JP5754170B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5754170B2
JP5754170B2 JP2011040741A JP2011040741A JP5754170B2 JP 5754170 B2 JP5754170 B2 JP 5754170B2 JP 2011040741 A JP2011040741 A JP 2011040741A JP 2011040741 A JP2011040741 A JP 2011040741A JP 5754170 B2 JP5754170 B2 JP 5754170B2
Authority
JP
Japan
Prior art keywords
steel sheet
flux density
oriented electrical
electrical steel
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011040741A
Other languages
Japanese (ja)
Other versions
JP2012177163A (en
Inventor
博貴 井上
博貴 井上
山口 広
山口  広
岡部 誠司
誠司 岡部
大村 健
大村  健
重宏 ▲高▼城
重宏 ▲高▼城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011040741A priority Critical patent/JP5754170B2/en
Publication of JP2012177163A publication Critical patent/JP2012177163A/en
Application granted granted Critical
Publication of JP5754170B2 publication Critical patent/JP5754170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、変圧器などの鉄心材料に好適な方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet suitable for a core material such as a transformer.

方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。
そのためには、鋼板中の二次再結晶粒を(110)[001]方位(いわゆる、ゴス方位)に高度に揃えることや製品鋼板中の不純物を低減することが重要である。さらに、結晶方位の制御や、不純物を低減することは、製造コストとの兼ね合い等で限界がある。そこで、鋼板の表面に対して物理的な手法で不均一性を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
For this purpose, it is important to highly align secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel sheet. Furthermore, there is a limit in controlling the crystal orientation and reducing impurities in terms of the manufacturing cost. Therefore, a technique for reducing the iron loss by introducing non-uniformity to the surface of the steel sheet by a physical method and subdividing the width of the magnetic domain, that is, a magnetic domain subdivision technique has been developed.

例えば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に高転位密度領域を導入し、磁区幅を狭くすることで、鋼板の鉄損を低減する技術が提案されている。また、特許文献2には、電子ビームの照射により磁区幅を制御する技術が提案されている。   For example, Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating the final product plate with a laser, introducing a high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width. Patent Document 2 proposes a technique for controlling the magnetic domain width by electron beam irradiation.

ここに、方向性電磁鋼板が偏磁の生じる用途で使われた場合、鉄損や、励磁電流が大幅に増加することが知られている。この問題に対しては、偏磁が生じた際に、変圧器やリアクトルなどにおいて鉄心が焼失しないよう、鉄心にギャップを設けるという方策がある。   Here, it is known that when a grain-oriented electrical steel sheet is used in an application in which a magnetization is generated, iron loss and excitation current are greatly increased. To solve this problem, there is a measure to provide a gap in the iron core so that the iron core does not burn out in a transformer, a reactor, or the like when a demagnetization occurs.

特公昭57−2252号公報Japanese Patent Publication No.57-2252 特公平6−72266号公報Japanese Examined Patent Publication No. 6-72266

しかしながら、上述したようなギャップを設けた場合には、透磁率が減少して偏磁が生じていない平常時の磁気特性が劣化してしまうという問題があった。   However, when the gap as described above is provided, there is a problem in that the magnetic characteristics at normal times in which the magnetic permeability is reduced and no demagnetization occurs are deteriorated.

本発明は、鉄心にギャップを設ける以外の方法で、偏磁が生じる用途で使われる場合にも、優れた磁気特性を有する方向性電磁鋼板を提案することを目的とする。   An object of this invention is to propose the grain-oriented electrical steel sheet which has the outstanding magnetic characteristic also when used in the use which a bias magnetism produces by methods other than providing a gap in an iron core.

さて、偏磁とは、なんらかの原因で、励磁電流にオフセットが生じ、方向性電磁鋼板にかかる磁化Hに偏りが生じることである。
図1に、一般的な方向性電磁鋼板のB−Hループ(同図に示したように、上方の減磁側の曲線をA1、下方の磁界印加側の曲線をA2とする)、励磁電流(曲線Y1,曲線Y2)および励磁電流とB−Hループから求めた磁束密度(曲線Z1,曲線Z2)とをそれぞれ示す。
上記図1を用いて、偏磁により鉄損や励磁電流が増加する理由を説明する。
Now, the term “biased” means that, for some reason, an offset occurs in the excitation current, and the magnetization H applied to the grain-oriented electrical steel sheet is biased.
FIG. 1 shows a BH loop of a general grain-oriented electrical steel sheet (the upper demagnetization side curve is A1 and the lower magnetic field application side curve is A2 as shown in the figure), excitation current (Curve Y1, Curve Y2), excitation current, and magnetic flux density (curve Z1, curve Z2) obtained from the BH loop are shown.
The reason why the iron loss and the excitation current increase due to the magnetic bias will be described with reference to FIG.

まず、なんらかの原因で励磁電流にIdcという大きさのオフセットがかかった場合の励磁電流(曲線Y2)を考える。この場合、同図に示したように、初期の励磁電流(曲線Y1)上の点y1からIdcだけx軸側に平行移動したy2を求める。ついで、y2からy軸に平行に伸ばした点線がB−Hループ(A1)と交わった点から直角(x軸に平行)に、点線を引くと、曲線Z2上の点z2が求められる。この時、オフセットのない励磁電流(曲線Y1)から同様に求めた磁束密度Bの曲線Z1上の点z1と、上記点z2のx座標の差を求めると、磁束密度Bにも、いわゆるオフセットが発生していることが分かる。すなわち、図1に示したように、Idcだけ偏磁をした場合の磁束密度BにおけるオフセットはBdcとなる。   First, consider the exciting current (curve Y2) in the case where an offset of Idc is applied to the exciting current for some reason. In this case, as shown in the figure, y2 translated from the point y1 on the initial excitation current (curve Y1) by Idc to the x-axis side is obtained. Next, when a dotted line extending from y2 parallel to the y axis intersects with the BH loop (A1) at a right angle (parallel to the x axis), a point z2 on the curve Z2 is obtained. At this time, when the difference between the x coordinate of the point z1 on the curve Z1 of the magnetic flux density B similarly obtained from the excitation current (curve Y1) having no offset and the point z2 is obtained, the magnetic flux density B also has a so-called offset. You can see that it has occurred. That is, as shown in FIG. 1, the offset in the magnetic flux density B when the magnet is deviated by Idc is Bdc.

上記のようなオフセットBdcが生じると、図1に示したように、磁束密度Bの最大値(図中のBmax)が増えてしまう。このような場合に、方向性電磁鋼板は、高磁束密度での透磁率が小さい為に、磁化H(図1中のH)が大幅に増加することになる。従って、励磁電流が大幅に増加(曲線Y2)することになる。その結果、同図の曲線Y2に示したような磁化Hの偏り、いわゆる偏磁という現象が起こる。
そして、この偏磁現象が発生すると、鋼板の鉄損は大幅に増加してしまう。
When the offset Bdc as described above occurs, as shown in FIG. 1, the maximum value of the magnetic flux density B (Bmax in the figure) increases. In such a case, since the magnetic permeability of the grain-oriented electrical steel sheet is small at a high magnetic flux density, the magnetization H (H 1 in FIG. 1 ) greatly increases. Therefore, the exciting current is greatly increased (curve Y2). As a result, a phenomenon of so-called bias magnetization of the magnetization H as shown by the curve Y2 in FIG.
And when this demagnetization phenomenon generate | occur | produces, the iron loss of a steel plate will increase significantly.

上記した問題を解決する為には、二つのアプローチが考えられる。
一つは、高磁束密度側での透磁率を大きくすることである。というのは、透磁率を大きくすると、図1中のHで示した増加幅が小さく抑えられるからである。ここに、高磁束密度まで透磁率が大きい材料とは、二次再結晶粒を(110)[001]方位(ゴス方位)に高度に揃えたり、製品中の不純物を低減した、交流磁化H=800A/mにおける磁束密度Bの大きい方向性電磁鋼板である。
Two approaches can be considered to solve the above problems.
One is to increase the magnetic permeability on the high magnetic flux density side. Because, by increasing the magnetic permeability, because the increment shown by H 1 in FIG. 1 be kept small. Here, a material having a high magnetic permeability up to a high magnetic flux density means that the secondary recrystallized grains are highly aligned in the (110) [001] orientation (Goth orientation), or the impurities in the product are reduced. a great oriented electrical steel sheets of the magnetic flux density B 8 in 800A / m.

もう一つのアプローチは、図1に示した励磁電流にIdcというオフセットがかかった時に、磁束密度Bに生じるオフセットBdcを小さくすることである。すなわち、低磁束密度側での透磁率が小さければ、偏磁が生じた場合であっても、磁束密度Bに生じるオフセットBdcを小さく抑えることができるからである。
ここに、低磁束密度側での透磁率を示す指標としては、交流磁化H=50A/mにおける磁束密度B0.5を用いる。すなわち、B0.5が小さい方向性電磁鋼板は、低磁束密度側における透磁率が小さいのである。
Another approach is to reduce the offset Bdc generated in the magnetic flux density B when an offset of Idc is applied to the exciting current shown in FIG. That is, if the magnetic permeability on the low magnetic flux density side is small, the offset Bdc generated in the magnetic flux density B can be kept small even if a magnetic demagnetization occurs.
Here, as an index indicating the magnetic permeability on the low magnetic flux density side, the magnetic flux density B 0.5 at AC magnetization H = 50 A / m is used. That is, the grain-oriented electrical steel sheet having a small B 0.5 has a low permeability on the low magnetic flux density side.

上記した2つのアプローチを基に、偏磁が生じ易い用途で使われる場合に好適な方向性電磁鋼板を見出すための実験を行った。この実験には、鉄心に偏磁がかけられるように、直流励磁巻き線を追加したエプスタイン試験装置を用いた。
以下、本発明の諸条件を規定するに至った実験結果について述べる。
Based on the two approaches described above, an experiment was conducted to find a grain-oriented electrical steel sheet that is suitable for use in applications where bias is likely to occur. In this experiment, an Epstein test apparatus to which a DC excitation winding was added was used so that the iron core could be demagnetized.
The experimental results that led to the definition of the conditions of the present invention will be described below.

まず、方向性電磁鋼板の持つBの影響について調査を行った。図2に、Bの異なる0.23mm厚の方向性電磁鋼板を用い、偏磁量:30A/mの偏磁がかかった状態で鉄損W17/50を測定した結果を示す。同図より、Bが1.90T以上の領域で、偏磁下における鉄損が小さくなることが分かった。 First, we investigated the effect of B 8 with the directional magnetic steel sheet. 2, using a different 0.23mm thick grain-oriented electrical steel sheet having B 8, polarized磁量: The results of the measurements of the iron loss W 17/50 in a state where magnetic bias is applied to 30A / m. From the figure, B 8 is in the above region 1.90T, it was found that the iron loss in polarization磁下decreases.

次に、B0.5の影響ついて調査を行った。図3に、B0.5の異なる0.23mm厚の方向性電磁鋼板を用い、偏磁量:30A/mの偏磁がかかった状態で鉄損W17/50を測定した結果を示す。同図より、B0.5が1.60T以下の領域で、偏磁下における鉄損が小さくなることが分かった。 Next, the influence of B 0.5 was investigated. FIG. 3 shows the results of measuring the iron loss W 17/50 in a state where a magnetic bias of 30 A / m was applied using 0.23 mm-thick directional electrical steel sheets with different B 0.5 . From the figure, it was found that the iron loss under the demagnetization becomes small in the region where B 0.5 is 1.60 T or less.

一般に、磁束密度Bが大きく、二次結晶粒の方位がゴス方位に揃った方向性電磁鋼板は、低磁束密度側での透磁率が高くなって、B0.5が大きくなり、上記条件(1.60T以下)を満たさない。
そこで、Bの大きい方向性電磁鋼板に、電子ビームを照射することで、磁区細分化効果を得るのと同時に、低磁束密度側での透磁率を下げるという方法を検討した。
In general, larger magnetic flux density B 8 is oriented electrical steel sheet orientation aligned in Goss orientation of the secondary grains, higher permeability at low flux density side, B 0.5 increases, the condition (1.60 T or less) is not satisfied.
Therefore, a large-oriented electrical steel sheet B 8, by irradiating an electron beam, at the same time as obtaining the domain refining effect, was studied how to lower the permeability at low magnetic flux density side.

電子ビーム照射により、低磁束密度側での透磁率が下がる原理は以下のとおりである。
電子ビームにより歪みを導入すると、その歪みを起点として還流磁区が発生する。この還流磁区により鋼板の静磁エネルギーが増大する。同時に、この静磁エネルギーを下げるように、180度磁区の細分化が起こり、鋼板の圧延方向の鉄損は減少する。これが磁区細分化効果である。このような磁区細分化が起る際に、低磁束密度側では、磁区が鋼板の圧延方向に揃いにくくなるため、透磁率が減少するのである。なお、高磁束密度側では、還流磁区の影響が小さく、透磁率の減少は少ない。
The principle that the permeability on the low magnetic flux density side is lowered by the electron beam irradiation is as follows.
When strain is introduced by an electron beam, a reflux magnetic domain is generated starting from the strain. This return magnetic domain increases the magnetostatic energy of the steel sheet. At the same time, the 180 degree magnetic domain is subdivided to reduce the magnetostatic energy, and the iron loss in the rolling direction of the steel sheet is reduced. This is the magnetic domain refinement effect. When such magnetic domain subdivision occurs, the magnetic domains are less likely to be aligned in the rolling direction of the steel sheet on the low magnetic flux density side, so that the magnetic permeability decreases. On the high magnetic flux density side, the influence of the return magnetic domain is small, and the decrease in magnetic permeability is small.

従って、鋼板に、適正な歪み量を、適正な歪み領域密度で与えることができれば、低磁束密度側の透磁率のみを減少させると同時に、高磁束密度側の透磁率を保ち、かつ十分な磁区細分化効果も期待できることになる。
そこで、B:1.93T、B0.5:1.68Tの方向性電磁鋼板に、照射条件を変えて電子ビーム照射を行い、前述したような最適範囲に収まるビーム条件を検討した。ここで、単位面積あたりの照射エネルギー量E(mJ/mm2)は以下のように規定した。
E(mJ/mm2)=電子ビーム加速電圧(kV)×ビーム電流値(mA)/ (ビーム走査速度(m/s)×ビーム径(mm))
表1に、様々なビーム条件でのB、およびB0.5の測定結果を示す。
Therefore, if an appropriate amount of strain can be applied to the steel sheet at an appropriate strain region density, only the magnetic permeability on the low magnetic flux density side is reduced, while the magnetic permeability on the high magnetic flux density side is maintained and sufficient magnetic domains are maintained. A subdividing effect can also be expected.
Therefore, electron beam irradiation was carried out on the grain-oriented electrical steel sheets of B 8 : 1.93T and B 0.5 : 1.68T under different irradiation conditions, and the beam conditions within the optimum range as described above were examined. Here, the irradiation energy amount E (mJ / mm 2 ) per unit area was defined as follows.
E (mJ / mm 2 ) = Electron beam acceleration voltage (kV) x Beam current value (mA) / (Beam scanning speed (m / s) x Beam diameter (mm))
Table 1 shows the measurement results of B 8 and B 0.5 under various beam conditions.

Figure 0005754170
Figure 0005754170

上記の実験結果から、単位面積あたりの照射エネルギー量が20 mJ/mm2より小さい場合、歪み導入量が少なく、B0.5が十分に下がらない。一方、単位面積あたりの照射エネルギー量が220 mJ/mm2より大きい場合は、歪み導入量が過多となり、Bの減少量が大きくなり過ぎる。
従って、適切な照射エネルギー量で歪みを導入することにより、BおよびB0.5の値が最適範囲となる方向性電磁鋼板を得られることが分かり、本発明の完成に至った。
From the above experimental results, when the irradiation energy amount per unit area is smaller than 20 mJ / mm 2 , the strain introduction amount is small and B 0.5 is not sufficiently lowered. On the other hand, when the irradiation energy amount per unit area is larger than 220 mJ / mm 2 , the strain introduction amount becomes excessive, and the reduction amount of B 8 becomes too large.
Therefore, by introducing the strain with the appropriate amount of irradiation energy, the value of B 8 and B 0.5 that is obtained a grain-oriented electrical steel sheet to be the optimum range to understand, and we have completed the present invention.

すなわち、本発明の要旨構成は、次のとおりである。
1.磁束密度Bが1.92T以上の方向性電磁鋼板に、電子ビーム照射により、板幅方向と30度以内をなす角度で線状に歪を導入するに際し、
照射列の圧延方向の列間隔を2〜10mmとすること、
下記式(1)にて定義される単位面積あたりの照射エネルギー量E(mJ/mm2)を、磁束密度Bが1.90T以上でかつ磁束密度B0.5が1.60T以下を満足するように、20〜220 mJ/mm2の範囲で制御すること
を特徴とする方向性電磁鋼板の製造方法。

E(mJ/mm2)=電子ビーム加速電圧(kV)×ビーム電流値(mA)/ (ビーム走査速度(m/s)×ビーム径(mm)) …(1)
That is, the gist configuration of the present invention is as follows.
1. Upon flux density B 8 is a more grain-oriented electrical steel sheet 1.92 T, by electron beam irradiation, introducing strain linearly at an angle forming a within a 30-degree plate width direction,
The row interval in the rolling direction of the irradiation row is 2 to 10 mm,
The irradiation energy amount E (mJ / mm 2 ) per unit area defined by the following formula (1) is set so that the magnetic flux density B 8 is 1.90 T or more and the magnetic flux density B 0.5 is 1.60 T or less. A method for producing a grain-oriented electrical steel sheet, characterized by being controlled in a range of 20 to 220 mJ / mm 2 .
E (mJ / mm 2 ) = electron beam acceleration voltage (kV) × beam current value (mA) / (beam scanning speed (m / s) × beam diameter (mm)) (1)

本発明に従う要領の下に、電子ビームを用いて方向性電磁鋼板に歪みを付与することによって、通常用途は勿論のこと、偏磁が生じ易い用途で使われても、優れた鉄損値を示す方向性電磁鋼板を製造することが可能になった。   By applying strain to the grain-oriented electrical steel sheet using an electron beam under the procedure according to the present invention, an excellent iron loss value can be obtained not only for normal use but also for applications that tend to cause demagnetization. It became possible to produce the grain-oriented electrical steel sheet shown.

磁束密度Bと磁化Hとの関係を説明する図である。It is a figure explaining the relationship between magnetic flux density B and magnetization H. 磁束密度Bと鉄損との関係を示すグラフである。Is a graph showing the relationship between the magnetic flux density B 8 and iron loss. 磁束密度B0.5と鉄損との関係を示すグラフである。It is a graph showing the relationship between the magnetic flux density B 0.5 and iron loss.

前述したように、B、およびB0.5が、本発明の最適範囲(Bが1.90T以上でかつB0.5が1.60T以下)となる方向性電磁鋼板を得るためには、磁束密度Bが1.92T以上の方向性電磁鋼板を用い、電子ビーム照射が、以下の式(1)で表される単位面積あたりの照射エネルギー量Eで、20mJ/mm2以上220mJ/mm2以下の範囲とすることが必要である。
ここに、磁束密度Bが1.92T以上の鋼板を用いるのは、低磁束密度側での透磁率が高くなって、そのままでは、B0.5が大きくなって上記最適範囲を満たさないからである。
E(mJ/mm2)=電子ビーム加速電圧(kV)×ビーム電流値(mA)/ (ビーム走査速度(m/s)×ビーム径(mm))・・・(1)
なお、上記のビーム径は、公知のスリット法を用いて、電子ビームのエネルギープロファイルの半値幅で規定するものとする。
As described above, in order to obtain a grain-oriented electrical steel sheet in which B 8 and B 0.5 are in the optimum range of the present invention (B 8 is 1.90 T or more and B 0.5 is 1.60 T or less), magnetic flux density B 8 There used more oriented electrical steel sheets 1.92 T, electron beam irradiation, the irradiation energy amount E per unit area represented by the following formula (1), and 20 mJ / mm 2 or more 220 mJ / mm 2 or less in the range It is necessary to.
Here, the magnetic flux density B 8 is used more steel 1.92T is the magnetic permeability at low flux density side becomes high, as it is because not satisfy the above optimum range B 0.5 is increased.
E (mJ / mm 2 ) = electron beam acceleration voltage (kV) × beam current value (mA) / (beam scanning speed (m / s) × beam diameter (mm)) (1)
The beam diameter is defined by the half width of the energy profile of the electron beam using a known slit method.

本発明における線状に歪を導入する場合、歪み導入の形態は、点列歪みでも、線状歪みでも問題はない。また、点列および線の列間隔は、2mm以上10mm以下とする。というのは、2mm未満であると、歪みの導入が多すぎて、圧延方向のヒステリシス損が大幅に大きくなってしまう。一方、10mm超では、磁区細分化効果が小さく、磁束密度が好適範囲を満たしても鉄損抑制効果が小さいからである。
なお、点列歪みにおける、各点歪みの間隔は、0.60mm以内とすることが好ましい。
When strain is introduced into a linear shape in the present invention, there is no problem whether the strain is introduced as a point sequence strain or a linear strain. The interval between the dot rows and the lines is 2 mm or more and 10 mm or less. This is because if it is less than 2 mm, too much strain is introduced and the hysteresis loss in the rolling direction becomes significantly large. On the other hand, if it exceeds 10 mm, the magnetic domain fragmentation effect is small, and even if the magnetic flux density satisfies the preferred range, the iron loss suppression effect is small.
It should be noted that the interval between the point strains in the point sequence strain is preferably within 0.60 mm.

本発明において、線状の歪みの板幅方向となす角度は、30°以内とすることが肝要である。この範囲よりも板幅方向とのなす角度が大きくなると、圧延方向の鉄損減少量が小さくなるからである。   In the present invention, it is important that the angle between the linear strain and the plate width direction is within 30 °. This is because if the angle formed with the sheet width direction is larger than this range, the iron loss reduction amount in the rolling direction is reduced.

また、歪み導入手法としては、大きなエネルギーをビーム径を絞って導入することができる電子ビーム照射が最も適している。   As a distortion introducing method, electron beam irradiation capable of introducing large energy with a reduced beam diameter is most suitable.

電子ビーム照射により線状に歪み導入を行うと、条件によっては照射痕跡が残り、鋼板の絶縁性が損なわれる場合がある。その場合には、絶縁被膜の再コートを行い、導入された歪みが解消されない温度領域で焼き付けを行う。   When strain is introduced linearly by electron beam irradiation, an irradiation trace may remain depending on conditions, and the insulating properties of the steel sheet may be impaired. In that case, re-coating of the insulating film is performed, and baking is performed in a temperature region where the introduced distortion is not eliminated.

次に、上記以外の方向性電磁鋼板の製造条件に関して具体的に説明する。
本発明において、方向性電磁鋼板用スラブの成分組成は、二次再結晶が生じる成分組成で、かつ磁束密度Bが1.92T以上の方向性電磁鋼板となればよい。また、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを、それぞれ適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.01〜0.065質量%、N:0.005〜0.012質量%、S:0.005〜0.03質量%、Se:0.005〜0.03質量%である。
Next, the manufacturing conditions of the grain-oriented electrical steel sheet other than the above will be specifically described.
In the present invention, the composition of the oriented electrical steel sheet slab, in chemical composition secondary recrystallization occurs, and the magnetic flux density B 8 may if a more directional electromagnetic steel sheet 1.92 T. Further, when using an inhibitor, for example, when using an AlN-based inhibitor, Al and N are contained, and when using an MnS / MnSe-based inhibitor, an appropriate amount of Mn, Se and / or S is contained. Just do it. Of course, both inhibitors may be used in combination. The preferred contents of Al, N, S and Se in this case are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .

さらに、本発明は、Al、N、SおよびSeの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。この場合には、Al、N、SおよびSe量はそれぞれ、Al:100 質量ppm以下、N:50 質量ppm以下、S:50 質量ppm以下およびSe:50 質量ppm以下に抑制することが好ましい。   Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets in which the contents of Al, N, S and Se are limited and no inhibitor is used. In this case, the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less, respectively.

本発明の方向性電磁鋼板用スラブの基本成分および任意添加成分について具体的に述べると、次のとおりである。
C:0.08質量%以下
Cは、熱延板組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
The basic components and optional components of the slab for grain-oriented electrical steel sheets according to the present invention are specifically described as follows.
C: 0.08 mass% or less C is added to improve the hot-rolled sheet structure, but if it exceeds 0.08 mass%, it is difficult to reduce C to 50 mass ppm or less where no magnetic aging occurs during the manufacturing process. Therefore, the content is preferably 0.08% by mass or less. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, there is no need to provide it.

Si:2.0〜8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できず、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜8.0質量%の範囲とすることが好ましい。
Si: 2.0 to 8.0 mass%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved, while 8.0% by mass. If it exceeds 1, the workability is remarkably lowered and the magnetic flux density is also lowered.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005% by mass, the effect of addition is poor, whereas if it exceeds 1.0% by mass, the magnetic flux density of the product plate decreases. The amount of Mn is preferably in the range of 0.005 to 1.0 mass%.

上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.5質量%、Sn:0.01〜1.5質量%、Sb:0.005〜1.5質量%、Cu:0.03〜3.0質量%、P:0.03〜0.5質量%、Mo:0.005〜0.1質量%およびCr:0.03〜1.5質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.5質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.5質量%の範囲とするのが好ましい。
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03-1.5% by mass, Sn: 0.01-1.5% by mass, Sb: 0.005-1.5% by mass, Cu: 0.03-3.0% by mass, P: 0.03-0.5% by mass, Mo: 0.005-0.1% by mass and Cr: At least one selected from 0.03 to 1.5 mass%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03% by mass, the effect of improving the magnetic properties is small. On the other hand, if the content exceeds 1.5% by mass, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.5 mass%.

また、Sn、Sb、Cu、P、MoおよびCrはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
Sn, Sb, Cu, P, Mo and Cr are elements useful for improving the magnetic properties, respectively, but if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small, If the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

次いで、上記した成分組成を有するスラブは、常法に従い加熱して熱間圧延に供するが、鋳造後、加熱せずに直ちに熱間圧延してもよい。薄鋳片の場合には熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進んでもよい。
さらに、必要に応じて熱延板焼鈍を施す。この時、ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度として800〜1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難になり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織の実現が極めて困難となる。
熱延板焼鈍後は、1回または中間焼鈍を挟む2回以上の冷間圧延を施した後、再結晶焼鈍を行い、焼鈍分離剤を塗布する。焼鈍分離剤を塗布した後に、二次再結晶およびフォルステライト被膜の形成を目的として最終仕上げ焼鈍を施す。
Next, the slab having the above-described component composition is heated and subjected to hot rolling according to a conventional method, but may be immediately hot rolled after casting without being heated. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.
Furthermore, hot-rolled sheet annealing is performed as necessary. At this time, in order to develop a goth structure at a high level in the product plate, a hot rolled sheet annealing temperature in the range of 800 to 1100 ° C. is suitable. When the hot-rolled sheet annealing temperature is less than 800 ° C, the band structure in hot rolling remains, making it difficult to achieve a sized primary recrystallization structure and inhibiting the development of secondary recrystallization. . On the other hand, when the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it is very difficult to realize a sized primary recrystallized structure.
After hot-rolled sheet annealing, after performing cold rolling of 1 time or 2 times or more sandwiching intermediate annealing, recrystallization annealing is performed and an annealing separator is applied. After applying the annealing separator, a final finish annealing is performed for the purpose of secondary recrystallization and forsterite film formation.

最終仕上げ焼鈍後には、平坦化焼鈍を行って形状を矯正することが有効である。なお、本発明では、平坦化焼鈍前または後に、鋼板表面に絶縁コーティングを施す。ここに、この絶縁コーティングは、本発明では、鉄損低減のために、鋼板に張力を付与できるコーティング(以下、張力コーティングという)を意味する。なお、張力コーティングとしては、シリカを含有する無機系コーティングや物理蒸着法、化学蒸着法等によるセラミックコーティング等が挙げられる。   After the final finish annealing, it is effective to correct the shape by performing flattening annealing. In the present invention, an insulating coating is applied to the steel sheet surface before or after planarization annealing. Here, in the present invention, this insulating coating means a coating (hereinafter referred to as tension coating) that can apply tension to a steel sheet in order to reduce iron loss. Examples of the tension coating include silica-containing inorganic coating, physical vapor deposition, and ceramic coating by chemical vapor deposition.

本発明では、上述した最終仕上げ焼鈍後または張力コーティング後の方向性電磁鋼板に、いずれかの時点で鋼板表面に電子ビームを前記した条件で照射することにより、磁区細分化処理を施す。
本発明において、上述した工程や製造条件以外については、従来公知の電子ビームを用いた磁区細分化処理を施す方向性電磁鋼板の製造方法を適用すればよい。
In the present invention, the magnetic domain refinement treatment is performed by irradiating the directional electrical steel sheet after the final finish annealing or tension coating described above with the electron beam on the steel sheet surface at any time point under the above-described conditions.
In this invention, except the process and manufacturing conditions mentioned above, the manufacturing method of the grain-oriented electrical steel sheet which performs the magnetic domain fragmentation process using the conventionally well-known electron beam should just be applied.

Si:3質量%を含有する、最終板厚:0.23mmに圧延された冷延板を、脱炭、一次再結晶焼鈍した後、MgOを主成分とした焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終焼鈍を施し、フォルステライト被膜を有する方向性電磁鋼板を得た。60%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを塗布、800℃にて焼付けた。ついで、圧延方向と直角に電子ビーム照射を行い、点列状あるいは線状に歪み導入を行った。点列照射の場合、ビームの走査速度は、ビーム走査の停止時間を含めた平均速度とした。
この鋼板を、鉄心に偏磁がかけられるように、直流励磁巻き線を追加したエプスタイン試験装置(280mm角)を用いて、偏磁量:50A/mの時の鉄損W17/50を測定した。
上記鉄損の測定結果を、表2に併記する。
Si: 3% by mass of the final cold rolled sheet rolled to 0.23mm, decarburized and primary recrystallization annealed, and then applied with an annealing separator mainly composed of MgO A final annealing process including a crystallization process and a purification process was performed to obtain a grain-oriented electrical steel sheet having a forsterite film. An insulating coat composed of 60% colloidal silica and aluminum phosphate was applied and baked at 800 ° C. Next, electron beam irradiation was performed at a right angle to the rolling direction, and strain was introduced in a sequence of dots or lines. In the case of point train irradiation, the beam scanning speed was an average speed including the beam scanning stop time.
Using this Epstein test device (280 mm square) with DC excitation winding, the iron loss W 17/50 when the amount of magnetic demagnetization is 50 A / m is measured so that this steel sheet can be demagnetized . did.
The measurement results of the iron loss are also shown in Table 2.

Figure 0005754170
Figure 0005754170

表2に示したように、電子ビーム照射を用いて、適切な歪み量が導入された適合例では、鉄損W17/50がいずれの場合にあっても、比較例と比べて、5%以上鉄損W17/50が減少していることが分かる。 As shown in Table 2, in the conforming example in which an appropriate amount of distortion is introduced using electron beam irradiation, the iron loss W 17/50 is 5% compared to the comparative example in any case. From the above, it can be seen that the iron loss W 17/50 is decreasing.

Claims (1)

磁束密度Bが1.92T以上の方向性電磁鋼板に、電子ビーム照射により、板幅方向と30度以内をなす角度で線状に歪を導入するに際し、
照射列の圧延方向の列間隔を2〜10mmとすること、
下記式(1)にて定義される単位面積あたりの照射エネルギー量E(mJ/mm2)を、磁束密度Bが1.90T以上でかつ磁束密度B0.5が1.60T以下を満足するように、20〜220 mJ/mm2の範囲で制御すること
を特徴とする方向性電磁鋼板の製造方法。

E(mJ/mm2)=電子ビーム加速電圧(kV)×ビーム電流値(mA)/ (ビーム走査速度(m/s)×ビーム径(mm)) …(1)


Upon flux density B 8 is a more grain-oriented electrical steel sheet 1.92 T, by electron beam irradiation, introducing strain linearly at an angle forming a within a 30-degree plate width direction,
The row interval in the rolling direction of the irradiation row is 2 to 10 mm,
The irradiation energy amount E (mJ / mm 2 ) per unit area defined by the following formula (1) is set so that the magnetic flux density B 8 is 1.90 T or more and the magnetic flux density B 0.5 is 1.60 T or less. A method for producing a grain-oriented electrical steel sheet, characterized by being controlled in a range of 20 to 220 mJ / mm 2 .
E (mJ / mm 2 ) = electron beam acceleration voltage (kV) × beam current value (mA) / (beam scanning speed (m / s) × beam diameter (mm)) (1)


JP2011040741A 2011-02-25 2011-02-25 Method for producing grain-oriented electrical steel sheet Active JP5754170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040741A JP5754170B2 (en) 2011-02-25 2011-02-25 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040741A JP5754170B2 (en) 2011-02-25 2011-02-25 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2012177163A JP2012177163A (en) 2012-09-13
JP5754170B2 true JP5754170B2 (en) 2015-07-29

Family

ID=46979195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040741A Active JP5754170B2 (en) 2011-02-25 2011-02-25 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5754170B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037568B1 (en) * 2011-12-28 2019-03-27 JFE Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919733A (en) * 1988-03-03 1990-04-24 Allegheny Ludlum Corporation Method for refining magnetic domains of electrical steels to reduce core loss
JPH04362139A (en) * 1991-06-05 1992-12-15 Kawasaki Steel Corp Manufacture of low core loss grain-oriented electrical steel sheet excellent in flatness degree
JPH0543945A (en) * 1991-08-14 1993-02-23 Kawasaki Steel Corp Manufacture of low iron loss grain-oriented silicon steel sheet
JPH0543944A (en) * 1991-08-15 1993-02-23 Kawasaki Steel Corp Manufacture of low iron loss grain-oriented silicon steel sheet
JP3023242B2 (en) * 1992-05-29 2000-03-21 川崎製鉄株式会社 Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics

Also Published As

Publication number Publication date
JP2012177163A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101309346B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
CN103025903B (en) Oriented electromagnetic steel plate and production method for same
US9514868B2 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
US10062483B2 (en) Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
US20130206283A1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP5866850B2 (en) Method for producing grain-oriented electrical steel sheet
EP2813593B1 (en) Grain-oriented electrical steel plate
JP2012077380A (en) Grain-oriented electromagnetic steel sheet, and method for manufacturing the same
KR101607909B1 (en) Grain-oriented electrical steel sheet and transformer iron core using same
JP5983306B2 (en) Method for manufacturing transformer cores with excellent iron loss
JP2012172191A (en) Production method for grain-oriented magnetic steel sheet
JP2012057232A (en) Grain oriented magnetic steel sheet and production method therefor
JP2012177162A (en) Method for manufacturing grain-oriented magnetic steel sheet
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP5754170B2 (en) Method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP6116793B2 (en) Method for producing grain-oriented electrical steel sheet
WO2024063163A1 (en) Grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R150 Certificate of patent or registration of utility model

Ref document number: 5754170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250