JPH07220913A - Magnetic steel plate excellent in magnetic characteristic - Google Patents
Magnetic steel plate excellent in magnetic characteristicInfo
- Publication number
- JPH07220913A JPH07220913A JP6012937A JP1293794A JPH07220913A JP H07220913 A JPH07220913 A JP H07220913A JP 6012937 A JP6012937 A JP 6012937A JP 1293794 A JP1293794 A JP 1293794A JP H07220913 A JPH07220913 A JP H07220913A
- Authority
- JP
- Japan
- Prior art keywords
- hole
- iron loss
- steel sheet
- steel plate
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は方向性電磁鋼板の応力緩
和焼鈍(Stress Relief Annealing :SRA)に耐え得る
鉄損特性改善の優れた方向性電磁鋼板に関し、特にパル
スCO2 レーザビーム照射にて形成する地金のクレータ
形状とその配列の連続パターンにより、その磁気特性を
大幅に改善した低鉄損の方向性電磁鋼板に係わる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having excellent iron loss characteristics capable of withstanding the stress relaxation annealing (SRA) of grain-oriented electrical steel sheet, and particularly, by pulsed CO 2 laser beam irradiation. It relates to a grain-oriented electrical steel sheet with low iron loss, whose magnetic characteristics are greatly improved by the crater shape of the formed metal and the continuous pattern of its arrangement.
【0002】[0002]
【従来の技術】方向性電磁鋼板は鉄損を低減することが
エネルギー節約の観点から要望されている。その方法と
して、レーザ照射により磁区を細分化する方法が既に特
公昭58−26405号公報に開示されている。該方法
による鉄損の低減はレーザビームを照射することによっ
て生ずる熱衝撃波の反力によって方向性電磁鋼板に応力
歪を導入し、磁区を細分化することによりヒステリシス
損失の増加を抑えたまま渦電流損失の低下を図るもので
ある。従って前記方法は歪取り焼鈍を必要としない積鉄
芯トランス用としては使用できるが、応力緩和焼鈍処理
を必要とする巻鉄芯トランス用としては焼鈍時にレーザ
により導入した歪が消失し、磁区細分化効果が失われる
ため使用できない問題があった。2. Description of the Related Art It is desired to reduce iron loss of grain-oriented electrical steel sheets from the viewpoint of energy saving. As a method, a method of subdividing a magnetic domain by laser irradiation has already been disclosed in Japanese Patent Publication No. 58-265405. The reduction of iron loss by the method introduces stress strain into the grain-oriented electrical steel sheet by the reaction force of the thermal shock wave generated by irradiating the laser beam, and subdivides the magnetic domain to suppress the increase of hysteresis loss and suppress the eddy current. This is intended to reduce loss. Therefore, the above method can be used for a laminated iron core transformer that does not require strain relief annealing, but for a wound iron core transformer that requires stress relaxation annealing treatment, the strain introduced by the laser during annealing disappears, and the magnetic domain subdivision is performed. There was a problem that it could not be used because the activating effect was lost.
【0003】これに対し、鉄損値低減効果が応力緩和焼
鈍後も残るようにした方向性電磁鋼板の磁気特性改善方
法としては、鋼板に応力歪レベルを超えた応力緩和焼鈍
後も残留する組織的あるいは形状的な変化を与えること
により、透磁率の変化を導入し磁区を細分化する方法が
考案され様々に提案されている。On the other hand, as a method for improving the magnetic properties of the grain-oriented electrical steel sheet in which the effect of reducing the iron loss value is retained even after the stress relaxation annealing, a structure that remains in the steel sheet even after the stress relaxation annealing exceeding the stress strain level. Has been devised and variously proposed by introducing a change in magnetic permeability by applying a change in shape or shape to subdivide a magnetic domain.
【0004】形状的な変化により応力緩和焼鈍後に効果
のある鉄損値の低減例としては、溝状あるいは点状、線
状の凹部を鋼板に導入するものとして以下のようなもの
が開示されている。As an example of reducing the iron loss value which is effective after stress relaxation annealing due to a change in shape, the following is disclosed in which groove-shaped, point-shaped or linear recesses are introduced into a steel sheet. There is.
【0005】特公昭63−44804号公報には機械的
な押圧方式が提案されている。仕上げ焼鈍済または絶縁
被膜処理済の鋼板に、歯車型ロールにより平均荷重70
〜220kg/mm2 で線状または点状、破線状等の凹部を
形成する際、鋼板の温度を50〜500℃にして加工し
その後、750℃以上の温度で熱処理することにより結
晶粒内に微細再結晶粒を生じさせて磁区の細分化を図ろ
うとするものである。本方法には機械加工での安定性、
信頼性そしてプロセスの複雑化等の製造方法上の問題が
あるが、磁気特性だけの観点からみれば実用レベルに充
分な鉄損値低減効果が期待できる。A Japanese Patent Publication No. 63-44804 proposes a mechanical pressing method. An average load of 70 on a steel plate that has been finish annealed or treated with an insulating coating by a gear-type roll.
When forming a linear or dot-shaped, broken-line-shaped recessed portion of up to 220 kg / mm 2 , the temperature of the steel sheet is processed to 50 to 500 ° C. and then heat-treated at a temperature of 750 ° C. or higher to form crystal grains. It is intended to generate fine recrystallized grains to subdivide magnetic domains. This method has stability in machining,
Although there are problems in the manufacturing method such as reliability and complication of the process, the effect of reducing the iron loss value sufficient for a practical level can be expected from the viewpoint of only the magnetic characteristics.
【0006】同様な方法として800℃を超える応力緩
和焼鈍を行っても鉄損改善効果が消滅しない方向性電磁
鋼板の処理方法として、Physica Scripta.誌, Vol. T2
4, p.36-41, 1988 には歯形ロールを用いて圧延方向に
直角に深さ10〜25μmの溝を形成する方法が提示さ
れている。この方法によれば、850℃、4時間の応力
緩和焼鈍を行っても、改善された鉄損値が劣化しないこ
とが実験的に確認されている。本方法にも面接触式加工
方法であること、ならびに電磁鋼板は多量のSiを含有
することから素材硬度がかなり高いことから、歯形ロー
ルの寿命が短く、生産コストが大幅に高くなるという製
造方法上の問題点があるが、製品としては実用レベルに
充分な鉄損値低減効果が得られている。さらに化学的エ
ッチングによる方法による凹部の導入についても米国特
許第4750949号明細書で開示され、生産性が低い
という問題があるものの、ここでも充分な鉄損値低減効
果が得られている。As a similar method, a method for treating grain-oriented electrical steel sheet in which the iron loss improving effect does not disappear even when stress relaxation annealing at 800 ° C. or higher is performed, is described in Physica Scripta., Vol. T2.
4, p.36-41, 1988, there is proposed a method of forming grooves having a depth of 10 to 25 μm at right angles to the rolling direction by using a tooth profile roll. According to this method, it has been experimentally confirmed that the improved iron loss value does not deteriorate even if stress relaxation annealing is performed at 850 ° C. for 4 hours. This method is also a surface contact processing method, and since the electromagnetic steel sheet contains a large amount of Si, the material hardness is considerably high, so that the life of the tooth profile roll is short and the production cost is significantly increased. Despite the above-mentioned problems, the iron loss value reduction effect sufficient for practical use is obtained as a product. Further, the introduction of recesses by a method by chemical etching is disclosed in US Pat. No. 4,750,949, and although there is a problem of low productivity, a sufficient iron loss value reducing effect is obtained here as well.
【0007】また、組織的な変化を導入して応力緩和焼
鈍後も鉄損値低減効果が残るようにしたものとしては、
特開昭59−100222号公報において二次再結晶焼
鈍済の鋼板に局所的な熱処理を加えて800℃以上の温
度で焼なましを行い、人工的粒界を導入する方法が開示
されている。該方法は鉄損値の低減が、鋼板に導入され
た人工粒界により磁区細分化を図ることによって達成さ
れる。800℃以上の温度で焼なましするため、歪取り
焼鈍により効果が消失することはないが、実施例からみ
て形状変化を導入する鉄損値低減方法なみの実用レベル
の鉄損値低減効果を得ることはできない。Further, as a structure in which the core loss reduction effect remains after stress relaxation annealing by introducing a structural change,
Japanese Unexamined Patent Publication No. 59-100222 discloses a method of introducing an artificial grain boundary by locally heat treating a steel sheet after secondary recrystallization annealing to anneal at a temperature of 800 ° C. or higher. . In the method, reduction of the iron loss value is achieved by subdividing the magnetic domains by the artificial grain boundaries introduced into the steel sheet. Since the annealing is performed at a temperature of 800 ° C. or higher, the effect does not disappear due to the strain relief annealing, but the iron loss value reducing effect of the practical level similar to the iron loss value reducing method of introducing the shape change from the examples is obtained. Can't get
【0008】このように方法的な欠点はあるものの、鋼
板表面に凹部の溝状あるいは点状、線状の形状変化を導
入することで鉄損値を低減した方向性電磁鋼板は、鉄損
値の低減幅の大きさ、低減状況の安定性の観点から、製
品としては実用レベルにあることは公知の事実である。Despite the method-related drawbacks described above, the grain-oriented electrical steel sheet in which the iron loss value is reduced by introducing the groove-shaped, point-shaped, or linear shape change of the recess on the surface of the steel sheet is It is a known fact that it is at a practical level as a product from the viewpoint of the size of the reduction range and stability of the reduction situation.
【0009】しかし上記に示した機械的あるいは化学的
エッチングによる方法で製造した凹部溝を持つ電磁鋼板
には製造方法が工業的な生産性の観点から問題である以
上に製品としての鋼板に以下のような問題点がある。However, the above-mentioned electromagnetic steel sheet having a concave groove produced by the method of mechanical or chemical etching is problematic from the viewpoint of industrial productivity in terms of industrial productivity. There is such a problem.
【0010】機械的に形成した凹部形状を詳細に観察す
ると、鋭い刃型状の工具より、硬度の高い鋼板に凹部の
傷を導入するため、凹部断面は図3(A)に示すように
凹部の各コーナー部においてかなり鋭角的になってい
る。あるいは鋼板に強引に弾性領域を超える応力を与え
凹部溝を導入するため、凹部の近傍に余分な歪が入り、
大きな残留応力が存在してしまうとともに、鋼板裏面に
通常4μmを超える凸部が発生する。この凸部は弾性領
域の変形を受けて形成されたものであるので、その後の
平坦化昇温処理を行っても消失することなく残存する。
応力緩和焼鈍後にも鉄損値低減効果がある電磁鋼板は巻
鉄芯に使用するのが主目的である。鉄損値低減処理を済
ませた鋼板は巻鉄芯の形状に加工され、しかる後応力緩
和焼鈍を施され巻加工時に導入された余分な歪を取り去
られる。従って凹部溝導入時に入った歪あるいは凹部溝
形状に起因する鋼板の機械的加工特性は、巻成形加工時
にはそのままの形で現れる。When the shape of the concave portion formed mechanically is observed in detail, the scratch of the concave portion is introduced into the steel plate having high hardness by the sharp blade type tool, and therefore the concave portion has a cross section as shown in FIG. 3 (A). It is quite sharp at each corner. Alternatively, since the stress is forcibly applied to the steel sheet beyond the elastic region to introduce the recess groove, extra strain is introduced in the vicinity of the recess,
A large residual stress exists, and a convex portion usually exceeding 4 μm occurs on the back surface of the steel sheet. Since this convex portion is formed by the deformation of the elastic region, it remains without disappearing even after the subsequent flattening temperature rising process.
The main purpose of the electrical steel sheet, which has the effect of reducing the iron loss value after stress relaxation annealing, is to use it for the wound core. The steel sheet that has been subjected to the iron loss value reduction processing is processed into the shape of a wound iron core, and then subjected to stress relaxation annealing to remove the extra strain introduced during the winding processing. Therefore, the mechanical processing characteristics of the steel sheet due to the distortion introduced at the time of introducing the concave groove or the shape of the concave groove appear as it is at the time of roll forming.
【0011】電磁鋼板は成分中にSiを多く含むため加
工性が低く、僅かの原因で割れが発生する材料である。
仮に曲率の小さな巻鉄芯を成形しようとする場合には前
記のように機械的に導入された凹部の形状は各コーナー
部が鋭角的であり、加工性が低い電磁鋼板に対して凹部
がクラックの起点になり巻加工中に割れが発生する問題
があった。さらに前述のように機械式で形成した凹部の
裏面には凸部が発生するため、図5に示すように巻鉄芯
を製作する際、凸部が障害となって積層した鋼板の間に
空隙が発生する。これは、鋼板の占積率の低下をもたら
し、鉄芯の性能の著しい低下をもたらすという問題があ
った(図4)。The electromagnetic steel sheet is a material having a low workability because it contains a large amount of Si in its components, and cracks are caused by a slight cause.
If it is desired to form a wound iron core with a small curvature, the shape of the recess introduced mechanically as described above is sharp at each corner, and the recess is cracked against the electromagnetic steel plate with low workability. There is a problem that cracks occur during the winding process because it becomes the starting point of. Further, as described above, since the convex portion is generated on the back surface of the mechanically formed concave portion, when the wound iron core is manufactured as shown in FIG. Occurs. This causes a problem that the space factor of the steel sheet is reduced and the performance of the iron core is significantly reduced (FIG. 4).
【0012】凹部溝を導入する他の方法である化学的エ
ッチングにおいても、凹部導入時の裏面の凸部について
は機械式と違い存在しないものの(図3(B))、凹部
の断面形状については機械式より一層鋭角的であり、巻
加工時の割れの発生は機械式よりも大きいという問題が
あった。Even in chemical etching, which is another method of introducing the concave groove, the convex portion on the back surface at the time of introducing the concave portion does not exist unlike the mechanical type (FIG. 3 (B)), but the sectional shape of the concave portion does not exist. There is a problem that it is more acute than that of the mechanical type, and the occurrence of cracks during winding is larger than that of the mechanical type.
【0013】以上のように従来法による応力緩和焼鈍後
も鉄損値低減効果の残る、鋼板表面に凹部を持った方向
性電磁鋼板は、その加工形状自体の特性から、実用的に
使用する上で問題があった。As described above, the grain-oriented electrical steel sheet having the recessed portion on the surface of the steel sheet, which has the effect of reducing the iron loss value even after the stress relaxation annealing by the conventional method, is practically used due to the characteristics of the machined shape itself. I had a problem with.
【0014】[0014]
【発明が解決しようとする課題】本発明は、従来の歯形
ロールの加圧法による方法あるいは化学的エッチングに
よる方法で形成される凹部溝の形状的な問題を解決し、
実用的に使用できる応力緩和焼鈍後も鉄損値低減効果の
残る方向性電磁鋼板の製品を提供するものである。SUMMARY OF THE INVENTION The present invention solves the problem of the shape of the concave groove formed by the conventional method of pressing the tooth profile roll or the method of chemical etching.
It is intended to provide a product of grain-oriented electrical steel sheet which can be practically used and still has the effect of reducing the iron loss value after the stress relaxation annealing.
【0015】[0015]
【課題を解決するための手段】本発明は、QスイッチC
O2 レーザを照射することにより、方向性電磁鋼板の表
面に形成したクレータの平均径が100〜200μm
で、そして深さが10〜30μmで圧延方向に3〜10
mm、鋼板幅方向にクレータの穴加工比1.0以下になる
ように均一に配列された連続パターンの痕跡を有し、か
つ鋼板表面は平坦であり、応力緩和焼鈍後も鉄損値低減
効果が残ることを特徴とした磁気特性に優れた方向性電
磁鋼板を要旨するものである。The present invention is a Q switch C.
The average diameter of the craters formed on the surface of the grain-oriented electrical steel sheet by irradiating with an O 2 laser is 100 to 200 μm.
And 10 to 30 μm in depth and 3 to 10 in the rolling direction.
mm, with traces of a continuous pattern uniformly arranged in the steel plate width direction so that the crater hole drilling ratio is 1.0 or less, and the steel plate surface is flat, and the effect of reducing iron loss value after stress relaxation annealing The present invention is directed to a grain-oriented electrical steel sheet having excellent magnetic properties, which is characterized by remaining.
【0016】[0016]
【作用】以下に本発明を詳細に説明する。図1は、本発
明の応力緩和焼鈍後も鉄損値低減効果が残ることを特徴
とした磁気特性に優れた方向性電磁鋼板を製造する方法
の主たる構成要素であるQスイッチCO2 レーザ共振器
の構成と、その出力パルスの電磁鋼板への照射光学系の
構成を示したものである。The present invention will be described in detail below. FIG. 1 shows a Q-switch CO 2 laser resonator, which is a main component of the method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is characterized in that the iron loss value-reducing effect remains after stress relaxation annealing. And the configuration of an optical system for irradiating the electromagnetic steel sheet with the output pulse thereof.
【0017】レーザ放電部2は、CO2 レーザ媒質であ
るレーザガスに連続的もしくはパルス的に放電励起によ
ってエネルギーを供給する部分であり、レーザ共振器を
構成する全反射鏡3と全透過窓4によって大気と遮断さ
れている。大気中に設置された出力鏡7と全透過窓4と
の間には、共焦点テレスコープ5と回転チョッパ6によ
って構成されるQスイッチング装置が設置される。Qス
イッチCO2 レーザ共振器から取り出されたパルスレー
ザビーム1は、ポリゴンミラー8による回転スキャナー
によって電磁鋼板10の板幅方向に走査され、平面全反
射鏡11で反射して放物面鏡9によって集光された後、
電磁鋼板10に照射される。The laser discharge part 2 is a part for supplying energy to the laser gas, which is a CO 2 laser medium, by discharge excitation in a continuous or pulsed manner, and is composed of a total reflection mirror 3 and a total transmission window 4 which constitute a laser resonator. It is cut off from the atmosphere. A Q-switching device including a confocal telescope 5 and a rotary chopper 6 is installed between the output mirror 7 installed in the atmosphere and the total transmission window 4. The pulsed laser beam 1 extracted from the Q-switch CO 2 laser resonator is scanned in the plate width direction of the electromagnetic steel plate 10 by the rotary scanner by the polygon mirror 8, reflected by the plane total reflection mirror 11, and is reflected by the parabolic mirror 9. After being focused,
The electromagnetic steel plate 10 is irradiated.
【0018】図2は、パルス繰り返し周波数12kHz で
Qスイッチ発振した場合の、QスイッチCO2 レーザパ
ルス波形を示したものである。初期スパイク部はQスイ
ッチレーザ特有のジャイアントパルス発振部であり、そ
の半値幅の範囲は10nsec以上、1μsec 以下である。
このQスイッチCO2 レーザパルスは初期スパイク後に
長いテイル部分を伴っている。このテイル部の最大長さ
はおよそ10μsec である。これはQスイッチYAGレ
ーザにはないQスイッチCO2 レーザに特有のパルステ
イルである。なお回転チョッパを用いたQスイッチング
においては、レーザ光透過スリットの幅を適宜変更する
ことによりパルステイル長を短くすることが可能であ
る。Qスイッチ発振時のパルス繰り返し周波数の最大値
は、一般の連続波発振CO2 レーザを用いてQスイッチ
発振させる場合、100kHz 程度までの周波数が実現可
能である。なおこれより周波数を下げてゆく場合、20
kHz程度のパルス繰り返し周波数までの領域では、パル
スエネルギーとパルス繰り返し周波数はおよそ反比例の
関係、すなわち一定のレーザ平均出力が得られる。FIG. 2 shows a Q-switch CO 2 laser pulse waveform when Q-switch oscillation is performed at a pulse repetition frequency of 12 kHz. The initial spike portion is a giant pulse oscillating portion peculiar to the Q-switch laser, and the range of the half value width is 10 nsec or more and 1 μsec or less.
This Q-switched CO 2 laser pulse has a long tail after the initial spike. The maximum length of this tail portion is about 10 μsec. This is a pulse tail peculiar to the Q-switch CO 2 laser which is not found in the Q-switch YAG laser. In Q switching using the rotary chopper, the pulse tail length can be shortened by appropriately changing the width of the laser light transmitting slit. The maximum value of the pulse repetition frequency during Q switch oscillation can be realized up to about 100 kHz when Q switch oscillation is performed using a general continuous wave CO 2 laser. When lowering the frequency below this, 20
In the region up to the pulse repetition frequency of about kHz, the pulse energy and the pulse repetition frequency have an approximately inversely proportional relationship, that is, a constant laser average output is obtained.
【0019】以上に示したようなQスイッチパルスCO
2 レーザを方向性電磁鋼板に照射した場合の、鉄損特性
改善に関して以下に詳細に説明する。まず穴径に対して
穴深さを変化させ、鉄損低減効果について調べた。穴径
100μm未満では穴深さを変化させたが、磁区の細分
化効果が不充分で鉄損値の低減効果が得られず、出発鉄
損値に対する改善鉄損値の割合で定義される鉄損改善率
も平均で5%以下であった。The Q switch pulse CO as shown above
2 The iron loss characteristic improvement when the grain oriented electrical steel sheet is irradiated with two lasers will be described in detail below. First, the hole depth was changed with respect to the hole diameter, and the effect of reducing iron loss was investigated. Although the hole depth was changed when the hole diameter was less than 100 μm, the effect of reducing the iron loss value could not be obtained due to the insufficient magnetic domain subdivision effect, and the iron defined by the ratio of the improved iron loss value to the starting iron loss value was determined. The loss improvement rate was also 5% or less on average.
【0020】次に穴径を100〜200μmとした場合
に、穴深さ10〜30μmの場合に応力緩和焼鈍後も鉄
損値低減効果が消失せずに残る特性を有する結果が得ら
れ、鉄損改善率で7%以上の値が安定して得られた。こ
の時の加工条件としてはレーザビーム径0.2mm、ピー
クパワー密度2×107 W/cm2 〜2×108 W/cm2 であ
った。穴深さについてはこれ以上深い凹部を鋼板表面に
導入すると磁束密度の劣化をきたし、鉄損低減効果が不
安定になる傾向がみられ、鉄損改善率も5%以下になっ
た。これはレーザ加工によって形成される歪領域が広く
なり過ぎると、磁区細分化が起こりにくくなるためと考
えられる。また穴径200μmを超える場合についても
穴深さを変化させた凹部を形成したが、やはり磁束密度
の劣化をきたし、鉄損低減効果が不安定になる傾向がみ
られ、鉄損改善率が5%以下になった。これもレーザ加
工によって形成される歪領域が広くなり過ぎると、磁区
細分化が起こりにくくなるためと考えられる。従って効
果的な鉄損低減を得るには、穴径で100〜200μ
m、穴深さで10〜30μmの凹部を導入することがよ
い。Next, when the hole diameter is 100 to 200 μm, when the hole depth is 10 to 30 μm, the result that the iron loss value reducing effect does not disappear even after the stress relaxation annealing is obtained, and the result is obtained. A loss improvement rate of 7% or more was stably obtained. The processing conditions at this time were a laser beam diameter of 0.2 mm and a peak power density of 2 × 10 7 W / cm 2 to 2 × 10 8 W / cm 2 . Regarding the hole depth, when a deeper recess was introduced on the surface of the steel sheet, the magnetic flux density deteriorated, the iron loss reduction effect tended to be unstable, and the iron loss improvement rate was also 5% or less. It is considered that this is because if the strained region formed by laser processing becomes too wide, the magnetic domain subdivision becomes difficult to occur. Further, when the hole diameter exceeded 200 μm, the recesses were formed with varying hole depths, but the magnetic flux density was also deteriorated, and the iron loss reduction effect tended to be unstable, and the iron loss improvement rate was 5%. Fell below%. It is considered that this is because if the strained region formed by the laser processing becomes too wide, the magnetic domain subdivision becomes difficult to occur. Therefore, in order to effectively reduce iron loss, the hole diameter should be 100-200μ.
m, and it is preferable to introduce a recess having a hole depth of 10 to 30 μm.
【0021】図3(C)はこの時に得られた加工穴ある
いは溝の断面形状を示した模式図である。加工穴形状は
加工穴径Dと加工穴深さhにより決定されるお椀状の形
状に近い形になっている。これは加工点でのレーザエネ
ルギー密度が中心部の方が高く、中心部から鋼板の蒸発
除去現象が開始されたためと考えられる。さらに、本実
験においては鋼板の除去を促進するためにアシストガス
として乾燥空気をレーザビームと同軸に鋼板に吹き付け
たが、ガスの流れが穴の中心部から外周部同心円状に形
成されるため、穴中心部が深いお椀の加工を促進する。
このようにレーザ加工により鋼板に凹部の加工を施す場
合はその加工プロセスから加工された穴はお椀状に形成
され、機械式あるいは光学エッチングにより形成される
鋭角的なものとは異なった形状を持つ。さらにこの時の
鋼板裏面の凹凸の状況を調べたところ、表面加工の影響
による凹凸部は殆どみられなかった。FIG. 3C is a schematic view showing the cross-sectional shape of the processed hole or groove obtained at this time. The shape of the processed hole is close to a bowl shape determined by the processed hole diameter D and the processed hole depth h. It is considered that this is because the laser energy density at the processing point was higher in the central portion and the evaporation removal phenomenon of the steel sheet started from the central portion. Furthermore, in the present experiment, dry air was blown as an assist gas to the steel plate coaxially with the laser beam in order to promote the removal of the steel plate, but since the gas flow is formed concentrically from the center part of the hole to the outer peripheral part, Promotes the processing of bowls where the center of the hole is deep.
In this way, when the recess is formed in the steel plate by laser processing, the hole processed from the processing process is formed into a bowl shape and has a shape different from the sharp one formed by mechanical or optical etching. . Further, when the condition of the unevenness on the back surface of the steel sheet at this time was examined, there was almost no unevenness due to the influence of the surface processing.
【0022】このようにレーザ照射により凹部を形成す
る方法では、形成された凹部は基本的に球状であるた
め、前述したように処理後の電磁鋼板を巻成形する際の
クラックの起点になる可能性が少ない。またレーザ照射
による凹部の形成は高々μsecオーダの瞬間的な除去加
工であるため、加工部近傍に余分な応力が残留する恐れ
もなく、しかも機械式による凹部形成と異なり、裏面へ
の影響もなく、鋼板の占積率を低下させることがない。In the method of forming the concave portion by laser irradiation as described above, since the formed concave portion is basically spherical, as described above, it can be a starting point of a crack when the electromagnetic steel sheet after the treatment is roll-formed. There is little nature. Also, since the formation of recesses by laser irradiation is a momentary removal process of the order of at most μsec, there is no risk of excess stress remaining in the vicinity of the processed part, and unlike mechanical recess formation, there is no effect on the back surface. It does not lower the space factor of the steel sheet.
【0023】さらに本発明の鋼板加工に使用したパルス
レーザの波形は図2に示したように初期スパイクの後方
にテイル部を有している。このテイル部の効果を調べる
ため、パルステイル部分の長さを逐次変化させながらそ
の加工特性への影響を調べた。その結果、パルステイル
部分がない場合も高品質の穴加工が実現できるが、さら
に100nsec以上のパルステイルを付加すると穴加工部
位の周囲への異物の付着状況が改善され、より加工品質
が改善されることがわかった。このパルステイルによる
効果は、テイル部分による鋼板の再熱効果によって初期
スパイク部の照射で発生したスパッタ等を加熱、蒸発さ
せ滑らかな穴加工を実現しているものと思われる。Further, the waveform of the pulse laser used for processing the steel sheet of the present invention has a tail portion behind the initial spike as shown in FIG. In order to investigate the effect of this tail portion, the influence on the processing characteristics was examined while the length of the pulse tail portion was sequentially changed. As a result, high quality hole drilling can be realized even if there is no pulse tail portion, but if a pulse tail of 100 nsec or more is added, the adhesion of foreign matter to the periphery of the hole drilling site will be improved and the drilling quality will be further improved. I found out that It is considered that the effect of this pulse tail is to realize smooth hole drilling by heating and evaporating spatter generated by irradiation of the initial spike portion due to the reheating effect of the steel sheet by the tail portion.
【0024】次に凹部のピッチを変化させ鉄損値低減効
果を調べた。レーザ照射による穴の大きさとその位置関
係はレーザの繰り返し周波数とレーザビームの走査速度
にて決まる。図5に穴の径(d)と穴の間隔(p)そし
てそれらの比である穴加工比(Rdp)を示している。R
dp=p/dであり、穴径と間隔が等しい場合、穴加工比
Rdpは1になる。また間隔が穴径の半分の場合、穴加工
比Rdpは0.5となる。前述した穴径100〜200μ
m、穴深さ10〜30μmの穴について穴加工比を変化
させたところ以下のような結果を得た。穴加工比1.0
以下になるように均一に配列された連続パターンの痕跡
が磁気特性に優れ鉄損改善効果が明確であり穴加工比が
1を超えるものは充分な鉄損改善効果が得られなかっ
た。これは穴加工比が1を超えると歪が導入されない部
分の影響が大きくなり鉄損改善効果が明確でなくなるか
らである。板幅方向のピッチ下限に関しては、従来技術
の歯形ロールで連続的な溝加工を行っていることからも
わかるように、特に下限値はない。そして圧延方向のピ
ッチは3〜10mm照射間隔が鉄損値低減効果を得るのに
必要であり、この間隔が広くなり過ぎると歪が導入され
ない部分の影響が大きくなり鉄損改善効果が明確でなく
なり、狭過ぎると磁束密度の劣化をきたし、鉄損低減効
果が不安定になる傾向がみられた。これは、レーザ加工
によって形成される歪領域が密になり過ぎると、磁区細
分化が起こりにくくなるためと考えられる。Next, the effect of reducing the iron loss value was examined by changing the pitch of the recesses. The hole size and its positional relationship due to laser irradiation are determined by the laser repetition frequency and the laser beam scanning speed. FIG. 5 shows the hole diameter (d), the hole interval (p), and the hole machining ratio (R dp ) which is the ratio thereof. R
When dp = p / d and the hole diameter and the interval are equal, the hole machining ratio R dp becomes 1. When the distance is half the hole diameter, the hole machining ratio R dp is 0.5. The above-mentioned hole diameter 100-200μ
The following results were obtained when the hole machining ratio was changed for a hole having a depth of m and a hole depth of 10 to 30 μm. Hole processing ratio 1.0
The traces of the continuous pattern uniformly arranged as shown below are excellent in magnetic properties and have a clear iron loss improving effect, and those having a drilling ratio of more than 1 cannot obtain a sufficient iron loss improving effect. This is because if the hole machining ratio exceeds 1, the effect of the portion where no strain is introduced becomes large and the iron loss improving effect becomes unclear. As for the lower limit of the pitch in the plate width direction, there is no lower limit, as can be seen from the fact that the conventional tooth profile roll is used for continuous grooving. A pitch in the rolling direction of 3 to 10 mm is necessary for the irradiation interval to obtain the effect of reducing the iron loss value. If this interval is too wide, the effect of the portion where strain is not introduced becomes large and the iron loss improving effect becomes unclear. If it is too narrow, the magnetic flux density deteriorates, and the iron loss reduction effect tends to be unstable. It is considered that this is because if the strained region formed by laser processing becomes too dense, the magnetic domain subdivision becomes difficult to occur.
【0025】[0025]
【実施例】以下に本発明を詳細に説明する。本発明の応
力緩和焼鈍によって鉄損値が低下せずに向上する特性を
有していることを特徴とした磁気特性に優れた方向性電
磁鋼板を製造する方法について図1に示す構成図を用い
て実施した。レーザ放電部2は連続波発振CO2 レーザ
の放電励起部分であり、フリーランニングモードで連続
波発振させた場合、ほぼTEM00モードで3kWのレーザ
出力を得る能力を有する。全反射鏡3は波長10.59
μmにおいて反射率99.8%を有する多層膜蒸着を施
したZnSe反射鏡である。全透過窓4は波長10.5
9μmでの無反射コーティングが施されたZnSe窓で
ある。共焦点テレスコープ5は同様なコーティングが施
された焦点距離100mmのZnSeレンズ2枚によって
構成される。回転チョッパ6は60,000rpm で回転
する金属ブレードで、チョッパブレード上には10〜1
00個のスリットが導入されている。従って、パルス繰
り返し周波数は10〜100kHzである。以上の条件で
レーザをフリーランニングモードで発振させた場合の平
均出力はおよそ1200W強である。レーザ共振器から
取り出されたレーザビーム1はポリゴンミラー8によっ
て鋼板幅方向に100mmに亘って走査される。レーザビ
ーム1は点集光の場合は、放物面鏡9によって鋼板10
の表面上で0.2mm直径のビームに集光される。The present invention will be described in detail below. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which has a characteristic that the iron loss value is improved without being lowered by the stress relaxation annealing of the present invention, will be described with reference to the configuration diagram shown in FIG. It was carried out. The laser discharge part 2 is a discharge excitation part of a continuous wave oscillation CO 2 laser, and has the ability to obtain a laser output of 3 kW in a TEM00 mode when continuous wave oscillation is performed in a free running mode. Total reflection mirror 3 has a wavelength of 10.59
It is a ZnSe reflecting mirror which has been subjected to multilayer film vapor deposition having a reflectance of 99.8% in μm. Total transmission window 4 has a wavelength of 10.5
ZnSe window with anti-reflection coating at 9 μm. The confocal telescope 5 is composed of two ZnSe lenses having a focal length of 100 mm and having the same coating. The rotating chopper 6 is a metal blade that rotates at 60,000 rpm, and 10 to 1 is placed on the chopper blade.
00 slits are introduced. Therefore, the pulse repetition frequency is 10 to 100 kHz. The average output when the laser is oscillated in the free running mode under the above conditions is about 1200 W or more. The laser beam 1 extracted from the laser resonator is scanned by the polygon mirror 8 in the width direction of the steel sheet over 100 mm. When the laser beam 1 is focused on a point, a parabolic mirror 9 is used to form a steel plate 10.
It is focused on a 0.2 mm diameter beam on the surface of the.
【0026】パルス繰り返し周波数50kHz 、波長1
0.59μmのレーザビームを集光し、初期スパイク部
のパルス半値幅250nsec、パルステイル2μsec のQ
スイッチCO2 レーザパルスを初期スパイク部のピーク
パワー密度を5×107 W/cm2として、平均穴径を20
0μm、穴深さを20μmとして、鋼板幅方向のレーザ
光走査速度を350m/minに設定して、穴加工比を0.
5として、鋼板圧延方向に6.5mm間隔で照射した。そ
の結果、未照射材に対する全鉄損改善率として9%の値
を得、この値は応力緩和焼鈍を施しても変化しなかっ
た。さらにこうして製作したサンプルを図6に示すよう
な巻鉄芯に成形したところ成形時の割れや積層時の空隙
もない良好な成形が行えた。Pulse repetition frequency 50 kHz, wavelength 1
A laser beam of 0.59 μm is condensed, and the pulse half width of the initial spike portion is 250 nsec, and the Q of the pulse tail is 2 μsec.
The switch CO 2 laser pulse has a peak power density of 5 × 10 7 W / cm 2 at the initial spike portion and an average hole diameter of 20.
0 μm, the hole depth is 20 μm, the laser beam scanning speed in the steel plate width direction is set to 350 m / min, and the hole machining ratio is set to 0.
As No. 5, irradiation was performed at intervals of 6.5 mm in the steel plate rolling direction. As a result, a total iron loss improvement rate of 9% was obtained for the unirradiated material, and this value did not change even when stress relaxation annealing was performed. Furthermore, when the sample thus produced was molded into a wound iron core as shown in FIG. 6, good molding was possible without cracks during molding and voids during lamination.
【0027】[0027]
【発明の効果】以上に説明した如く本発明による応力緩
和焼鈍によって鉄損値が低下せずに向上する特性(耐S
RA性)を有する方向性電磁鋼板をパルスCO2 レーザ
を用いた鉄損改善方法によって製造できる。このように
本方向性電磁鋼板は耐応力緩和焼鈍性を有することから
従来のレーザ照射による製品では適用できなかった巻鉄
芯用素材への適用も可能となり、その用途を大幅に広げ
得る。さらに従来からあった耐応力緩和焼鈍性を有する
鉄損改善方法である歯形ロール等を用いる方法で製造し
た鋼板に比べても鉄損低減率で同等以上、巻鉄芯への加
工性で上回る良好な結果を実現した。As described above, the characteristic of improving the iron loss value without decreasing by the stress relaxation annealing according to the present invention (S resistance)
A grain-oriented electrical steel sheet having RA property) can be manufactured by an iron loss improving method using a pulsed CO 2 laser. As described above, since the grain-oriented electrical steel sheet has resistance to stress relaxation annealing, it can be applied to a material for a wound iron core, which cannot be applied to a conventional product by laser irradiation, and its application can be greatly expanded. Furthermore, even compared to steel sheets manufactured by a method using tooth profile rolls, which is a conventional method of improving iron loss having stress relaxation annealing resistance, the iron loss reduction rate is equivalent or higher, and the workability of wound iron core is better. It achieved such a result.
【図1】本発明の応力緩和焼鈍によって鉄損値が低下せ
ずに向上する特性(耐SRA性)を有する方向性電磁鋼
板を製造する、パルスCO2 レーザを用いた方向性電磁
鋼板の鉄損改善方法の構成を示す模式図である。FIG. 1 is an iron of a grain-oriented electrical steel sheet using a pulsed CO 2 laser for producing a grain-oriented electrical steel sheet having a characteristic (SRA resistance) in which an iron loss value is improved without being reduced by the stress relaxation annealing of the present invention. It is a schematic diagram which shows the structure of the loss improvement method.
【図2】QスイッチCO2 レーザの発振波形の典型的な
測定結果例である。FIG. 2 is a typical measurement result example of an oscillation waveform of a Q-switch CO 2 laser.
【図3】本発明の鋼板表面の凹部と従来法の凹部の断面
形状の概念図である。FIG. 3 is a conceptual diagram of cross-sectional shapes of a recess on the surface of the steel sheet of the present invention and a recess of a conventional method.
【図4】従来の機械式で形成した凹部を持つ鋼板を積層
した場合の概念図である。FIG. 4 is a conceptual diagram in the case of stacking conventional steel plates having a recess formed by a mechanical method.
【図5】本発明の方向性電磁鋼板のパルスCO2 レーザ
による穴加工のパターンと穴加工比を示す模式図であ
る。FIG. 5 is a schematic diagram showing a pattern of hole processing and a hole processing ratio of the grain-oriented electrical steel sheet of the present invention by a pulsed CO 2 laser.
【図6】実施例で製作した巻鉄芯の概念図である。FIG. 6 is a conceptual diagram of a wound iron core manufactured in an example.
1 パルスレーザビーム 1′ ポリゴンミラーへ投入されるレーザビーム 2 レーザ放電部 3 全反射鏡 4 ZnSe全透過窓 5 共焦点テレスコープ 6 回転チョッパ 7 出力鏡 8 ポリゴンミラー 9 放物面鏡 10 電磁鋼板 11 平面全反射鏡 1 pulse laser beam 1'laser beam input to polygon mirror 2 laser discharge part 3 total reflection mirror 4 ZnSe total transmission window 5 confocal telescope 6 rotating chopper 7 output mirror 8 polygon mirror 9 parabolic mirror 10 electromagnetic steel plate 11 Plane total reflection mirror
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 尊道 神奈川県相模原市淵野辺5−10−1 新日 本製鐵株式会社エレクトロニクス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takamichi Kobayashi 5-10-1 Fuchinobe, Sagamihara City, Kanagawa Nippon Electronics Manufacturing Co., Ltd.
Claims (1)
2 レーザビームを照射してできた鋼板表面のクレータの
平均径が100〜200μmで、深さが10〜30μm
で、圧延方向に3〜10mm、鋼板幅方向に穴径と穴間隔
で規定される穴加工比(穴間隔/穴径)が1.0以下に
なるように均一に配列された連続パターンの痕跡を有
し、かつ鋼板裏面は平坦であることを特徴とする、応力
緩和焼鈍によっても鉄損値低減効果が失われない磁気特
性に優れた方向性電磁鋼板。1. A Q switch CO on the surface of a grain-oriented electrical steel sheet.
2 The average diameter of the crater on the surface of the steel plate formed by irradiating the laser beam is 100 to 200 μm, and the depth is 10 to 30 μm.
The trace of a continuous pattern uniformly arranged so that the hole processing ratio (hole interval / hole diameter) defined by the hole diameter and the hole interval in the width direction of the steel plate is 3 to 10 mm and 1.0 or less in the rolling direction. And the back surface of the steel sheet is flat, and the grain-oriented electrical steel sheet is excellent in magnetic characteristics in which the iron loss value reducing effect is not lost even by stress relaxation annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01293794A JP3152554B2 (en) | 1994-02-04 | 1994-02-04 | Electrical steel sheet with excellent magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01293794A JP3152554B2 (en) | 1994-02-04 | 1994-02-04 | Electrical steel sheet with excellent magnetic properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07220913A true JPH07220913A (en) | 1995-08-18 |
JP3152554B2 JP3152554B2 (en) | 2001-04-03 |
Family
ID=11819204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01293794A Expired - Fee Related JP3152554B2 (en) | 1994-02-04 | 1994-02-04 | Electrical steel sheet with excellent magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3152554B2 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997024466A1 (en) * | 1995-12-27 | 1997-07-10 | Nippon Steel Corporation | Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same |
JPH10204533A (en) * | 1997-01-24 | 1998-08-04 | Nippon Steel Corp | Product of grain oriented magnetic steel sheet excellent in magnetic property |
EP0992591A3 (en) * | 1998-10-06 | 2001-02-07 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and production method thereof |
EP1367140A1 (en) * | 2002-05-31 | 2003-12-03 | Nippon Steel Corporation | Grain-oriented electrical steel sheet excellent in magnetic properties and method for producing the same |
WO2004083465A1 (en) * | 2003-03-19 | 2004-09-30 | Nippon Steel Corporation | Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method |
WO2011016758A1 (en) * | 2009-08-03 | 2011-02-10 | Открытое Акционерное Общество "Hoвoлипeцкий Металлургический Кoмбинaт" | Method for producing anisotropic electrotechnical sheet steel |
JP2011233731A (en) * | 2010-04-28 | 2011-11-17 | Nissan Motor Co Ltd | Non-oriented magnetic steel sheet, laminate of non-oriented magnetic steel sheet, and stator core of electric motor made of the laminate |
JP2012087332A (en) * | 2010-10-15 | 2012-05-10 | Nippon Steel Corp | Method for producing grain-oriented electromagnetic steel sheet |
JP2013510239A (en) * | 2009-12-04 | 2013-03-21 | ポスコ | Oriented electrical steel sheet with low iron loss and high magnetic flux density |
KR101382645B1 (en) * | 2012-05-16 | 2014-04-08 | 주식회사 포스코 | Oriented electrical steel sheets and method for manufacturing the same |
KR101440597B1 (en) * | 2012-05-16 | 2014-09-17 | 주식회사 포스코 | Oriented electrical steel sheets and method for manufacturing the same |
JP2015510543A (en) * | 2011-12-29 | 2015-04-09 | ポスコ | Electric steel sheet and manufacturing method thereof |
KR101511706B1 (en) * | 2012-12-27 | 2015-04-14 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for refining magnetic domains in grain-oriented electrical steel sheet |
JP2015140470A (en) * | 2014-01-30 | 2015-08-03 | Jfeスチール株式会社 | Grain oriented silicon steel plate and production method thereof |
CN105244135A (en) * | 2015-09-24 | 2016-01-13 | 国网智能电网研究院 | Electrical steel plate material and preparation method thereof |
WO2016105055A1 (en) * | 2014-12-24 | 2016-06-30 | 주식회사 포스코 | Directional electrical steel sheet and method for producing same |
WO2017111555A1 (en) * | 2015-12-24 | 2017-06-29 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing same |
JP2017122264A (en) * | 2016-01-07 | 2017-07-13 | 新日鐵住金株式会社 | Laser groove processing monitoring method, laser groove processing monitoring device, laser groove processing device, and grain oriented silicon steel sheet production device |
JP2018037572A (en) * | 2016-09-01 | 2018-03-08 | 新日鐵住金株式会社 | Wound core, and manufacturing method of wound core |
WO2018150791A1 (en) | 2017-02-17 | 2018-08-23 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet |
WO2019151397A1 (en) | 2018-01-31 | 2019-08-08 | 日本製鉄株式会社 | Oriented electromagnetic steel sheet |
WO2019156127A1 (en) * | 2018-02-09 | 2019-08-15 | 日本製鉄株式会社 | Oriented electromagnetic steel sheet and production method therefor |
WO2019184104A1 (en) * | 2018-03-30 | 2019-10-03 | 宝山钢铁股份有限公司 | Heat-resistant magnetic domain refined grain-oriented silicon steel and manufacturing method therefor |
US10804015B2 (en) | 2011-12-29 | 2020-10-13 | Posco | Electrical steel sheet and method for manufacturing the same |
US10815545B2 (en) | 2014-12-24 | 2020-10-27 | Posco | Grain-oriented electrical steel plate and manufacturing method thereof |
US12123065B2 (en) | 2015-12-24 | 2024-10-22 | Posco Co., Ltd | Grain-oriented electrical steel sheet and method for manufacturing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101851762B1 (en) | 2016-09-29 | 2018-04-24 | 주식회사 하울팟 | Clothes for companion animal |
-
1994
- 1994-02-04 JP JP01293794A patent/JP3152554B2/en not_active Expired - Fee Related
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997024466A1 (en) * | 1995-12-27 | 1997-07-10 | Nippon Steel Corporation | Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same |
JPH10204533A (en) * | 1997-01-24 | 1998-08-04 | Nippon Steel Corp | Product of grain oriented magnetic steel sheet excellent in magnetic property |
EP0992591A3 (en) * | 1998-10-06 | 2001-02-07 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and production method thereof |
CN1090242C (en) * | 1998-10-06 | 2002-09-04 | 新日本制铁株式会社 | Orientation silicon-iron sheet with excellent magnetic property and its production method |
US7045025B2 (en) | 2002-05-31 | 2006-05-16 | Nippon Steel Corporation | Grain-oriented electrical steel sheet excellent in magnetic properties and method for producing the same |
EP1367140A1 (en) * | 2002-05-31 | 2003-12-03 | Nippon Steel Corporation | Grain-oriented electrical steel sheet excellent in magnetic properties and method for producing the same |
WO2004083465A1 (en) * | 2003-03-19 | 2004-09-30 | Nippon Steel Corporation | Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method |
CN100402673C (en) * | 2003-03-19 | 2008-07-16 | 新日本制铁株式会社 | Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method |
US7442260B2 (en) | 2003-03-19 | 2008-10-28 | Nippon Steel Corooration | Grain-oriented electrical steel sheet superior in electrical characteristics and method of production of same |
WO2011016758A1 (en) * | 2009-08-03 | 2011-02-10 | Открытое Акционерное Общество "Hoвoлипeцкий Металлургический Кoмбинaт" | Method for producing anisotropic electrotechnical sheet steel |
JP2015092028A (en) * | 2009-12-04 | 2015-05-14 | ポスコ | Grain-oriented electrical steel sheet |
JP2015117435A (en) * | 2009-12-04 | 2015-06-25 | ポスコ | Grain-oriented electrical steel sheet |
JP2013510239A (en) * | 2009-12-04 | 2013-03-21 | ポスコ | Oriented electrical steel sheet with low iron loss and high magnetic flux density |
JP2011233731A (en) * | 2010-04-28 | 2011-11-17 | Nissan Motor Co Ltd | Non-oriented magnetic steel sheet, laminate of non-oriented magnetic steel sheet, and stator core of electric motor made of the laminate |
JP2012087332A (en) * | 2010-10-15 | 2012-05-10 | Nippon Steel Corp | Method for producing grain-oriented electromagnetic steel sheet |
JP2015510543A (en) * | 2011-12-29 | 2015-04-09 | ポスコ | Electric steel sheet and manufacturing method thereof |
US10804015B2 (en) | 2011-12-29 | 2020-10-13 | Posco | Electrical steel sheet and method for manufacturing the same |
KR101440597B1 (en) * | 2012-05-16 | 2014-09-17 | 주식회사 포스코 | Oriented electrical steel sheets and method for manufacturing the same |
KR101382645B1 (en) * | 2012-05-16 | 2014-04-08 | 주식회사 포스코 | Oriented electrical steel sheets and method for manufacturing the same |
KR101511706B1 (en) * | 2012-12-27 | 2015-04-14 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for refining magnetic domains in grain-oriented electrical steel sheet |
JP2015140470A (en) * | 2014-01-30 | 2015-08-03 | Jfeスチール株式会社 | Grain oriented silicon steel plate and production method thereof |
WO2016105055A1 (en) * | 2014-12-24 | 2016-06-30 | 주식회사 포스코 | Directional electrical steel sheet and method for producing same |
US10815545B2 (en) | 2014-12-24 | 2020-10-27 | Posco | Grain-oriented electrical steel plate and manufacturing method thereof |
CN105244135A (en) * | 2015-09-24 | 2016-01-13 | 国网智能电网研究院 | Electrical steel plate material and preparation method thereof |
US12123065B2 (en) | 2015-12-24 | 2024-10-22 | Posco Co., Ltd | Grain-oriented electrical steel sheet and method for manufacturing same |
WO2017111555A1 (en) * | 2015-12-24 | 2017-06-29 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing same |
JP2017122264A (en) * | 2016-01-07 | 2017-07-13 | 新日鐵住金株式会社 | Laser groove processing monitoring method, laser groove processing monitoring device, laser groove processing device, and grain oriented silicon steel sheet production device |
JP2018037572A (en) * | 2016-09-01 | 2018-03-08 | 新日鐵住金株式会社 | Wound core, and manufacturing method of wound core |
KR20190107079A (en) | 2017-02-17 | 2019-09-18 | 제이에프이 스틸 가부시키가이샤 | Directional electrical steel sheet |
US11293070B2 (en) | 2017-02-17 | 2022-04-05 | Jfe Steel Corporation | Grain-oriented electrical steel sheet |
WO2018150791A1 (en) | 2017-02-17 | 2018-08-23 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet |
KR20200092395A (en) | 2018-01-31 | 2020-08-03 | 닛폰세이테츠 가부시키가이샤 | Grain-oriented electrical steel sheet |
WO2019151397A1 (en) | 2018-01-31 | 2019-08-08 | 日本製鉄株式会社 | Oriented electromagnetic steel sheet |
US11651878B2 (en) | 2018-01-31 | 2023-05-16 | Nippon Steel Corporation | Grain-oriented electrical steel sheet |
JP6597940B1 (en) * | 2018-02-09 | 2019-10-30 | 日本製鉄株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
WO2019156127A1 (en) * | 2018-02-09 | 2019-08-15 | 日本製鉄株式会社 | Oriented electromagnetic steel sheet and production method therefor |
EP3751013A4 (en) * | 2018-02-09 | 2021-07-14 | Nippon Steel Corporation | Oriented electromagnetic steel sheet and production method therefor |
US11697856B2 (en) | 2018-02-09 | 2023-07-11 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and manufacturing method thereof |
WO2019184104A1 (en) * | 2018-03-30 | 2019-10-03 | 宝山钢铁股份有限公司 | Heat-resistant magnetic domain refined grain-oriented silicon steel and manufacturing method therefor |
JP2021516725A (en) * | 2018-03-30 | 2021-07-08 | 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. | Heat-resistant magnetic domain subdivision type directional silicon steel and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP3152554B2 (en) | 2001-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07220913A (en) | Magnetic steel plate excellent in magnetic characteristic | |
CA1219643A (en) | Laser treatment of electrical steel and optical scanning assembly therefor | |
EP0870843A1 (en) | Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same | |
RU2682364C1 (en) | Electrotechnical steel sheet with oriented grain structure | |
EP0100638A2 (en) | Laser treatment of electrical steel | |
KR101719231B1 (en) | Grain oriented electical steel sheet and method for manufacturing the same | |
EP1607487A1 (en) | Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method | |
RU2746618C1 (en) | Method for producing textured silicon steel with low loss in iron by annealing for stress relief | |
EP3561087A1 (en) | Grain-oriented electrical steel sheet and magnetic domain refinement method therefor | |
JP2563729B2 (en) | Method and apparatus for improving iron loss of grain-oriented electrical steel sheet using pulsed CO2 laser | |
JP2003129135A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss | |
KR20000028848A (en) | Grain-oriented electrical steel sheet excellent in magnetic properties, and production method thereof | |
RU2748773C1 (en) | Electrical steel sheet with oriented grain structure and its production method | |
US12084736B2 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
EP1367140A1 (en) | Grain-oriented electrical steel sheet excellent in magnetic properties and method for producing the same | |
JPS6254873B2 (en) | ||
EP1149924B1 (en) | Grain-oriented electrical steel sheet excellent in magnetic properties | |
KR890014755A (en) | Electrical steel domain refining method to reduce core loss | |
JP7561194B2 (en) | Grain-oriented electrical steel sheet and method for refining magnetic domains therein | |
JPH0790385A (en) | Grain-oriented silicon steel sheet excellent in magnetic property | |
JP2002121618A (en) | Manufacturing apparatus for grain-oriented silicon steel plate excellent in magnetic characteristic | |
EP4417717A1 (en) | Grain-oriented electromagnetic steel sheet and method for producing same | |
JP2563730B2 (en) | Method for improving iron loss of grain-oriented electrical steel sheet using pulsed CO2 laser | |
JPWO2016002036A1 (en) | Laser processing equipment | |
JP7538126B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001219 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130126 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130126 Year of fee payment: 12 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130126 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130126 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140126 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |