JP2015140470A - Grain oriented silicon steel plate and production method thereof - Google Patents

Grain oriented silicon steel plate and production method thereof Download PDF

Info

Publication number
JP2015140470A
JP2015140470A JP2014015391A JP2014015391A JP2015140470A JP 2015140470 A JP2015140470 A JP 2015140470A JP 2014015391 A JP2014015391 A JP 2014015391A JP 2014015391 A JP2014015391 A JP 2014015391A JP 2015140470 A JP2015140470 A JP 2015140470A
Authority
JP
Japan
Prior art keywords
steel sheet
magnetic domain
grain
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014015391A
Other languages
Japanese (ja)
Inventor
大村 健
Takeshi Omura
大村  健
千田 邦浩
Kunihiro Senda
邦浩 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014015391A priority Critical patent/JP2015140470A/en
Publication of JP2015140470A publication Critical patent/JP2015140470A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To propose a method for achieving further low iron loss by suppressing reduction of flux density in a magnetic domain fragmentation material having grooves, and controlling magnetic domain structure.SOLUTION: A grain oriented silicon steel plate is formed by providing a magnetic domain non-continuous part by groove formation on a surface of a grain silicon steel plate. A boundary line between the magnetic domain non-continuous part and magnetic domain continuous part has a wavy part having a basis of a curve whose curvature radius is 0.5 mm or less, and a period of the wavy part is 0.3 times or more and 1.0 time or less of maximum width of the magnetic domain non-continuous part.

Description

本発明は、トランスなどの鉄心材料に好適な方向性電磁鋼板に関するものである。   The present invention relates to a grain-oriented electrical steel sheet suitable for a core material such as a transformer.

方向性電磁鋼板は、主にトランスの鉄心として利用され、磁化特性に優れていること、特に鉄損が低いことが求められている。そのためには、鋼板中の二次再結晶粒を(110)[001]方位(ゴス方位)に高度に揃えることや、製品中の不純物を低減することが重要である。
しかしながら、結晶方位の制御や不純物の低減には限界があることから、鋼板の表面に対して物理的な手法で不均一性を導入することにより、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss. For that purpose, it is important to highly align the secondary recrystallized grains in the steel sheet in the (110) [001] orientation (Goss orientation) and to reduce impurities in the product.
However, since there is a limit to the control of crystal orientation and the reduction of impurities, by introducing non-uniformity to the surface of the steel plate with a physical technique, the magnetic domain width is subdivided to reduce iron loss. Technology, ie magnetic domain fragmentation technology, has been developed.

たとえば、特許文献1には、最終製品板にレーザを照射し、鋼板表層に線状の高転位密度領域を導入することにより、磁区幅を狭くして鉄損を低減する技術が提案されている。また、特許文献2には、仕上げ焼鈍済みの鋼板に882〜2156 MPa(90〜220 kgf/mm2)の荷重で地鉄部分に深さ5μm 超の溝を形成したのち、750℃以上の温度で加熱処理することにより、磁区を細分化する技術が提案されている。かような磁区細分化技術の開発により、鉄損特性が良好な方向性電磁鋼板が得られるようになった。 For example, Patent Document 1 proposes a technique for reducing the core loss by narrowing the magnetic domain width by irradiating the final product plate with a laser and introducing a linear high dislocation density region into the steel sheet surface layer. . In Patent Document 2, a steel sheet that has been subjected to finish annealing is formed with a groove having a depth of more than 5 μm in the base iron part under a load of 882 to 2156 MPa (90 to 220 kgf / mm 2 ), and then a temperature of 750 ° C. or higher. A technique for subdividing the magnetic domains by heat treatment in the above has been proposed. With the development of such magnetic domain refinement technology, grain oriented electrical steel sheets with good iron loss characteristics have been obtained.

上記の溝形成による磁区細分化技術は、上記の高転位密度域を導入するレーザなどの磁区細分化技術に比べて、鉄損低減効果が少ないことおよび磁束密度が低いこと、が問題として指摘され、更なる改善が望まれる中、溝形状の工夫について提案がなされている。
たとえば、特許文献3には、溝直線の接合部を屈曲させ、この屈曲部分には磁壁が発生し易いため、直線の接合数を十分に多くすることによって、全く屈曲のない直線状溝を導入する場合に比べて、磁区幅が狭くなり鉄損低減代を向上することが提案されている。
It is pointed out that the magnetic domain subdivision technology by the groove formation described above has less iron loss reduction effect and lower magnetic flux density than the above-mentioned magnetic domain subdivision technology such as a laser that introduces a high dislocation density region. However, while further improvements are desired, proposals have been made for a device for the groove shape.
For example, Patent Document 3 introduces a straight groove that is not bent at all by bending a straight joint portion of the groove and easily generating a domain wall at the bent portion. It has been proposed that the magnetic domain width becomes narrower and the iron loss reduction allowance is improved as compared with the case of doing so.

特公昭57-2252号公報Japanese Patent Publication No.57-2252 特公昭62-53579号公報Japanese Examined Patent Publication No.62-53579 特開平06-299244号公報Japanese Unexamined Patent Publication No. 06-299244

特許文献3に記載の技術によって、線状溝を導入して鉄損を改善する技術についても、より効果的に鉄損を低減することが可能になった。しかしながら、高転位密度域を導入して鉄損を低減する技術と比較すると、まだ改善の余地があった。すなわち、この技術を適用しても線状溝導入による磁区細分化効果は、高転位密度域を導入する磁区細分化効果より小さいのが現状である。   With the technique described in Patent Document 3, it has become possible to reduce the iron loss more effectively with respect to the technique for improving the iron loss by introducing linear grooves. However, there is still room for improvement when compared with the technology that reduces the iron loss by introducing a high dislocation density region. That is, even if this technique is applied, the magnetic domain refinement effect by introducing linear grooves is smaller than the magnetic domain refinement effect introducing a high dislocation density region.

そこで、本発明は、溝を形成した磁区細分化材において磁束密度の低下を抑制しつつ磁区構造を制御して更なる低鉄損化を実現する、方途について提案することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to propose a method for realizing a further reduction in iron loss by controlling a magnetic domain structure while suppressing a decrease in magnetic flux density in a magnetic domain subdivided material in which grooves are formed.

溝を形成した磁区細分化材において、磁束密度の低下を抑制しつつ磁区構造を制御することによって更なる低鉄損を得るための方途について鋭意検討した結果、以下に示す事項が重要であることを見出した。
I.溝形成に伴う歪み導入による磁区の不連続部が直線状ではなくうねって延び、該うねりの周期が該磁区不連続部の最大幅の0.3〜1.0倍であること。
II.磁区の不連続部と連続部との境界線を形成するうねりが曲率半径0.5mm以下の曲線の連なりであること。
III.上記電磁鋼板を得るには、エッチングにて溝形成するに当たり、エッチングレジストが付着されない部分を上記の磁区不連続部に従う形状とすること。
IV.前記エッチングレジストが付着されない部分を該エッチングレジストの剥離にて設ける場合は、電子ビームやレーザビームを点状に並べて照射してエッチングレジストを剥離すること。
As a result of earnestly examining the way to obtain further low iron loss by controlling the magnetic domain structure while suppressing the decrease of magnetic flux density in the magnetic domain subdivided material with grooves, the following items are important. I found.
I. The discontinuity of the magnetic domain due to the introduction of strain accompanying the formation of the groove extends in a wavy manner, and the period of the waviness is 0.3 to 1.0 times the maximum width of the magnetic domain discontinuity.
II. The undulation that forms the boundary line between the discontinuous part and the continuous part of the magnetic domain is a series of curves with a radius of curvature of 0.5 mm or less.
III. In order to obtain the electromagnetic steel sheet, when the groove is formed by etching, the portion where the etching resist is not attached is shaped to follow the magnetic domain discontinuity.
IV. In the case where a portion to which the etching resist is not attached is provided by peeling off the etching resist, the etching resist is peeled off by irradiating an electron beam or a laser beam in a dot pattern.

本発明は、上記の知見に由来するものであり、その要旨は次のとおりである。
(1)電磁鋼板の表面に、溝形成による磁区不連続部を設けた方向性電磁鋼板であって、前記磁区不連続部と磁区連続部との境界線は、曲率半径0.5mm以下の曲線を基調とする、うねりを有し、該うねりの周期が前記磁区不連続部の最大幅の0.3倍以上1.0倍以下である方向性電磁鋼板。
The present invention is derived from the above findings, and the gist thereof is as follows.
(1) A grain-oriented electrical steel sheet in which a magnetic domain discontinuity is formed by groove formation on the surface of the magnetic steel sheet, and the boundary line between the magnetic domain discontinuity and the magnetic domain continuous part has a curve with a radius of curvature of 0.5 mm or less. A grain-oriented electrical steel sheet having undulations and having a undulation period of 0.3 to 1.0 times the maximum width of the magnetic domain discontinuity.

(2)方向性電磁鋼板用スラブに熱間圧延を施し、ついで1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げたのち、脱炭焼鈍を施し、ついで鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った後、張力コーティングを施す方向性電磁鋼板の製造方法において、
最終冷間圧延後の鋼板にエッチングレジストを部分的に付着し、その後電解エッチングにより前記鋼板表面に溝を形成するに当たり、前記エッチングレジストの付着域と非付着域との境界線は、曲率半径0.5mm以下の曲線を基調とし、かつ周期が前記非付着域の最大幅の0.3倍以上1.0倍以下である、うねりを有する形状とすることを特徴とする方向性電磁鋼板の製造方法。
(2) Hot rolling is applied to the slab for grain-oriented electrical steel sheet, then cold rolling is performed once or two or more times with intermediate annealing, and after finishing to the final thickness, decarburization annealing is performed, In the method for producing grain-oriented electrical steel sheet, after applying a final finish annealing after applying an annealing separator mainly composed of MgO to the steel sheet surface,
When the etching resist is partially attached to the steel sheet after the final cold rolling, and then a groove is formed on the steel sheet surface by electrolytic etching, the boundary line between the adhesion area and the non-adhesion area of the etching resist has a radius of curvature of 0.5. A method for producing a grain-oriented electrical steel sheet, characterized by having a wavy shape having a curve of mm or less as a base and a period of 0.3 to 1.0 times the maximum width of the non-adhering region.

(3)方向性電磁鋼板用スラブに熱間圧延を施し、ついで1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げたのち、脱炭焼鈍を施し、ついで鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った後、張力コーティングを施す方向性電磁鋼板の製造方法において、
最終冷間圧延後の鋼板にエッチングレジストを付着したのち、電子ビームあるいはレーザビームを点状に並べて照射してエッチングレジストを剥離し、その後電解エッチングにより前記鋼板表面に溝を形成するに当たり、前記エッチングレジストの剥離域と非剥離域との境界線は、曲率半径0.5mm以下の曲線を基調とし、かつ周期が前記剥離域の最大幅の0.3倍以上1.0倍以下である、うねりを有する形状とすることを特徴とする方向性電磁鋼板の製造方法。
(3) Hot rolling is applied to the slab for grain-oriented electrical steel sheet, then cold rolling is performed once or two or more times with intermediate annealing, and after final thickness is obtained, decarburization annealing is performed, In the method for producing grain-oriented electrical steel sheet, after applying a final finish annealing after applying an annealing separator mainly composed of MgO to the steel sheet surface,
After the etching resist is attached to the steel sheet after the final cold rolling, the etching resist is peeled off by irradiating the electron beam or laser beam in a dot pattern, and then the etching is performed to form grooves on the steel sheet surface by electrolytic etching. The boundary line between the resist peeling area and the non-peeling area is based on a curve having a radius of curvature of 0.5 mm or less, and the period is 0.3 to 1.0 times the maximum width of the peeling area, and has a shape having undulations. A method for producing a grain-oriented electrical steel sheet, comprising:

ここで、上記した磁区不連続部は、溝形成によって磁区が分断されている領域を意味し、具体的には、図1に溝形成後の電磁鋼板における磁区の観察結果を模式的に示すように、溝の形成により、連続する磁区構造が局所的に乱れた箇所を意味する。一般的には、圧延方向に平行な磁区構造が途切れた部分を指す。この不連続部は、ビッター法により溝形成面および溝非形成面の磁区観察を行い、磁区の連続部と不連続部との境界を画像解析することにより確定できる。このときの測定距離は、図2(a)に示すように、磁区不連続部が延びる方向に100mmとなるよう設定する。測定の対象とした部分で磁区不連続部が分断される場合は、図2(b)に示すように、磁区不連続部が延びる方向での距離が合計で100mmとなるように設定する。なお、溝形成前のエッチングレジストの非付着形状や剥離形状についても、観察領域の測定距離は磁区不連続部と同じように設定し、写真撮影した画像について画像解析ソフトを用いることで形状を確定した。   Here, the above-mentioned magnetic domain discontinuity means a region where magnetic domains are divided by groove formation. Specifically, FIG. 1 schematically shows the observation results of magnetic domains in the electromagnetic steel sheet after groove formation. Furthermore, it means a location where a continuous magnetic domain structure is locally disturbed due to the formation of a groove. Generally, it refers to a portion where a magnetic domain structure parallel to the rolling direction is interrupted. The discontinuous portion can be determined by observing the magnetic domain of the groove forming surface and the non-groove forming surface by the bitter method and analyzing the image of the boundary between the continuous portion and the discontinuous portion of the magnetic domain. The measurement distance at this time is set to be 100 mm in the direction in which the magnetic domain discontinuity extends, as shown in FIG. When the magnetic domain discontinuity is divided at the portion to be measured, the distance in the direction in which the magnetic domain discontinuity extends is set to 100 mm as shown in FIG. Note that the non-adhered shape and the peeled shape of the etching resist before the groove formation are also determined by setting the measurement distance in the observation region in the same way as the magnetic domain discontinuity and using image analysis software for the photographed image. did.

また、前記うねりについて、曲率半径0.5mm以下の曲線を基調とする、とは、曲率半径が0.5mm以下の1種類あるいは2種類以上の曲線が組み合わさることで、連続的な曲線を形成していることを意味している。そして、うねりの周期は、隣接円弧の山と山の距離をもって定義する。さらに、前記磁区不連続部の最大幅とは、1本の連続的な不連続部の中で、最も幅が大きい部分の値のことを示している。   In addition, the undulation is based on a curve with a radius of curvature of 0.5 mm or less, and a continuous curve is formed by combining one or more types of curves with a radius of curvature of 0.5 mm or less. It means that The swell period is defined by the distance between the peaks of the adjacent arcs. Further, the maximum width of the magnetic domain discontinuity indicates the value of the largest width in one continuous discontinuity.

本発明により、溝形成による磁区細分化処理材において、磁束密度を劣化させることなしに素材鉄損の更なる改善を実現することができる。   According to the present invention, it is possible to realize further improvement of the material iron loss without deteriorating the magnetic flux density in the magnetic domain fragmentation treatment material by groove formation.

磁区の連続部と不連続部とを示す模式図である。It is a schematic diagram which shows the continuous part and discontinuous part of a magnetic domain. 磁区不連続部の測定要領を示す図である。It is a figure which shows the measuring point of a magnetic domain discontinuity part. 磁区不連続部を示す模式図である。It is a schematic diagram which shows a magnetic domain discontinuity part. 電子ビームまたはレーザビームの照射手法を示す図である。It is a figure which shows the irradiation method of an electron beam or a laser beam.

本発明の方向性電磁鋼板は、最終冷間圧延後の鋼板に溝形成による磁区不連続部を導入して磁区細分化を施したものであり、かような磁区細分化材につき、磁束密度を劣化させることなしに素材鉄損の更なる改善を実現させるためには、以下の構成を満足する必要がある。   The grain-oriented electrical steel sheet of the present invention is obtained by introducing magnetic domain discontinuities by groove formation in the steel sheet after the final cold rolling, and magnetic domain subdivision. In order to realize further improvement of the material iron loss without deteriorating, it is necessary to satisfy the following configuration.

<磁区不連続部の形状制御>
磁区不連続部と連続部との境界に、うねり形状を与えて該境界面積を増大させ、磁壁出現量を増加させる必要がある。
上述の特許文献3に記載の発明は、線状溝の接合部相互間は直線状に結ばれており、接合部において磁壁出現量を増加する効果が得られてはいるが、本発明では、うねりを与えて溝全体での境界面積の増加を達成することにより、磁区の細分化効果をより高めることができる。
<Shape control of magnetic domain discontinuity>
It is necessary to give a waviness shape to the boundary between the magnetic domain discontinuity part and the continuous part to increase the boundary area and increase the domain wall appearance amount.
In the invention described in Patent Document 3 described above, the joints between the linear grooves are connected in a straight line, and the effect of increasing the domain wall appearance amount at the joint is obtained. By imparting undulation to achieve an increase in the boundary area in the entire groove, the magnetic domain subdivision effect can be further enhanced.

すなわち、本発明に従う磁区不連続部は、うねりによって幅を部分的に減少させ、かつ上記境界面積を増加させることが可能であり、鉄損特性および磁束密度特性を両立するうえで有効である。本発明に従う手法では、境界面積の増加に加えて、うねりによって部分的に溝を減少させていることから、本発明の最大幅に相当する幅で直線的に溝を形成する場合よりも溝形成体積を減少させることが可能となる。よって、磁束密度低下を抑制することが可能となる。ただし、磁区不連続部における幅の減少が極端になると、磁区細分化効果に乏しくなるため、適正なうねり形状を与える必要がある。すなわち、図3に磁区不連続部を模式で示すように、磁区不連続部の連続部との境界を構成するうねりは、曲率半径Rが0.5mm以下の曲線を基調とし、かつ周期Aが前記磁区不連続部の最大幅Bの0.3倍以上1.0倍以下であることが肝要である。   That is, the magnetic domain discontinuity according to the present invention can partially reduce the width by waviness and increase the boundary area, which is effective in achieving both iron loss characteristics and magnetic flux density characteristics. In the method according to the present invention, in addition to the increase in the boundary area, the grooves are partially reduced by waviness. Therefore, the grooves are formed more than when the grooves are linearly formed with a width corresponding to the maximum width of the present invention. The volume can be reduced. Therefore, it is possible to suppress a decrease in magnetic flux density. However, if the reduction in the width of the magnetic domain discontinuity becomes extreme, the effect of subdividing the magnetic domain becomes poor, and it is necessary to provide an appropriate undulation shape. That is, as schematically shown in FIG. 3, the waviness that forms the boundary with the continuous portion of the magnetic domain discontinuity is based on a curve having a curvature radius R of 0.5 mm or less, and the period A is It is important that it is 0.3 to 1.0 times the maximum width B of the magnetic domain discontinuity.

まず、うねりとして曲率半径Rが0.5mm以下の曲線を基調とするのは、曲率半径Rが0.5mmを超えると、磁区不連続部と連続部の境界曲線の曲率半径が大きくなりすぎて、境界曲線がうねることなくほとんど直線状と同様の状態になり、磁壁出現量の増加が期待できず、また溝形成体積減少も期待できないからである。   First, the curve of curvature radius R of 0.5mm or less as the undulation is based on the fact that when the curvature radius R exceeds 0.5mm, the curvature radius of the boundary curve between the magnetic domain discontinuity part and the continuous part becomes too large. This is because the curve is almost the same as that of a straight line without waviness, the increase in the domain wall appearance amount cannot be expected, and the decrease in the groove formation volume cannot be expected.

また、うねりの周期Aが前記磁区不連続部の最大幅Bの0.3倍未満では、うねりが極めて小さくなって境界線が直線の場合との差異がなくなり、磁壁出現量増加が期待できず、また溝形成体積減少も期待できない。一方、最大幅Bの1.0倍を超えると、磁区不連続部の減少幅が大きくなりすぎて磁区細分化効果を十分に得られなくなる。   In addition, when the undulation period A is less than 0.3 times the maximum width B of the magnetic domain discontinuity, the undulation is extremely small and there is no difference from the case where the boundary line is a straight line, and an increase in the domain wall appearance amount cannot be expected. A decrease in the groove formation volume cannot be expected. On the other hand, if it exceeds 1.0 times the maximum width B, the reduction width of the magnetic domain discontinuity becomes too large, and the magnetic domain refinement effect cannot be sufficiently obtained.

なお、鋼板の表面に形成する線状溝に関する上述以外の条件としては、最大幅:50〜300μm、最大深さ:10〜50μm および間隔:1.5〜10.0mm程度とし、溝の圧延方向と直交する向きに対するずれは±30°以内とすることが好ましい。   In addition, as conditions other than the above regarding the linear grooves formed on the surface of the steel sheet, the maximum width: 50 to 300 μm, the maximum depth: 10 to 50 μm, and the interval: about 1.5 to 10.0 mm, which are orthogonal to the rolling direction of the grooves The deviation from the direction is preferably within ± 30 °.

次に、上記の方向性電磁鋼板を製造するための条件について述べる。
すなわち、最終冷間圧延後の鋼板の表面に、エッチングレジストを部分的に付着し、その後電解エッチングにより前記鋼板表面に溝を形成するに当たり、前記エッチングレジストの付着域と非付着域との境界線は、曲率半径0.5mm以下の曲線を基調とし、かつ周期が前記非付着域の最大幅の0.3倍以上1.0倍以下である、うねりを有する形状とすることが肝要である。
具体的には、グラビアロールに上記付着域の形状を転写し、一回で付着部と非付着部を形成するのが最も好ましい。
Next, conditions for manufacturing the grain-oriented electrical steel sheet will be described.
That is, when the etching resist is partially attached to the surface of the steel sheet after the final cold rolling, and then a groove is formed on the steel sheet surface by electrolytic etching, the boundary line between the adhesion area and the non-adhesion area of the etching resist. It is important to have a wavy shape with a curve having a radius of curvature of 0.5 mm or less and a period of 0.3 to 1.0 times the maximum width of the non-adhesion zone.
Specifically, it is most preferable to transfer the shape of the adhering area to the gravure roll and form the adhering part and the non-adhering part at a time.

また、最初にレジストインキを鋼板全面に塗布し、その後電子ビームあるいはレーザビームを、例えば図4に示すように、点状に並べて僅かに重複させながら照射し、該照射域のエッチングレジストを上記した磁区非連続部に従う形状に剥離し、その後電解エッチングにより前記鋼板表面に溝を形成することも可能である。なお、電子ビームまたはレーザビームを連続で照射した場合は、エッチングレジストも連続的に直線状に剥離してしまうため、所望の溝形状を得ることができない。
ここで、剥離形状は、電子ビームやレーザビームの照射点のピッチ、照射径および投入エネルギーを適宜調整することによって、本発明の磁区非連続部に合致する形状となるように制御すればよい。
In addition, first, a resist ink is applied to the entire surface of the steel sheet, and then an electron beam or a laser beam is irradiated, for example, as shown in FIG. It is also possible to exfoliate into a shape according to the magnetic domain discontinuous part, and then form a groove on the steel sheet surface by electrolytic etching. Note that when the electron beam or the laser beam is continuously irradiated, the etching resist is also continuously stripped in a straight line, so that a desired groove shape cannot be obtained.
Here, the peeling shape may be controlled so as to match the magnetic domain discontinuous portion of the present invention by appropriately adjusting the pitch, irradiation diameter, and input energy of the electron beam or laser beam irradiation points.

最後に、本発明の方向性電磁鋼板を製造するに当たって、上記の条件以外は特に限定されないが、推奨される好適成分組成および上記条件(フォルステライト被膜張力向上)以外の製造条件について、以下に述べる。
本発明において、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを、それぞれ適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl,N,SおよびSeの好適含有量はそれぞれ、Al:0.01〜0.065質量%、N:0.005〜0.012質量%、S:0.005〜0.03質量%、Se:0.005〜0.03質量%である。
Finally, in producing the grain-oriented electrical steel sheet according to the present invention, there is no particular limitation except for the above-mentioned conditions. However, the recommended composition of the preferred components and the production conditions other than the above-mentioned conditions (forsterite film tension improvement) are described below. .
In the present invention, when an inhibitor is used, for example, when using an AlN-based inhibitor, Al and N, and when using an MnS / MnSe-based inhibitor, appropriate amounts of Mn, Se and / or S, respectively. What is necessary is just to contain. Of course, both inhibitors may be used in combination. The preferred contents of Al, N, S and Se in this case are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .

また、本発明は、Al、N、SおよびSeの含有量を制限した、基本的にインヒビターを使用しない方向性電磁鋼板にも適用することができる。
この場合には、Al、N、SおよびSeの量はそれぞれ、Al:100 質量ppm以下、N:50 質量ppm以下、S:50 質量ppm以下、Se:50 質量ppm以下に抑制することが好ましい。
The present invention can also be applied to grain-oriented electrical steel sheets in which the contents of Al, N, S and Se are limited and basically no inhibitor is used.
In this case, the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less. .

その他の基本的成分および任意添加成分について述べると、次のとおりである。
C:0.08質量%以下
C量が0.08質量%を超えると、製品での磁気時効の起こらない50質量ppm以下まで製造工程中にCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Other basic components and optional added components are described as follows.
C: 0.08% by mass or less If the amount of C exceeds 0.08% by mass, it becomes difficult to reduce C during the production process to 50 mass ppm or less, at which no magnetic aging occurs in the product. It is preferable. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.

Si:2.0〜8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できず、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜8.0質量%の範囲とすることが好ましい。
Si: 2.0 to 8.0 mass%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved, while 8.0% by mass. If it exceeds 1, the workability is remarkably lowered and the magnetic flux density is also lowered. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、 Mn量は0.005〜1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005% by mass, the effect of addition is poor, whereas if it exceeds 1.0% by mass, the magnetic flux density of the product plate decreases. The amount of Mn is preferably in the range of 0.005 to 1.0 mass%.

上記の基本的成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.50質量%、Sn:0.01〜1.50質量%、Sb:0.005〜1.50質量%、Cu:0.03〜3.0質量%、P:0.03〜0.50質量%、Mo:0.005〜0.10質量%およびCr:0.03〜1.50質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.5質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.5質量%の範囲とするのが好ましい。
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03-1.50% by mass, Sn: 0.01-1.50% by mass, Sb: 0.005-1.50% by mass, Cu: 0.03-3.0% by mass, P: 0.03-0.50% by mass, Mo: 0.005-0.10% by mass and Cr: At least one selected from 0.03 to 1.50 mass%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03% by mass, the effect of improving the magnetic properties is small. On the other hand, if the content exceeds 1.5% by mass, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.5 mass%.

また、Sn、Sb、Cu、P、CrおよびMoはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。   Sn, Sb, Cu, P, Cr and Mo are elements useful for improving the magnetic properties, respectively, but if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small. If the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered. The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

上記の好適成分組成に調整した鋼素材を、通常の造塊法、連続鋳造法でスラブとしてもよいし、100mm以下の厚さの薄鋳片を直接連続鋳造法で製造してもよい。スラブは、通常の方法で加熱して熱間圧延に供するが、鋳造後加熱せずに直ちに熱間圧延に供してもよい。薄鋳片の場合には熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進めてもよい。ついで、必要に応じて熱延板焼鈍を行ったのち、一回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、その後脱炭焼鈍ついで最終仕上げ焼鈍を施したのち、通常絶縁張力コーティングを塗布して製品とする。   The steel material adjusted to the above suitable component composition may be made into a slab by a normal ingot-making method or a continuous casting method, or a thin cast piece having a thickness of 100 mm or less may be directly produced by a continuous casting method. The slab is heated by a normal method and subjected to hot rolling, but may be immediately subjected to hot rolling without being heated after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the subsequent process may be performed as it is. Next, after performing hot-rolled sheet annealing as necessary, the final sheet thickness is obtained by cold rolling at least once with or between the intermediate annealing, followed by decarburization annealing and final finishing annealing, followed by normal insulation Apply tension coating to make product.

表1に示す成分を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、1400℃に加熱後、熱間圧延により板厚:2.2 mmの熱延板としたのち、1020℃で180秒の熱延板焼鈍を施した。ついで、冷間圧延により中間板厚:0.55mmとし、雰囲気酸化度P(H2O)/P(H2)=0.25、90秒の条件で中間焼鈍を施したのち、塩酸酸洗により表面のサブスケールを除去してから、再度冷間圧延を施して最終板厚:0.23mmの冷延板に仕上げた。 A steel slab containing the components shown in Table 1, with the balance being Fe and inevitable impurities, is manufactured by continuous casting, heated to 1400 ° C, and hot rolled to a thickness of 2.2 mm. After that, hot-rolled sheet annealing was performed at 1020 ° C. for 180 seconds. Next, the intermediate plate thickness was set to 0.55 mm by cold rolling, the intermediate oxidation was performed under the conditions of atmospheric oxidation P (H 2 O) / P (H 2 ) = 0.25, 90 seconds, and then the surface was washed by hydrochloric acid pickling. After removing the subscale, cold rolling was performed again to finish a cold rolled sheet having a final sheet thickness of 0.23 mm.

次に、グラビアオフセット印刷によってエッチングレジストを塗布した。このとき非塗布部が形成されるようにグラビアロールを加工して、表2に示すような非塗布部を形成させた。その後、電解エッチングおよびアルカリ液中でのレジスト剥離により、幅:250μm、深さ:20μm の溝を、圧延方向と直交する向きに対し10°の傾斜角度にて圧延方向へ3mm間隔で形成した。ついで、雰囲気酸化度P(H2O)/P(H2)=0.55、均熱温度:825℃で200秒保持する脱炭焼鈍を施したのち、MgOを主成分とする焼鈍分離剤を塗布してから、二次再結晶とフォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を、N2:H2=60:40の混合雰囲気中にて1250℃,10hの条件で実施した。その後、830℃×30sの条件で形状を整える平坦化焼鈍を行い、50%のコロイダルシリカとリン酸マグネシウムからなる絶縁張力コート処理を施し製品とした。
かくして得られた製品について、JIS C 2550に準拠して磁気特性を調査した。その結果を表2に併記する。
Next, an etching resist was applied by gravure offset printing. At this time, the gravure roll was processed so that a non-application part was formed, and a non-application part as shown in Table 2 was formed. Thereafter, grooves having a width of 250 μm and a depth of 20 μm were formed at intervals of 3 mm in the rolling direction at an inclination angle of 10 ° with respect to the direction perpendicular to the rolling direction by electrolytic etching and resist stripping in an alkaline solution. Next, after decarburization annealing was carried out at atmospheric oxidation degree P (H 2 O) / P (H 2 ) = 0.55, soaking temperature: 825 ° C. for 200 seconds, and then an annealing separator mainly composed of MgO was applied. Then, the final finish annealing for the purpose of secondary recrystallization, forsterite film formation and purification was carried out in a mixed atmosphere of N 2 : H 2 = 60: 40 under the conditions of 1250 ° C. and 10 hours. Thereafter, flattening annealing was performed to adjust the shape under the condition of 830 ° C. × 30 s, and an insulation tension coating treatment consisting of 50% colloidal silica and magnesium phosphate was applied to obtain a product.
The magnetic properties of the products thus obtained were investigated in accordance with JIS C 2550. The results are also shown in Table 2.

また、比較として、溝形成を実施せず公知の条件でレーザ照射を行って高転位密度域を導入した非耐熱型の磁区細分化材の磁気特性についても調査した。その調査結果を表2に示す。   For comparison, the magnetic properties of the non-heat-resistant magnetic domain fragmentation material in which a high dislocation density region was introduced by laser irradiation under known conditions without groove formation were also investigated. The survey results are shown in Table 2.

本発明に従って製造した場合、本発明範囲外のものよりも鉄損特性が良好で、非耐熱型の磁区細分化技術と同等レベルの鉄損特性が得られている。また、磁束密度も本発明範囲外のものよりも高くなっていることが分かる。No.4の磁区不連続部のうねりの周期が本発明を満足しているが曲率半径が発明範囲外であり、磁区不連続部と連続部との境界がほぼ直線状になった結果、磁壁量の増加が不十分になり、本発明の条件を満足する条件下に製造されたものよりも鉄損特性が劣っている。   When manufactured according to the present invention, the iron loss characteristics are better than those outside the scope of the present invention, and the iron loss characteristics equivalent to those of the non-heat-resistant magnetic domain fragmentation technology are obtained. It can also be seen that the magnetic flux density is higher than that outside the scope of the present invention. The undulation period of the magnetic domain discontinuity No. 4 satisfies the present invention, but the radius of curvature is outside the scope of the invention, and the boundary between the magnetic domain discontinuity and the continuous portion is almost linear. The increase in amount is insufficient and the iron loss properties are inferior to those produced under conditions that satisfy the conditions of the present invention.

Figure 2015140470
Figure 2015140470

Figure 2015140470
Figure 2015140470

表3に示す成分を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、1440℃に加熱後、熱間圧延により板厚:2.6 mmの熱延板としたのち、1000℃で300秒の熱延板焼鈍を施した。ついで、冷間圧延により中間板厚:0.45mmとし、雰囲気酸化度P(H2O)/P(H2)=0.25、90秒の条件で中間焼鈍を施したのち、塩酸酸洗により表面のサブスケールを除去してから、再度冷間圧延を施して最終板厚:0.23mmの冷延板に仕上げた。 A steel slab containing the components shown in Table 3 with the balance being Fe and inevitable impurities is manufactured by continuous casting, heated to 1440 ° C, and hot rolled to a thickness of 2.6 mm Then, hot-rolled sheet annealing was performed at 1000 ° C. for 300 seconds. Next, the intermediate sheet thickness was set to 0.45 mm by cold rolling, and after intermediate annealing was performed under the conditions of atmospheric oxidation degree P (H 2 O) / P (H 2 ) = 0.25, 90 seconds, the surface was washed by hydrochloric acid pickling. After removing the subscale, cold rolling was performed again to finish a cold rolled sheet having a final sheet thickness of 0.23 mm.

その後、グラビアオフセット印刷によってエッチングレジストを塗布し、ついで電子ビームにて溝形成部のエッチングレジスト剥離形状を変化させた。その剥離形状は表4に示すとおりである。引き続き、電解エッチングおよびアルカリ液中でのレジスト剥離により、幅:150μm、深さ:30μm の溝を、圧延方向と直交する向きに対し15°の傾斜角度にて圧延方向へ4mm間隔で形成した。ついで、雰囲気酸化度P(H2O)/P(H2)=0.55、均熱温度:825℃で200秒保持する脱炭焼鈍を施したのち、MgOを主成分とする焼鈍分離剤を塗布してから、二次再結晶とフォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を、N2:H2=60:40の混合雰囲気中にて1250℃,10hの条件で実施した。その後、830℃×30secの条件で形状を整える平坦化焼鈍を行い、50%のコロイダルシリカとリン酸マグネシウムからなる絶縁張力コート処理を施し製品とした。
かくして得られた製品について、JIS C 2550に準拠して磁気特性を調査した。その結果を表4に併記する。
Thereafter, an etching resist was applied by gravure offset printing, and then the etching resist peeling shape of the groove forming portion was changed by an electron beam. The peeled shape is as shown in Table 4. Subsequently, grooves having a width of 150 μm and a depth of 30 μm were formed at intervals of 4 mm in the rolling direction at an inclination angle of 15 ° with respect to the direction orthogonal to the rolling direction by electrolytic etching and resist stripping in an alkaline solution. Next, after decarburization annealing was carried out at atmospheric oxidation degree P (H 2 O) / P (H 2 ) = 0.55, soaking temperature: 825 ° C. for 200 seconds, and then an annealing separator mainly composed of MgO was applied. Then, the final finish annealing for the purpose of secondary recrystallization, forsterite film formation and purification was carried out in a mixed atmosphere of N 2 : H 2 = 60: 40 under the conditions of 1250 ° C. and 10 hours. Thereafter, flattening annealing was performed to adjust the shape under the conditions of 830 ° C. × 30 sec, and an insulating tension coating treatment comprising 50% colloidal silica and magnesium phosphate was applied to obtain a product.
The magnetic properties of the products thus obtained were investigated in accordance with JIS C 2550. The results are also shown in Table 4.

また、比較として、溝形成を実施せず公知の条件でレーザ照射を行って高転位密度域を導入した非耐熱型の磁区細分化材の磁気特性についても調査した。その調査結果を表4に示す。   For comparison, the magnetic properties of the non-heat-resistant magnetic domain fragmentation material in which a high dislocation density region was introduced by laser irradiation under known conditions without groove formation were also investigated. The survey results are shown in Table 4.

本発明に従って製造した場合、本発明範囲外のものよりも鉄損特性が良好で、非耐熱型の磁区細分化技術と同等レベルの鉄損特性が得られている。また、磁束密度も本発明範囲外のものよりも高くなっていることが分かる。No.4の磁区不連続部のうねりの周期が本発明を満足しているが曲率半径が発明範囲外であり、磁区不連続部と連続部の境界がほぼ直線となっており、磁壁量の増加が不十分で本発明の範囲内で製造されたものよりも鉄損特性が劣っている。   When manufactured according to the present invention, the iron loss characteristics are better than those outside the scope of the present invention, and the iron loss characteristics equivalent to those of the non-heat-resistant magnetic domain fragmentation technology are obtained. It can also be seen that the magnetic flux density is higher than that outside the scope of the present invention. The undulation period of the magnetic domain discontinuity of No. 4 satisfies the present invention, but the radius of curvature is outside the scope of the invention, the boundary between the magnetic domain discontinuity and the continuous part is substantially straight, The increase is insufficient and the iron loss characteristics are inferior to those produced within the scope of the present invention.

Figure 2015140470
Figure 2015140470

Figure 2015140470
Figure 2015140470

Claims (3)

電磁鋼板の表面に、溝形成による磁区不連続部を設けた方向性電磁鋼板であって、前記磁区不連続部と磁区連続部との境界線は、曲率半径0.5mm以下の曲線を基調とする、うねりを有し、該うねりの周期が前記磁区不連続部の最大幅の0.3倍以上1.0倍以下である方向性電磁鋼板。   A grain-oriented electrical steel sheet provided with magnetic domain discontinuities due to groove formation on the surface of the electrical steel sheet, and a boundary line between the magnetic domain discontinuous part and the magnetic domain continuous part is based on a curve having a curvature radius of 0.5 mm or less. A grain-oriented electrical steel sheet having undulations, wherein the period of the undulations is 0.3 to 1.0 times the maximum width of the magnetic domain discontinuity. 方向性電磁鋼板用スラブに熱間圧延を施し、ついで1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げたのち、脱炭焼鈍を施し、ついで鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った後、張力コーティングを施す方向性電磁鋼板の製造方法において、
最終冷間圧延後の鋼板にエッチングレジストを部分的に付着し、その後電解エッチングにより前記鋼板表面に溝を形成するに当たり、前記エッチングレジストの付着域と非付着域との境界線は、曲率半径0.5mm以下の曲線を基調とし、かつ周期が前記非付着域の最大幅の0.3倍以上1.0倍以下である、うねりを有する形状とすることを特徴とする方向性電磁鋼板の製造方法。
The slab for grain-oriented electrical steel sheet is hot-rolled, then cold-rolled at least once, or two or more times with intermediate annealing, and finished to the final thickness, then decarburized and annealed on the steel sheet surface. In the manufacturing method of grain-oriented electrical steel sheet, after applying final separator annealing after applying an annealing separator mainly composed of MgO,
When the etching resist is partially attached to the steel sheet after the final cold rolling, and then a groove is formed on the steel sheet surface by electrolytic etching, the boundary line between the adhesion area and the non-adhesion area of the etching resist has a radius of curvature of 0.5. A method for producing a grain-oriented electrical steel sheet, characterized by having a wavy shape having a curve of mm or less as a base and a period of 0.3 to 1.0 times the maximum width of the non-adhering region.
方向性電磁鋼板用スラブに熱間圧延を施し、ついで1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げたのち、脱炭焼鈍を施し、ついで鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った後、張力コーティングを施す方向性電磁鋼板の製造方法において、
最終冷間圧延後の鋼板にエッチングレジストを付着したのち、電子ビームあるいはレーザビームを点状に並べて照射してエッチングレジストを剥離し、その後電解エッチングにより前記鋼板表面に溝を形成するに当たり、前記エッチングレジストの剥離域と非剥離域との境界線は、曲率半径0.5mm以下の曲線を基調とし、かつ周期が前記剥離域の最大幅の0.3倍以上1.0倍以下である、うねりを有する形状とすることを特徴とする方向性電磁鋼板の製造方法。
The slab for grain-oriented electrical steel sheet is hot-rolled, then cold-rolled at least once, or two or more times with intermediate annealing, and finished to the final thickness, then decarburized and annealed on the steel sheet surface. In the manufacturing method of grain-oriented electrical steel sheet, after applying final separator annealing after applying an annealing separator mainly composed of MgO,
After the etching resist is attached to the steel sheet after the final cold rolling, the etching resist is peeled off by irradiating the electron beam or laser beam in a dot pattern, and then the etching is performed to form grooves on the steel sheet surface by electrolytic etching. The boundary line between the resist peeling area and the non-peeling area is based on a curve having a radius of curvature of 0.5 mm or less, and the period is 0.3 to 1.0 times the maximum width of the peeling area, and has a shape having undulations. A method for producing a grain-oriented electrical steel sheet, comprising:
JP2014015391A 2014-01-30 2014-01-30 Grain oriented silicon steel plate and production method thereof Pending JP2015140470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015391A JP2015140470A (en) 2014-01-30 2014-01-30 Grain oriented silicon steel plate and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015391A JP2015140470A (en) 2014-01-30 2014-01-30 Grain oriented silicon steel plate and production method thereof

Publications (1)

Publication Number Publication Date
JP2015140470A true JP2015140470A (en) 2015-08-03

Family

ID=53771035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015391A Pending JP2015140470A (en) 2014-01-30 2014-01-30 Grain oriented silicon steel plate and production method thereof

Country Status (1)

Country Link
JP (1) JP2015140470A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090709A (en) * 2018-12-05 2020-06-11 Jfeスチール株式会社 Method for improving iron loss of grain-oriented electrical steel sheet and apparatus therefor
CN111886662A (en) * 2018-03-30 2020-11-03 杰富意钢铁株式会社 Iron core for transformer
CN114207173A (en) * 2019-07-31 2022-03-18 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286182A (en) * 1985-10-14 1987-04-20 Nippon Steel Corp Treatment of grain oriented electrical steel strip
JPH07220913A (en) * 1994-02-04 1995-08-18 Nippon Steel Corp Magnetic steel plate excellent in magnetic characteristic
WO1997024466A1 (en) * 1995-12-27 1997-07-10 Nippon Steel Corporation Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same
JPH10204533A (en) * 1997-01-24 1998-08-04 Nippon Steel Corp Product of grain oriented magnetic steel sheet excellent in magnetic property
JP2000109961A (en) * 1998-10-06 2000-04-18 Nippon Steel Corp Grain oriented silicon steel sheet excellent in magnetic property and its production
JP2003301272A (en) * 2002-04-11 2003-10-24 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss
JP2011137193A (en) * 2009-12-28 2011-07-14 Dainippon Printing Co Ltd Contour machining method for electromagnetic steel sheet with insulating film
WO2011162086A1 (en) * 2010-06-25 2011-12-29 新日本製鐵株式会社 Method for producing unidirectional electromagnetic steel sheet
JP2012102395A (en) * 2010-10-14 2012-05-31 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, and method for producing the same
JP2012126973A (en) * 2010-12-16 2012-07-05 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, and method for manufacturing the same
WO2013161863A1 (en) * 2012-04-27 2013-10-31 新日鐵住金株式会社 Grain-oriented electrical steel sheet and manufacturing method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286182A (en) * 1985-10-14 1987-04-20 Nippon Steel Corp Treatment of grain oriented electrical steel strip
JPH07220913A (en) * 1994-02-04 1995-08-18 Nippon Steel Corp Magnetic steel plate excellent in magnetic characteristic
WO1997024466A1 (en) * 1995-12-27 1997-07-10 Nippon Steel Corporation Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same
JPH10204533A (en) * 1997-01-24 1998-08-04 Nippon Steel Corp Product of grain oriented magnetic steel sheet excellent in magnetic property
JP2000109961A (en) * 1998-10-06 2000-04-18 Nippon Steel Corp Grain oriented silicon steel sheet excellent in magnetic property and its production
JP2003301272A (en) * 2002-04-11 2003-10-24 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss
JP2011137193A (en) * 2009-12-28 2011-07-14 Dainippon Printing Co Ltd Contour machining method for electromagnetic steel sheet with insulating film
WO2011162086A1 (en) * 2010-06-25 2011-12-29 新日本製鐵株式会社 Method for producing unidirectional electromagnetic steel sheet
JP2012102395A (en) * 2010-10-14 2012-05-31 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, and method for producing the same
JP2012126973A (en) * 2010-12-16 2012-07-05 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, and method for manufacturing the same
WO2013161863A1 (en) * 2012-04-27 2013-10-31 新日鐵住金株式会社 Grain-oriented electrical steel sheet and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886662A (en) * 2018-03-30 2020-11-03 杰富意钢铁株式会社 Iron core for transformer
CN111886662B (en) * 2018-03-30 2023-05-12 杰富意钢铁株式会社 Iron core for transformer
JP2020090709A (en) * 2018-12-05 2020-06-11 Jfeスチール株式会社 Method for improving iron loss of grain-oriented electrical steel sheet and apparatus therefor
CN114207173A (en) * 2019-07-31 2022-03-18 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JP5240334B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6157360B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5988027B2 (en) Method for producing ultrathin grain-oriented electrical steel sheet
JP5532185B2 (en) Oriented electrical steel sheet and method for improving iron loss thereof
JP2011174138A (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP2012036446A (en) Grain-oriented electrical steel sheet and method for producing the same
JP5742294B2 (en) Method for producing grain-oriented electrical steel sheet
US10431359B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712667B2 (en) Method for producing grain-oriented electrical steel sheet
JP5740854B2 (en) Oriented electrical steel sheet
JP5906654B2 (en) Method for producing grain-oriented electrical steel sheet
JP5953690B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2015140470A (en) Grain oriented silicon steel plate and production method thereof
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
CN113710822B (en) Method for producing oriented electrical steel sheet
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
JP2012031512A (en) Grain-oriented electromagnetic steel sheet and production method thereof
JP6465048B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017150009A (en) Manufacturing method of oriented electromagnetic steel sheet
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
JP6601649B1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JPWO2018151296A1 (en) Method of manufacturing directional magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004