーンレーザーマーカーにおけるレーザーの出力は、単位長さ当たりの熱量として、5〜100J/m程度の範囲が好ましい。また、レーザービームのスポット径は0.1〜0.5mm程度の範囲とし、圧延方向の繰返し間隔は、1〜20mm程度の範囲とすることが好ましい。   The laser output of the green laser marker is preferably in the range of about 5 to 100 J / m as the amount of heat per unit length. The spot diameter of the laser beam is preferably in the range of about 0.1 to 0.5 mm, and the repetition interval in the rolling direction is preferably in the range of about 1 to 20 mm.

また、電子ビーム照射では、例えば、照射位置でのビーム径を0.05〜1mmに収束させた電子ビームを、鋼板の幅方向(圧延方向と交差する方向)に走査して、線状に熱歪みを導入させる。電子ビームの出力は10〜2000W程度、走査速度は1〜100m/s程度として、さらに、単位長さ当たりの出力が1〜50J/m程度になるように調整し、線状に1〜20mm程度の間隔で照射するのが好適である。   In electron beam irradiation, for example, an electron beam whose beam diameter at the irradiation position is converged to 0.05 to 1 mm is scanned in the width direction of the steel sheet (direction intersecting with the rolling direction), and thermal strain is linearly formed. Let it be introduced. The output of the electron beam is about 10 to 2000 W, the scanning speed is about 1 to 100 m / s, and the output per unit length is adjusted to be about 1 to 50 J / m, and the linear shape is about 1 to 20 mm. It is preferable to irradiate at intervals.

また、磁区細分化処理を施した方向性電磁鋼板の鉄損は、二次再結晶の方位集積が高い方が、より小さいことが知られている。ここに、方位集積の目安としてB(800A/mで磁化した際の磁束密度)がよく用いられるが、本発明に用いる方向性電磁鋼板は、Bが1.88T以上、より好ましくは1.92T以上のものが好適である。 In addition, it is known that the iron loss of the grain-oriented electrical steel sheet subjected to the magnetic domain refinement treatment is smaller when the orientational integration of secondary recrystallization is higher. Here, B 8 (magnetic flux density when magnetized at 800 A / m) is often used as a measure of orientation accumulation, but the grain-oriented electrical steel sheet used in the present invention has a B 8 of 1.88 T or more, more preferably 1.92 T. The above is preferred.

電磁鋼板の表面に形成される絶縁被膜(張力被膜)は、前述したように、リン酸アルミニウムやリン酸マグネシウム等のリン酸塩とシリカとを主成分とする絶縁コーティング処理を行うことで、ガラス質の絶縁被膜とする。   As described above, the insulating coating (tension coating) formed on the surface of the electrical steel sheet is obtained by performing an insulating coating treatment mainly containing a phosphate such as aluminum phosphate or magnesium phosphate and silica. Quality insulating film.

本発明では、絶縁被膜の剛性を高め、磁区細分化処理時の絶縁被膜の損傷を低減するために、平坦化焼鈍の温度を850℃以上とすることが必須である。より好ましくは、870℃以上である。平坦化焼鈍温度の上限については特に定めないが、高温になるほど鋼板のクリープ伸びを抑制するための張力値が小さくなり、鋼板の蛇行等の通板上の問題を生じることになる。従って、920℃以下とすることが好ましい。   In the present invention, in order to increase the rigidity of the insulating coating and reduce the damage to the insulating coating during the magnetic domain subdivision treatment, it is essential that the temperature of the planarization annealing is 850 ° C. or higher. More preferably, it is 870 ° C. or higher. The upper limit of the flattening annealing temperature is not particularly defined, but the higher the temperature, the smaller the tension value for suppressing the creep elongation of the steel sheet, which causes problems on the passing plate such as meandering of the steel sheet. Accordingly, the temperature is preferably 920 ° C. or lower.

また、鋼板のクリープ伸びを抑制し、絶縁コーティングの密着性を高めて良好な鉄損を得るために、平坦化焼鈍の炉内張力を10MPa以下とすることが必須である。ここに、平坦化焼鈍時の炉内張力の下限は特に定めないが、焼鈍温度が低い場合に巻きぐせを矯正する能力が低下するため、炉内張力の下限は5MPa程度が好ましい。   In addition, in order to suppress creep elongation of the steel sheet and increase the adhesion of the insulating coating to obtain a good iron loss, it is essential that the furnace tension of the flattening annealing is 10 MPa or less. Here, the lower limit of the in-furnace tension at the time of the flattening annealing is not particularly defined, but the ability to correct the curling is lowered when the annealing temperature is low, so the lower limit of the in-furnace tension is preferably about 5 MPa.

本発明に係る方向性電磁鋼板は、従来公知の方向性電磁鋼板であればよい。例えば、Si:2.0〜8.0質量%を含む電磁鋼素材を用いればよい。
Si:2.0〜8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質
量%に満たないと十分な鉄損低減効果が達成できず。一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜8.0質量%の範囲とすることが好ましい。
The grain-oriented electrical steel sheet according to the present invention may be a conventionally known grain-oriented electrical steel sheet. For example, an electromagnetic steel material containing Si: 2.0 to 8.0% by mass may be used.
Si: 2.0 to 8.0 mass%
Si is an element effective for increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0% by mass, sufficient iron loss reduction effect cannot be achieved. On the other hand, if it exceeds 8.0% by mass, the workability is remarkably reduced and the magnetic flux density is also reduced. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.

ここで、Si以外の基本成分および任意添加成分について述べると次のとおりである。
C:0.08質量%以下
Cは、集合組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Here, basic components other than Si and optional added components are described as follows.
C: 0.08% by mass or less C is added to improve the texture. However, if it exceeds 0.08% by mass, it is difficult to reduce C to 50 ppm by mass or less at which no magnetic aging occurs during the manufacturing process. Therefore, the content is preferably 0.08% by mass or less. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005% by mass, the effect of addition is poor, whereas if it exceeds 1.0% by mass, the magnetic flux density of the product plate decreases. The amount of Mn is preferably in the range of 0.005 to 1.0 mass%.

ここで、二次再結晶を生じさせるために、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.01〜0.065質量%、N:0.005〜0.012質量%、S:0.005〜0.03質量%、Se:0.005〜0.03質量%である。   Here, when an inhibitor is used to cause secondary recrystallization, for example, Al and N are used when an AlN inhibitor is used, and Mn is used when an MnS / MnSe inhibitor is used. An appropriate amount of Se and / or S may be contained. Of course, both inhibitors may be used in combination. The preferred contents of Al, N, S and Se in this case are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .

さらに、本発明は、Al,N,S,Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。
この場合には、Al,N,SおよびSe量はそれぞれ、Al:100 質量ppm以下、N:50 質量ppm以下、S:50 質量ppm以下、Se:50 質量ppm以下に抑制することが好ましい。
上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets in which the content of Al, N, S, Se is limited and no inhibitor is used.
In this case, the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less.
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.

Ni:0.03〜1.50質量%、Sn:0.01〜1.50質量%、Sb:0.005〜1.50質量%、Cu:0.03〜3.0質量%、P:0.03〜0.50質量%、Mo:0.005〜0.10質量%およびCr:0.03〜1.50質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.50質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.50質量%の範囲とするのが好ましい。
Ni: 0.03-1.50 mass%, Sn: 0.01-1.50 mass%, Sb: 0.005-1.50 mass%, Cu: 0.03-3.0 mass%, P: 0.03-0.50 mass%, Mo: 0.005-0.10 mass% and Cr: At least one selected from 0.03 to 1.50 mass%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03% by mass, the effect of improving the magnetic properties is small. On the other hand, if it exceeds 1.50% by mass, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.50 mass%.

また、Sn,Sb,Cu,P,MoおよびCrはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
Sn, Sb, Cu, P, Mo, and Cr are elements that are useful for improving the magnetic properties, respectively, but if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small. If the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

本発明では、上記した成分組成になる鋼スラブを、方向性電磁鋼板の常法に従う工程を経て、二次再結晶焼鈍後に絶縁被膜を形成して方向性電磁鋼板とする。すなわち、スラブ加熱後に熱間圧延を施し、必要に応じて熱延板焼鈍を行ったのち、1回又は中間焼鈍を挟む2回以上の冷間圧延にて最終板厚とし、その後、脱炭、一次再結晶焼鈍した後、例えばMgOを主成分とした焼鈍分離剤を塗布し、二次再結晶過程と純化過程とを含む仕上焼鈍を施し、前述の平坦化焼鈍処理を行い、前述したように、例えばコロイダルシリカとリン酸マグネシウムなどのリン酸塩からなるコーティング液を塗布して焼付ければよい。   In the present invention, the steel slab having the above component composition is subjected to a process in accordance with a conventional method for grain-oriented electrical steel sheets, and an insulating coating is formed after secondary recrystallization annealing to obtain a grain-oriented electrical steel sheet. That is, after hot-rolling after slab heating, and performing hot-rolled sheet annealing as necessary, the final sheet thickness is obtained by cold rolling two or more times sandwiching one time or intermediate annealing, and then decarburization, After the primary recrystallization annealing, for example, an annealing separator containing MgO as a main component is applied, finish annealing including the secondary recrystallization process and the purification process is performed, and the above-described planarization annealing treatment is performed, as described above. For example, a coating solution made of a phosphate such as colloidal silica and magnesium phosphate may be applied and baked.

ここで、本発明では、仕上焼鈍において、コイルの巻取り径を内径(直径)で700mm以上とし、好ましくは1000mm以上とすることが重要である。コイル径を大きくすることで、平坦化焼鈍の湾曲矯正に伴う結晶方位の劣化量(ゴス方位の圧延方向からのずれ)が低減される効果が高まる。加えて、必要となる矯正量が少なくなるため、平坦化焼鈍によって導入される歪量の低減される効果が高まる。その結果、鉄損の改善が実現したものと考えられる。   Here, in the present invention, in the finish annealing, it is important that the coil winding diameter is 700 mm or more in inner diameter (diameter), preferably 1000 mm or more. Increasing the coil diameter increases the effect of reducing the amount of crystal orientation deterioration (deviation of the Goth orientation from the rolling direction) associated with straightening annealing. In addition, since the required correction amount is reduced, the effect of reducing the amount of strain introduced by the flattening annealing is enhanced. As a result, it is considered that iron loss has been improved.

なお、本発明において、上述した工程や製造条件以外については、従来公知の、平坦化焼鈍後に、レーザーあるいは電子ビームを用いて磁区細分化処理を施す方向性電磁鋼板の製造方法を適宜用いることができる。   In addition, in this invention, except the process and manufacturing conditions mentioned above, the conventionally well-known manufacturing method of the grain-oriented electrical steel sheet which performs a magnetic domain fragmentation process using a laser or an electron beam after planarization annealing may be used suitably. it can.

(実施例1)
Siを3.3質量%含有した一次再結晶焼鈍後の鋼板にMgOを塗布し、種々のコイル径(内径)に巻き取って仕上焼鈍を行ったフォルステライト被膜を有する方向性電磁鋼板(二次再結晶完了)のコイル内周部について、表1に示す条件で平坦化焼鈍を行った。鋼板の板厚は0.23mmである。また、平坦化焼鈍では、リン酸マグネシウム:50質量部、無水クロム酸:10質量部およびコロイダルシリカ:40質量部からなるコーティング液を塗布して、絶縁コーティングを同時に行なった。なお、コーティング液の塗布量は10.0g/m2とした。
かくして得られた、方向性電磁鋼板のサンプルにコイルを連続的に送りながら、電子ビームを連続的に照射する磁区細分化処理を行った。
電子ビームは、圧延直角方向に走査し、加速電圧:150kV、ビーム電流値:0.5mA、ビーム径:0.2mmおよびビーム走査速度:5m/sの条件で、圧延方向に6mmピッチで照射し、照射前後の鉄損W17/50をそれぞれ評価した。また、層間抵抗を、接触子を有する市販の層間抵抗試験機を用いてJIS C2550に準拠して測定した。なお、表中の∞とは、本実施例では、5000Ω・cmを超える抵抗を示したものを意味する。さらに、電子ビームの照射痕を目視検査で確認した。その評価は、照射痕が見えないものを○、不明瞭ながらも見えるもの(軽度)を△、はっきり明瞭に見えるものを×とした。
評価結果を表1に併記する。
Example 1
Oriented electrical steel sheet with forsterite coating (secondary recrystallization) coated with MgO on a steel sheet after primary recrystallization annealing containing 3.3% by mass of Si, wound on various coil diameters (inner diameters) and subjected to finish annealing (Completion) The inner peripheral portion of the coil was subjected to planarization annealing under the conditions shown in Table 1. The plate thickness of the steel plate is 0.23 mm. Further, in the flattening annealing, a coating liquid composed of magnesium phosphate: 50 parts by mass, chromic anhydride: 10 parts by mass and colloidal silica: 40 parts by mass was applied, and insulating coating was simultaneously performed. The coating amount of the coating liquid was 10.0 g / m 2 .
Magnetic domain subdivision treatment was carried out by continuously irradiating the electron beam while continuously feeding the coil to the sample of the grain-oriented electrical steel sheet thus obtained.
The electron beam is scanned in the direction perpendicular to the rolling direction and irradiated at an acceleration voltage of 150 kV, a beam current value of 0.5 mA, a beam diameter of 0.2 mm and a beam scanning speed of 5 m / s at a pitch of 6 mm in the rolling direction. The iron loss W 17/50 before and after was evaluated. The interlayer resistance was measured according to JIS C2550 using a commercially available interlayer resistance tester having a contact. In the table, ∞ means a resistance exceeding 5000 Ω · cm 2 in this example. Furthermore, the irradiation trace of the electron beam was confirmed by visual inspection. In the evaluation, the case where the irradiation mark was not visible was indicated as “◯”, the case where it was unclear but (light) was indicated as “△”, and the case where it was clearly visible was indicated as “X”.
The evaluation results are also shown in Table 1.

Figure 2013087299
Figure 2013087299

同表に示したとおり、平坦化焼鈍の条件が本発明の範囲を外れているNo.6および7は共に、電子ビーム照射後の鉄損が悪く、層間抵抗および外観に劣っている。また、仕上焼鈍時のコイルの巻取り径(内径)が本発明の範囲を外れているNo .1は電子ビーム照射後の鉄損が劣っている。これに対し、本発明の条件に従うNo.2〜5は、いずれも優れた鉄損が得られており、層間抵抗および外観も良好である。   As shown in the table, No. 6 and No. 7 in which the conditions for flattening annealing are out of the scope of the present invention are both poor in iron loss after electron beam irradiation and inferior in interlayer resistance and appearance. Further, No. 1 in which the coil winding diameter (inner diameter) at the time of finish annealing is out of the range of the present invention is inferior in iron loss after electron beam irradiation. On the other hand, Nos. 2 to 5 according to the conditions of the present invention all have excellent iron loss, and have good interlayer resistance and appearance.

(実施例2)
Siを3.3質量%含有した一次再結晶焼鈍後の鋼板にMgOを塗布し、種々のコイル径(内径)に巻き取って仕上焼鈍を行ったフォルステライト被膜を有する方向性電磁鋼板(二次再結晶完了)のコイル内周部について、表2に示す条件で平坦化焼鈍を行った。鋼板の板厚は0.27mmである。また、平坦化焼鈍では、リン酸アルミニウム:60質量部、無水クロム酸:10質量部およびコロイダルシリカ:30質量部からなるコーティング液を塗布して、絶縁コーティングの形成も同時に行なった。なお、コーティング液の塗布量は12.0g/m2とした。
かくして得られた、方向性電磁鋼板のサンプルにコイルを連続的に送りながら、レーザービームを連続的に照射する磁区細分化処理を行った。
100Wのファイバーレーザーを用いて、圧延方向と直角方向に、板幅方向の走査速度:10m/s、圧延方向の照射ピッチ:5mm、照射幅:150μm、照射間隔:7.5mmで磁区細分化処理を行い、照射前後の鉄損W17/50、層間抵抗および外観をそれぞれ評価した。なお、層間抵抗および外観は実施例1と同様の手順で評価した。
評価結果を表2に併記する。
(Example 2)
Oriented electrical steel sheet with forsterite coating (secondary recrystallization) coated with MgO on a steel sheet after primary recrystallization annealing containing 3.3% by mass of Si, wound on various coil diameters (inner diameters) and subjected to finish annealing (Completion) The inner peripheral portion of the coil was subjected to planarization annealing under the conditions shown in Table 2. The plate thickness of the steel plate is 0.27 mm. Further, in the flattening annealing, a coating liquid composed of 60 parts by mass of aluminum phosphate, 10 parts by mass of chromic anhydride and 30 parts by mass of colloidal silica was applied to form an insulating coating at the same time. The coating amount of the coating liquid was 12.0 g / m 2 .
Magnetic domain subdivision treatment was carried out by continuously irradiating a laser beam while continuously feeding a coil to the sample of the grain-oriented electrical steel sheet thus obtained.
Using a 100W fiber laser, magnetic domain subdivision treatment is performed in a direction perpendicular to the rolling direction, scanning speed in the plate width direction: 10 m / s, irradiation pitch in the rolling direction: 5 mm, irradiation width: 150 μm, irradiation interval: 7.5 mm The iron loss W 17/50 before and after the irradiation, the interlayer resistance and the appearance were evaluated. The interlayer resistance and appearance were evaluated by the same procedure as in Example 1.
The evaluation results are also shown in Table 2.

Figure 2013087299
Figure 2013087299

同表に示したとおり、平坦化焼鈍の条件が本発明の範囲を外れているNo.6および7は共に、電子ビーム照射後の鉄損が悪く、層間抵抗および外観に劣っている。また、仕上焼鈍時のコイルの巻取り径(内径)が本発明の範囲を外れているNo.1は電子ビーム照射後の鉄損が劣っている。これに対し、本発明の条件に従うNo.2〜5は、いずれも優れた鉄損が得られており、層間抵抗および外観も良好である。   As shown in the table, No. 6 and No. 7 in which the conditions for flattening annealing are out of the scope of the present invention are both poor in iron loss after electron beam irradiation and inferior in interlayer resistance and appearance. Further, No. 1 in which the coil winding diameter (inner diameter) at the time of finish annealing is out of the range of the present invention is inferior in iron loss after electron beam irradiation. On the other hand, Nos. 2 to 5 according to the conditions of the present invention all have excellent iron loss, and have good interlayer resistance and appearance.

Claims (1)

方向性電磁鋼板の製造方法において、
仕上焼鈍を、コイルの巻取り径が内径で700mm以上として行い、鋼板の表面にフォルステライト被膜を形成した後、
引き続く平坦化焼鈍処理を施す際に、リン酸塩およびシリカを主体とする絶縁コーティング処理を施すものとし、上記平坦化焼鈍処理の温度を850℃以上で、かつ焼鈍炉内における鋼板に対する付与張力を10MPa以下とし、
その後、上記鋼板の圧延方向と交差する向きにレーザーまたは電子ビームを照射して磁区細分化処理を行うことを特徴とする方向性電磁鋼板の製造方法。
In the manufacturing method of grain-oriented electrical steel sheet,
Finish annealing is performed with the coil winding diameter of 700 mm or more inside diameter, and after forming the forsterite film on the surface of the steel sheet,
When the subsequent flattening annealing treatment is performed, an insulating coating treatment mainly composed of phosphate and silica is applied, the temperature of the flattening annealing treatment is 850 ° C. or higher, and the applied tension to the steel plate in the annealing furnace is 10MPa or less,
Then, a magnetic domain refinement process is performed by irradiating a laser or an electron beam in a direction intersecting with the rolling direction of the steel sheet, thereby producing a grain-oriented electrical steel sheet.
JP2011226133A 2011-10-13 2011-10-13 Method for producing grain-oriented electrical steel sheet Active JP5906654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011226133A JP5906654B2 (en) 2011-10-13 2011-10-13 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011226133A JP5906654B2 (en) 2011-10-13 2011-10-13 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2013087299A true JP2013087299A (en) 2013-05-13
JP5906654B2 JP5906654B2 (en) 2016-04-20

Family

ID=48531529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011226133A Active JP5906654B2 (en) 2011-10-13 2011-10-13 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5906654B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086414A (en) * 2013-10-29 2015-05-07 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet
WO2016140373A1 (en) * 2015-03-05 2016-09-09 Jfeスチール株式会社 Oriented electromagnetic steel plate and manufacturing method thereof
JP2016166419A (en) * 2016-03-22 2016-09-15 Jfeスチール株式会社 Method for producing grain oriented silicon steel sheet
JP2017110304A (en) * 2017-01-18 2017-06-22 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
CN113226617A (en) * 2018-12-05 2021-08-06 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
US11225698B2 (en) 2014-10-23 2022-01-18 Jfe Steel Corporation Grain-oriented electrical steel sheet and process for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249322B2 (en) * 1983-04-23 1987-10-19 Nippon Steel Corp
JPH06136449A (en) * 1992-10-23 1994-05-17 Kawasaki Steel Corp Production of low iron loss grain-oriented silicon steel sheet
JPH08143973A (en) * 1994-11-28 1996-06-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
JP2000038616A (en) * 1998-07-24 2000-02-08 Kawasaki Steel Corp Production of grain oriented silicon steel sheet with less side distortion
JP2003034820A (en) * 2001-07-24 2003-02-07 Kawasaki Steel Corp Method for manufacturing grain-oriented electrical steel sheet superior in blanking property having no undercoat film
JP2009235472A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp Grain-oriented electrical steel sheet and manufacturing method therefor
JP2009235471A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp Grain-oriented electrical steel sheet and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249322B2 (en) * 1983-04-23 1987-10-19 Nippon Steel Corp
JPH06136449A (en) * 1992-10-23 1994-05-17 Kawasaki Steel Corp Production of low iron loss grain-oriented silicon steel sheet
JPH08143973A (en) * 1994-11-28 1996-06-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
JP2000038616A (en) * 1998-07-24 2000-02-08 Kawasaki Steel Corp Production of grain oriented silicon steel sheet with less side distortion
JP2003034820A (en) * 2001-07-24 2003-02-07 Kawasaki Steel Corp Method for manufacturing grain-oriented electrical steel sheet superior in blanking property having no undercoat film
JP2009235472A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp Grain-oriented electrical steel sheet and manufacturing method therefor
JP2009235471A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp Grain-oriented electrical steel sheet and manufacturing method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086414A (en) * 2013-10-29 2015-05-07 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet
US11225698B2 (en) 2014-10-23 2022-01-18 Jfe Steel Corporation Grain-oriented electrical steel sheet and process for producing same
US10889880B2 (en) 2015-03-05 2021-01-12 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
JPWO2016140373A1 (en) * 2015-03-05 2017-06-29 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
KR20170110705A (en) * 2015-03-05 2017-10-11 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for manufacturing same
CN107406936A (en) * 2015-03-05 2017-11-28 杰富意钢铁株式会社 Orientation electromagnetic steel plate and its manufacture method
KR101989725B1 (en) * 2015-03-05 2019-06-14 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for manufacturing same
WO2016139818A1 (en) * 2015-03-05 2016-09-09 Jfeスチール株式会社 Directional magnetic steel plate and method for producing same
WO2016140373A1 (en) * 2015-03-05 2016-09-09 Jfeスチール株式会社 Oriented electromagnetic steel plate and manufacturing method thereof
JP2016166419A (en) * 2016-03-22 2016-09-15 Jfeスチール株式会社 Method for producing grain oriented silicon steel sheet
JP2017110304A (en) * 2017-01-18 2017-06-22 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
CN113226617A (en) * 2018-12-05 2021-08-06 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
CN113226617B (en) * 2018-12-05 2022-08-05 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same

Also Published As

Publication number Publication date
JP5906654B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6157360B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
US10062483B2 (en) Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
JP6084351B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5594252B2 (en) Method for producing grain-oriented electrical steel sheet
JP5906654B2 (en) Method for producing grain-oriented electrical steel sheet
JP2012077380A (en) Grain-oriented electromagnetic steel sheet, and method for manufacturing the same
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
KR102292915B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP5953690B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6116796B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
JP5594240B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5923879B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5923881B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2012177162A (en) Method for manufacturing grain-oriented magnetic steel sheet
JP2015140470A (en) Grain oriented silicon steel plate and production method thereof
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP5533348B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5906654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250