JP5712667B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5712667B2
JP5712667B2 JP2011034809A JP2011034809A JP5712667B2 JP 5712667 B2 JP5712667 B2 JP 5712667B2 JP 2011034809 A JP2011034809 A JP 2011034809A JP 2011034809 A JP2011034809 A JP 2011034809A JP 5712667 B2 JP5712667 B2 JP 5712667B2
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
amount
electrical steel
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011034809A
Other languages
Japanese (ja)
Other versions
JP2012172191A (en
Inventor
大村 健
大村  健
博貴 井上
博貴 井上
重宏 ▲高▼城
重宏 ▲高▼城
山口 広
山口  広
岡部 誠司
誠司 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011034809A priority Critical patent/JP5712667B2/en
Publication of JP2012172191A publication Critical patent/JP2012172191A/en
Application granted granted Critical
Publication of JP5712667B2 publication Critical patent/JP5712667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、変圧器などの鉄心材料に供して好適な変圧器特性に優れる方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet that is excellent in transformer characteristics suitable for use in an iron core material such as a transformer.

方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。
そのためには、鋼板中の二次再結晶粒を(110)[001]方位(ゴス方位)に高度に揃えることや製品中の不純物を低減することが重要である。
さらに、結晶方位の制御や不純物の低減には限界があることから、鋼板の表面に対して物理的な手法で不均一性を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
To that end, it is important to highly align the secondary recrystallized grains in the steel sheet with the (110) [001] orientation (Goss orientation) and to reduce impurities in the product.
Furthermore, since there is a limit to the control of crystal orientation and the reduction of impurities, technology that introduces non-uniformity to the surface of the steel sheet by a physical method, subdivides the width of the magnetic domain, and reduces iron loss, That is, magnetic domain fragmentation technology has been developed.

たとえば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に高転位密度領域を導入することにより、磁区幅を狭くして鉄損を低減する技術が提案されている。
また、特許文献2には、電子ビームの照射により磁区幅を制御する技術が提案されている。
しかしながら、上述したような磁区細分化処理を施した方向性電磁鋼板を、実機トランスに組上げた場合に、実機トランスの騒音が大きくなるという問題があった。
For example, Patent Document 1 proposes a technique for reducing the iron loss by narrowing the magnetic domain width by irradiating the final product plate with a laser and introducing a high dislocation density region into the steel sheet surface layer.
Patent Document 2 proposes a technique for controlling the magnetic domain width by electron beam irradiation.
However, when the grain-oriented electrical steel sheet subjected to the magnetic domain refinement process as described above is assembled in an actual transformer, there is a problem that noise of the actual transformer increases.

特公昭57-2252号公報Japanese Patent Publication No.57-2252 特公平6-72266号公報Japanese Patent Publication No. 6-72266

本発明は、上記の現状に鑑み開発されたもので、磁区細分化処理に工夫を加えることによって、実機トランスに組上げた場合に、鉄損特性に優れるのはいうまでもなく、優れた騒音特性を得ることができる変圧器特性に優れる方向性電磁鋼板の有利な製造方法を提案することを目的とする。   The present invention has been developed in view of the above-mentioned present situation, and it is needless to say that it has excellent iron loss characteristics when assembled into an actual transformer by adding ingenuity to magnetic domain subdivision processing. It is an object of the present invention to propose an advantageous method for producing a grain-oriented electrical steel sheet having excellent transformer characteristics.

さて、発明者等は、上記の問題を解決するために、磁区細分化処理を施した方向性電磁鋼板を使用したときに発生が懸念される、実機トランスにおける騒音増加の原因について調査した。
その結果、実機トランスにおける騒音の増加は、磁区細分化の際に導入される熱歪に起因した鋼板の形状劣化が原因であり、たとえば電子ビームを点状に照射することにより熱歪を導入する場合には、一点当たりの滞留時間および点間隔を制御してやれば、形状劣化を防止しつつ、大きな磁区細分化効果が得られることが明らかになった。
本発明は、上記の知見に立脚するものである。
Now, in order to solve the above problem, the inventors have investigated the cause of the increase in noise in the actual transformer, which is likely to occur when the grain-oriented electrical steel sheet subjected to the magnetic domain refinement process is used.
As a result, the increase in noise in the actual transformer is caused by the deterioration of the shape of the steel sheet due to the thermal strain introduced at the time of magnetic domain subdivision. For example, the thermal strain is introduced by irradiating the electron beam in the form of dots. In some cases, it was found that if the dwell time per point and the point interval were controlled, a large magnetic domain subdivision effect could be obtained while preventing shape deterioration.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.最終仕上げ焼鈍後の方向性電磁鋼板に、張力コーティング処理を行い、前記最終仕上げ焼鈍後または前記張力コーティング処理後に、電子ビーム照射による磁区細分化処理を行う方向性電磁鋼板の製造方法において、
電子ビームを点状に照射するものとし、その際、一点当たりの滞留時間tと点間隔Xとの関係を、ビーム出力に応じて
(1) ビーム出力が600W未満の場合には、
0.05 ≦ 2(Da・t)1/2/X ≦ 1.5
ここで、Da:熱拡散率(22.7mm 2 /s at 300K in Fe)
t:一点当たりの滞留時間(s)
X:点間隔(mm)
(2) ビーム出力が600〜1200Wの場合には、
0.03 ≦ 2(Da・t)1/2/X ≦ 0.8
(3) ビーム出力が1200W超の場合には、
0.01 ≦ 2(Da・t)1/2/X ≦ 0.2
の範囲となるように制御することを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. In the method for producing a grain-oriented electrical steel sheet that performs tension coating treatment on the grain-oriented electrical steel sheet after final finish annealing, and after the final finish annealing or after the tension coating treatment, performs magnetic domain fragmentation treatment by electron beam irradiation.
It is assumed that the electron beam is irradiated in the form of dots, and at that time, the relationship between the residence time t per point and the point interval X is determined according to the beam output.
(1) If the beam output is less than 600W,
0.05 ≤ 2 (Da · t) 1/2 / X ≤ 1.5
Where Da: thermal diffusivity ( 22.7mm 2 / s at 300K in Fe)
t: Residence time per point (s)
X: Point interval (mm)
(2) When the beam output is 600-1200W,
0.03 ≤ 2 (Da · t) 1/2 / X ≤ 0.8
(3) If the beam output is over 1200W,
0.01 ≤ 2 (Da · t) 1/2 / X ≤ 0.2
A method for producing a grain-oriented electrical steel sheet, characterized by being controlled so as to fall within the range.

本発明によれば、電子ビーム照射により磁区を細分化して鉄損を低減した方向性電磁鋼板を製造する場合に、電子ビーム照射条件をビーム出力に応じて適正に制御することにより、方向性電磁鋼板を積層して変圧器に組上げた場合に、より低い騒音および鉄損を達成することができる。   According to the present invention, when manufacturing a grain-oriented electrical steel sheet in which magnetic domains are subdivided by electron beam irradiation to reduce iron loss, the directionality electromagnetic wave is controlled by appropriately controlling the electron beam irradiation condition according to the beam output. Lower noise and iron loss can be achieved when steel plates are stacked and assembled into a transformer.

電子ビーム照射における一点当たりの滞留時間と点間隔が、鋼板反り量と鉄損改善量に与える影響を示した図である。It is the figure which showed the influence which the residence time per point and point interval in electron beam irradiation have on the steel plate curvature amount and the iron loss improvement amount. 本発明における一点当たりの滞留時間および点間隔の説明図である。It is explanatory drawing of the residence time per point and point interval in this invention.

以下、本発明を具体的に説明する。
さて、本発明で解明した、電子ビーム照射により熱歪みを付与した磁区細分化鋼板を用いて組上げたときに懸念される実機トランス騒音および鉄損の増加を防止するためのポイントは、次の2点である。
Hereinafter, the present invention will be specifically described.
The points for preventing increase in actual transformer noise and iron loss, which are of concern when assembled using magnetic domain fragmented steel sheets imparted with electron beam irradiation and clarified in the present invention, are as follows. Is a point.

(1) 一点当たりの電子ビーム滞留時間の制御
一点当たりの電子ビーム滞留時間が鋼板の反りおよび鉄損に影響を与える理由は、次のように考えられる。
表面より電子ビームが鋼板に照射され、熱歪が導入されるとその熱は周辺に拡散する。この熱拡散量の増加は、歪導入領域の増大を意味しており、磁区細分化効果が増大し、鉄損改善量は大きくなる。一方、歪導入領域の増大は鋼板反り量の増加を招く。この熱拡散量は、後述するように時間の平方根に比例する。従って、一点当たりの滞留時間は、鋼板反り量と鉄損改善量に大きな影響を与える。
また、鋼板反り量が変圧器騒音および鉄損に影響を与える理由については、次のように考えている。鋼板反り量は、鋼板自体の特性には大きな影響を与えないが、変圧器では鋼板を積層させるため、鋼板一枚当たりの反り量が小さくても積層体としての反り量は非常に大きくなる。大きな反りがある状態で締結した場合、強制的に形状が矯正されるため、大きな歪が導入され、鋼板の鉄損および磁歪特性の劣化を招き、変圧器特性も悪くなる。
(1) Control of electron beam dwell time per point The reason why the electron beam dwell time per point affects the warpage and iron loss of the steel sheet is considered as follows.
When a steel plate is irradiated with an electron beam from the surface and thermal strain is introduced, the heat diffuses to the periphery. This increase in the amount of thermal diffusion means an increase in the strain introduction region, the magnetic domain subdivision effect increases, and the iron loss improvement amount increases. On the other hand, an increase in the strain introduction region causes an increase in the amount of warpage of the steel sheet. This amount of thermal diffusion is proportional to the square root of time, as will be described later. Therefore, the residence time per point greatly affects the amount of warpage of the steel sheet and the amount of iron loss improvement.
The reason why the amount of warpage of the steel sheet affects the transformer noise and the iron loss is considered as follows. The amount of warpage of the steel sheet does not greatly affect the characteristics of the steel sheet itself. However, since the steel sheets are laminated in the transformer, even if the amount of warpage per steel sheet is small, the amount of warpage as a laminate becomes very large. When fastened in a state where there is a large warp, the shape is forcibly corrected, so that a large strain is introduced, leading to deterioration of the iron loss and magnetostriction characteristics of the steel sheet, and the transformer characteristics also deteriorate.

(2) 点間隔の制御
点間隔が鋼板の反りおよび鉄損に影響を与える理由は、次のように考えている。
点間隔が狭くなってくると、歪導入面積が拡大するために鋼板反り量が増加する。一方、点間隔が広くなってくると、歪導入面積が小さくなるので鋼板反り量は減少するが、磁区細分化効果が不十分となるため鉄損改善量は低下する。以上より、一点当たりの電子ビーム滞留時間と同様、点間隔に応じて歪導入領域が変化するために、鋼板反り量および鉄損改善量が変化する。
(2) Control of point spacing The reason why the point spacing affects the warpage and iron loss of the steel sheet is considered as follows.
When the point interval becomes narrower, the warpage amount of the steel sheet increases because the strain introduction area increases. On the other hand, when the point interval is increased, the strain introduction area is reduced and the amount of warpage of the steel sheet is reduced. However, since the magnetic domain refinement effect is insufficient, the iron loss improvement amount is reduced. As described above, since the strain introduction region changes according to the point interval, the amount of warpage of the steel sheet and the amount of iron loss improvement change as in the electron beam residence time per point.

図1に、電子ビーム出力:900Wで、一点当たりの滞留時間および点間隔を種々に変更した場合における鋼板反り量と鉄損改善量との関係について調べた結果を示す。
同図に示したとおり、ある特定の範囲では、鋼板反り量が小さくかつ鉄損改善量が良好であることが分かる。
FIG. 1 shows the results of examining the relationship between the amount of warpage of the steel sheet and the amount of iron loss improvement when the dwell time per point and the point interval are variously changed at an electron beam output of 900 W.
As shown in the figure, it can be seen that within a certain range, the amount of warpage of the steel sheet is small and the iron loss improvement amount is good.

ここで、本発明における一点当たりの滞留時間および点間隔について説明する。
図2に、模式図を示すが、電子ビーム照射は、圧延方向を横切る方向、好適には圧延方向に対し60°〜90°の方向にドット状(点状)で行う。電子ビームが各点を照射している時間が一点当たりの滞留時間、各点の中心間距離が点間隔である。
Here, the dwell time per point and the point interval in the present invention will be described.
FIG. 2 shows a schematic diagram, and the electron beam irradiation is performed in the form of dots (dots) in a direction crossing the rolling direction, preferably 60 ° to 90 ° with respect to the rolling direction. The time during which the electron beam irradiates each point is the dwell time per point, and the distance between the centers of the points is the point interval.

また、鋼板反り量と電子ビーム照射による鉄損改善量の求め方は、次のとおりである。
まず、鋼板反り量について述べる。対象鋼板から、圧延方向の反りを測定する場合は圧延方向:280mm×圧延直角方向:30mm、また圧延直角方向の反りを測定する場合は圧延直角方向:280mm×圧延方向:30mmのサンプルをそれぞれ切り出し、反り量を測定する。本発明では、圧延方向および圧延直角方向の反りを測定し、大きい方の値を採用する。
また、鉄損改善量は、電子ビーム照射の前後で鉄損測定を行い、その差(照射前鉄損値−照射後鉄損値)を示している。
Moreover, the method of calculating | requiring the iron loss improvement amount by steel plate curvature amount and electron beam irradiation is as follows.
First, the amount of warpage of the steel sheet will be described. When measuring the warpage in the rolling direction from the target steel plate, cut the sample in the rolling direction: 280 mm × rolling direction perpendicular to 30 mm, and when measuring the warping in the rolling direction perpendicular to the rolling direction: 280 mm × rolling direction: 30 mm. Measure the amount of warping. In the present invention, the warp in the rolling direction and the direction perpendicular to the rolling is measured, and the larger value is adopted.
Further, the iron loss improvement amount is obtained by measuring the iron loss before and after the electron beam irradiation, and showing the difference (iron loss value before irradiation−iron loss value after irradiation).

上記(1),(2)で述べた考え方では、滞留時間の増加により反り量:増加、鉄損改善量:増加となる一方、点間隔の増加により反り量:減少、鉄損改善量:減少となり、2つのパラメーターによる反り量と鉄損改善量の変化は反対の傾向を示す。この考え方と実験により求めた鋼板反り量と鉄損改善量が両立している領域(図1)との関係を調査した結果、鋼板反り量と鉄損改善量が両立する条件は、ビーム出力によって上下限が変化し、下記式の範囲を満足させればよいことが判明した。なお、ビーム出力によって上下限が変動するのは、ビーム出力も鋼板の歪分布に影響を与えるためである。   In the ideas described in (1) and (2) above, the warpage amount increases and the iron loss improvement amount increases as the residence time increases, while the warpage amount decreases and the iron loss improvement amount decreases as the point interval increases. Thus, the changes in the warpage amount and the iron loss improvement amount due to the two parameters show the opposite tendency. As a result of investigating the relationship between the steel sheet warpage amount and the iron loss improvement amount obtained by this idea and the experiment (FIG. 1), the condition that the steel plate warpage amount and the iron loss improvement amount are compatible depends on the beam output. It has been found that the upper and lower limits are changed and the range of the following formula should be satisfied. The upper and lower limits fluctuate depending on the beam output because the beam output also affects the strain distribution of the steel sheet.

(1) ビーム出力が600W未満の場合には、
0.05 ≦ 2(Da・t)1/2/X ≦ 1.5
ここで、Da:熱拡散率(22.7mm 2 /s at 300K in Fe)
t:一点当たりの滞留時間(s)
X:点間隔(mm)
(2) ビーム出力が600〜1200Wの場合には、
0.03 ≦ 2(Da・t)1/2/X ≦ 0.8
(3) ビーム出力が1200W超の場合には、
0.01 ≦ 2(Da・t)1/2/X ≦ 0.2

(1) If the beam output is less than 600W,
0.05 ≤ 2 (Da · t) 1/2 / X ≤ 1.5
Where Da: thermal diffusivity ( 22.7mm 2 / s at 300K in Fe)
t: Residence time per point (s)
X: Point interval (mm)
(2) When the beam output is 600-1200W,
0.03 ≤ 2 (Da · t) 1/2 / X ≤ 0.8
(3) If the beam output is over 1200W,
0.01 ≤ 2 (Da · t) 1/2 / X ≤ 0.2

歪の導入処理としては、電子ビーム照射およびレーザ光照射が考えられるが、本発明では、歪導入処理は電子ビーム照射に限定する。というのは、レーザ光照射の場合は、レーザ光をスキャナーで走査しているが、今回のような不規則な動きはスキャナーに過度な負担がかかり、長時間・安定的に照射するのが困難なためである。   As the strain introduction process, electron beam irradiation and laser light irradiation are conceivable. In the present invention, the strain introduction process is limited to electron beam irradiation. This is because in the case of laser light irradiation, the laser light is scanned by a scanner, but irregular movement like this time places an excessive burden on the scanner, making it difficult to irradiate stably for a long time. This is because of this.

本発明において、一点当たりの滞留時間tは、1.0×10-7〜1.0×10-3s、点間隔Xは0.01〜0.64mmとするのが好ましい。この滞留時間および点間隔について、ともに上下限を拡げるためには高性能の設備を導入する必要があり、設備コストの上昇を招く。上記範囲の滞留時間および点間隔は一般的な電子ビーム加工機で容易に実現可能な範囲である。 In the present invention, the residence time t per point is preferably 1.0 × 10 −7 to 1.0 × 10 −3 s, and the point interval X is preferably 0.01 to 0.64 mm. In order to expand the upper and lower limits for both the residence time and the point interval, it is necessary to introduce high-performance equipment, which causes an increase in equipment cost. The dwell time and the point interval in the above ranges are easily realizable with a general electron beam processing machine.

電子ビームの照射方向は、圧延方向を横切る方向、好適には60°〜90°の方向であり、また照射間隔は3〜15mm程度とするのが好ましい。
ビーム出力の下限については、特に規定しないが、あまりにも低い出力で照射した場合、その他の操業条件(たとえば真空度)のわずかな変動でも歪導入量が変化し、安定度が悪くなるので、安定度の観点からは50W以上とすることが好ましい。一方、上限については、高出力によって得られる特性が格段に向上するわけではなく、また建設費も割高になることから、好ましくは1800Wである。加速電圧およびビーム電流については、好ましいビーム出力50〜1800Wになるように設定すればよい。ビーム径は0.01〜0.30mm程度とするのが効果的である。
The irradiation direction of the electron beam is a direction crossing the rolling direction, preferably 60 ° to 90 °, and the irradiation interval is preferably about 3 to 15 mm.
The lower limit of the beam output is not particularly specified, but when irradiated at a too low output, the amount of strain introduced will change even with slight fluctuations in other operating conditions (for example, the degree of vacuum), resulting in poor stability. From the viewpoint of degree, it is preferable to set it to 50 W or more. On the other hand, the upper limit is preferably 1800 W because the characteristics obtained by high output are not significantly improved and the construction cost is also expensive. The acceleration voltage and the beam current may be set so that a preferable beam output is 50 to 1800 W. It is effective that the beam diameter is about 0.01 to 0.30 mm.

本発明の方向性電磁鋼板の製造方法において、最終仕上げ焼鈍までの工程は、従来公知の製造工程いずれもが適合する。そして、最終仕上げ焼鈍後に張力コーティング処理を行い、その最終仕上げ焼鈍後、もしくは張力コーティング後に上記の条件で電子ビーム照射を行う。
本発明の方向性電磁鋼板の表面に形成される張力コーティングは、従来公知の張力コーティングで構わないが、リン酸アルミニウムやリン酸マグネシウム等のリン酸塩とシリカを主成分とするガラス質の張力絶縁コーティングであることが好ましい。また、張力コーティング処理は、平坦化焼鈍を行なう場合は、平坦化焼鈍と兼ねて行うことが好ましい。
In the method for producing a grain-oriented electrical steel sheet according to the present invention, any of the conventionally known production processes is suitable for the process up to final finish annealing. Then, a tension coating treatment is performed after the final finish annealing, and the electron beam irradiation is performed under the above conditions after the final finish annealing or after the tension coating.
The tension coating formed on the surface of the grain-oriented electrical steel sheet of the present invention may be a conventionally known tension coating, but a glassy tension mainly composed of a phosphate such as aluminum phosphate or magnesium phosphate and silica. An insulating coating is preferred. In addition, the tension coating treatment is preferably performed in combination with the flattening annealing when the flattening annealing is performed.

C:0.075質量%、Si:3.4質量%、Mn:0.06質量%、Ni:0.05質量%、Al:270質量ppm、N:80質量ppm、Se:200質量ppm、S:18質量ppmおよびO:30質量ppmを含有し、残部は実質的にFeの組成になる鋼スラブを、連続鋳造にて製造し、1450℃に加熱後、熱間圧延により板厚:1.8mmの熱延板としたのち、1050℃で120秒の熱延板焼鈍を施した。ついで、冷間圧延により中間板厚:1.0 mmとし、雰囲気酸化度〔P(H2O)/P(H2)〕=0.32、温度:1000℃、時間:60秒の条件で中間焼鈍を実施した。その後、塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、最終板厚:0.23mmの冷延板とした。ついで、雰囲気酸化度〔P(H2O)/P(H2)〕=0.48、均熱温度:820℃、均熱時間:180秒の条件で脱炭焼鈍を施したのち、MgOを主成分とする焼鈍分離剤を塗布してから、二次再結晶・フォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を1250℃、100hの条件で実施した。そして、60質量%のコロイダルシリカとリン酸アルミニウムからなる絶縁コーティング処理液を塗布し、800℃にて焼付けた。この張力コーティング処理は、平坦化焼鈍も兼ねている。 C: 0.075 mass%, Si: 3.4 mass%, Mn: 0.06 mass%, Ni: 0.05 mass%, Al: 270 mass ppm, N: 80 mass ppm, Se: 200 mass ppm, S: 18 mass ppm and O: A steel slab containing 30 mass ppm with the balance being substantially Fe composition is manufactured by continuous casting, heated to 1450 ° C, and hot rolled to a hot rolled sheet with a thickness of 1.8 mm Hot-rolled sheet annealing was performed at 1050 ° C. for 120 seconds. Next, the intermediate sheet thickness was 1.0 mm by cold rolling, and the intermediate oxidation was performed under the conditions of atmospheric oxidation degree [P (H 2 O) / P (H 2 )] = 0.32, temperature: 1000 ° C., time: 60 seconds. did. Then, after removing the surface subscale by hydrochloric acid pickling, cold rolling was performed again to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm. Next, after decarburization annealing was performed under the conditions of atmospheric oxidation degree [P (H 2 O) / P (H 2 )] = 0.48, soaking temperature: 820 ° C., soaking time: 180 seconds, MgO was the main component After applying the annealing separator, a final finish annealing for the purpose of secondary recrystallization, forsterite film formation and purification was performed at 1250 ° C. for 100 hours. And the insulation coating processing liquid which consists of 60 mass% colloidal silica and aluminum phosphate was apply | coated, and it baked at 800 degreeC. This tension coating treatment also serves as flattening annealing.

その後、圧延方向と直角の向きに照射間隔:5.0mmにて電子ビームを照射する磁区細分化処理を片面に施して製品としたのち、製品としての磁気特性および鋼板反り量を評価した。電子ビーム照射条件において、ビーム出力、一点当たりの滞留時間および点間隔は表1に示すように種々の条件で行った。ついで、各製品を斜角せん断し、500kVAの三相トランスを組み立て、50Hz、1.7Tで励磁した状態での鉄損W17/50および騒音を測定した。本トランスにおける鉄損W17/50および騒音の設計値は、それぞれ0.87W/kg,58dB である。
得られた結果を表1に示す。
Thereafter, a magnetic domain fragmentation treatment in which an electron beam was irradiated at an irradiation interval of 5.0 mm in a direction perpendicular to the rolling direction was applied to one side to make a product, and then the magnetic properties and the amount of warpage of the steel plate were evaluated. Under the electron beam irradiation conditions, the beam output, the dwell time per point, and the point interval were performed under various conditions as shown in Table 1. Next, each product was sheared at an oblique angle, a 500 kVA three-phase transformer was assembled, and the iron loss W 17/50 and noise in the state excited at 50 Hz and 1.7 T were measured. The design values of iron loss W 17/50 and noise in this transformer are 0.87W / kg and 58dB, respectively.
The obtained results are shown in Table 1.

Figure 0005712667
Figure 0005712667

表1から明らかなように、本発明に従い得られた方向性電磁鋼板を用いて実機トランスを組立てた場合は、鉄損・騒音ともに設計値を満足する特性が得られている。
しかしながら、本発明の製造条件を逸脱して製造された方向性電磁鋼板を用いた実機トランスは、設計どおりの特性が得られていない。
As is apparent from Table 1, when the actual transformer is assembled using the grain-oriented electrical steel sheet obtained according to the present invention, characteristics satisfying the design values for both iron loss and noise are obtained.
However, the actual transformer using the grain-oriented electrical steel sheet manufactured outside the manufacturing conditions of the present invention does not have the characteristics as designed.

Claims (1)

最終仕上げ焼鈍後の方向性電磁鋼板に、張力コーティング処理を行い、前記最終仕上げ焼鈍後または前記張力コーティング処理後に、電子ビーム照射による磁区細分化処理を行う方向性電磁鋼板の製造方法において、
電子ビームを点状に照射するものとし、その際、一点当たりの滞留時間tと点間隔Xとの関係を、ビーム出力に応じて
(1) ビーム出力が600W未満の場合には、
0.05 ≦ 2(Da・t)1/2/X ≦ 1.5
ここで、Da:熱拡散率(22.7mm 2 /s at 300K in Fe)
t:一点当たりの滞留時間(s)
X:点間隔(mm)
(2) ビーム出力が600〜1200Wの場合には、
0.03 ≦ 2(Da・t)1/2/X ≦ 0.8
(3) ビーム出力が1200W超の場合には、
0.01 ≦ 2(Da・t)1/2/X ≦ 0.2
の範囲となるように制御することを特徴とする方向性電磁鋼板の製造方法。
In the method for producing a grain-oriented electrical steel sheet that performs tension coating treatment on the grain-oriented electrical steel sheet after final finish annealing, and after the final finish annealing or after the tension coating treatment, performs magnetic domain fragmentation treatment by electron beam irradiation.
It is assumed that the electron beam is irradiated in the form of dots, and at that time, the relationship between the residence time t per point and the point interval X is determined according to the beam output.
(1) If the beam output is less than 600W,
0.05 ≤ 2 (Da · t) 1/2 / X ≤ 1.5
Where Da: thermal diffusivity ( 22.7mm 2 / s at 300K in Fe)
t: Residence time per point (s)
X: Point interval (mm)
(2) When the beam output is 600-1200W,
0.03 ≤ 2 (Da · t) 1/2 / X ≤ 0.8
(3) If the beam output is over 1200W,
0.01 ≤ 2 (Da · t) 1/2 / X ≤ 0.2
A method for producing a grain-oriented electrical steel sheet, characterized by being controlled so as to fall within the range.
JP2011034809A 2011-02-21 2011-02-21 Method for producing grain-oriented electrical steel sheet Active JP5712667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034809A JP5712667B2 (en) 2011-02-21 2011-02-21 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034809A JP5712667B2 (en) 2011-02-21 2011-02-21 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2012172191A JP2012172191A (en) 2012-09-10
JP5712667B2 true JP5712667B2 (en) 2015-05-07

Family

ID=46975386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034809A Active JP5712667B2 (en) 2011-02-21 2011-02-21 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5712667B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161024A (en) * 2014-02-28 2015-09-07 Jfeスチール株式会社 Grain-oriented electrical steel sheet for low-noise transformer, and method for production thereof
JP2015161017A (en) * 2014-02-28 2015-09-07 Jfeスチール株式会社 Grain-oriented electrical steel sheet for low-noise transformer, and method for production thereof
BR112017007867B1 (en) 2014-10-23 2021-03-02 Jfe Steel Corporation electrical grain-oriented steel sheet and process to produce the same
JP6060988B2 (en) 2015-02-24 2017-01-18 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
CN108474056A (en) 2016-01-25 2018-08-31 杰富意钢铁株式会社 Grain-oriented magnetic steel sheet and its manufacturing method
US11387025B2 (en) 2017-02-28 2022-07-12 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method therefor
US20230304123A1 (en) 2020-09-04 2023-09-28 Jfe Steel Corporation Grain-oriented electrical steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765108B2 (en) * 1990-03-09 1995-07-12 川崎製鉄株式会社 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation

Also Published As

Publication number Publication date
JP2012172191A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5853352B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5927804B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP5919617B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2016056501A1 (en) Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
JP5712667B2 (en) Method for producing grain-oriented electrical steel sheet
US10431359B2 (en) Method for producing grain-oriented electrical steel sheet
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
EP3012332B1 (en) Grain-oriented electrical steel sheet and transformer iron core using same
WO2012017669A1 (en) Grain-oriented electrical steel sheet, and method for producing same
JP6465048B2 (en) Method for producing grain-oriented electrical steel sheet
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP2015140470A (en) Grain oriented silicon steel plate and production method thereof
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JP5754170B2 (en) Method for producing grain-oriented electrical steel sheet
JP5594302B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5712667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250