WO2024063163A1 - Grain-oriented electrical steel sheet - Google Patents

Grain-oriented electrical steel sheet Download PDF

Info

Publication number
WO2024063163A1
WO2024063163A1 PCT/JP2023/034555 JP2023034555W WO2024063163A1 WO 2024063163 A1 WO2024063163 A1 WO 2024063163A1 JP 2023034555 W JP2023034555 W JP 2023034555W WO 2024063163 A1 WO2024063163 A1 WO 2024063163A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
steel sheet
oriented electrical
less
electrical steel
Prior art date
Application number
PCT/JP2023/034555
Other languages
French (fr)
Japanese (ja)
Inventor
尚 茂木
悠祐 川村
将嵩 岩城
克 高橋
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024063163A1 publication Critical patent/WO2024063163A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to grain-oriented electrical steel sheets. This application claims priority based on Japanese Patent Application No. 2022-151341 filed in Japan on September 22, 2022, the contents of which are incorporated herein.
  • the magnetostrictive properties change depending on various factors, such as the structure and condition of the grain-oriented electrical steel sheet, specifically the degree of integration of crystal orientation, the tension applied to the steel sheet by the insulating film, and the strain inherent in the steel.
  • the noise level changes, and in some cases it is possible to reduce the noise.
  • a grain-oriented electrical steel sheet that can reduce noise from the member when used as a material for an electrical member has an average length DLmax of grains in the rolling direction of 12 mm or more, a coating tension is 1 MPa or less, the plate thickness is 0.35 mm or less, and the length of the grain in the rolling direction is divided into four regions, and from the grain boundaries existing in the two outer regions to the inside of the grain.
  • the absolute value of the submergence angle of the crystal orientation is ⁇ , (area of the region near the grain boundary where ⁇ is 4.0° or less)/(total area near the grain boundary)
  • a grain-oriented electrical steel sheet is disclosed in which the area) ⁇ 0.50.
  • Patent Document 2 describes grain-oriented electrical steel sheets with excellent magnetostrictive properties: Si: 3.0 to 7.0 mass%, Mn: 0.04 to 0.15 mass%, Sb: 0.01 to 0.10 mass%. and Sn: 0.01 to 0.20 mass%, the balance is Fe and unavoidable impurities, and the tension imparting insulating film has a total of 10 MPa or more with the tensile stress due to the forsterite film.
  • a grain-oriented electrical steel sheet comprising grains in which the average misorientation angle ⁇ of the crystal orientation with the rolling direction as the rotation axis in Goss-oriented ⁇ 110 ⁇ 001> grains is 6° or less, and the grain is compressed in the rolling direction.
  • a grain-oriented electrical steel sheet is disclosed that has a magnetostriction ⁇ pp of 1.7 ⁇ 10 ⁇ 6 or less when subjected to stress of 3.92 MPa and magnetized at 50 Hz and 1.7 T.
  • Patent Document 3 describes that B8, which is the magnetic flux density of a steel sheet generated by a magnetizing force of 800 A/m, is 1.92 T or more, and that the rolling direction and easy magnetization are The thickness direction component of the angular deviation of the axis (100) ⁇ 001> is defined as the ⁇ angle, and the crystal grain contains a region in which the absolute value of ⁇ angle is 0.5° or less and a region between 2° and 6° at the same time.
  • a grain-oriented electrical steel sheet with Rs of 30% to 100% is selected, and a fiber laser with a fiber core diameter of 5 ⁇ m to 400 ⁇ m is applied to the surface of the grain-oriented electrical steel sheet.
  • a laser beam is applied periodically and substantially perpendicularly to the rolling direction of the grain-oriented electrical steel sheet, and the width of the surface irradiation mark of the laser beam in the rolling direction or the width of the reflux magnetic domain formed in the laser irradiated area in the rolling direction is
  • a method for manufacturing a grain-oriented electrical steel sheet is disclosed in which the core loss is reduced compared to before the laser beam irradiation by irradiating the laser beam to a depth of 10 ⁇ m to 200 ⁇ m.
  • Patent Document 3 discloses that according to the above method, a grain-oriented electrical steel sheet with extremely low iron loss and magnetostriction can be provided, especially in a grain-oriented electrical steel sheet with a high magnetic flux density.
  • Patent Document 4 discloses a new and novel method that can produce a grain-oriented electrical steel sheet with lower core loss when rapid temperature increase is performed at a faster temperature increase rate than before in primary recrystallization annealing.
  • An improved method for manufacturing a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet manufactured by the method are disclosed.
  • Patent Document 4 indicates that the above technology can reduce noise while improving the magnetic characteristics of a transformer.
  • Patent Document 4 also does not consider the 200 Hz component of the magnetostrictive waveform. Further, Patent Document 4 states that it is assumed that the noise of the transformer increases due to magnetic domain control processing.
  • an object of the present invention is to provide a grain-oriented electrical steel sheet with low core loss and low noise, which is suitable for application to transformers and the like.
  • the present inventors conducted a study on reducing the noise of a transformer. As a result, it was found that the noise of the transformer has a strong correlation with the 200 Hz component of the magnetostrictive waveform, and that the noise of the transformer can be reduced by reducing the 200 Hz component of the magnetostrictive waveform.
  • magnetostriction when the surface of a grain-oriented electrical steel sheet is irradiated with a laser to reduce iron loss, magnetostriction generally increases. That is, there is a trade-off relationship between reducing iron loss and reducing magnetostriction. Therefore, conventionally, when reducing magnetostriction, it was necessary to select conditions that reduce magnetostriction by sacrificing the effect of reducing iron loss to some extent by adjusting irradiation conditions such as laser intensity. However, it is difficult to further reduce iron loss and magnetostriction at the same time only by adjusting the laser irradiation conditions.
  • the present inventors investigated a method of reducing magnetostriction (particularly the 200 Hz component of the magnetostrictive waveform) without impairing core loss by controlling the structure of a grain-oriented electrical steel sheet. As a result, it was found that by controlling the grain size (particularly the distance between grain boundaries in the rolling direction), magnetostriction can be reduced without impairing core loss. In addition, it has been found that it is effective to change the curvature of the steel sheet by taking special measures during winding to control the grain size.
  • a grain-oriented electrical steel sheet includes a base steel plate, a forsterite film formed on the surface of the base steel plate, an insulating film formed on the surface of the forsterite film, , the chemical composition of the base steel plate contains Si: 0.80 to 7.00% in mass %, and the distance between grain boundaries of crystal grains in the rolling direction on the surface of the base steel plate is 3.0 mm or more and 13.0 mm or less, the area ratio of the crystal grains is 70% or more, and the magnetic flux density B8 generated by a magnetizing force of 800 A/m is 1.88 T or more, and the base steel plate When the plate thickness is t in mm, the iron loss W17/50 when the frequency is 50 Hz and the maximum magnetic flux density is 1.7 T is 13.1 ⁇ t 2 -4.
  • the grain-oriented electrical steel sheet according to [1] or [2] is characterized in that, in the base steel sheet, the area ratio of rectangular reflux magnetic domains observed on the surface is 10% or less, and The width of the main magnetic domain may be 1.2 mm or less.
  • the W17/50 In the grain-oriented electrical steel sheet according to [1] or [2], when the magnetic flux density is 1.92T or more and the plate thickness is 0.18 to 0.23 mm, the W17/50 is It may be 0.74 W/kg or less. [5] In the grain-oriented electrical steel sheet according to [3], when the magnetic flux density is 1.92T or more and the plate thickness is 0.18 to 0.23 mm, the W17/50 is 0.74 W/ It may be less than kg.
  • FIG. 6 is a diagram showing an example of the arrangement of spacers placed between steel plates in a winding process. It is a figure which shows the example of the aspect which applies an annealing separator in a winding process.
  • a grain-oriented electrical steel sheet according to an embodiment of the present invention includes a base steel plate, a forsterite film formed on the surface of the base steel plate, and a forsterite film formed on the surface of the forsterite film. and an insulating film formed. Further, in the grain-oriented electrical steel sheet according to the present embodiment, the chemical composition of the base material steel sheet contains Si: 0.80 to 7.00% in mass %, and the surface of the base material steel sheet contains crystals in the rolling direction.
  • the plate thickness is expressed as t in mm
  • the iron loss W17/50 when the frequency is 50 Hz and the maximum magnetic flux density is 1.7 T is expressed as 13.1 ⁇ t 2 - in W/kg.
  • LvA200Hz which is the 200Hz component of the magnetostrictive waveform, is 60 to 78 dBA.
  • Si is an element that increases the electrical resistance of grain-oriented electrical steel sheets and improves core loss characteristics. If the Si content is less than 0.80%, a sufficient eddy current loss reduction effect cannot be obtained. Therefore, the Si content is set to 0.80% or more.
  • the Si content is preferably 1.00% or more, more preferably 1.20% or more.
  • the Si content exceeds 7.00%, the steel plate becomes brittle and may break during rolling. In addition, the workability of the grain-oriented electrical steel sheet is reduced. Therefore, the Si content is set to 7.00% or less.
  • the Si content is preferably 6.80% or less, more preferably 6.70% or less, even more preferably 4.00% or less.
  • the base steel sheet included in the grain-oriented electrical steel sheet according to the present embodiment contains 0.80 to 7.00% Si in mass% as a chemical composition
  • the content of other elements is not particularly limited. Not done. However, in addition to Si, the following elements may be included in the ranges shown below as components (elements) constituting the chemical composition, depending on the properties required as a grain-oriented electrical steel sheet. In the present embodiment, % concerning the content of each element is mass % unless otherwise specified.
  • C 0.070% or less
  • C (carbon) is an element effective in controlling the structure of the steel sheet in the manufacturing process up to the completion of the decarburization annealing process.
  • the C content is preferably 0.070% or less.
  • the C content is more preferably 0.050% or less, still more preferably 0.020% or less. The lower the C content, the better, but even if the C content is reduced to less than 0.0001%, the effect of structure control will be saturated and the manufacturing cost will only increase. Therefore, the C content may be 0.0001% or more.
  • Mn 0.01-0.50%
  • Mn manganese
  • Mn is an element that combines with S to form MnS during the manufacturing process. These precipitates function as inhibitors (suppressants of normal grain growth) and cause secondary recrystallization to occur in steel.
  • Mn is an element that also improves the hot workability of steel.
  • the Mn content is preferably 0.01% or more.
  • the Mn content is more preferably 0.02% or more.
  • the Mn content is preferably 0.50% or less.
  • the Mn content is more preferably 0.20% or less, still more preferably 0.10% or less.
  • N 0.0100% or less
  • N nitrogen
  • the N content is preferably 0.0100% or less.
  • the N content is more preferably 0.0080% or less.
  • the lower limit of the N content is not particularly defined, even if the N content is reduced to less than 0.0010%, the manufacturing cost will only increase. Therefore, the N content may be 0.0010% or more.
  • sol. Al 0.030% or less sol.
  • Al acid-soluble aluminum
  • AlN is an element that combines with N to form AlN that functions as an inhibitor during the manufacturing process of grain-oriented electrical steel sheets.
  • sol. When the Al content exceeds 0.030%, an excessive amount of inhibitor remains in the base steel sheet, and the magnetic properties deteriorate. Therefore, in the base steel sheet of the grain-oriented electrical steel sheet according to the present embodiment, sol.
  • the Al content is preferably 0.030% or less. sol.
  • the Al content is more preferably 0.020% or less, still more preferably 0.015% or less. sol.
  • the lower limit of the Al content is not particularly defined, even if it is reduced to less than 0.0001%, the manufacturing cost will only increase. Therefore, sol.
  • the Al content may be 0.0001% or more.
  • S 0.010% or less
  • S (sulfur) is an element that combines with Mn in the manufacturing process to form MnS that functions as an inhibitor.
  • the S content is preferably 0.010% or less.
  • the S content in the grain-oriented electrical steel sheet is preferably as low as possible. For example, it is less than 0.001%.
  • the S content in the grain-oriented electrical steel sheet may be 0.0001% or more.
  • the chemical composition of the base steel sheet of the grain-oriented electrical steel sheet according to the present embodiment may contain, for example, the above-mentioned elements, and the remainder may be Fe and impurities.
  • P, Cr, Sn, Cu, Se, Sb, and Mo may be further contained in the ranges shown below (the lower limit is 0% as they do not need to be contained). be).
  • W, Nb, Ti, Ni, Bi, Co, and V may be improved. It does not impede the effectiveness of the electromagnetic steel sheet.
  • impurities are those that are mixed in from ore or scrap as raw materials or from the manufacturing environment when the base material steel sheet is industrially manufactured, and the effects of the grain-oriented electrical steel sheet according to this embodiment. It means an element that is allowed to be contained in a content that does not have a negative effect on.
  • P 0-0.030%
  • P phosphorus
  • the P content is preferably 0.030% or less.
  • the P content is more preferably 0.020% or less, and even more preferably 0.010% or less.
  • There is no lower limit for the P content and the P content may be 0%, but in practical steel sheets, the practical lower limit for the P content is 0.0001%.
  • P is also an element that has the effect of improving texture and magnetic properties. In order to obtain this effect, the P content may be set to 0.001% or more, or may be set to 0.005% or more.
  • Cr 0 to 0.50%
  • Cr is an element that contributes to an increase in the Goss orientation occupancy rate in the secondary recrystallized structure and improves magnetic properties.
  • the Cr content is preferably 0.01% or more, more preferably 0.05% or more, and even more preferably 0.10% or more.
  • the Cr content is preferably 0.50% or less, more preferably 0.30% or less, and further preferably 0.15% or less.
  • Sn 0-0.50% Sn (tin) is an element that contributes to improving magnetic properties through primary recrystallization structure control.
  • the Sn content is preferably 0.01% or more.
  • the Sn content is more preferably 0.02% or more, still more preferably 0.03% or more.
  • the Sn content is preferably 0.50% or less.
  • the Sn content is more preferably 0.30% or less, still more preferably 0.10% or less.
  • Cu 0-0.50%
  • Cu (copper) is an element that contributes to an increase in the Goss orientation occupancy in the secondary recrystallized structure.
  • Cu is an optional element in the base steel sheet of the grain-oriented electrical steel sheet according to this embodiment. Therefore, the lower limit of the Cu content is 0%, but in order to obtain the above effects, it is preferable that the Cu content is 0.01% or more.
  • the Cu content is more preferably 0.02% or more, still more preferably 0.03% or more.
  • the Cu content is preferably 0.50% or less.
  • the Cu content is more preferably 0.30% or less, still more preferably 0.10% or less.
  • Se 0-0.020%
  • Se is an element that has the effect of improving magnetic properties. Therefore, it may be included.
  • the content is preferably 0.001% or more in order to exhibit a good effect of improving magnetic properties.
  • the Se content is more preferably 0.003% or more, and still more preferably 0.006% or more.
  • the Se content is 0.020% or less.
  • the Se content is more preferably 0.015% or less, even more preferably 0.010% or less.
  • Sb 0-0.50% Sb (antimony) is an element that has the effect of improving magnetic properties. Therefore, it may be included.
  • the content is preferably 0.005% or more in order to exhibit a good effect of improving magnetic properties.
  • the Sb content is more preferably 0.01% or more, and still more preferably 0.02% or more.
  • the Sb content is 0.50% or less.
  • the Sb content is more preferably 0.30% or less, still more preferably 0.10% or less.
  • Mo 0-0.10% Mo (molybdenum) is an element that has the effect of improving magnetic properties. Therefore, it may be included.
  • Mo mobdenum
  • the Mo content is preferably 0.01% or more in order to exhibit a good effect of improving magnetic properties.
  • the Mo content is more preferably 0.02% or more, and still more preferably 0.03% or more.
  • the Mo content is 0.10% or less.
  • the Mo content is more preferably 0.08% or less, still more preferably 0.05% or less.
  • the chemical composition of the base steel sheet of the grain-oriented electrical steel sheet in this embodiment is the above-mentioned C, Si, Mn, N, sol.
  • it consists of:
  • the total content of the elements W to V may be 0.05% or less.
  • the content of Si in the chemical composition of the base steel sheet of the grain-oriented electrical steel sheet according to the present embodiment is determined by the method prescribed in JIS G 1212 (1997) (silicon quantitative method). Specifically, when the above-mentioned chips are dissolved in acid, silicon oxide precipitates out, so this precipitate (silicon oxide) is filtered off with a filter paper, the mass is measured, and the Si content is determined. .
  • Other chemical compositions of the base steel plate may be determined by a well-known component analysis method. Specifically, chips are generated from a base steel plate using a drill, the chips are collected, and the collected chips are dissolved in acid to obtain a solution. ICP-AES is performed on the solution to perform elemental analysis of the chemical composition.
  • elements that are difficult to measure with ICP-AES are determined by the well-known high frequency combustion method (combustion-infrared absorption method).
  • the above-mentioned solution may be burned by high-frequency heating in an oxygen stream, and the generated carbon dioxide and sulfur dioxide may be detected to determine the C content and S content.
  • the N content may be determined using the well-known inert gas melting-thermal conductivity method.
  • a forsterite film and/or an insulating film are formed on the surface, these films are removed before measuring the chemical composition of the base steel sheet.
  • the insulation film is formed by immersing a grain-oriented electrical steel sheet in a sodium hydroxide aqueous solution containing 30-50% by mass of NaOH and 50-70% by mass of H 2 O at 80-90°C for 7-10 minutes. , can be removed. Further, the grain-oriented electrical steel sheet from which the insulating film has been removed is washed with water, and then dried with a warm air blower for a little less than 1 minute. By immersing the dried grain-oriented electrical steel sheet (grain-oriented electrical steel sheet without an insulating film) in a hydrochloric acid aqueous solution containing 30 to 40% by mass of HCl and at 80 to 90°C for 1 to 10 minutes, Forsterite film can be removed.
  • the base steel plate By washing the base steel plate after immersion with water, and drying it with a hot air blower for a little less than 1 minute after rinsing with water, the base steel plate can be taken out from the grain-oriented electrical steel sheet having a forsterite film and an insulating film.
  • the grain size in the rolling direction is controlled in its microstructure.
  • the area ratio of crystal grains on the surface of the base steel plate, where the distance between grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less, is 70% or more.
  • Grain boundaries transverse to the rolling direction change the magnetic domain pattern.
  • the 200 Hz component (sometimes referred to as LvA200 Hz) of the magnetostrictive waveform decreases. This is presumed to be due to the fact that as the distance between grain boundaries becomes shorter, the width of the main magnetic domain becomes narrower, which has the effect of suppressing the reflux magnetic domain (lancet) within the grains.
  • the area ratio of crystal grains in which the distance between grain boundaries in the rolling direction (grain boundary spacing) is 3.0 mm or more and 13.0 mm or less is less than 70%, the effect of reducing LvA 200 Hz cannot be sufficiently obtained.
  • the area ratio of crystal grains having a grain boundary interval of 3.0 mm or more and 13.0 mm or less is preferably 75% or more, more preferably 80% or more, and even more preferably 90% or more.
  • the upper limit of the area ratio is not limited and may be 100%.
  • FIG. 1 shows an example of a magnetic domain pattern observed in a grain-oriented electrical steel sheet according to this embodiment.
  • the base steel plate In order to obtain the above microstructure, there is a method of irradiating the base steel plate with a laser so that its scanning direction crosses the rolling direction, but care must be taken to avoid producing fine grains on the irradiation marks. Irradiation is preferred. By preventing the generation of fine grains, it is possible to suppress the generation of crystal grains on the surface of the base steel sheet in which the distance between the grain boundaries of grains in the rolling direction is less than 3.0 mm.
  • the average grain size in the rolling direction is preferably 3.0 to 20.0 mm. If the average crystal grain size is small, it becomes difficult to make the area ratio of crystal grains with a distance between grain boundaries (grain boundary spacing) of 3.0 mm or more and 13.0 mm or less in the rolling direction to 70% or more.
  • the area ratio of crystal grains in which the distance between grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less can be determined by the following method.
  • First, the distance between grain boundaries in the rolling direction is measured by observing magnetic domains on the surface of a grain-oriented electrical steel sheet using a magnetic domain observation element. Specifically, the surface of a grain-oriented electrical steel sheet is observed using a reflection electron microscope or an MO sensor that utilizes the Faraday effect, and images are obtained. , is determined by determining the grain boundaries and measuring the distance between the grain boundaries in the rolling direction.
  • the area ratio of crystal grains with a predetermined grain boundary spacing is determined by observing an area of 100 mm in the width direction of the surface and 500 mm in the rolling direction, and in this observation range, the inter-grain boundary distance in the rolling direction is 3.0 mm or more.13. It is determined by dividing the area of crystal grains of 0 mm or less by the area of the measurement region (when expressed as a percentage, it is set as ⁇ 100). At that time, using a scale along the rolling direction, identify crystal grains that deviate from 3.0 mm to 13.0 mm, measure the area, and subtract it from the area of the measurement area. (crystal grains having an inter-grain boundary distance of 3.0 mm or more and 13.0 mm or less) may be measured.
  • the average in the rolling direction can be calculated.
  • Particle size can also be measured.
  • the area ratio is measured on the surface of the base steel plate. According to the above method, it is possible to measure even if a forsterite film and an insulating film are formed on the base steel sheet, so there is no need to remove the forsterite film and insulating film when making measurements. It may be measured from
  • short strip-shaped return magnetic domains (lancets) 100 are present in the main magnetic domain.
  • the area ratio of the reflux magnetic domain (lancet) 100 be 10% or less of the whole. If the area ratio of the reflux magnetic domain 100 exceeds 10%, it becomes difficult to obtain a predetermined magnetic flux density and iron loss.
  • the lower limit of the area ratio is not limited and may be 0%.
  • the width of the main magnetic domain, which appears divided into stripes observed on the surface be 1.2 mm or less.
  • the width of the main domain is 1.0 mm or less, and even more preferably 0.9 mm or less.
  • the width of the main magnetic domain is influenced by the average grain size in the rolling direction, and the intensity of strain caused by differences in laser irradiation conditions and curvature in the coil state.
  • the area ratio of the reflux magnetic domain and the width of the main magnetic domain are measured on the surface of the base steel plate in an area of 100 mm in the width direction x 500 mm in the rolling direction using a measuring instrument such as CMOS-MagView that utilizes the magneto-optical effect. According to this method, magnetic domains can be observed even in coated electromagnetic steel sheets. Thereafter, the area of the surface of the steel plate of the lancet is measured based on the obtained image, the proportion of its presence in the whole is evaluated, and the width of the main magnetic domain is measured. However, observation is performed in a demagnetized state.
  • the grain-oriented electrical steel sheet according to this embodiment has its magnetic domain controlled by laser irradiation, and has excellent magnetic properties.
  • B8 which is the magnetic flux density generated by a magnetizing force of 800 A/m, is 1.88 T or more, and when the thickness of the base steel plate is expressed in mm, the frequency is 50 Hz, and the maximum magnetic flux is W17/50, which is the iron loss when the density is 1.7T, is equal to or less than 13.1 ⁇ t 2 ⁇ 4.3 ⁇ t+1.2 in unit W/kg. If B8 is less than 1.88T or W17/50 is more than 13.1 ⁇ t 2 -4.3 ⁇ t+1.2W/kg, the magnetic properties cannot be said to be sufficient.
  • the practical upper limit is about 1.95T, so B8 may be set to 1.95T or less.
  • B8 and W17/50 are achieved by controlling fine regions such as texture and magnetic domains by controlling the manufacturing method including laser irradiation, but there are multiple factors that change magnetic properties and it is easy to measure. isn't it. Therefore, the grain-oriented electrical steel sheet according to the present embodiment is defined by the values of B8 and W17/50.
  • B8 preferably has a value of 1.92T or more.
  • the iron loss is preferably such that W17/50 is 0.74 W/kg or less when the plate thickness (t) is in the range of 0.18 to 0.23 mm.
  • B8 and W17/50 are measured using a single sheet magnetic property measurement method (Single Sheet Tester) according to JIS C 2556:2015, using a test piece cut out from a grain-oriented electrical steel sheet with a size of 100 mm in the width direction and 500 mm in the rolling direction. SST).
  • Single Sheet Tester Single Sheet Tester
  • LvA200Hz which is the 200Hz component of the magnetostrictive waveform
  • LvA200Hz is 60 to 78 dBA.
  • LvA200Hz exceeds 78 dB, the noise reduction effect is small.
  • LvA200Hz is made to be 60 dBA or more.
  • LvA200Hz is determined by measuring the expansion and contraction of the steel plate using a laser Doppler vibration measuring device in accordance with IEC standard IEC 606404-17 ED1. During the measurement, the expansion and contraction of the steel plate is generated by applying a 50 Hz magnetic field from the outside. After obtaining the length expansion/contraction with respect to time as a magnetostrictive waveform, this waveform is subjected to frequency analysis, separated into 100 Hz and 200 Hz components, and evaluated.
  • the grain-oriented electrical steel sheet according to the present embodiment has the above-mentioned B8 and W17/50, and has an LvA of 200 Hz of 60 to 78 dBA. That is, the grain-oriented electrical steel sheet according to this embodiment is a magnetic domain control material.
  • the method of magnetic domain control is not limited, it is preferable to perform magnetic domain control by, for example, performing laser irradiation under the conditions described below. In this case, a plurality of linear strains extending in a direction intersecting the rolling direction are formed on the surface of the base steel plate, and the intervals between the plurality of linear strains in the rolling direction are 3 to 10 mm.
  • the interval between the plurality of linear strains in the rolling direction is preferably 3 to 10 mm.
  • the interval between linear strains in the rolling direction is the distance in the rolling direction from the center of a linear strain in the width direction to the center of an adjacent linear strain in the width direction.
  • the width of the linear strain in the rolling direction is preferably 250 ⁇ m or less in terms of contributing to improving iron loss characteristics.
  • the linear shape includes a continuous linear shape and a dotted linear shape.
  • the location where linear strain exists can be analyzed using a residual strain measurement technique using X-ray diffraction (for example, K. Iwata, et. al, j. Appl. Phys. 117.17A910 (2015)). Further, if traces of energy ray irradiation can be confirmed on the surface of the steel plate, the traces of irradiation may be directly determined as distortion.
  • the observed linear strain set a certain distance L of at least L > 5 mm in the rolling direction, count the number n of strains existing there, and calculate L/n as the linear strain. It may also be the interval in the rolling direction.
  • the width of the linear strain in the rolling direction may be the average value of the widths of each of the n measured lines.
  • the thickness of the base steel plate of the grain-oriented electrical steel sheet according to this embodiment is not limited, but when considering application to the core of a transformer that requires low iron loss and low noise, it is 0.17 ⁇ Preferably, it is 0.30 mm.
  • special equipment is required to manufacture a base steel plate with a thickness of less than 0.17 mm, which is unfavorable in terms of production, such as increased manufacturing costs. Therefore, the lower limit of the industrially preferable plate thickness is 0.17 mm. Preferably it is 0.18 to 0.23 mm.
  • a forsterite film (also referred to as a glass film) is formed on the surface of the base steel sheet.
  • the forsterite film may be any known film. Generally, it is an inorganic film whose main component is magnesium silicate.
  • the forsterite film is formed during finish annealing when an annealing separator containing magnesia (MgO) applied to the surface of the base steel plate reacts with components on the surface of the base steel plate, and the annealing separator and base metal It has a composition derived from the components of the steel plate, and consists of a structure containing four Mg 2 SiO phases (50 area % or more) as the main phase and four MgAl 2 O phases. Other than these phases, about 1% or less of precipitates may be included.
  • MgO magnesia
  • an insulating film (tension-providing insulating film) is formed on the surface of the forsterite film.
  • the insulating film may be any known film used in the art.
  • the insulating film reduces eddy current loss by imparting electrical insulation to the grain-oriented electrical steel sheet, thereby improving the core loss characteristics of the grain-oriented electrical steel sheet (reducing core loss).
  • the insulating film provides various properties such as corrosion resistance, heat resistance, and slip properties.
  • the insulating film has the function of imparting tension to the grain-oriented electrical steel sheet.
  • the insulating film is formed, for example, by applying a coating liquid containing metal phosphate and silica as main components to the surface of the forsterite film and baking it.
  • the grain-oriented electrical steel sheet according to this embodiment can be manufactured by a manufacturing method including the following steps.
  • Cold rolling the hot rolled sheet to obtain a cold rolled sheet iii)
  • a decarburization annealing step of subjecting the cold rolled sheet to decarburization annealing iv) An annealing separator containing MgO to the cold rolled sheet after the decarburization annealing step
  • An insulating film forming step (v) in which an insulating film is formed on the surface of the cold rolled sheet after the final annealing to obtain a grain-oriented electrical steel sheet v)
  • Hot rolling process In the hot rolling process, a steel piece such as a slab is heated and then hot rolled to obtain a hot rolled plate.
  • the heating temperature of the steel piece is not particularly limited, but it is preferably within the range of 1100 to 1450°C.
  • the hot rolling conditions are not particularly limited and may be appropriately set based on the required characteristics.
  • the thickness of the hot rolled sheet obtained by hot rolling is preferably within the range of 2.0 to 3.0 mm, for example.
  • the chemical composition of the steel slab should be set in a preferable range to obtain the chemical composition of the base steel plate mentioned above, taking into account the manufacturing process after the hot rolling process (taking into account changes in the chemical composition in each process). do it.
  • the hot rolled sheet annealing process is a process of annealing a hot rolled sheet manufactured through a hot rolling process. By performing such an annealing treatment, recrystallization occurs in the steel sheet structure, making it possible to realize good magnetic properties. Therefore, it may be implemented.
  • a hot-rolled sheet manufactured through a hot rolling process may be annealed according to a known method.
  • the annealing conditions are not particularly limited, but, for example, the hot rolled sheet can be annealed in a temperature range of 900 to 1200° C. for 10 seconds to 5 minutes.
  • the means for heating the hot-rolled sheet during annealing is also not particularly limited, and any known heating method may be employed. Two-stage annealing may be performed in which the annealing temperature is changed midway through.
  • the hot rolled sheet after the hot rolled sheet annealing step is subjected to cold rolling including a plurality of passes to obtain a cold rolled sheet.
  • the cold rolling may be a single cold rolling (a series of cold rolling without intervening intermediate annealing), or before the final pass of the cold rolling process, the cold rolling is interrupted and at least one or two or more intermediate annealings are performed. Then, cold rolling may be performed multiple times with intermediate annealing.
  • intermediate annealing it is preferable to maintain the temperature at 1000 to 1200°C for 5 to 180 seconds.
  • the annealing atmosphere is not particularly limited. The number of times of intermediate annealing is preferably 3 times or less in consideration of manufacturing cost.
  • the hot rolled sheet may be cold rolled to obtain a cold rolled sheet according to a known method.
  • the final rolling reduction can be in the range of 80-95%.
  • the final rolling reduction is the cumulative rolling reduction of cold rolling, and in the case of intermediate annealing, the final rolling reduction is the cumulative rolling reduction of cold rolling after the final intermediate annealing.
  • the surface of the hot rolled sheet may be pickled under known conditions.
  • decarburization annealing process In the decarburization annealing step, the cold rolled sheet is decarburized and annealed. In decarburization annealing, the cold-rolled sheet is primarily recrystallized, and C, which has an adverse effect on magnetic properties, is removed from the steel sheet. Further, in the decarburization annealing step, the number of Goss nuclei is increased in order to make secondary recrystallized grains obtained during final annealing described later finer. Considering that the grain boundaries themselves function as magnetic poles (sites where leakage magnetic flux is generated), the magnetostatic energy of the entire system increases as the secondary recrystallized grains become finer. That is, the driving force of magnetic domain refining becomes high.
  • the conditions for decarburization annealing may be within a known range, and examples include conditions in which the annealing temperature is 750 to 900° C. and held for 10 to 600 seconds in a wet hydrogen or nitrogen atmosphere. In terms of controlling the average grain size in consideration of the balance between iron loss and noise, the optimal decarburization annealing temperature is about 835 to 845°C.
  • Niriding process In the nitriding process, the amount of nitrogen in the steel sheet is increased.
  • the nitriding process is performed at one or more of the following timings: during the decarburization annealing process, between the decarburization annealing process and the final annealing process, or during the temperature increase process of the final annealing process until the start of secondary recrystallization. It's fine if you do it.
  • Methods for increasing the amount of nitrogen in a steel sheet include controlling the amount of nitrogen in the steel sheet by annealing it in an atmosphere containing a gas capable of nitriding; An example of this method is to add a powder capable of nitriding, such as, into an annealing separator.
  • a predetermined annealing separator is applied to one or both sides of the cold-rolled sheet obtained in the decarburization annealing process or which has been further nitrided, and then wound into a coil shape and finished. Perform annealing.
  • a certain curvature or more is given to the steel sheet (steel strip) when it is wound into a coil. Thereby, the distance between grain boundaries in the rolling direction is controlled, and the area ratio of crystal grains having a distance between grain boundaries of 3.0 to 13.0 mm is increased.
  • curvature There are two methods for giving curvature: (a) During winding, a spacer is placed between the steel plates. (b) Periodically changing the amount of annealing separator applied. Below, (a) and (b) will be explained. Even without performing (a) or (b), a curvature is imparted to the steel plate when it is made into a coil. Moreover, a larger curvature is given to the inside of the coil than to the outside. However, in normal winding, it is not possible to impart a sufficient curvature to the steel sheet to obtain the grain-oriented electrical steel sheet according to the present embodiment even on the inside of the coil, which has a relatively large curvature.
  • the diameter ( ⁇ ) of the spacer 2 is 3 to 20 mm
  • the interval between the spacers 2 is 15 to 100 mm with respect to the rolling direction of the steel plate 1. do.
  • the annealing separator is applied to the cold-rolled sheet for the purpose of preventing seizure between the inside and outside of the windings of the coil and to form a forsterite film.
  • an annealing separator containing MgO as a main component (for example, containing 80% by mass or more) is used as the annealing separator to be applied.
  • the annealing separator may further contain TiO 2 .
  • Including TiO 2 has the effect of suppressing formation defects of the glass film.
  • the content of TiO 2 is, for example, 0 to 10% by mass.
  • the annealing separator can be mixed with water to form a slurry and applied to the steel plate.
  • finish annealing is performed.
  • the temperature is raised to 1150 to 1250° C. in an atmospheric gas containing hydrogen and nitrogen, and the temperature is maintained in that temperature range for 10 to 60 hours.
  • an insulating film (Insulating film formation process) In the insulating film forming step, an insulating film (tension-applying insulating film) is formed on one or both sides of the cold-rolled sheet after finish annealing.
  • the conditions for forming the insulating film are not particularly limited, and a known insulating film treatment liquid may be used to apply and dry the treatment liquid by a known method.
  • a known insulating film treatment liquid may be used to apply and dry the treatment liquid by a known method.
  • the surface may be as it is after finish annealing without being subjected to any of these pre-treatments.
  • the insulating film formed on the surface of the steel sheet is not particularly limited as long as it can be used as an insulating film for grain-oriented electrical steel sheets, and any known insulating film can be used. Examples of such an insulating film include a film containing phosphate and colloidal silica as main components. Further, a composite insulating film mainly composed of an inorganic substance and further containing an organic substance can be mentioned.
  • the composite insulating film is composed mainly of at least one of metal chromates, metal phosphates, or inorganic substances such as colloidal silica, Zr compounds, and Ti compounds, with fine organic resin particles dispersed therein. It is an insulating film.
  • metal chromates metal phosphates
  • inorganic substances such as colloidal silica, Zr compounds, and Ti compounds
  • fine organic resin particles dispersed therein. It is an insulating film.
  • insulating films using metal phosphates, Zr or Ti coupling agents, or carbonate or ammonium salts of these as starting materials are becoming more important. Sometimes used.
  • the laser irradiation process a laser beam is irradiated onto a grain-oriented electrical steel sheet on which an insulating film has been formed to perform magnetic domain control. This allows the magnetic properties to be improved.
  • the laser input energy Ua is 1.0 to 4.0 mJ/mm 2 and the laser power density Ip is 500 to 4000 W/mm 2 .
  • the laser beam is arranged so as to extend in a direction crossing the rolling direction (for example, at an angle of 60 to 120 degrees to the rolling direction) (preferably from one end in the width direction of the steel sheet to the other end).
  • the steel plate is irradiated multiple times (preferably over the entire length of the steel sheet) so that the interval PL in the rolling direction is 3 to 10 mm and the respective irradiation directions are substantially parallel. If Ua is less than 1.0 mJ/mm 2 or Ip is less than 500 W/mm 2 , a sufficient magnetic domain refining effect cannot be obtained. On the other hand, if Ua exceeds 4.0 mJ/mm 2 or Ip exceeds 4000 W/mm 2 , the noise characteristics deteriorate. This is thought to be due to the generation of many reflux magnetic domains. Ip is preferably 2000 W/mm 2 or less.
  • grain-oriented electrical steel sheet according to the present invention will be specifically explained using Examples.
  • the examples shown below are merely examples, and the grain-oriented electrical steel sheet according to the present invention is not limited to the examples below.
  • Example 1 C: 0.055%, Si: 0.86-3.15%, Mn: 0.14%, S: 0.007%, sol.
  • a steel slab containing Al: 0.027%, Cr: 0.12%, N: 0.0075%, and the balance consisting of Fe and impurities was heated to 1150°C and then hot rolled to a plate thickness of 2.3 mm. It was made into a hot rolled sheet. Next, this hot-rolled sheet was annealed. In hot-rolled sheet annealing, the sheet was heated to 1120°C and held for 180 seconds, then lowered to 900°C and held at that temperature for 120 seconds. Thereafter, it was rapidly cooled using hot water at 100°C.
  • this cold-rolled sheet (steel sheet) was subjected to decarburization annealing in which the temperature was heated to the temperature listed in Table 1 in a wet hydrogen and nitrogen atmosphere and held for 150 seconds. After decarburization annealing, the cold rolled sheet is heated to 750° C. in an atmosphere consisting of 25% N 2 and 75% H 2 with NH 3 added, and held at that temperature for 30 seconds to form a steel sheet. A nitriding treatment was performed to increase the N content to 180 ppm.
  • a known annealing separator containing MgO and TiO 2 as main components and containing Na, B, Cl, etc. was applied, and final annealing was performed at 1200° C. for 20 hours. At that time, spacers were placed between the steel plates at regular intervals so that the steel plates became wavy, and the steel plates were wound into a coil shape, and then finish annealing was performed. The diameter of the spacer (ceramic rod) and the spacing between the spacers were as shown in Table 1. After final annealing, a forsterite film was formed on the surface.
  • a coating liquid containing chromic anhydride and aluminum phosphate as main components is applied to the surface of this steel plate (a steel plate with a forsterite film formed on the surface of the base steel plate), and baking annealing is performed. , an insulating film was formed. Thereafter, the surface of the steel plate on which the insulating film was formed was irradiated with a laser beam to perform magnetic domain refinement (magnetic domain control). At that time, the laser input energy and laser power density were as shown in Table 1.
  • the scanning direction of the laser beam (the direction in which the irradiation marks extend) is 90° to the rolling direction, and the interval in the rolling direction between adjacent laser beam irradiation positions (the interval in the rolling direction of multiple linear strains) ) was set to 4 mm.
  • the steel sheet after magnetic domain control (grain-oriented electrical steel sheet) is subjected to the above-mentioned method to determine the chemical composition, the proportion of crystal grains with a distance between grain boundaries in the rolling direction of 3.0 to 13.0 mm, the area ratio of lancets, The width of the striped main magnetic domain, the magnetic properties (B8 and W17/50), and the value of LvA200Hz were determined.
  • the magnetic domain observation at this time was performed in a demagnetized state.
  • the average grain size in the rolling direction on the surface and the width of linear strains formed at 4 mm intervals in the rolling direction over the entire area of the steel plate were also determined. .
  • the results are shown in Table 1.
  • each element is not shown in the table except for Si, but the C content is 0.014 to 0.055%, the S content is 0.001 to 0.007%, and sol.
  • the Al content was 0.011 to 0.027%, and the N content was 0.0049 to 0.0075%. No major changes were observed in the Mn content and Cr content compared to the slab stage.
  • the area ratio of crystal grains on the surface of the base steel sheet where the distance between grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less is 70%.
  • B8 which is the magnetic flux density generated by a magnetizing force of 800 A/m, is 1.88 T or more, and W17/50 is 13.1 ⁇ t 2 ⁇ 4.3 ⁇ t+1. 2 or less, and LvA200Hz is 60 to 78 dBA. No fine grains were observed on the irradiation marks.
  • one or more of the above points were outside the scope of the present invention, and iron loss and noise could not be sufficiently reduced at the same time. For example, No. In No.
  • the decarburization annealing temperature is slightly low, and although the Ip is 1100 W/ mm2 , the average grain size is as small as 2.8 mm, and accordingly, the distance between grain boundaries of grains in the rolling direction is 3.0 mm or more.
  • the area ratio of crystal grains having a diameter of 13.0 mm or less was small.
  • B8 was low, iron loss was high, and LvA200Hz was high.
  • the decarburization annealing temperature is slightly high, the average grain size is as large as 20.2 mm, and accordingly, the area ratio of crystal grains in which the distance between the grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less is It was small.
  • LvA200Hz was high.
  • the laser input energy Ua was relatively high at 4.1 mJ/mm 2 , and as a result, the LvA of 200 Hz was high.
  • the laser input energy Ua was relatively high at 4.4 mJ/mm 2 , and as a result, the LvA of 200 Hz was high.
  • the diameter of the spacer and the interval between the spacers were not within the preferred range, so the average grain size was as large as 21.2 mm, and the distance between grain boundaries of grains in the rolling direction was 3.0 mm or more and 13.0 mm or less. The area ratio of crystal grains was small. As a result, LvA200Hz was high.
  • the laser power density Ip was as low as 200 W/m 2 , and the area ratio of crystal grains in which the distance between grain boundaries in the rolling direction was 3.0 mm or more and 13.0 mm or less was small. As a result, iron loss was high.
  • Example 2 C: 0.070%, Si: 3.08-3.24%, Mn: 0.09%, S: 0.006%, sol.
  • a steel slab containing Al: 0.026%, Cr: 0.11%, N: 0.0076%, with the remainder Fe and impurities was heated to 1140°C and hot rolled to a plate thickness of 2.4 mm. It was made into a hot rolled sheet. Next, this hot-rolled sheet was annealed. In hot-rolled sheet annealing, the sheet was heated to 1120°C and held for 180 seconds, then lowered to 900°C and held at that temperature for 120 seconds. Thereafter, it was rapidly cooled using hot water at 100°C.
  • this cold-rolled sheet (steel sheet) was subjected to decarburization annealing in which the temperature was heated to the temperature shown in Table 2 in a wet hydrogen and nitrogen atmosphere and held for 150 seconds.
  • decarburization annealing a known annealing separator containing MgO and TiO 2 as main components and containing Na, B, Cl, etc. was applied, and final annealing was performed at 1200° C. for 20 hours.
  • an annealing separator was distributed between the steel plates so that the thickness varied at regular intervals, the steel plates were wound into a coil, and final annealing was performed. .
  • the annealing separator was applied in varying thicknesses so that the steel plate would have a wavy shape with wave height varying in the wave period (in the rolling direction) shown in Table 2.
  • a forsterite film was formed on the surface.
  • a coating liquid containing chromic anhydride and aluminum phosphate as main components is applied to the surface of this steel plate (a steel plate with a forsterite film formed on the surface of the base steel plate), and baking annealing is performed.
  • the scanning direction of the laser beam (extending direction of the irradiation marks) was set at 90° with respect to the rolling direction, and the interval between adjacent laser beam irradiation positions in the rolling direction was 4 mm.
  • the steel sheet after magnetic domain control (grain-oriented electrical steel sheet) is subjected to the above-mentioned method to determine the chemical composition, the proportion of crystal grains with a distance between grain boundaries in the rolling direction of 3.0 to 13.0 mm, the area ratio of lancets, The width of the striped main magnetic domain, the magnetic properties (B8 and W17/50), and the value of LvA200Hz were determined. Magnetic domain observation was performed in a demagnetized state. In addition, the average grain size in the rolling direction on the surface and the width of a plurality of linear strains formed at 4 mm intervals in the rolling direction (average of a plurality of linear strains) were also determined. The results are shown in Table 2.
  • each element other than Si is not shown in the table, but the C content is 0.016 to 0.070%, the S content is 0.001 to 0.006%, and the sol.Al content is , 0.010 to 0.026%, and the N content was 0.0051 to 0.0076%. No major changes were observed in the Mn content and Cr content compared to the slab stage.
  • the area ratio of crystal grains on the surface of the base steel plate, where the distance between grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less, is 70%.
  • B8 which is the magnetic flux density generated by a magnetizing force of 800 A/m, is 1.88 T or more, and W17/50 is 13.1 ⁇ t 2 ⁇ 4.3 ⁇ t+1. 2 or less, and LvA200Hz is 60 to 78 dBA.
  • the laser was irradiated transversely to the rolling direction of the steel plate, but no fine grains were generated on the irradiation marks.
  • the decarburization annealing temperature was slightly high, the average grain size was large, and the area ratio of crystal grains with a distance between grain boundaries in the rolling direction of 3.0 to 13.0 mm was low.
  • LvA200Hz was high.
  • W17/50 was high.
  • W17/50 was high.
  • the wave period was large, so the average grain size was large, and the area ratio of crystal grains in which the distance between grain boundaries in the rolling direction was 3.0 mm or more and 13.0 mm or less was small. As a result, LvA200Hz was high.

Abstract

This grain-oriented electrical steel sheet comprises a base steel sheet, a forsterite coating film formed on the surface of the base steel sheet, and an insulation film formed on the surface of the forsterite coating film, wherein: the chemical composition of the base steel sheet contains 0.80 to 7.00% by mass of Si; the area ratio of crystal grains having a distance in the rolling direction between crystal grain boundaries in the surface of the base steel sheet of 3.0 mm to 13.0 mm inclusive is 70% or more; B8 that is a magnetic flux density generated by a magnetic force of 800 A/m is 1.88 T or more; W17/50 that is an iron loss where the frequency is 50 Hz and the maximum magnetic flux density is 1.7 T is 13.1×t2-4.3×t+1.2 (W/kg) or less where the sheet thickness is t (mm); and LvA200Hz that is a 200 Hz component of a magnetostriction waveform is 60 to 78 dBA.

Description

方向性電磁鋼板grain-oriented electrical steel sheet
 本発明は方向性電磁鋼板に関する。
 本願は、2022年09月22日に、日本に出願された特願2022-151341号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to grain-oriented electrical steel sheets.
This application claims priority based on Japanese Patent Application No. 2022-151341 filed in Japan on September 22, 2022, the contents of which are incorporated herein.
 近年、トランスなどの電磁応用機器にも騒音や振動の低減がますます要請されるようになり、トランスの鉄心に使われる方向性電磁鋼板には、低鉄損と共に、低騒音や低振動に適した材料であることが求められる様になってきた。トランスの騒音や振動に対する素材における原因の一つとして、方向性電磁鋼板の磁歪があるといわれている。ここでいう磁歪とは、方向性電磁鋼板を交流で励磁したときに、その磁化の強さの変化に伴って方向性電磁鋼板の外形がわずかに変化することによる、方向性電磁鋼板の圧延方向に見られる振動のことである、この磁歪の大きさは、10-6オーダーの非常に小さなものであるが、その磁歪が鉄心に振動を発生させ、それが変圧器のタンクなどの外部構造物に伝搬して騒音となる。 In recent years, there has been an increasing demand for reduced noise and vibration in electromagnetic equipment such as transformers, and the grain-oriented electrical steel sheets used for transformer cores are suitable for low core loss as well as low noise and low vibration. Increasingly, there is a demand for materials with high quality. It is said that one of the causes of transformer noise and vibration in materials is the magnetostriction of grain-oriented electrical steel sheets. The magnetostriction referred to here refers to the fact that when a grain-oriented electrical steel sheet is excited with alternating current, the outer shape of the grain-oriented electrical steel sheet changes slightly due to changes in the strength of magnetization. The magnitude of this magnetostriction is extremely small, on the order of 10-6 , but the magnetostriction causes vibrations in the iron core, which can cause vibrations in external structures such as transformer tanks. It propagates to create noise.
 磁歪特性は、方向性電磁鋼板の構造や状態、具体的には結晶方位の集積度や絶縁皮膜が鋼板に付与する張力、鋼に内在する歪など、様々な因子によって変化する。磁歪特性が変化すると騒音レベルが変化し、場合によっては騒音の低減が可能である。 The magnetostrictive properties change depending on various factors, such as the structure and condition of the grain-oriented electrical steel sheet, specifically the degree of integration of crystal orientation, the tension applied to the steel sheet by the insulating film, and the strain inherent in the steel. When the magnetostrictive properties change, the noise level changes, and in some cases it is possible to reduce the noise.
 例えば特許文献1には、電気部材の素材として用いられた際に、部材からの騒音を低減させうる方向性電磁鋼板として、結晶粒の圧延方向の長さの平均値DLmaxが12mm以上、皮膜張力が1MPa以下、板厚が0.35mm以下であって、結晶粒の圧延方向の長さを4等分した領域に分け、その外側の2つの領域に存在する結晶粒界から結晶粒の内側に向けた距離が2mm内の粒界近傍領域について、結晶方位のもぐり角の絶対値をβとして、(βが4.0°以下である粒界近傍領域の面積)/(粒界近傍領域の全面積)≧0.50である、方向性電磁鋼板が開示されている。 For example, in Patent Document 1, a grain-oriented electrical steel sheet that can reduce noise from the member when used as a material for an electrical member has an average length DLmax of grains in the rolling direction of 12 mm or more, a coating tension is 1 MPa or less, the plate thickness is 0.35 mm or less, and the length of the grain in the rolling direction is divided into four regions, and from the grain boundaries existing in the two outer regions to the inside of the grain. For the region near the grain boundary where the pointing distance is within 2 mm, the absolute value of the submergence angle of the crystal orientation is β, (area of the region near the grain boundary where β is 4.0° or less)/(total area near the grain boundary) A grain-oriented electrical steel sheet is disclosed in which the area)≧0.50.
 また、特許文献2には、磁歪特性に優れる方向性電磁鋼板として、Si:3.0~7.0mass%、Mn:0.04~0.15mass%、Sb:0.01~0.10mass%およびSn:0.01~0.20mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フォルステライト被膜による引張応力との合計が10MPa以上となる張力付与絶縁皮膜が被成してなる方向性電磁鋼板であって、ゴス方位{110}<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δが6°以下であり、かつ、圧延方向に圧縮応力3.92MPaを付加し、50Hz、1.7Tで磁化したときの磁歪λp-pが1.7×10-6以下である方向性電磁鋼板が開示されている。 Furthermore, Patent Document 2 describes grain-oriented electrical steel sheets with excellent magnetostrictive properties: Si: 3.0 to 7.0 mass%, Mn: 0.04 to 0.15 mass%, Sb: 0.01 to 0.10 mass%. and Sn: 0.01 to 0.20 mass%, the balance is Fe and unavoidable impurities, and the tension imparting insulating film has a total of 10 MPa or more with the tensile stress due to the forsterite film. A grain-oriented electrical steel sheet comprising grains in which the average misorientation angle δ of the crystal orientation with the rolling direction as the rotation axis in Goss-oriented {110}<001> grains is 6° or less, and the grain is compressed in the rolling direction. A grain-oriented electrical steel sheet is disclosed that has a magnetostriction λ pp of 1.7×10 −6 or less when subjected to stress of 3.92 MPa and magnetized at 50 Hz and 1.7 T.
 しかしながら、上記技術では、鉄損特性の改善(鉄損の低減)が十分とは言えない。鉄損を低くするためには、方向性電磁鋼板の表面にレーザ等を照射して、磁区制御を行うことが有効であることは知られているが、特許文献1、2の方法はレーザ照射材については適用できない。 However, the above technology cannot be said to sufficiently improve iron loss characteristics (reduce iron loss). It is known that it is effective to irradiate the surface of a grain-oriented electrical steel sheet with a laser or the like to control the magnetic domain in order to lower iron loss, but the methods of Patent Documents 1 and 2 do not involve laser irradiation. Not applicable to wood.
 レーザビーム照射によって鉄損と磁歪とを低減する技術として、特許文献3には、800A/mの磁化力で発生する鋼板の磁束密度であるB8が1.92T以上であり、圧延方向と磁化容易軸(100)<001>の角度偏差の板厚方向成分をβ角として、結晶粒内にβ角絶対値が0.5°以下の領域と2°乃至6°の領域を同時に含む結晶粒の合計面積が鋼板全面積中に占める割合をRsとしたとき、Rsが30%乃至100%である方向性電磁鋼板を選択し、その表面に、ファイバコア径が5μm乃至400μmのファイバレーザで発生されたレーザビームを、前記方向性電磁鋼板の圧延方向にほぼ垂直で周期的に、且つ、該レーザビームの表面照射痕の圧延方向幅、またはレーザ照射部に形成される環流磁区の圧延方向幅が10μm乃至200μmになるように照射して、レーザビーム照射前よりも鉄損を低減する方向性電磁鋼板の製造方法が開示されている。特許文献3では、上記方法によれば、特に高磁束密度の方向性電磁鋼板に於いて、鉄損と磁歪が極めて低い方向性電磁鋼板が提供できると示されている。 As a technology for reducing iron loss and magnetostriction by laser beam irradiation, Patent Document 3 describes that B8, which is the magnetic flux density of a steel sheet generated by a magnetizing force of 800 A/m, is 1.92 T or more, and that the rolling direction and easy magnetization are The thickness direction component of the angular deviation of the axis (100) <001> is defined as the β angle, and the crystal grain contains a region in which the absolute value of β angle is 0.5° or less and a region between 2° and 6° at the same time. When the ratio of the total area to the total area of the steel plate is Rs, a grain-oriented electrical steel sheet with Rs of 30% to 100% is selected, and a fiber laser with a fiber core diameter of 5 μm to 400 μm is applied to the surface of the grain-oriented electrical steel sheet. A laser beam is applied periodically and substantially perpendicularly to the rolling direction of the grain-oriented electrical steel sheet, and the width of the surface irradiation mark of the laser beam in the rolling direction or the width of the reflux magnetic domain formed in the laser irradiated area in the rolling direction is A method for manufacturing a grain-oriented electrical steel sheet is disclosed in which the core loss is reduced compared to before the laser beam irradiation by irradiating the laser beam to a depth of 10 μm to 200 μm. Patent Document 3 discloses that according to the above method, a grain-oriented electrical steel sheet with extremely low iron loss and magnetostriction can be provided, especially in a grain-oriented electrical steel sheet with a high magnetic flux density.
 しかしながら、本発明者らの検討によれば、変圧器の騒音を低減する場合には、磁歪波形の200Hz成分を低減することが有効であることが分かった。特許文献3の技術では、磁歪波形の200Hz成分については検討されておらず、特性が十分であるとは言えない場合があった。 However, according to studies conducted by the present inventors, it has been found that reducing the 200 Hz component of the magnetostrictive waveform is effective in reducing transformer noise. In the technique of Patent Document 3, the 200 Hz component of the magnetostrictive waveform was not studied, and the characteristics could not be said to be sufficient in some cases.
 また、特許文献4には、一次再結晶焼鈍にて従来よりも速い昇温速度で急速昇温を実施した場合に、より低鉄損の方向性電磁鋼板を製造することが可能な、新規かつ改良された方向性電磁鋼板の製造方法および該製造方法によって製造された方向性電磁鋼板が開示されている。特許文献4では、上記技術により、変圧器の磁気特性を向上させつつ、騒音を低減することができると示されている。 Furthermore, Patent Document 4 discloses a new and novel method that can produce a grain-oriented electrical steel sheet with lower core loss when rapid temperature increase is performed at a faster temperature increase rate than before in primary recrystallization annealing. An improved method for manufacturing a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet manufactured by the method are disclosed. Patent Document 4 indicates that the above technology can reduce noise while improving the magnetic characteristics of a transformer.
 しかしながら、特許文献4にも、磁歪波形の200Hz成分については検討されていない。また、特許文献4には、磁区制御処理によって変圧器の騒音が増大することが想定されると記載されている。 However, Patent Document 4 also does not consider the 200 Hz component of the magnetostrictive waveform. Further, Patent Document 4 states that it is assumed that the noise of the transformer increases due to magnetic domain control processing.
日本国特許第6606991号公報Japanese Patent No. 6606991 日本国特許第5896112号公報Japanese Patent No. 5896112 日本国特許第4616623号公報Japanese Patent No. 4616623 国際公開第2019/181952号International Publication No. 2019/181952
 上述の通り、従来、鉄損の低減のためレーザ照射による磁区制御の実施を前提とした方向性電磁鋼板において、変圧器の騒音と相関のある磁歪波形の200Hz成分を低減した方向性電磁鋼板は開示されていなかった。
 そのため、本発明は、変圧器等への適用に好適な、鉄損と騒音とが低い方向性電磁鋼板を提供することを課題とする。
As mentioned above, grain-oriented electrical steel sheets have traditionally been based on the premise of implementing magnetic domain control by laser irradiation to reduce iron loss, but grain-oriented electrical steel sheets that reduce the 200Hz component of the magnetostrictive waveform, which is correlated with transformer noise, are It was not disclosed.
Therefore, an object of the present invention is to provide a grain-oriented electrical steel sheet with low core loss and low noise, which is suitable for application to transformers and the like.
 本発明者らは、変圧器の騒音の低減について検討を行った。その結果、変圧器の騒音は、磁歪波形の200Hz成分と相関が強く、磁歪波形の200Hz成分を低減することで、変圧器の騒音を低減できることを見出した。 The present inventors conducted a study on reducing the noise of a transformer. As a result, it was found that the noise of the transformer has a strong correlation with the 200 Hz component of the magnetostrictive waveform, and that the noise of the transformer can be reduced by reducing the 200 Hz component of the magnetostrictive waveform.
 また、鉄損を低下させるために、方向性電磁鋼板の表面にレーザ照射を行うと、一般に磁歪が増加する。すなわち、鉄損の低減と磁歪の低減とはトレードオフの関係にある。そのため、従来は、磁歪を低減する場合には、レーザの強度等の照射条件の調整によって、鉄損の低減効果をある程度犠牲にして磁歪を低減する条件を選択せざるを得なかった。
 しかしながら、レーザ照射の条件の調整だけでは、鉄損及び磁歪を同時にさらに低減することは難しい。
 そのため、本発明者らは、方向性電磁鋼板の組織等の制御によって、鉄損を損なうことなく、磁歪(特に磁歪波形の200Hz成分)を低減する方法について検討を行った。
 その結果、結晶粒径(特に圧延方向の粒界間の距離)の制御によって、鉄損を損なうことなく、磁歪を低減することができることを見出した。また、このような結晶粒径の制御には、巻取時に特別な処置を行って鋼板の曲率を変更することが有効であることを見出した。
Furthermore, when the surface of a grain-oriented electrical steel sheet is irradiated with a laser to reduce iron loss, magnetostriction generally increases. That is, there is a trade-off relationship between reducing iron loss and reducing magnetostriction. Therefore, conventionally, when reducing magnetostriction, it was necessary to select conditions that reduce magnetostriction by sacrificing the effect of reducing iron loss to some extent by adjusting irradiation conditions such as laser intensity.
However, it is difficult to further reduce iron loss and magnetostriction at the same time only by adjusting the laser irradiation conditions.
Therefore, the present inventors investigated a method of reducing magnetostriction (particularly the 200 Hz component of the magnetostrictive waveform) without impairing core loss by controlling the structure of a grain-oriented electrical steel sheet.
As a result, it was found that by controlling the grain size (particularly the distance between grain boundaries in the rolling direction), magnetostriction can be reduced without impairing core loss. In addition, it has been found that it is effective to change the curvature of the steel sheet by taking special measures during winding to control the grain size.
 本発明は上記の知見に鑑みてなされた。本発明の要旨は以下の通りである。
[1]本発明の一態様に係る方向性電磁鋼板は、母材鋼板と、前記母材鋼板の表面に形成されたフォルステライト皮膜と、前記フォルステライト皮膜の表面に形成された絶縁皮膜と、を備え、前記母材鋼板の化学組成が、質量%で、Si:0.80~7.00%を含有し、前記母材鋼板の前記表面の、圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の、面積率が70%以上であり、800A/mの磁化力で発生する磁束密度であるB8が1.88T以上であり、前記母材鋼板の板厚を単位mmでtとしたとき、周波数が50Hz、最大磁束密度が1.7Tのときの鉄損であるW17/50が、単位W/kgで、13.1×t-4.3×t+1.2以下であり、磁歪波形の200Hz成分であるLvA200Hzが60~78dBAである、方向性電磁鋼板。
[2][1]に記載の方向性電磁鋼板は、前記母材鋼板の前記表面に、圧延方向に交差する方向に延在する複数の線状の歪が形成され、前記複数の線状の歪の前記圧延方向の間隔が3~10mmであってもよい。
[3][1]または[2]に記載の方向性電磁鋼板は、前記母材鋼板において、前記表面に観察される短冊状の還流磁区の面積割合が10%以下で、かつ、ストライプ状の主磁区の幅が1.2mm以下であってもよい。
[4][1]または[2]に記載の方向性電磁鋼板は、前記磁束密度が1.92T以上であり、前記板厚が0.18~0.23mmの場合において、前記W17/50が0.74W/kg以下であってもよい。
[5][3]に記載の方向性電磁鋼板は、前記磁束密度が1.92T以上であり、前記板厚が0.18~0.23mmの場合において、前記W17/50が0.74W/kg以下であってもよい。
The present invention was made in view of the above findings. The gist of the invention is as follows.
[1] A grain-oriented electrical steel sheet according to one aspect of the present invention includes a base steel plate, a forsterite film formed on the surface of the base steel plate, an insulating film formed on the surface of the forsterite film, , the chemical composition of the base steel plate contains Si: 0.80 to 7.00% in mass %, and the distance between grain boundaries of crystal grains in the rolling direction on the surface of the base steel plate is 3.0 mm or more and 13.0 mm or less, the area ratio of the crystal grains is 70% or more, and the magnetic flux density B8 generated by a magnetizing force of 800 A/m is 1.88 T or more, and the base steel plate When the plate thickness is t in mm, the iron loss W17/50 when the frequency is 50 Hz and the maximum magnetic flux density is 1.7 T is 13.1×t 2 -4. in W/kg. 3×t+1.2 or less, and LvA200Hz, which is the 200Hz component of the magnetostrictive waveform, is 60 to 78 dBA.
[2] In the grain-oriented electrical steel sheet according to [1], a plurality of linear strains extending in a direction intersecting the rolling direction are formed on the surface of the base steel sheet, and the plurality of linear strains are formed on the surface of the base steel sheet. The strain interval in the rolling direction may be 3 to 10 mm.
[3] The grain-oriented electrical steel sheet according to [1] or [2] is characterized in that, in the base steel sheet, the area ratio of rectangular reflux magnetic domains observed on the surface is 10% or less, and The width of the main magnetic domain may be 1.2 mm or less.
[4] In the grain-oriented electrical steel sheet according to [1] or [2], when the magnetic flux density is 1.92T or more and the plate thickness is 0.18 to 0.23 mm, the W17/50 is It may be 0.74 W/kg or less.
[5] In the grain-oriented electrical steel sheet according to [3], when the magnetic flux density is 1.92T or more and the plate thickness is 0.18 to 0.23 mm, the W17/50 is 0.74 W/ It may be less than kg.
 本発明の上記態様によれば、鉄損と騒音とが低い(鉄損特性および騒音特性に優れる)方向性電磁鋼板を提供することができる。 According to the above aspect of the present invention, it is possible to provide a grain-oriented electrical steel sheet with low iron loss and noise (excellent iron loss characteristics and noise characteristics).
観察した磁区模様の一例である。This is an example of the observed magnetic domain pattern. 還流磁区(ランセット)を説明する図である。It is a figure explaining a reflux magnetic domain (lancet). 巻取工程において、鋼板間に置くスペーサの配置の例を示す図である。FIG. 6 is a diagram showing an example of the arrangement of spacers placed between steel plates in a winding process. 巻取工程において、焼鈍分離剤を塗布する態様の例を示す図である。It is a figure which shows the example of the aspect which applies an annealing separator in a winding process.
 本発明の一実施形態に係る方向性電磁鋼板(本実施形態に係る方向性電磁鋼板)は、母材鋼板と、母材鋼板の表面に形成されたフォルステライト皮膜と、フォルステライト皮膜の表面に形成された絶縁皮膜と、を備える。
 また、本実施形態に係る方向性電磁鋼板は、母材鋼板の化学組成が、質量%で、Si:0.80~7.00%を含有し、母材鋼板の表面の、圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の、面積率が70%以上であり、800A/mの磁化力で発生する磁束密度であるB8が1.88T以上であり、板厚を単位mmでtとしたとき、周波数が50Hz、最大磁束密度が1.7Tのときの鉄損であるW17/50が、単位W/kgで、13.1×t-4.3×t+1.2以下であり、磁歪波形の200Hz成分であるLvA200Hzが60~78dBAである。
 以下、それぞれについて説明する。
A grain-oriented electrical steel sheet according to an embodiment of the present invention (a grain-oriented electrical steel sheet according to the present embodiment) includes a base steel plate, a forsterite film formed on the surface of the base steel plate, and a forsterite film formed on the surface of the forsterite film. and an insulating film formed.
Further, in the grain-oriented electrical steel sheet according to the present embodiment, the chemical composition of the base material steel sheet contains Si: 0.80 to 7.00% in mass %, and the surface of the base material steel sheet contains crystals in the rolling direction. The area ratio of crystal grains in which the distance between grain boundaries is 3.0 mm or more and 13.0 mm or less is 70% or more, and B8, which is the magnetic flux density generated by a magnetizing force of 800 A/m, is 1.88 T or more. When the plate thickness is expressed as t in mm, the iron loss W17/50 when the frequency is 50 Hz and the maximum magnetic flux density is 1.7 T is expressed as 13.1×t 2 - in W/kg. 4.3×t+1.2 or less, and LvA200Hz, which is the 200Hz component of the magnetostrictive waveform, is 60 to 78 dBA.
Each will be explained below.
<母材鋼板>
(化学組成)
 Si:0.80~7.00%
 Si(珪素)は、方向性電磁鋼板の電気抵抗を高めて、鉄損特性を改善する元素である。Si含有量が0.80%未満では、十分な渦電流損低減効果が得られない。そのため、Si含有量は0.80%以上とする。Si含有量は、好ましくは1.00%以上、より好ましくは1.20%以上である。
 一方、Si含有量が7.00%を超えると、鋼板が脆化し、圧延時に鋼板が破断しうる。また、方向性電磁鋼板の加工性が低下する。このため、Si含有量は7.00%以下とする。Si含有量は、好ましくは6.80%以下、より好ましくは6.70%以下、さらに好ましくは4.00%以下である。
<Base material steel plate>
(chemical composition)
Si: 0.80-7.00%
Si (silicon) is an element that increases the electrical resistance of grain-oriented electrical steel sheets and improves core loss characteristics. If the Si content is less than 0.80%, a sufficient eddy current loss reduction effect cannot be obtained. Therefore, the Si content is set to 0.80% or more. The Si content is preferably 1.00% or more, more preferably 1.20% or more.
On the other hand, if the Si content exceeds 7.00%, the steel plate becomes brittle and may break during rolling. In addition, the workability of the grain-oriented electrical steel sheet is reduced. Therefore, the Si content is set to 7.00% or less. The Si content is preferably 6.80% or less, more preferably 6.70% or less, even more preferably 4.00% or less.
 本実施形態に係る方向性電磁鋼板が備える母材鋼板は、化学組成として、質量%で、Siを0.80~7.00%含有していれば、その他の元素の含有量については特に限定されない。
 しかしながら、方向性電磁鋼板として求められる特性に応じて、化学組成を構成する成分(元素)として、Siの他、以下の元素を以下に示す範囲で含んでもよい。本実施形態において、各元素の含有量に係る%は、断りがない限り質量%である。
As long as the base steel sheet included in the grain-oriented electrical steel sheet according to the present embodiment contains 0.80 to 7.00% Si in mass% as a chemical composition, the content of other elements is not particularly limited. Not done.
However, in addition to Si, the following elements may be included in the ranges shown below as components (elements) constituting the chemical composition, depending on the properties required as a grain-oriented electrical steel sheet. In the present embodiment, % concerning the content of each element is mass % unless otherwise specified.
 C:0.070%以下
 C(炭素)は、製造工程における脱炭焼鈍工程の完了までの工程での鋼板の組織制御に有効な元素である。しかしながら、C含有量が0.070%を超えると、製品板である方向性電磁鋼板の磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板の母材鋼板において、C含有量は、0.070%以下とすることが好ましい。C含有量は、より好ましくは0.050%以下、さらに好ましくは0.020%以下である。C含有量は、低ければ低いほうが好ましいが、C含有量を0.0001%未満に低減しても、組織制御の効果は飽和し、製造コストが嵩むだけとなる。従って、C含有量は、0.0001%以上としてもよい。
C: 0.070% or less C (carbon) is an element effective in controlling the structure of the steel sheet in the manufacturing process up to the completion of the decarburization annealing process. However, when the C content exceeds 0.070%, the magnetic properties of the grain-oriented electrical steel sheet, which is a product sheet, deteriorate. Therefore, in the base steel sheet of the grain-oriented electrical steel sheet according to this embodiment, the C content is preferably 0.070% or less. The C content is more preferably 0.050% or less, still more preferably 0.020% or less. The lower the C content, the better, but even if the C content is reduced to less than 0.0001%, the effect of structure control will be saturated and the manufacturing cost will only increase. Therefore, the C content may be 0.0001% or more.
 Mn:0.01~0.50%
 Mn(マンガン)は、製造工程中に、Sと結合して、MnSを形成する元素である。これらの析出物は、インヒビター(正常結晶粒成長の抑制剤)として機能し、鋼において、二次再結晶を発現させる。Mnは、更に、鋼の熱間加工性も高める元素である。Mn含有量が0.01%未満である場合には、上記のような効果を十分に得ることができない。そのため、Mn含有量は、0.01%以上とすることが好ましい。Mn含有量は、より好ましくは0.02%以上である。
 一方、Mn含有量が0.50%を超えると、二次再結晶が発現せずに、鋼の磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板の母材鋼板において、Mn含有量は、0.50%以下とすることが好ましい。Mn含有量は、より好ましくは0.20%以下、さらに好ましくは0.10%以下である。
Mn: 0.01-0.50%
Mn (manganese) is an element that combines with S to form MnS during the manufacturing process. These precipitates function as inhibitors (suppressants of normal grain growth) and cause secondary recrystallization to occur in steel. Mn is an element that also improves the hot workability of steel. When the Mn content is less than 0.01%, the above effects cannot be sufficiently obtained. Therefore, the Mn content is preferably 0.01% or more. The Mn content is more preferably 0.02% or more.
On the other hand, when the Mn content exceeds 0.50%, secondary recrystallization does not occur and the magnetic properties of the steel deteriorate. Therefore, in the base steel sheet of the grain-oriented electrical steel sheet according to this embodiment, the Mn content is preferably 0.50% or less. The Mn content is more preferably 0.20% or less, still more preferably 0.10% or less.
 N:0.0100%以下
 N(窒素)は、製造工程においてAlと結合して、インヒビターとして機能するAlNを形成する元素である。N含有量が0.0100%を超える場合、方向性電磁鋼板中にインヒビターが過剰に残存しており、磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板の母材鋼板において、N含有量は、0.0100%以下とすることが好ましい。N含有量は、より好ましくは0.0080%以下である。
 一方、N含有量の下限値は、特に規定するものではないが、N含有量を0.0010%未満に低減しても、製造コストが嵩むだけとなる。従って、N含有量は、0.0010%以上としてもよい。
N: 0.0100% or less N (nitrogen) is an element that combines with Al in the manufacturing process to form AlN that functions as an inhibitor. When the N content exceeds 0.0100%, an excessive amount of inhibitor remains in the grain-oriented electrical steel sheet, and the magnetic properties deteriorate. Therefore, in the base steel sheet of the grain-oriented electrical steel sheet according to this embodiment, the N content is preferably 0.0100% or less. The N content is more preferably 0.0080% or less.
On the other hand, although the lower limit of the N content is not particularly defined, even if the N content is reduced to less than 0.0010%, the manufacturing cost will only increase. Therefore, the N content may be 0.0010% or more.
 sol.Al:0.030%以下
 sol.Al(酸可溶性アルミニウム)は、方向性電磁鋼板の製造工程中において、Nと結合して、インヒビターとして機能するAlNを形成する元素である。しかしながら、母材鋼板のsol.Al含有量が0.030%を超える場合、母材鋼板中にインヒビターが過剰に残存しており、磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板の母材鋼板において、sol.Al含有量は、0.030%以下とすることが好ましい。sol.Al含有量は、より好ましくは0.020%以下、さらに好ましくは0.015%以下である。sol.Al含有量の下限値は、特に規定するものではないが、0.0001%未満に低減しても、製造コストが嵩むだけとなる。従って、sol.Al含有量は、0.0001%以上としてもよい。
sol. Al: 0.030% or less sol. Al (acid-soluble aluminum) is an element that combines with N to form AlN that functions as an inhibitor during the manufacturing process of grain-oriented electrical steel sheets. However, the sol. When the Al content exceeds 0.030%, an excessive amount of inhibitor remains in the base steel sheet, and the magnetic properties deteriorate. Therefore, in the base steel sheet of the grain-oriented electrical steel sheet according to the present embodiment, sol. The Al content is preferably 0.030% or less. sol. The Al content is more preferably 0.020% or less, still more preferably 0.015% or less. sol. Although the lower limit of the Al content is not particularly defined, even if it is reduced to less than 0.0001%, the manufacturing cost will only increase. Therefore, sol. The Al content may be 0.0001% or more.
 S:0.010%以下
 S(硫黄)は、製造工程においてMnと結合して、インヒビターとして機能するMnSを形成する元素である。しかしながら、S含有量が0.010%を超える場合には、残存するインヒビターにより、磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板の母材鋼板において、S含有量は、0.010%以下とすることが好ましい。方向性電磁鋼板におけるS含有量は、なるべく低い方が好ましい。例えば0.001%未満である。しかしながら、方向性電磁鋼板中のS含有量を0.0001%未満に低減しても、製造コストが嵩むだけとなる。従って、方向性電磁鋼板中のS含有量は、0.0001%以上であってもよい。
S: 0.010% or less S (sulfur) is an element that combines with Mn in the manufacturing process to form MnS that functions as an inhibitor. However, when the S content exceeds 0.010%, the magnetic properties deteriorate due to the remaining inhibitor. Therefore, in the base steel sheet of the grain-oriented electrical steel sheet according to this embodiment, the S content is preferably 0.010% or less. The S content in the grain-oriented electrical steel sheet is preferably as low as possible. For example, it is less than 0.001%. However, even if the S content in the grain-oriented electrical steel sheet is reduced to less than 0.0001%, the manufacturing cost will only increase. Therefore, the S content in the grain-oriented electrical steel sheet may be 0.0001% or more.
 残部:Fe及び不純物
 本実施形態に係る方向性電磁鋼板の母材鋼板の化学組成は、例えば上述の元素を含有し、残部は、Fe及び不純物であってもよい。しかしながら、磁気特性等を高めることを目的として、さらにP、Cr、Sn、Cu、Se、Sb、Moを以下に示す範囲で含有してもよい(含有しなくてもよいので下限は0%である)。またこれら以外の元素として、例えばW、Nb、Ti、Ni、Bi、Co、Vのいずれか1種あるいは2種以上を合計で1.0%以下含有しても、本実施形態に係る方向性電磁鋼板の効果を阻害するものではない。
 ここで、不純物とは、母材鋼板を工業的に製造する際に、原料としての鉱石、スクラップから、又は、製造環境などから混入するものであり、本実施形態に係る方向性電磁鋼板の作用に悪影響を及ぼさない含有量で含有することを許容される元素を意味する。
Remainder: Fe and Impurities The chemical composition of the base steel sheet of the grain-oriented electrical steel sheet according to the present embodiment may contain, for example, the above-mentioned elements, and the remainder may be Fe and impurities. However, for the purpose of improving magnetic properties etc., P, Cr, Sn, Cu, Se, Sb, and Mo may be further contained in the ranges shown below (the lower limit is 0% as they do not need to be contained). be). Furthermore, even if any one or two or more of W, Nb, Ti, Ni, Bi, Co, and V are contained as elements other than these in a total amount of 1.0% or less, the directionality according to the present embodiment may be improved. It does not impede the effectiveness of the electromagnetic steel sheet.
Here, impurities are those that are mixed in from ore or scrap as raw materials or from the manufacturing environment when the base material steel sheet is industrially manufactured, and the effects of the grain-oriented electrical steel sheet according to this embodiment. It means an element that is allowed to be contained in a content that does not have a negative effect on.
 P:0~0.030%
 P(リン)は圧延における加工性を低下させる元素である。P含有量を0.030%以下とすることにより、圧延加工性が過度に低下することを抑制でき、製造時における破断を抑制することができる。このような観点からP含有量は0.030%以下とすることが好ましい。P含有量は、0.020%以下であることがより好ましく、0.010%以下であることがさらに好ましい。
 P含有量の下限はなく、P含有量は0%でもよいが、実用鋼板において、実質的なP含有量の下限値は、0.0001%である。また、Pは集合組織を改善し、磁気特性を改善する効果を有する元素でもある。この効果を得るため、P含有量を0.001%以上としてもよく、0.005%以上としてもよい。
P: 0-0.030%
P (phosphorus) is an element that reduces workability in rolling. By controlling the P content to 0.030% or less, it is possible to suppress excessive deterioration of rolling workability and to suppress breakage during manufacturing. From this point of view, the P content is preferably 0.030% or less. The P content is more preferably 0.020% or less, and even more preferably 0.010% or less.
There is no lower limit for the P content, and the P content may be 0%, but in practical steel sheets, the practical lower limit for the P content is 0.0001%. P is also an element that has the effect of improving texture and magnetic properties. In order to obtain this effect, the P content may be set to 0.001% or more, or may be set to 0.005% or more.
 Cr:0~0.50%
 Cr(クロム)は、二次再結晶組織におけるGoss方位占有率の増加に寄与して磁気特性を向上させる元素である。上記効果を得るためには、Cr含有量を、0.01%以上とすることが好ましく、0.05%以上とすることがより好ましく、0.10%以上とすることがさらに好ましい。
 一方、Cr含有量が0.50%を超える場合には、Cr酸化物が形成され、磁気特性が低下する。そのため、Cr含有量は、0.50%以下とすることが好ましい。Cr含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.15%以下である。
Cr: 0 to 0.50%
Cr (chromium) is an element that contributes to an increase in the Goss orientation occupancy rate in the secondary recrystallized structure and improves magnetic properties. In order to obtain the above effect, the Cr content is preferably 0.01% or more, more preferably 0.05% or more, and even more preferably 0.10% or more.
On the other hand, if the Cr content exceeds 0.50%, Cr oxides are formed and the magnetic properties deteriorate, so the Cr content is preferably 0.50% or less, more preferably 0.30% or less, and further preferably 0.15% or less.
 Sn:0~0.50%
 Sn(スズ)は、一次再結晶組織制御を通じ、磁気特性改善に寄与する元素である。磁気特性改善効果を得るためには、Sn含有量を0.01%以上とすることが好ましい。Sn含有量は、より好ましくは0.02%以上、さらに好ましくは0.03%以上である。
 一方、Sn含有量が0.50%を超える場合には、二次再結晶が不安定となり、磁気特性が劣化する。そのため、Sn含有量は0.50%以下とすることが好ましい。Sn含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。
Sn: 0-0.50%
Sn (tin) is an element that contributes to improving magnetic properties through primary recrystallization structure control. In order to obtain the effect of improving magnetic properties, the Sn content is preferably 0.01% or more. The Sn content is more preferably 0.02% or more, still more preferably 0.03% or more.
On the other hand, if the Sn content exceeds 0.50%, secondary recrystallization becomes unstable and magnetic properties deteriorate. Therefore, the Sn content is preferably 0.50% or less. The Sn content is more preferably 0.30% or less, still more preferably 0.10% or less.
 Cu:0~0.50%
 Cu(銅)は、二次再結晶組織におけるGoss方位占有率の増加に寄与する元素である。Cuは、本実施形態に係る方向性電磁鋼板の母材鋼板において、任意元素である。そのため、その含有量の下限値は0%となるが、上記効果を得るためには、Cu含有量を0.01%以上とすることが好ましい。Cu含有量は、より好ましくは0.02%以上、さらに好ましくは0.03%以上である。
 一方、Cu含有量が0.50%を超える場合には、熱間圧延中に鋼板が脆化する。そのため、本実施形態に係る方向性電磁鋼板の母材鋼板では、Cu含有量を0.50%以下とすることが好ましい。Cu含有量は、より好ましくは0.30%以下、さらに好ましくは0.10%以下である。
Cu: 0-0.50%
Cu (copper) is an element that contributes to an increase in the Goss orientation occupancy in the secondary recrystallized structure. Cu is an optional element in the base steel sheet of the grain-oriented electrical steel sheet according to this embodiment. Therefore, the lower limit of the Cu content is 0%, but in order to obtain the above effects, it is preferable that the Cu content is 0.01% or more. The Cu content is more preferably 0.02% or more, still more preferably 0.03% or more.
On the other hand, if the Cu content exceeds 0.50%, the steel sheet becomes brittle during hot rolling. Therefore, in the base steel sheet of the grain-oriented electrical steel sheet according to the present embodiment, the Cu content is preferably 0.50% or less. The Cu content is more preferably 0.30% or less, still more preferably 0.10% or less.
 Se:0~0.020%
 Se(セレン)は、磁気特性改善効果を有する元素である。そのため、含有させてもよい。Seを含有させる場合は、磁気特性改善効果を良好に発揮するべく、含有量を0.001%以上とすることが好ましい。Se含有量は、より好ましくは0.003%以上であり、さらに好ましくは0.006%以上である。
 一方、Se含有量が0.020%を越えると、フォルステライト皮膜の密着性が劣化する。従って、Se含有量を0.020%以下とすることが好ましい。Se含有量は、より好ましくは0.015%以下、さらに好ましくは0.010%以下である。
Se: 0-0.020%
Se (selenium) is an element that has the effect of improving magnetic properties. Therefore, it may be included. When Se is contained, the content is preferably 0.001% or more in order to exhibit a good effect of improving magnetic properties. The Se content is more preferably 0.003% or more, and still more preferably 0.006% or more.
On the other hand, if the Se content exceeds 0.020%, the adhesion of the forsterite film deteriorates. Therefore, it is preferable that the Se content is 0.020% or less. The Se content is more preferably 0.015% or less, even more preferably 0.010% or less.
 Sb:0~0.50%
 Sb(アンチモン)は、磁気特性改善効果を有する元素である。そのため、含有させてもよい。Sbを含有させる場合は、磁気特性改善効果を良好に発揮するべく、含有量を0.005%以上とすることが好ましい。Sb含有量は、より好ましくは0.01%以上であり、さらに好ましくは0.02%以上である。
 一方、Sb含有量が0.50%を越えると、フォルステライト皮膜の密着性が顕著に劣化する。従って、Sb含有量を0.50%以下とすることが好ましい。Sb含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。
Sb: 0-0.50%
Sb (antimony) is an element that has the effect of improving magnetic properties. Therefore, it may be included. When Sb is contained, the content is preferably 0.005% or more in order to exhibit a good effect of improving magnetic properties. The Sb content is more preferably 0.01% or more, and still more preferably 0.02% or more.
On the other hand, if the Sb content exceeds 0.50%, the adhesion of the forsterite film will deteriorate significantly. Therefore, it is preferable that the Sb content is 0.50% or less. The Sb content is more preferably 0.30% or less, still more preferably 0.10% or less.
 Mo:0~0.10%
 Mo(モリブデン)は、磁気特性改善効果を有する元素である。そのため、含有させてもよい。Moを含有させる場合は、磁気特性改善効果を良好に発揮するため、Mo含有量を0.01%以上とすることが好ましい。Mo含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.03%以上である。
 一方、Mo含有量が0.10%を越えると、冷間圧延性が劣化し、破断に至る可能性がある。従って、Mo含有量を0.10%以下とすることが好ましい。Mo含有量は、より好ましくは0.08%以下であり、さらに好ましくは0.05%以下である。
Mo: 0-0.10%
Mo (molybdenum) is an element that has the effect of improving magnetic properties. Therefore, it may be included. When Mo is contained, the Mo content is preferably 0.01% or more in order to exhibit a good effect of improving magnetic properties. The Mo content is more preferably 0.02% or more, and still more preferably 0.03% or more.
On the other hand, if the Mo content exceeds 0.10%, cold rolling properties may deteriorate and breakage may occur. Therefore, it is preferable that the Mo content is 0.10% or less. The Mo content is more preferably 0.08% or less, still more preferably 0.05% or less.
 上述の通り、本実施形態に方向性電磁鋼板の母材鋼板の化学組成は、上述のC、Si、Mn、N、sol.Al、Sを含有し、残部がFe及び不純物からなる、もしくは、C、Si、Mn、N、sol.Al、Sの元素を含有し、さらにP、Cr、Sn、Cu、Se、Sb、Mo、W、Nb、Ti、Ni、Bi、Co、Vの1種以上を含有し、残部がFe及び不純物からなることが例示される。上記WからVの元素の含有量は合計で0.05%以下であってもよい。 As mentioned above, the chemical composition of the base steel sheet of the grain-oriented electrical steel sheet in this embodiment is the above-mentioned C, Si, Mn, N, sol. Contains Al and S, with the remainder consisting of Fe and impurities, or C, Si, Mn, N, sol. Contains the elements Al and S, and further contains one or more of P, Cr, Sn, Cu, Se, Sb, Mo, W, Nb, Ti, Ni, Bi, Co, and V, with the remainder being Fe and impurities. For example, it consists of: The total content of the elements W to V may be 0.05% or less.
 本実施形態に係る方向性電磁鋼板の母材鋼板の化学組成中のSiの含有量については、JIS G 1212(1997)に規定の方法(けい素定量方法)により求める。具体的には、上述の切粉を酸に溶解させると、酸化ケイ素が沈殿物として析出するので、この沈殿物(酸化ケイ素)をろ紙で濾し取り、質量を測定して、Si含有量を求める。
 その他の母材鋼板の化学組成は、周知の成分分析法により求めればよい。具体的には、ドリルを用いて、母材鋼板から切粉を生成し、その切粉を採取し、採取された切粉を酸に溶解させて溶液を得る。溶液に対して、ICP-AESを実施して、化学組成の元素分析を実施する。
 ただし、ICP-AESでは測定が難しい元素、例えばC含有量及びS含有量については、周知の高周波燃焼法(燃焼-赤外線吸収法)により求める。具体的には、上述の溶液を酸素気流中で高周波加熱により燃焼して、発生した二酸化炭素、二酸化硫黄を検出し、C含有量及びS含有量を求めてもよい。また、N含有量については、周知の不活性ガス溶融-熱伝導度法を用いて求めてもよい。
 本実施形態に係る方向性電磁鋼板において、表面にフォルステライト皮膜及び/または絶縁皮膜が形成されている場合には、これらの皮膜を除去してから母材鋼板の化学組成を測定する。
 絶縁皮膜は、方向性電磁鋼板を、NaOH:30~50質量%及びHO:50~70質量%を含有し、80~90℃の水酸化ナトリウム水溶液に、7~10分間浸漬することで、除去することができる。
 また、絶縁皮膜が除去された方向性電磁鋼板を水洗し、水洗後、温風のブロアーで1分間弱、乾燥させる。乾燥後の方向性電磁鋼板(絶縁皮膜を備えていない方向性電磁鋼板)を、30~40質量%のHClを含有し、80~90℃の塩酸水溶液に、1~10分間浸漬することで、フォルステライト皮膜を除去することができる。
 浸漬後の母材鋼板を水洗し、水洗後、温風のブロアーで1分間弱、乾燥させることで、フォルステライト皮膜及び絶縁皮膜を有する方向性電磁鋼板から、母材鋼板を取り出すことができる。
The content of Si in the chemical composition of the base steel sheet of the grain-oriented electrical steel sheet according to the present embodiment is determined by the method prescribed in JIS G 1212 (1997) (silicon quantitative method). Specifically, when the above-mentioned chips are dissolved in acid, silicon oxide precipitates out, so this precipitate (silicon oxide) is filtered off with a filter paper, the mass is measured, and the Si content is determined. .
Other chemical compositions of the base steel plate may be determined by a well-known component analysis method. Specifically, chips are generated from a base steel plate using a drill, the chips are collected, and the collected chips are dissolved in acid to obtain a solution. ICP-AES is performed on the solution to perform elemental analysis of the chemical composition.
However, elements that are difficult to measure with ICP-AES, such as C content and S content, are determined by the well-known high frequency combustion method (combustion-infrared absorption method). Specifically, the above-mentioned solution may be burned by high-frequency heating in an oxygen stream, and the generated carbon dioxide and sulfur dioxide may be detected to determine the C content and S content. Further, the N content may be determined using the well-known inert gas melting-thermal conductivity method.
In the grain-oriented electrical steel sheet according to the present embodiment, if a forsterite film and/or an insulating film are formed on the surface, these films are removed before measuring the chemical composition of the base steel sheet.
The insulation film is formed by immersing a grain-oriented electrical steel sheet in a sodium hydroxide aqueous solution containing 30-50% by mass of NaOH and 50-70% by mass of H 2 O at 80-90°C for 7-10 minutes. , can be removed.
Further, the grain-oriented electrical steel sheet from which the insulating film has been removed is washed with water, and then dried with a warm air blower for a little less than 1 minute. By immersing the dried grain-oriented electrical steel sheet (grain-oriented electrical steel sheet without an insulating film) in a hydrochloric acid aqueous solution containing 30 to 40% by mass of HCl and at 80 to 90°C for 1 to 10 minutes, Forsterite film can be removed.
By washing the base steel plate after immersion with water, and drying it with a hot air blower for a little less than 1 minute after rinsing with water, the base steel plate can be taken out from the grain-oriented electrical steel sheet having a forsterite film and an insulating film.
(ミクロ組織)
 本実施形態に係る方向性電磁鋼板は、そのミクロ組織において、圧延方向の結晶粒径が制御される。具体的には、母材鋼板の表面の、圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の、面積率が70%以上である。
 圧延方向に対して横切る結晶粒界は磁区模様を変化させる。特に、その粒界間の距離が短くなると磁歪波形の200Hz成分(LvA200Hzという場合がある)が低減する。これは、粒界間の距離が短くなると主磁区の幅が狭くなるため、粒内の還流磁区(ランセット)を抑える効果があることが影響していると推測される。
 圧延方向の結晶粒の粒界間の距離(粒界間隔)が3.0mm以上13.0mm以下である結晶粒の面積率が70%未満では、LvA200Hzを低減する効果が十分に得られない。粒界間隔が3.0mm以上13.0mm以下である結晶粒の面積率は、75%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。面積率の上限は限定されず、100%でもよい。
 面積率の制御の対象とする結晶粒を、粒界間の距離が3.0mm以上13.0mm以下の結晶粒(領域)としたのは、粒界間隔が13.0mm超の結晶粒では、磁壁間隔が十分に狭くならず、LvA200Hzを低減する効果が小さいからである。一方、LvA200Hzの低減の点では粒界間隔が短い方が好ましいが、粒界間隔が3.0mm未満の結晶粒は、磁壁の移動を妨げることで、鉄損特性を劣化させることが懸念されるからである。
 図1に、本実施形態に係る方向性電磁鋼板で観察した磁区模様の一例を示す。
(microstructure)
In the grain-oriented electrical steel sheet according to this embodiment, the grain size in the rolling direction is controlled in its microstructure. Specifically, the area ratio of crystal grains on the surface of the base steel plate, where the distance between grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less, is 70% or more.
Grain boundaries transverse to the rolling direction change the magnetic domain pattern. In particular, as the distance between the grain boundaries becomes shorter, the 200 Hz component (sometimes referred to as LvA200 Hz) of the magnetostrictive waveform decreases. This is presumed to be due to the fact that as the distance between grain boundaries becomes shorter, the width of the main magnetic domain becomes narrower, which has the effect of suppressing the reflux magnetic domain (lancet) within the grains.
If the area ratio of crystal grains in which the distance between grain boundaries in the rolling direction (grain boundary spacing) is 3.0 mm or more and 13.0 mm or less is less than 70%, the effect of reducing LvA 200 Hz cannot be sufficiently obtained. The area ratio of crystal grains having a grain boundary interval of 3.0 mm or more and 13.0 mm or less is preferably 75% or more, more preferably 80% or more, and even more preferably 90% or more. The upper limit of the area ratio is not limited and may be 100%.
The reason why the grains whose area ratio is to be controlled are grains (regions) in which the distance between grain boundaries is 3.0 mm or more and 13.0 mm or less is that for grains with a grain boundary spacing of more than 13.0 mm, This is because the domain wall interval is not sufficiently narrowed, and the effect of reducing LvA200Hz is small. On the other hand, from the point of view of reducing LvA200Hz, it is preferable to have a short grain boundary spacing, but there is a concern that crystal grains with a grain boundary spacing of less than 3.0 mm may impede the movement of domain walls and deteriorate iron loss characteristics. It is from.
FIG. 1 shows an example of a magnetic domain pattern observed in a grain-oriented electrical steel sheet according to this embodiment.
 上記のミクロ組織を得るためには、母材鋼板の圧延方向に対し、レーザの走査方向が圧延方向を横切るようにレーザを照射する方法があるが、照射痕上に微細粒が生じないように照射することが好ましい。微細粒が生じないようにすることで、母材鋼板の表面の、圧延方向の結晶粒の粒界間の距離が3.0mm未満である結晶粒の生成を抑制することができる。
 圧延方向の平均粒径は、3.0~20.0mmであることが好ましい。
 平均結晶粒径が小さいと、圧延方向の結晶粒の粒界間の距離(粒界間隔)が3.0mm以上13.0mm以下である結晶粒の面積率を70%以上とすることが難しくなるとともに、磁壁の移動が妨げられることで、鉄損特性が劣化することが懸念される。一方、平均粒径が20.0mmを超えると、3.0mm以上13.0mm以下である結晶粒の面積率を70%以上とすることが難しくなるとともに、騒音が大きくなることが懸念される。
In order to obtain the above microstructure, there is a method of irradiating the base steel plate with a laser so that its scanning direction crosses the rolling direction, but care must be taken to avoid producing fine grains on the irradiation marks. Irradiation is preferred. By preventing the generation of fine grains, it is possible to suppress the generation of crystal grains on the surface of the base steel sheet in which the distance between the grain boundaries of grains in the rolling direction is less than 3.0 mm.
The average grain size in the rolling direction is preferably 3.0 to 20.0 mm.
If the average crystal grain size is small, it becomes difficult to make the area ratio of crystal grains with a distance between grain boundaries (grain boundary spacing) of 3.0 mm or more and 13.0 mm or less in the rolling direction to 70% or more. At the same time, there is a concern that the movement of the domain walls will be hindered, leading to deterioration of core loss characteristics. On the other hand, if the average grain size exceeds 20.0 mm, it becomes difficult to increase the area ratio of crystal grains having a size of 3.0 mm or more and 13.0 mm or less to 70% or more, and there is a concern that noise may increase.
 圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の面積率は、以下の方法で求めることができる。
 まず、圧延方向の粒界間の距離は、方向性電磁鋼板の表面に対し、磁区観察用の素子を用いて磁区を観察することで測定する。具体的には、方向性電磁鋼板の表面を、反射電子顕微鏡やファラデー効果を利用したMOセンサーを用いて観察して、画像を得て、画像から、磁壁の方向、間隔、コントラストの不連続によって、粒界を判断し、その粒界間の圧延方向の距離を測定することで求める。
 所定の粒界間隔の結晶粒の面積率は、表面の幅方向に100mm、圧延方向に500mmの領域を観察範囲とし、この観察範囲において、圧延方向の粒界間距離が3.0mm以上13.0mm以下の結晶粒の面積を、測定領域の面積で除することで求める(百分率とする場合には×100とする)。その際、圧延方向に沿ったスケールを用い、3.0mm以上13.0mm以下を外れる結晶粒を特定し、その面積を測定し、測定領域の面積から差し引くことで、対象の結晶粒(圧延方向の粒界間距離が3.0mm以上13.0mm以下の結晶粒)の面積を測定してもよい。
 また、上記の測定に際し、観察範囲の圧延方向の端から端までの500mmの直線を引き、これと交差する粒界の数を用いて、この直線の長さを割ることで、圧延方向の平均粒径も測定することができる。
 面積率を測定するのは、母材鋼板の表面である。上記の方法によれば、母材鋼板の上に、フォルステライト皮膜及び絶縁皮膜が形成されていても測定できるので、測定に際し、フォルステライト皮膜及び絶縁皮膜を除去する必要はないが、除去してから測定してもよい。
The area ratio of crystal grains in which the distance between grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less can be determined by the following method.
First, the distance between grain boundaries in the rolling direction is measured by observing magnetic domains on the surface of a grain-oriented electrical steel sheet using a magnetic domain observation element. Specifically, the surface of a grain-oriented electrical steel sheet is observed using a reflection electron microscope or an MO sensor that utilizes the Faraday effect, and images are obtained. , is determined by determining the grain boundaries and measuring the distance between the grain boundaries in the rolling direction.
The area ratio of crystal grains with a predetermined grain boundary spacing is determined by observing an area of 100 mm in the width direction of the surface and 500 mm in the rolling direction, and in this observation range, the inter-grain boundary distance in the rolling direction is 3.0 mm or more.13. It is determined by dividing the area of crystal grains of 0 mm or less by the area of the measurement region (when expressed as a percentage, it is set as ×100). At that time, using a scale along the rolling direction, identify crystal grains that deviate from 3.0 mm to 13.0 mm, measure the area, and subtract it from the area of the measurement area. (crystal grains having an inter-grain boundary distance of 3.0 mm or more and 13.0 mm or less) may be measured.
In addition, when making the above measurements, by drawing a 500 mm straight line from end to end in the rolling direction of the observation range and dividing the length of this straight line by the number of grain boundaries that intersect with this, the average in the rolling direction can be calculated. Particle size can also be measured.
The area ratio is measured on the surface of the base steel plate. According to the above method, it is possible to measure even if a forsterite film and an insulating film are formed on the base steel sheet, so there is no need to remove the forsterite film and insulating film when making measurements. It may be measured from
 本実施形態に係る方向性電磁鋼板では、図2に示すように、母材鋼板の表面に観察される磁区において、主磁区の中に短い短冊状の還流磁区(ランセット)100が存在する。本実施形態に係る方向性電磁鋼板では、この還流磁区(ランセット)100の面積割合を全体の10%以下とすることが好ましい。還流磁区100の面積割合が10%を超えると所定の磁束密度、鉄損が得られにくくなる。面積率の下限は限定されず0%でも良い。
 また、本実施形態に係る方向性電磁鋼板では、表面に観察されるストライプ状に区切られて見える主磁区の幅を1.2mm以下にすることが好ましい。これを越えて幅が広がるとランセット100が発生しやすくなり、所定の磁束密度、鉄損が得られにくくなる。より好ましくは、主磁区の幅は1.0mm以下、さらに好ましくは0.9mm以下である。主磁区の幅は、圧延方向の平均粒径、並びに、レーザの照射条件やコイル状態での曲率などの違いに起因する歪の強度の大きさなどに影響を受ける。
In the grain-oriented electrical steel sheet according to the present embodiment, as shown in FIG. 2, in the magnetic domains observed on the surface of the base steel sheet, short strip-shaped return magnetic domains (lancets) 100 are present in the main magnetic domain. In the grain-oriented electrical steel sheet according to the present embodiment, it is preferable that the area ratio of the reflux magnetic domain (lancet) 100 be 10% or less of the whole. If the area ratio of the reflux magnetic domain 100 exceeds 10%, it becomes difficult to obtain a predetermined magnetic flux density and iron loss. The lower limit of the area ratio is not limited and may be 0%.
Further, in the grain-oriented electrical steel sheet according to the present embodiment, it is preferable that the width of the main magnetic domain, which appears divided into stripes observed on the surface, be 1.2 mm or less. If the width increases beyond this, lancets 100 are likely to occur, making it difficult to obtain predetermined magnetic flux density and iron loss. More preferably, the width of the main domain is 1.0 mm or less, and even more preferably 0.9 mm or less. The width of the main magnetic domain is influenced by the average grain size in the rolling direction, and the intensity of strain caused by differences in laser irradiation conditions and curvature in the coil state.
 還流磁区の面積割合や主磁区の幅は、母材鋼板の表面の、幅方向に100mm×圧延方向に500mmの範囲について、磁気光学効果を利用したCMOS-MagView等の測定器によって測定する。この方法によれば、皮膜付きの電磁鋼板でも磁区観察が可能である。この後、得られた画像を基にランセットの鋼板表面の面積を測定し、全体に対するその存在割合を評価したり、主磁区の幅を計測したりする。ただし観察は消磁状態で行う。 The area ratio of the reflux magnetic domain and the width of the main magnetic domain are measured on the surface of the base steel plate in an area of 100 mm in the width direction x 500 mm in the rolling direction using a measuring instrument such as CMOS-MagView that utilizes the magneto-optical effect. According to this method, magnetic domains can be observed even in coated electromagnetic steel sheets. Thereafter, the area of the surface of the steel plate of the lancet is measured based on the obtained image, the proportion of its presence in the whole is evaluated, and the width of the main magnetic domain is measured. However, observation is performed in a demagnetized state.
(磁気特性)
 本実施形態に係る方向性電磁鋼板は、レーザ照射によって磁区制御が行われており、優れた磁気特性を有する。具体的には、800A/mの磁化力で発生する磁束密度であるB8が1.88T以上であり、かつ、母材鋼板の板厚を単位mmでtとしたとき、周波数が50Hz、最大磁束密度が1.7Tのときの鉄損であるW17/50が、単位W/kgで、13.1×t-4.3×t+1.2以下である。B8が1.88T未満、または、W17/50が13.1×t-4.3×t+1.2W/kg超では、磁気特性が十分とは言えない。
 B8は高い方が好ましいが、上述した結晶粒の面積を多くすることを前提とした場合、実質的な上限は1.95T程度となるので、B8を1.95T以下としてもよい。
 また、板厚tは公称厚みであり、t=0.23mmであれば、W17/50は0.90W/kg以下である。
 B8及びW17/50はレーザ照射を含む製造方法の制御によって、集合組織や磁区など、微細な領域が制御されることによって達成されるが、磁気特性を変化させる要因は複数あるとともに、測定が容易ではない。そのため、本実施形態に係る方向性電磁鋼板は、B8及びW17/50の値によって方向性電磁鋼板を規定する。
 磁気特性として、B8は1.92T以上が好ましい。また、鉄損は、板厚(t)が0.18~0.23mmの範囲で、W17/50が0.74W/kg以下であることが好ましい。
(Magnetic properties)
The grain-oriented electrical steel sheet according to this embodiment has its magnetic domain controlled by laser irradiation, and has excellent magnetic properties. Specifically, B8, which is the magnetic flux density generated by a magnetizing force of 800 A/m, is 1.88 T or more, and when the thickness of the base steel plate is expressed in mm, the frequency is 50 Hz, and the maximum magnetic flux is W17/50, which is the iron loss when the density is 1.7T, is equal to or less than 13.1×t 2 −4.3×t+1.2 in unit W/kg. If B8 is less than 1.88T or W17/50 is more than 13.1×t 2 -4.3×t+1.2W/kg, the magnetic properties cannot be said to be sufficient.
Although it is preferable that B8 be higher, if the area of the crystal grains mentioned above is increased, the practical upper limit is about 1.95T, so B8 may be set to 1.95T or less.
Moreover, the plate thickness t is the nominal thickness, and if t=0.23 mm, W17/50 is 0.90 W/kg or less.
B8 and W17/50 are achieved by controlling fine regions such as texture and magnetic domains by controlling the manufacturing method including laser irradiation, but there are multiple factors that change magnetic properties and it is easy to measure. isn't it. Therefore, the grain-oriented electrical steel sheet according to the present embodiment is defined by the values of B8 and W17/50.
As for magnetic properties, B8 preferably has a value of 1.92T or more. Further, the iron loss is preferably such that W17/50 is 0.74 W/kg or less when the plate thickness (t) is in the range of 0.18 to 0.23 mm.
 B8及びW17/50は、方向性電磁鋼板から幅方向に100mm、圧延方向に500mmのサイズに切り出した試験片を用い、JIS C 2556:2015に準じた単板磁気特性測定法(Single Sheet Tester:SST)により測定する。 B8 and W17/50 are measured using a single sheet magnetic property measurement method (Single Sheet Tester) according to JIS C 2556:2015, using a test piece cut out from a grain-oriented electrical steel sheet with a size of 100 mm in the width direction and 500 mm in the rolling direction. SST).
(騒音特性)
 本実施形態に係る方向性電磁鋼板は、磁歪波形の200Hz成分であるLvA200Hzが60~78dBAである。これにより、変圧器の材料として用いた際に、変圧器の騒音を低減することができる。LvA200Hzが78dB超では、騒音低減効果が小さい。一方、所定の磁気特性を確保する場合、LvA200Hzを60dBA未満とすることは容易ではないので、LvA200Hzを60dBA以上とする。
(Noise characteristics)
In the grain-oriented electrical steel sheet according to the present embodiment, LvA200Hz, which is the 200Hz component of the magnetostrictive waveform, is 60 to 78 dBA. Thereby, when used as a material for a transformer, the noise of the transformer can be reduced. When LvA200Hz exceeds 78 dB, the noise reduction effect is small. On the other hand, when ensuring predetermined magnetic characteristics, it is not easy to make LvA200Hz less than 60 dBA, so LvA200Hz is made to be 60 dBA or more.
 LvA200Hzは、IECの規格IEC 606404-17 ED1に従って、レーザードップラーによる振動測定器で鋼板の伸び縮みを測定することで求める。
 測定に際し、鋼板の伸び縮みは外部から50Hzの磁場を加えて発生させる。時間に対する長さの伸縮が磁歪波形として得た上でこの波形を周波数分析し、100Hz、200Hz成分に分離して評価する。
LvA200Hz is determined by measuring the expansion and contraction of the steel plate using a laser Doppler vibration measuring device in accordance with IEC standard IEC 606404-17 ED1.
During the measurement, the expansion and contraction of the steel plate is generated by applying a 50 Hz magnetic field from the outside. After obtaining the length expansion/contraction with respect to time as a magnetostrictive waveform, this waveform is subjected to frequency analysis, separated into 100 Hz and 200 Hz components, and evaluated.
 本実施形態に係る方向性電磁鋼板は、磁区制御の結果、上述したB8及びW17/50を有し、LvA200Hzが60~78dBAである。すなわち、本実施形態に係る方向性電磁鋼板は磁区制御材である。
 磁区制御の方法については限定されないが、例えば後述する条件でレーザ照射を行うことで磁区制御を行うことが好ましい。この場合、母材鋼板の表面に、圧延方向に交差する方向に延在する複数の線状の歪が形成され、複数の線状の歪の圧延方向の間隔が3~10mmとなる。そのため、複数の線状の歪の圧延方向の間隔は3~10mmが好ましい。
 線状の歪の圧延方向の間隔とは、線状の歪の幅方向の中心から、隣り合う線状の歪の幅方向の中心までの、圧延方向の距離である。
 また、線状の歪は、鉄損特性の向上への寄与の点で、圧延方向の幅が250μm以下であることが好ましい。線状には連続的な線状である直線状、断続的な線状である点線状を含む。
As a result of magnetic domain control, the grain-oriented electrical steel sheet according to the present embodiment has the above-mentioned B8 and W17/50, and has an LvA of 200 Hz of 60 to 78 dBA. That is, the grain-oriented electrical steel sheet according to this embodiment is a magnetic domain control material.
Although the method of magnetic domain control is not limited, it is preferable to perform magnetic domain control by, for example, performing laser irradiation under the conditions described below. In this case, a plurality of linear strains extending in a direction intersecting the rolling direction are formed on the surface of the base steel plate, and the intervals between the plurality of linear strains in the rolling direction are 3 to 10 mm. Therefore, the interval between the plurality of linear strains in the rolling direction is preferably 3 to 10 mm.
The interval between linear strains in the rolling direction is the distance in the rolling direction from the center of a linear strain in the width direction to the center of an adjacent linear strain in the width direction.
Further, the width of the linear strain in the rolling direction is preferably 250 μm or less in terms of contributing to improving iron loss characteristics. The linear shape includes a continuous linear shape and a dotted linear shape.
 線状の歪の存在箇所はX線回折法による残留歪測定技術(例えばK.Iwata, et.al,j.Appl.Phys.117.17A910(2015))を用いて分析することが出来る。また、鋼板表面にエネルギ線照射痕が確認できる場合、その照射痕をそのまま歪と判断しても良い。
 また、観察された線状の歪について、圧延方向に、ある定めた、少なくともL>5mmの距離Lを設け、そこに存在する歪の本数nを数え、L/nを、線状の歪の圧延方向の間隔としても良い。線状の歪の圧延方向の幅は、測定したn本のそれぞれの幅を平均した値とすればよい。
The location where linear strain exists can be analyzed using a residual strain measurement technique using X-ray diffraction (for example, K. Iwata, et. al, j. Appl. Phys. 117.17A910 (2015)). Further, if traces of energy ray irradiation can be confirmed on the surface of the steel plate, the traces of irradiation may be directly determined as distortion.
Regarding the observed linear strain, set a certain distance L of at least L > 5 mm in the rolling direction, count the number n of strains existing there, and calculate L/n as the linear strain. It may also be the interval in the rolling direction. The width of the linear strain in the rolling direction may be the average value of the widths of each of the n measured lines.
(板厚)
 本実施形態に係る方向性電磁鋼板の母材鋼板の板厚は限定されないが、低鉄損と共に、低騒音が求められる変圧器(トランス)の鉄心への適用を考慮した場合、0.17~0.30mmであることが好ましい。
 板厚が薄いほど渦電流損の低減効果が享受でき、良好な鉄損が得られるため、母材鋼板の好ましい板厚の上限は0.30mmである。一方、0.17mm未満の母材鋼板を製造するには特殊な設備が必要になり、製造コストアップ等、生産面で好ましくない。従って、工業的に好ましい板厚の下限は0.17mmである。好ましくは、0.18~0.23mmである。
(plate thickness)
The thickness of the base steel plate of the grain-oriented electrical steel sheet according to this embodiment is not limited, but when considering application to the core of a transformer that requires low iron loss and low noise, it is 0.17~ Preferably, it is 0.30 mm.
The thinner the plate thickness is, the more the effect of reducing eddy current loss can be enjoyed, and the better the iron loss can be obtained. Therefore, the upper limit of the preferable plate thickness of the base steel plate is 0.30 mm. On the other hand, special equipment is required to manufacture a base steel plate with a thickness of less than 0.17 mm, which is unfavorable in terms of production, such as increased manufacturing costs. Therefore, the lower limit of the industrially preferable plate thickness is 0.17 mm. Preferably it is 0.18 to 0.23 mm.
<フォルステライト皮膜>
 本実施形態に係る方向性電磁鋼板は、母材鋼板の表面に、フォルステライト皮膜(グラス皮膜ともいう場合がある)が形成されている。フォルステライト皮膜は公知の皮膜であればよい。一般にはケイ酸マグネシウムを主成分とする無機質の皮膜である。
 フォルステライト皮膜は、仕上げ焼鈍において、母材鋼板の表面に塗布されたマグネシア(MgO)を含む焼鈍分離剤と母材鋼板の表面の成分とが反応することにより形成され、焼鈍分離剤及び母材鋼板の成分に由来する組成を有し、主相である(50面積%以上である)MgSiO相と、MgAl2相とを含む組織からなる。これらの相以外には、析出物が1%以下程度含まれる場合がある。
<Forsterite film>
In the grain-oriented electrical steel sheet according to this embodiment, a forsterite film (also referred to as a glass film) is formed on the surface of the base steel sheet. The forsterite film may be any known film. Generally, it is an inorganic film whose main component is magnesium silicate.
The forsterite film is formed during finish annealing when an annealing separator containing magnesia (MgO) applied to the surface of the base steel plate reacts with components on the surface of the base steel plate, and the annealing separator and base metal It has a composition derived from the components of the steel plate, and consists of a structure containing four Mg 2 SiO phases (50 area % or more) as the main phase and four MgAl 2 O phases. Other than these phases, about 1% or less of precipitates may be included.
<絶縁皮膜>
 本実施形態に係る方向性電磁鋼板では、フォルステライト皮膜の表面に、絶縁皮膜(張力付与絶縁皮膜)が形成されている。絶縁皮膜は当技術分野で用いられる公知の皮膜であればよい。
 絶縁皮膜は、方向性電磁鋼板に電気絶縁性を付与することで渦電流損を低減して、方向性電磁鋼板の鉄損特性を向上させる(鉄損を低下させる)。また、絶縁皮膜によれば、上記のような電気絶縁性以外にも、耐蝕性、耐熱性、すべり性といった種々の特性が得られる。更に、絶縁皮膜は、方向性電磁鋼板に張力を付与するという機能を有する。方向性電磁鋼板に張力を付与して、方向性電磁鋼板における磁壁移動を容易にすることで、方向性電磁鋼板の鉄損を低下(鉄損特性を向上)させることができる。絶縁皮膜は、例えば、金属リン酸塩とシリカとを主成分とするコーティング液をフォルステライト皮膜の表面に塗布し、焼付けることによって形成される。
<Insulating film>
In the grain-oriented electrical steel sheet according to this embodiment, an insulating film (tension-providing insulating film) is formed on the surface of the forsterite film. The insulating film may be any known film used in the art.
The insulating film reduces eddy current loss by imparting electrical insulation to the grain-oriented electrical steel sheet, thereby improving the core loss characteristics of the grain-oriented electrical steel sheet (reducing core loss). Furthermore, in addition to the above-mentioned electrical insulation properties, the insulating film provides various properties such as corrosion resistance, heat resistance, and slip properties. Furthermore, the insulating film has the function of imparting tension to the grain-oriented electrical steel sheet. By applying tension to the grain-oriented electrical steel sheet to facilitate domain wall movement in the grain-oriented electrical steel sheet, the iron loss of the grain-oriented electrical steel sheet can be reduced (the iron loss characteristics can be improved). The insulating film is formed, for example, by applying a coating liquid containing metal phosphate and silica as main components to the surface of the forsterite film and baking it.
<製造方法>
 本実施形態に係る方向性電磁鋼板は、以下の工程を含む製造方法によって製造できる。
(i)所定の化学組成を有する鋼片を、熱間圧延して熱延板(熱延鋼板)を得る熱間圧延工程
(ii)前記熱延板に、冷間圧延を施して冷延板(冷延鋼板)を得る冷延工程
(iii)前記冷延板に脱炭焼鈍を行う脱炭焼鈍工程
(iv)前記脱炭焼鈍工程後の前記冷延板に、MgOを含有する焼鈍分離剤を塗布した後、コイル状に巻き取り、仕上げ焼鈍を行う仕上げ焼鈍工程
(v)前記仕上げ焼鈍後の前記冷延板の表面に絶縁皮膜を形成して方向性電磁鋼板を得る絶縁皮膜形成工程
(vi)前記絶縁皮膜を備える方向性電磁鋼板にレーザ照射を行うレーザ照射工程
 また、本実施形態に係る方向性電磁鋼板の製造方法は、さらに以下の工程を備えてもよい。
(I)前記熱延板を焼鈍する熱延板焼鈍工程
(II)前記冷延板の窒素量を高める窒化処理工程
 本実施形態に係る方向性電磁鋼板の製造方法では、上記の(iv)仕上げ焼鈍工程、及び(vi)レーザ照射工程に特徴がある。これらの工程における好ましい条件を以下に説明する。それ以外の工程においては、公知の方向性電磁鋼板の製造条件を適用することができる。
 それぞれの工程について説明する。
<Manufacturing method>
The grain-oriented electrical steel sheet according to this embodiment can be manufactured by a manufacturing method including the following steps.
(i) Hot rolling step of hot rolling a steel billet having a predetermined chemical composition to obtain a hot rolled sheet (hot rolled steel sheet) (ii) Cold rolling the hot rolled sheet to obtain a cold rolled sheet (iii) A decarburization annealing step of subjecting the cold rolled sheet to decarburization annealing (iv) An annealing separator containing MgO to the cold rolled sheet after the decarburization annealing step (v) A final annealing step in which the material is coated, wound into a coil shape, and final annealed (v) An insulating film forming step (v) in which an insulating film is formed on the surface of the cold rolled sheet after the final annealing to obtain a grain-oriented electrical steel sheet ( vi) Laser irradiation step of irradiating the grain-oriented electrical steel sheet provided with the insulating film with a laser Further, the method for manufacturing a grain-oriented electrical steel sheet according to the present embodiment may further include the following steps.
(I) A hot-rolled plate annealing step for annealing the hot-rolled sheet (II) A nitriding step for increasing the amount of nitrogen in the cold-rolled sheet In the method for manufacturing a grain-oriented electrical steel sheet according to the present embodiment, the above (iv) finishing It is characterized by the annealing process and (vi) laser irradiation process. Preferred conditions in these steps will be explained below. In other steps, known manufacturing conditions for grain-oriented electrical steel sheets can be applied.
Each process will be explained.
(熱間圧延工程)
 熱間圧延工程では、スラブ等の鋼片を、加熱した後に熱間圧延し、熱延板を得る。鋼片の加熱温度は、特に限定しないが1100~1450℃の範囲内とすることが好ましい。
 熱間圧延条件については、特に限定されず、求められる特性に基づいて適宜設定すればよい。熱間圧延によって得られる熱延板の板厚は、例えば、2.0~3.0mmの範囲内であることが好ましい。
 鋼片の化学組成は、熱間圧延工程後の製造工程を考慮した上(各工程での化学組成の変化を考慮した上)で、上述した母材鋼板の化学組成を得るために好ましい範囲とすればよい。
(Hot rolling process)
In the hot rolling process, a steel piece such as a slab is heated and then hot rolled to obtain a hot rolled plate. The heating temperature of the steel piece is not particularly limited, but it is preferably within the range of 1100 to 1450°C.
The hot rolling conditions are not particularly limited and may be appropriately set based on the required characteristics. The thickness of the hot rolled sheet obtained by hot rolling is preferably within the range of 2.0 to 3.0 mm, for example.
The chemical composition of the steel slab should be set in a preferable range to obtain the chemical composition of the base steel plate mentioned above, taking into account the manufacturing process after the hot rolling process (taking into account changes in the chemical composition in each process). do it.
(熱延板焼鈍工程)
 熱延板焼鈍工程は、熱間圧延工程を経て製造された熱延板を焼鈍する工程である。このような焼鈍処理を施すことで、鋼板組織に再結晶が生じ、良好な磁気特性を実現することが可能となる。そのため、実施してもよい。
 熱延板焼鈍を行う場合、公知の方法に従い、熱間圧延工程を経て製造された熱延板を焼鈍すればよい。焼鈍条件については、特に限定されるものではないが、例えば、熱延板に対して、900~1200℃の温度域で10秒~5分間の焼鈍を行うことができる。焼鈍に際して熱延板を加熱する手段についても、特に限定されるものではなく、公知の加熱方式を採用することが可能である。途中で焼鈍温度を変更する二段階焼鈍としてもよい。
(Hot rolled plate annealing process)
The hot rolled sheet annealing process is a process of annealing a hot rolled sheet manufactured through a hot rolling process. By performing such an annealing treatment, recrystallization occurs in the steel sheet structure, making it possible to realize good magnetic properties. Therefore, it may be implemented.
When hot-rolled sheet annealing is performed, a hot-rolled sheet manufactured through a hot rolling process may be annealed according to a known method. The annealing conditions are not particularly limited, but, for example, the hot rolled sheet can be annealed in a temperature range of 900 to 1200° C. for 10 seconds to 5 minutes. The means for heating the hot-rolled sheet during annealing is also not particularly limited, and any known heating method may be employed. Two-stage annealing may be performed in which the annealing temperature is changed midway through.
(冷間圧延工程)
 冷間圧延工程では、熱延板焼鈍工程後の熱延板に対して、複数のパスを含む冷間圧延を実施し、冷延板を得る。冷間圧延は、1回の(中間焼鈍を挟まない一連の)冷間圧延でもよく、冷延工程の最終パスの前に、冷延を中断し少なくとも1回または2回以上の中間焼鈍を実施して、中間焼鈍をはさむ複数回の冷間圧延を施してもよい。
 中間焼鈍を行う場合、1000~1200℃の温度に5~180秒保持することが好ましい。焼鈍雰囲気は特には限定されない。中間焼鈍の回数は製造コストを考慮すると3回以内が好ましい。
 冷間圧延工程では、公知の方法に従い、熱延板を冷間圧延し、冷延板とすればよい。例えば、最終圧下率は、80~95%の範囲内とすることができる。最終圧下率を80~95%とすることで、{110}<001>方位が圧延方向に高い集積度をもつGoss核を得るとともに、二次再結晶の不安定化を抑制することができる。
 最終圧下率とは、冷間圧延の累積圧下率であり、中間焼鈍を行う場合には、最終中間焼鈍後の冷間圧延の累積圧下率である。
 また、冷間圧延工程の前に、熱延板の表面に対して公知の条件で酸洗を施してもよい。
(cold rolling process)
In the cold rolling step, the hot rolled sheet after the hot rolled sheet annealing step is subjected to cold rolling including a plurality of passes to obtain a cold rolled sheet. The cold rolling may be a single cold rolling (a series of cold rolling without intervening intermediate annealing), or before the final pass of the cold rolling process, the cold rolling is interrupted and at least one or two or more intermediate annealings are performed. Then, cold rolling may be performed multiple times with intermediate annealing.
When performing intermediate annealing, it is preferable to maintain the temperature at 1000 to 1200°C for 5 to 180 seconds. The annealing atmosphere is not particularly limited. The number of times of intermediate annealing is preferably 3 times or less in consideration of manufacturing cost.
In the cold rolling step, the hot rolled sheet may be cold rolled to obtain a cold rolled sheet according to a known method. For example, the final rolling reduction can be in the range of 80-95%. By setting the final rolling reduction to 80 to 95%, it is possible to obtain Goss nuclei in which the {110}<001> orientation has a high degree of accumulation in the rolling direction, and to suppress destabilization of secondary recrystallization.
The final rolling reduction is the cumulative rolling reduction of cold rolling, and in the case of intermediate annealing, the final rolling reduction is the cumulative rolling reduction of cold rolling after the final intermediate annealing.
Further, before the cold rolling process, the surface of the hot rolled sheet may be pickled under known conditions.
(脱炭焼鈍工程)
 脱炭焼鈍工程では、冷延板に対して脱炭焼鈍を行う。脱炭焼鈍では、冷延板を一次再結晶させるととともに、磁気特性に悪影響を及ぼすCを鋼板から除去する。また、脱炭焼鈍工程では、後述する仕上げ焼鈍時に得られる二次再結晶粒を微細にするため、Goss核を増加させる。粒界自体が磁極(漏れ磁束の生成サイト)としての機能を有することを考えれば、二次再結晶粒の微細化により、系全体の静磁エネルギは高まる。すなわち、磁区細分化のドライビングフォースが高い状態になる。
 脱炭焼鈍の条件は公知の範囲でよいが、例えば、湿水素、窒素雰囲気中で、焼鈍温度750~900℃で、10~600秒保持を行う条件が例示される。鉄損と騒音とのバランスを考慮した平均粒径の制御の点では、脱炭焼鈍温度は835~845℃程度が最適である。
(Decarburization annealing process)
In the decarburization annealing step, the cold rolled sheet is decarburized and annealed. In decarburization annealing, the cold-rolled sheet is primarily recrystallized, and C, which has an adverse effect on magnetic properties, is removed from the steel sheet. Further, in the decarburization annealing step, the number of Goss nuclei is increased in order to make secondary recrystallized grains obtained during final annealing described later finer. Considering that the grain boundaries themselves function as magnetic poles (sites where leakage magnetic flux is generated), the magnetostatic energy of the entire system increases as the secondary recrystallized grains become finer. That is, the driving force of magnetic domain refining becomes high.
The conditions for decarburization annealing may be within a known range, and examples include conditions in which the annealing temperature is 750 to 900° C. and held for 10 to 600 seconds in a wet hydrogen or nitrogen atmosphere. In terms of controlling the average grain size in consideration of the balance between iron loss and noise, the optimal decarburization annealing temperature is about 835 to 845°C.
(窒化処理工程)
 窒化処理工程では、鋼板の窒素量を増加させる。窒化処理工程は、脱炭焼鈍工程中、脱炭焼鈍工程と仕上げ焼鈍工程との間、または仕上げ焼鈍工程の昇温過程であって二次再結晶開始まで、のいずれか1以上のタイミングで行われればよい。
 鋼板の窒素量を増加させる方法としては、窒化能のあるガスを含有する雰囲気中で焼鈍して、鋼板の窒素量を制御する方法や、仕上げ焼鈍工程の昇温過程で行う場合には、MnN等の窒化能のある粉末を焼鈍分離剤中に添加すること等により行う方法が例示される。
(Nitriding process)
In the nitriding process, the amount of nitrogen in the steel sheet is increased. The nitriding process is performed at one or more of the following timings: during the decarburization annealing process, between the decarburization annealing process and the final annealing process, or during the temperature increase process of the final annealing process until the start of secondary recrystallization. It's fine if you do it.
Methods for increasing the amount of nitrogen in a steel sheet include controlling the amount of nitrogen in the steel sheet by annealing it in an atmosphere containing a gas capable of nitriding; An example of this method is to add a powder capable of nitriding, such as, into an annealing separator.
(仕上げ焼鈍工程)
 仕上げ焼鈍工程では、脱炭焼鈍工程で得られた、またはさらに窒化処理が行われた、冷延板の片面または両面に対して所定の焼鈍分離剤を塗布した後に、コイル状に巻き取り、仕上げ焼鈍を行う。
 本実施形態に係る方向性電磁鋼板の製造に際しては、コイルに巻き取る際、鋼板(鋼帯)に一定以上の曲率を与える。これにより、圧延方向の粒界間の距離を制御し、粒界間の距離が3.0~13.0mmである結晶粒の面積率を高める。
 曲率を与える方法としては、以下の2つの方法がある。
(a)巻き取りの際、鋼板間にスペーサを配置する。
(b)焼鈍分離剤の塗布量を周期的に変化させる。
 以下、(a)及び(b)について説明する。
 (a)や(b)を行わなくてもコイルとなる際に鋼板には曲率が付与される。また、コイルの内側では外側に比べて大きな曲率が付与される。しかしながら、通常行われる巻き取りでは曲率が比較的大きいコイルの内側であっても本実施形態に係る方向性電磁鋼板を得るために十分な曲率を鋼板に付与することはできない。
(Final annealing process)
In the final annealing process, a predetermined annealing separator is applied to one or both sides of the cold-rolled sheet obtained in the decarburization annealing process or which has been further nitrided, and then wound into a coil shape and finished. Perform annealing.
When manufacturing the grain-oriented electrical steel sheet according to the present embodiment, a certain curvature or more is given to the steel sheet (steel strip) when it is wound into a coil. Thereby, the distance between grain boundaries in the rolling direction is controlled, and the area ratio of crystal grains having a distance between grain boundaries of 3.0 to 13.0 mm is increased.
There are two methods for giving curvature:
(a) During winding, a spacer is placed between the steel plates.
(b) Periodically changing the amount of annealing separator applied.
Below, (a) and (b) will be explained.
Even without performing (a) or (b), a curvature is imparted to the steel plate when it is made into a coil. Moreover, a larger curvature is given to the inside of the coil than to the outside. However, in normal winding, it is not possible to impart a sufficient curvature to the steel sheet to obtain the grain-oriented electrical steel sheet according to the present embodiment even on the inside of the coil, which has a relatively large curvature.
(a)鋼板間にスペーサを配置する
 この方法では、図3に示すように、鋼板1をコイル状に巻き取る際、スペーサ2としてセラミックの丸棒を巻取り方向に対して垂直に周期的に挿入し、鋼板の曲率を周期的に変化させる。鋼板は、鋼板の圧延方向に隣り合うスペーサ2に対し、表面、裏面、表面、裏面…と交互に接するように蛇行することで、曲率が付与される。
 曲率が小さいと、粒界間の距離が3.0~13.0mmである結晶粒の面積率を十分に高めることができない。一方で、曲率が大きすぎると、好ましい結晶方位が得られず、磁気特性が劣化する。所定の曲率を得るため、スペーサ2(セラミックの丸棒)の直径(φ)は3~20mmとし、鋼板1の圧延方向に対し、スペーサ2の間隔(図3ではL1)は、15~100mmとする。
(a) Arranging spacers between steel plates In this method, as shown in Fig. 3, when winding a steel plate 1 into a coil, ceramic round bars are placed as spacers 2 periodically perpendicular to the winding direction. The curvature of the steel plate is changed periodically. The steel plate is given a curvature by meandering so as to alternately touch the front surface, the back surface, the front surface, the back surface, etc. with respect to the spacers 2 adjacent to each other in the rolling direction of the steel plate.
If the curvature is small, the area ratio of crystal grains having a distance between grain boundaries of 3.0 to 13.0 mm cannot be sufficiently increased. On the other hand, if the curvature is too large, a preferable crystal orientation cannot be obtained and the magnetic properties deteriorate. In order to obtain a predetermined curvature, the diameter (φ) of the spacer 2 (ceramic round bar) is 3 to 20 mm, and the interval between the spacers 2 (L1 in FIG. 3) is 15 to 100 mm with respect to the rolling direction of the steel plate 1. do.
(b)焼鈍分離剤の塗布量を周期的に変化させる
 この方法では、図4に示すように、焼鈍分離剤3の塗布量(厚み)を変化させることで、鋼板が圧延方向に沿って波状になるようにする。
 一定の曲率を付与するため、鋼板1の圧延方向に対し、15~100mmの周期(図4中ではL2)で、波高さ(図4中ではh)が3~20mm変化するように焼鈍分離剤3を塗布(配置)する。
(b) Periodically changing the amount of annealing separator 3 applied In this method, as shown in Fig. 4, by changing the amount (thickness) of the annealing separator 3 applied, the steel plate becomes wavy along the rolling direction. so that it becomes
In order to impart a constant curvature, the annealing separator is applied so that the wave height (h in FIG. 4) changes by 3 to 20 mm at a period of 15 to 100 mm (L2 in FIG. 4) with respect to the rolling direction of the steel plate 1. Apply (place) 3.
 焼鈍分離剤は、コイルの巻きの内と外との焼付きの防止を目的として、及び、フォルステライト皮膜を形成するため、冷延板に塗布される。
 本実施形態に係る方向性電磁鋼板の製造方法では、塗布する焼鈍分離剤として、MgOを主成分(例えばで80質量%以上含む)とする焼鈍分離剤を用いる。MgOを主成分とする焼鈍分離剤を用いることで、母材鋼板の表面にフォルステライト皮膜を形成することができる。MgOを主成分としない場合には、一次皮膜(フォルステライト皮膜)は形成されない。なぜならば、フォルステライト皮膜はMgSiOまたはMgAl化合物で、形成反応に必要なMgが欠乏するからである。
 焼鈍分離剤には、さらにTiOを含んでもよい。TiOを含むことで、グラス皮膜の形成不良を抑制するという効果が得られる。TiOの含有量は例えば、0~10質量%である。
 焼鈍分離剤は、水と混合してスラリー状にして鋼板に塗布することができる。
The annealing separator is applied to the cold-rolled sheet for the purpose of preventing seizure between the inside and outside of the windings of the coil and to form a forsterite film.
In the method for manufacturing a grain-oriented electrical steel sheet according to the present embodiment, an annealing separator containing MgO as a main component (for example, containing 80% by mass or more) is used as the annealing separator to be applied. By using an annealing separator containing MgO as a main component, a forsterite film can be formed on the surface of the base steel plate. If MgO is not the main component, no primary film (forsterite film) is formed. This is because the forsterite film is a Mg 2 SiO 4 or MgAl 2 O 4 compound and lacks Mg necessary for the formation reaction.
The annealing separator may further contain TiO 2 . Including TiO 2 has the effect of suppressing formation defects of the glass film. The content of TiO 2 is, for example, 0 to 10% by mass.
The annealing separator can be mixed with water to form a slurry and applied to the steel plate.
 コイル状に巻き取った後は、仕上げ焼鈍を行う。例えば水素及び窒素を含有する雰囲気ガス中で、1150~1250℃まで昇温し、その温度域で10~60時間保持する。 After winding into a coil, finish annealing is performed. For example, the temperature is raised to 1150 to 1250° C. in an atmospheric gas containing hydrogen and nitrogen, and the temperature is maintained in that temperature range for 10 to 60 hours.
(絶縁皮膜形成工程)
 絶縁皮膜形成工程では、仕上げ焼鈍後の冷延板の片面又は両面に対し、絶縁皮膜(張力付与絶縁皮膜)を形成する。絶縁皮膜の形成の条件については、特に限定されるものではなく、公知の絶縁皮膜処理液を用いて、公知の方法により処理液の塗布及び乾燥を行えばよい。鋼板表面に絶縁皮膜を形成することで、方向性電磁鋼板の磁気特性を更に向上させることが可能となる。
 絶縁皮膜が形成される鋼板の表面は、処理液を塗布する前に、アルカリなどによる脱脂処理や、塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施された表面であってもよいし、これら前処理が施されない仕上げ焼鈍後のままの表面であってもよい。
 鋼板の表面に形成される絶縁皮膜は、方向性電磁鋼板の絶縁皮膜として用いられるものであれば、特に限定されるものではなく、公知の絶縁皮膜を用いることが可能である。このような絶縁皮膜として、例えば、リン酸塩およびコロイダルシリカを主成分とする皮膜を挙げることができる。また、無機物を主体とし、更に有機物を含んだ複合絶縁皮膜を挙げることができる。ここで、複合絶縁皮膜とは、例えば、クロム酸金属塩、リン酸金属塩又はコロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくとも何れかを主体とし、微細な有機樹脂の粒子が分散している絶縁皮膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩やZrあるいはTiのカップリング剤、又は、これらの炭酸塩やアンモニウム塩を出発物質として用いた絶縁皮膜が用いられることがある。
(Insulating film formation process)
In the insulating film forming step, an insulating film (tension-applying insulating film) is formed on one or both sides of the cold-rolled sheet after finish annealing. The conditions for forming the insulating film are not particularly limited, and a known insulating film treatment liquid may be used to apply and dry the treatment liquid by a known method. By forming an insulating film on the surface of the steel sheet, it is possible to further improve the magnetic properties of the grain-oriented electrical steel sheet.
The surface of the steel plate on which the insulating film will be formed must have undergone any pretreatment such as degreasing with alkali or pickling with hydrochloric acid, sulfuric acid, phosphoric acid, etc. before applying the treatment solution. Alternatively, the surface may be as it is after finish annealing without being subjected to any of these pre-treatments.
The insulating film formed on the surface of the steel sheet is not particularly limited as long as it can be used as an insulating film for grain-oriented electrical steel sheets, and any known insulating film can be used. Examples of such an insulating film include a film containing phosphate and colloidal silica as main components. Further, a composite insulating film mainly composed of an inorganic substance and further containing an organic substance can be mentioned. Here, the composite insulating film is composed mainly of at least one of metal chromates, metal phosphates, or inorganic substances such as colloidal silica, Zr compounds, and Ti compounds, with fine organic resin particles dispersed therein. It is an insulating film. In particular, from the perspective of reducing the environmental impact during manufacturing, which has been an increasing need in recent years, insulating films using metal phosphates, Zr or Ti coupling agents, or carbonate or ammonium salts of these as starting materials are becoming more important. Sometimes used.
(レーザ照射工程)
 レーザ照射工程では、絶縁皮膜が形成された方向性電磁鋼板に対し、レーザビームを照射し、磁区制御を行う。これにより磁気特性を向上させることができる。
 レーザ照射条件としては、例えば、レーザ投入エネルギUaを、1.0~4.0mJ/mmとし、レーザパワー密度Ipを、500~4000W/mmとする。また、レーザビームは、圧延方向に対し交差する方向(例えば圧延方向に対し60~120°の方向)に延在するように(好ましくは鋼板の幅方向端部からもう一方の端部に亘って)照射し、圧延方向の間隔PLが3~10mmとなるように、かつ、それぞれの照射方向が略平行になるように複数回(好ましくは鋼板の全長に亘って)照射する。
 Uaが1.0mJ/mm未満、またはIpが500W/mm未満ではでは十分な磁区細分化効果が得られない。一方、Uaが4.0mJ/mm超またはIpが4000W/mm超では騒音特性が劣化する。これは還流磁区が多く発生するためであると考えられる。Ipは好ましくは、2000W/mm以下である。
(Laser irradiation process)
In the laser irradiation process, a laser beam is irradiated onto a grain-oriented electrical steel sheet on which an insulating film has been formed to perform magnetic domain control. This allows the magnetic properties to be improved.
As the laser irradiation conditions, for example, the laser input energy Ua is 1.0 to 4.0 mJ/mm 2 and the laser power density Ip is 500 to 4000 W/mm 2 . Further, the laser beam is arranged so as to extend in a direction crossing the rolling direction (for example, at an angle of 60 to 120 degrees to the rolling direction) (preferably from one end in the width direction of the steel sheet to the other end). ) The steel plate is irradiated multiple times (preferably over the entire length of the steel sheet) so that the interval PL in the rolling direction is 3 to 10 mm and the respective irradiation directions are substantially parallel.
If Ua is less than 1.0 mJ/mm 2 or Ip is less than 500 W/mm 2 , a sufficient magnetic domain refining effect cannot be obtained. On the other hand, if Ua exceeds 4.0 mJ/mm 2 or Ip exceeds 4000 W/mm 2 , the noise characteristics deteriorate. This is thought to be due to the generation of many reflux magnetic domains. Ip is preferably 2000 W/mm 2 or less.
 以下、実施例によって本発明に係る方向性電磁鋼板について具体的に説明する。以下に示す実施例は一例にすぎず、本発明に係る方向性電磁鋼板が下記の例に限定されるものではない。 Hereinafter, the grain-oriented electrical steel sheet according to the present invention will be specifically explained using Examples. The examples shown below are merely examples, and the grain-oriented electrical steel sheet according to the present invention is not limited to the examples below.
<実施例1>
 C:0.055%、Si:0.86~3.15%、Mn:0.14%、S:0.007%、sol.Al:0.027%、Cr:0.12%、N:0.0075%を含み、残部Fe及び不純物からなる鋼スラブを1150℃に加熱後、熱間圧延を行い、板厚が2.3mmの熱延板とした。
 次いでこの熱延板を熱延板焼鈍した。熱延板焼鈍では、1120℃に加熱して180秒保持した後、900℃に降温し、その温度で120秒保持した。その後、100℃の熱湯を用いて急冷した。
 その後、酸洗した後、冷間圧延を行い、板厚が0.23mmの冷延板とした。
 次いで、この冷延板(鋼板)に、湿水素、窒素雰囲気中で表1に記載の温度に加熱し、150秒保持する脱炭焼鈍を行った。
 脱炭焼鈍後、冷延板を、N:25%、H:75%からなる雰囲気にNHを添加した雰囲気において、750℃に加熱し、その温度で30秒保持することで、鋼板のN含有量を180ppmに高める窒化処理を行った。
 窒化処理後、MgOとTiOとを主成分とし、Na、B、Clなどを含む公知の焼鈍分離剤を塗布し、1200℃で20時間保持する仕上げ焼鈍を行った。その際、スペーサを鋼板と鋼板の間へ一定の間隔で配置することで、鋼板は波状になるようにしつつ鋼板をコイル状に巻き取った上で、仕上げ焼鈍を行った。スペーサ(セラミック棒)の直径、配置の間隔は表1の通りとした。仕上げ焼鈍後、表面にはフォルステライト皮膜が形成されていた。
 仕上げ焼鈍後、この鋼板(母材鋼板の表面にフォルステライト皮膜が形成された鋼板)の表面に、無水クロム酸と燐酸アルミニウムとを主成分とするコーティング液を塗布し、焼き付け焼鈍を行うことで、絶縁皮膜を形成した。
 その後、絶縁皮膜が形成された鋼板の表面に、レーザビームを照射することで、磁区細分化(磁区制御)を行った。その際、レーザの投入エネルギ及びレーザパワー密度は表1の通りとした。レーザビームの走査方向(照射痕の延在方向)は、圧延方向に対して90°の方向とし、隣り合うレーザビームの照射位置の圧延方向の間隔(複数の線状の歪の圧延方向の間隔となる)は、4mmとした。
<Example 1>
C: 0.055%, Si: 0.86-3.15%, Mn: 0.14%, S: 0.007%, sol. A steel slab containing Al: 0.027%, Cr: 0.12%, N: 0.0075%, and the balance consisting of Fe and impurities was heated to 1150°C and then hot rolled to a plate thickness of 2.3 mm. It was made into a hot rolled sheet.
Next, this hot-rolled sheet was annealed. In hot-rolled sheet annealing, the sheet was heated to 1120°C and held for 180 seconds, then lowered to 900°C and held at that temperature for 120 seconds. Thereafter, it was rapidly cooled using hot water at 100°C.
Thereafter, after pickling, cold rolling was performed to obtain a cold rolled plate having a thickness of 0.23 mm.
Next, this cold-rolled sheet (steel sheet) was subjected to decarburization annealing in which the temperature was heated to the temperature listed in Table 1 in a wet hydrogen and nitrogen atmosphere and held for 150 seconds.
After decarburization annealing, the cold rolled sheet is heated to 750° C. in an atmosphere consisting of 25% N 2 and 75% H 2 with NH 3 added, and held at that temperature for 30 seconds to form a steel sheet. A nitriding treatment was performed to increase the N content to 180 ppm.
After the nitriding treatment, a known annealing separator containing MgO and TiO 2 as main components and containing Na, B, Cl, etc. was applied, and final annealing was performed at 1200° C. for 20 hours. At that time, spacers were placed between the steel plates at regular intervals so that the steel plates became wavy, and the steel plates were wound into a coil shape, and then finish annealing was performed. The diameter of the spacer (ceramic rod) and the spacing between the spacers were as shown in Table 1. After final annealing, a forsterite film was formed on the surface.
After finishing annealing, a coating liquid containing chromic anhydride and aluminum phosphate as main components is applied to the surface of this steel plate (a steel plate with a forsterite film formed on the surface of the base steel plate), and baking annealing is performed. , an insulating film was formed.
Thereafter, the surface of the steel plate on which the insulating film was formed was irradiated with a laser beam to perform magnetic domain refinement (magnetic domain control). At that time, the laser input energy and laser power density were as shown in Table 1. The scanning direction of the laser beam (the direction in which the irradiation marks extend) is 90° to the rolling direction, and the interval in the rolling direction between adjacent laser beam irradiation positions (the interval in the rolling direction of multiple linear strains) ) was set to 4 mm.
 磁区制御後の鋼板(方向性電磁鋼板)に対し、上述の方法で、化学組成、圧延方向の粒界間の距離が3.0~13.0mmである結晶粒の割合、ランセットの面積率、ストライプ状の主磁区の幅、磁気特性(B8及びW17/50)、及びLvA200Hzの値を求めた。この時の磁区観察は消磁状態で行った。また、表面における圧延方向の平均粒径、圧延方向に鋼板の全域にわたって形成された圧延方向に4mm間隔で形成された線状の歪の幅(複数の線状の歪の平均)についても求めた。
 結果を表1に示す。
 各元素の含有量について、Si以外は表には示さないが、C含有量は0.014~0.055%、S含有量は0.001~0.007%、sol.Al含有量は0.011~0.027%、N含有量は0.0049~0.0075%であった。Mn含有量、Cr含有量はスラブの段階と比べて大きな変化は見られなかった。
The steel sheet after magnetic domain control (grain-oriented electrical steel sheet) is subjected to the above-mentioned method to determine the chemical composition, the proportion of crystal grains with a distance between grain boundaries in the rolling direction of 3.0 to 13.0 mm, the area ratio of lancets, The width of the striped main magnetic domain, the magnetic properties (B8 and W17/50), and the value of LvA200Hz were determined. The magnetic domain observation at this time was performed in a demagnetized state. In addition, the average grain size in the rolling direction on the surface and the width of linear strains formed at 4 mm intervals in the rolling direction over the entire area of the steel plate (average of multiple linear strains) were also determined. .
The results are shown in Table 1.
The contents of each element are not shown in the table except for Si, but the C content is 0.014 to 0.055%, the S content is 0.001 to 0.007%, and sol. The Al content was 0.011 to 0.027%, and the N content was 0.0049 to 0.0075%. No major changes were observed in the Mn content and Cr content compared to the slab stage.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、本発明例では、母材鋼板の表面の、圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の、面積率が70%以上であり、800A/mの磁化力で発生する磁束密度であるB8が1.88T以上であり、W17/50が、単位W/kgで、13.1×t-4.3×t+1.2以下であり、LvA200Hzが60~78dBAである。照射痕上に微細粒は生じていなかった。
 これに対して、比較例では、上記の1つ以上が本発明範囲を外れ、鉄損と騒音とを同時に十分に低減できていない。
 例えばNo.12では、脱炭焼鈍温度がやや低く、Ipが1100W/mmにもかかわらず、平均粒径が2.8mmと小さく、それに伴い圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の面積割合が小さかった。また、B8が低く、鉄損が高く、LvA200Hzが高くなった。
 No.13では脱炭焼鈍温度がやや高く、平均粒径が20.2mmと大きく、それに伴い圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の面積割合が小さかった。その結果LvA200Hzが高かった。
 No.16では、レーザ投入エネルギUaが4.1mJ/mmと比較的高く、その結果LvA200Hzが高かった。
 No.17でもレーザ投入エネルギUaが4.4mJ/mmと比較的高く、その結果LvA200Hzが高かった。
 No.19ではスペーサの直径、スペーサの間隔が好ましい範囲になかったことで、平均粒径が21.2mmと大きく、圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の面積割合が小さかった。その結果LvA200Hzが高かった。
 No.20ではレーザパワー密度Ipが200W/mと低く、圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の面積割合が小さかった。その結果、鉄損が高かった。
As can be seen from Table 1, in the example of the present invention, the area ratio of crystal grains on the surface of the base steel sheet where the distance between grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less is 70%. As above, B8, which is the magnetic flux density generated by a magnetizing force of 800 A/m, is 1.88 T or more, and W17/50 is 13.1×t 2 −4.3×t+1. 2 or less, and LvA200Hz is 60 to 78 dBA. No fine grains were observed on the irradiation marks.
On the other hand, in the comparative example, one or more of the above points were outside the scope of the present invention, and iron loss and noise could not be sufficiently reduced at the same time.
For example, No. In No. 12, the decarburization annealing temperature is slightly low, and although the Ip is 1100 W/ mm2 , the average grain size is as small as 2.8 mm, and accordingly, the distance between grain boundaries of grains in the rolling direction is 3.0 mm or more. The area ratio of crystal grains having a diameter of 13.0 mm or less was small. In addition, B8 was low, iron loss was high, and LvA200Hz was high.
No. In No. 13, the decarburization annealing temperature is slightly high, the average grain size is as large as 20.2 mm, and accordingly, the area ratio of crystal grains in which the distance between the grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less is It was small. As a result, LvA200Hz was high.
No. In No. 16, the laser input energy Ua was relatively high at 4.1 mJ/mm 2 , and as a result, the LvA of 200 Hz was high.
No. In No. 17 as well, the laser input energy Ua was relatively high at 4.4 mJ/mm 2 , and as a result, the LvA of 200 Hz was high.
No. In No. 19, the diameter of the spacer and the interval between the spacers were not within the preferred range, so the average grain size was as large as 21.2 mm, and the distance between grain boundaries of grains in the rolling direction was 3.0 mm or more and 13.0 mm or less. The area ratio of crystal grains was small. As a result, LvA200Hz was high.
No. In No. 20, the laser power density Ip was as low as 200 W/m 2 , and the area ratio of crystal grains in which the distance between grain boundaries in the rolling direction was 3.0 mm or more and 13.0 mm or less was small. As a result, iron loss was high.
<実施例2>
 C:0.070%、Si:3.08~3.24%、Mn:0.09%、S:0.006%、sol.Al:0.026%、Cr:0.11%、N:0.0076%を含み、残部Fe及び不純物からなる鋼スラブを1140℃に加熱し、熱間圧延して板厚が2.4mmの熱延板とした。
 次いでこの熱延板を熱延板焼鈍した。熱延板焼鈍では、1120℃に加熱して180秒保持した後、900℃に降温し、その温度で120秒保持した。その後、100℃の熱湯を用いて急冷した。
 その後、酸洗した後、冷間圧延を行い、板厚が0.23mmの冷延板とした。
 次いで、この冷延板(鋼板)に、湿水素、窒素雰囲気中で表2に記載の温度に加熱し、150秒保持する脱炭焼鈍を行った。
 脱炭焼鈍後、MgOとTiOとを主成分とし、Na、B、Clなどを含む公知の焼鈍分離剤を塗布し、1200℃で20時間保持する仕上げ焼鈍を行った。その際、図4に示すように、焼鈍分離剤を鋼板と鋼板の間へ一定の間隔で厚みが変化するように分布させた上で、鋼板をコイル状に巻き取って、仕上げ焼鈍を行った。焼鈍分離剤は、鋼板が、表2に示す波周期(圧延方向)で波高さが変化するような波状となるように、厚みを変化させて塗布した。仕上げ焼鈍後、表面にはフォルステライト皮膜が形成されていた。
 仕上げ焼鈍後、この鋼板(母材鋼板の表面にフォルステライト皮膜が形成された鋼板)の表面に、無水クロム酸、燐酸アルミニウムを主成分とするコーティング液を塗布し、焼き付け焼鈍を行うことで、絶縁皮膜を形成した。
 その後、絶縁皮膜が形成された鋼板の表面に、レーザビームを照射することで、磁区細分化(磁区制御)を行った。その際、レーザの投入エネルギ及びレーザパワー密度は表2の通りとした。レーザビームの走査方向(照射痕の延在方向)は、圧延方向に対して90°の方向とし、隣り合うレーザビームの照射位置の圧延方向の間隔は、4mmとした。
<Example 2>
C: 0.070%, Si: 3.08-3.24%, Mn: 0.09%, S: 0.006%, sol. A steel slab containing Al: 0.026%, Cr: 0.11%, N: 0.0076%, with the remainder Fe and impurities was heated to 1140°C and hot rolled to a plate thickness of 2.4 mm. It was made into a hot rolled sheet.
Next, this hot-rolled sheet was annealed. In hot-rolled sheet annealing, the sheet was heated to 1120°C and held for 180 seconds, then lowered to 900°C and held at that temperature for 120 seconds. Thereafter, it was rapidly cooled using hot water at 100°C.
Thereafter, after pickling, cold rolling was performed to obtain a cold rolled plate having a thickness of 0.23 mm.
Next, this cold-rolled sheet (steel sheet) was subjected to decarburization annealing in which the temperature was heated to the temperature shown in Table 2 in a wet hydrogen and nitrogen atmosphere and held for 150 seconds.
After decarburization annealing, a known annealing separator containing MgO and TiO 2 as main components and containing Na, B, Cl, etc. was applied, and final annealing was performed at 1200° C. for 20 hours. At that time, as shown in Figure 4, an annealing separator was distributed between the steel plates so that the thickness varied at regular intervals, the steel plates were wound into a coil, and final annealing was performed. . The annealing separator was applied in varying thicknesses so that the steel plate would have a wavy shape with wave height varying in the wave period (in the rolling direction) shown in Table 2. After final annealing, a forsterite film was formed on the surface.
After finish annealing, a coating liquid containing chromic anhydride and aluminum phosphate as main components is applied to the surface of this steel plate (a steel plate with a forsterite film formed on the surface of the base steel plate), and baking annealing is performed. An insulating film was formed.
Thereafter, the surface of the steel plate on which the insulating film was formed was irradiated with a laser beam to perform magnetic domain refinement (magnetic domain control). At that time, the laser input energy and laser power density were as shown in Table 2. The scanning direction of the laser beam (extending direction of the irradiation marks) was set at 90° with respect to the rolling direction, and the interval between adjacent laser beam irradiation positions in the rolling direction was 4 mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 磁区制御後の鋼板(方向性電磁鋼板)に対し、上述の方法で、化学組成、圧延方向の粒界間の距離が3.0~13.0mmである結晶粒の割合、ランセットの面積率、ストライプ状の主磁区の幅、磁気特性(B8及びW17/50)、及びLvA200Hzの値を求めた。磁区観察は消磁状態で行った。また、表面における圧延方向の平均粒径、圧延方向に4mm間隔で形成された複数の線状の歪の幅(複数の線状の歪の平均)についても求めた。
 結果を表2に示す。
 各元素の含有量について、Si以外は表には示さないが、C含有量は、0.016~0.070%、S含有量は0.001~0.006%、sol.Al含有量は、0.010~0.026%、N含有量は0.0051~0.0076%であった。Mn含有量、Cr含有量はスラブの段階と大きな変化は見られなかった。
The steel sheet after magnetic domain control (grain-oriented electrical steel sheet) is subjected to the above-mentioned method to determine the chemical composition, the proportion of crystal grains with a distance between grain boundaries in the rolling direction of 3.0 to 13.0 mm, the area ratio of lancets, The width of the striped main magnetic domain, the magnetic properties (B8 and W17/50), and the value of LvA200Hz were determined. Magnetic domain observation was performed in a demagnetized state. In addition, the average grain size in the rolling direction on the surface and the width of a plurality of linear strains formed at 4 mm intervals in the rolling direction (average of a plurality of linear strains) were also determined.
The results are shown in Table 2.
The contents of each element other than Si are not shown in the table, but the C content is 0.016 to 0.070%, the S content is 0.001 to 0.006%, and the sol.Al content is , 0.010 to 0.026%, and the N content was 0.0051 to 0.0076%. No major changes were observed in the Mn content and Cr content compared to the slab stage.
 表2から分かるように、本発明例では、母材鋼板の表面の、圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の、面積率が70%以上であり、800A/mの磁化力で発生する磁束密度であるB8が1.88T以上であり、W17/50が、単位W/kgで、13.1×t-4.3×t+1.2以下であり、LvA200Hzが60~78dBAである。ここでは鋼板圧延方向に対し横切るようにレーザを照射したが、これにより照射痕上に微細粒は生じなかった。
 これに対して、比較例では、上記の1つ以上が本発明範囲を外れ、鉄損と騒音とを同時に十分に低減できていない。
 No.24では、脱炭焼鈍温度がやや低く、レーザパワー密度などが好ましい範囲に入っても圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の面積割合が小さかった。また、B8が低く、LvA200Hzが高く、W17/50が高かった。
 No.25では、脱炭焼鈍温度がやや高く、平均粒径が大きく、圧延方向の結晶粒の粒界間の距離が3.0~13.0mmの結晶粒の面積割合が低くかった。その結果、LvA200Hzが高かった。また、W17/50が高かった。
 No.26、No.27ではレーザ投入エネルギが大きく、その結果、LvA200Hzが高かった。また、W17/50が高かった。
 No.28では波周期が大きかったことで、平均粒径が大きく、圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の面積割合が小さかった。その結果、LvA200Hzが高かった。
As can be seen from Table 2, in the example of the present invention, the area ratio of crystal grains on the surface of the base steel plate, where the distance between grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less, is 70%. As above, B8, which is the magnetic flux density generated by a magnetizing force of 800 A/m, is 1.88 T or more, and W17/50 is 13.1×t 2 −4.3×t+1. 2 or less, and LvA200Hz is 60 to 78 dBA. Here, the laser was irradiated transversely to the rolling direction of the steel plate, but no fine grains were generated on the irradiation marks.
On the other hand, in the comparative example, one or more of the above points were outside the scope of the present invention, and iron loss and noise could not be sufficiently reduced at the same time.
No. In No. 24, even if the decarburization annealing temperature is slightly low and the laser power density is within a preferable range, the area ratio of crystal grains in which the distance between the grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less is It was small. Furthermore, B8 was low, LvA200Hz was high, and W17/50 was high.
No. In No. 25, the decarburization annealing temperature was slightly high, the average grain size was large, and the area ratio of crystal grains with a distance between grain boundaries in the rolling direction of 3.0 to 13.0 mm was low. As a result, LvA200Hz was high. Also, W17/50 was high.
No. 26, No. In No. 27, the laser input energy was large, and as a result, the LvA of 200 Hz was high. Also, W17/50 was high.
No. In No. 28, the wave period was large, so the average grain size was large, and the area ratio of crystal grains in which the distance between grain boundaries in the rolling direction was 3.0 mm or more and 13.0 mm or less was small. As a result, LvA200Hz was high.
 100 ランセット(還流磁区)
 1  鋼板
 2  スペーサ
 3  焼鈍分離剤
 L1  スペーサの間隔
 L2  周期
 h  波高さ
100 Lancet (reflux magnetic domain)
1 Steel plate 2 Spacer 3 Annealing separator L1 Spacer interval L2 Period h Wave height

Claims (5)

  1.  母材鋼板と、
     前記母材鋼板の表面に形成されたフォルステライト皮膜と、
     前記フォルステライト皮膜の表面に形成された絶縁皮膜と、
    を備え、
     前記母材鋼板の化学組成が、質量%で、Si:0.80~7.00%を含有し、
     前記母材鋼板の前記表面の、圧延方向の結晶粒の粒界間の距離が3.0mm以上13.0mm以下である結晶粒の、面積率が70%以上であり、
     800A/mの磁化力で発生する磁束密度であるB8が1.88T以上であり、
     前記母材鋼板の板厚を単位mmでtとしたとき、周波数が50Hz、最大磁束密度が1.7Tのときの鉄損であるW17/50が、単位W/kgで、13.1×t-4.3×t+1.2以下であり、
     磁歪波形の200Hz成分であるLvA200Hzが60~78dBAである、
    ことを特徴とする、方向性電磁鋼板。
    base material steel plate,
    a forsterite film formed on the surface of the base steel plate;
    an insulating film formed on the surface of the forsterite film;
    Equipped with
    The chemical composition of the base steel plate contains Si: 0.80 to 7.00% in mass %,
    The area ratio of crystal grains on the surface of the base material steel plate whose distance between grain boundaries in the rolling direction is 3.0 mm or more and 13.0 mm or less is 70% or more,
    B8, which is the magnetic flux density generated by a magnetizing force of 800 A/m, is 1.88 T or more,
    When the thickness of the base steel plate is expressed as t in mm, the iron loss W17/50 when the frequency is 50 Hz and the maximum magnetic flux density is 1.7 T is 13.1 x t in W/kg. 2 -4.3×t+1.2 or less,
    LvA200Hz, which is the 200Hz component of the magnetostrictive waveform, is 60 to 78 dBA,
    A grain-oriented electrical steel sheet characterized by:
  2.  前記母材鋼板の前記表面に、圧延方向に交差する方向に延在する複数の線状の歪が形成され、前記複数の線状の歪の前記圧延方向の間隔が3~10mmである、
    ことを特徴とする、請求項1に記載の方向性電磁鋼板。
    A plurality of linear strains extending in a direction intersecting the rolling direction are formed on the surface of the base steel plate, and an interval of the plurality of linear strains in the rolling direction is 3 to 10 mm.
    The grain-oriented electrical steel sheet according to claim 1, characterized in that:
  3.  前記母材鋼板において、前記表面に観察される短冊状の還流磁区の面積割合が10%以下で、かつ、ストライプ状の主磁区の幅が1.2mm以下である、
    ことを特徴とする、請求項1または2に記載の方向性電磁鋼板。
    In the base steel plate, the area ratio of strip-shaped reflux magnetic domains observed on the surface is 10% or less, and the width of the striped main magnetic domain is 1.2 mm or less,
    The grain-oriented electrical steel sheet according to claim 1 or 2, characterized in that:
  4.  前記磁束密度が1.92T以上であり、前記板厚が0.18~0.23mmの場合において、前記W17/50が0.74W/kg以下である、
    ことを特徴とする、請求項1または2に記載の方向性電磁鋼板。
    When the magnetic flux density is 1.92T or more and the plate thickness is 0.18 to 0.23 mm, the W17/50 is 0.74 W/kg or less,
    The grain-oriented electrical steel sheet according to claim 1 or 2, characterized in that:
  5.  前記磁束密度が1.92T以上であり、前記板厚が0.18~0.23mmの場合において、前記W17/50が0.74W/kg以下である、
    ことを特徴とする、請求項3に記載の方向性電磁鋼板。
    When the magnetic flux density is 1.92T or more and the plate thickness is 0.18 to 0.23 mm, the W17/50 is 0.74 W/kg or less,
    The grain-oriented electrical steel sheet according to claim 3, characterized in that:
PCT/JP2023/034555 2022-09-22 2023-09-22 Grain-oriented electrical steel sheet WO2024063163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-151341 2022-09-22
JP2022151341 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024063163A1 true WO2024063163A1 (en) 2024-03-28

Family

ID=90454732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034555 WO2024063163A1 (en) 2022-09-22 2023-09-22 Grain-oriented electrical steel sheet

Country Status (1)

Country Link
WO (1) WO2024063163A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220071A (en) * 2015-10-16 2016-01-06 宝山钢铁股份有限公司 A kind of low noise characteristic oriented silicon steel and manufacture method thereof
WO2019189857A1 (en) * 2018-03-30 2019-10-03 Jfeスチール株式会社 Iron core for transformer
WO2020158732A1 (en) * 2019-01-28 2020-08-06 日本製鉄株式会社 Grain-oriented electrical steel sheet, and method of manufacturing same
JP2020169374A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Grain oriented electrical steel sheet
CN112159935A (en) * 2020-09-30 2021-01-01 武汉钢铁有限公司 High-magnetic-induction oriented silicon steel with low noise characteristic and production method thereof
JP2021123755A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220071A (en) * 2015-10-16 2016-01-06 宝山钢铁股份有限公司 A kind of low noise characteristic oriented silicon steel and manufacture method thereof
WO2019189857A1 (en) * 2018-03-30 2019-10-03 Jfeスチール株式会社 Iron core for transformer
WO2020158732A1 (en) * 2019-01-28 2020-08-06 日本製鉄株式会社 Grain-oriented electrical steel sheet, and method of manufacturing same
JP2020169374A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Grain oriented electrical steel sheet
JP2021123755A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
CN112159935A (en) * 2020-09-30 2021-01-01 武汉钢铁有限公司 High-magnetic-induction oriented silicon steel with low noise characteristic and production method thereof

Similar Documents

Publication Publication Date Title
EP2602347B1 (en) Grain-oriented magnetic steel sheet and process for producing same
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR101309346B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP7248917B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP5866850B2 (en) Method for producing grain-oriented electrical steel sheet
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
MX2013001337A (en) Grain-oriented magnetic steel sheet and process for producing same.
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
KR102579758B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPWO2020149351A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPWO2020149347A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5760506B2 (en) Method for producing grain-oriented electrical steel sheet
JP6973369B2 (en) Directional electromagnetic steel plate and its manufacturing method
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP7265186B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
WO2024063163A1 (en) Grain-oriented electrical steel sheet
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPH08288115A (en) Grain oriented electromagnetic steel plate with low iron loss
JPWO2020149326A1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2022203089A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
WO2022203087A1 (en) Grain-oriented electromagnetic steel sheet and method for producing same
JP5754170B2 (en) Method for producing grain-oriented electrical steel sheet
WO2023204267A1 (en) Grain-oriented electromagnetic steel sheet and production method therefor
CN117015627A (en) Grain-oriented electrical steel sheet and method for producing same
JP2022022483A (en) Method for producing grain-oriented silicon steel sheet, and grain-oriented silicon steel sheet