JP6116793B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP6116793B2
JP6116793B2 JP2010212651A JP2010212651A JP6116793B2 JP 6116793 B2 JP6116793 B2 JP 6116793B2 JP 2010212651 A JP2010212651 A JP 2010212651A JP 2010212651 A JP2010212651 A JP 2010212651A JP 6116793 B2 JP6116793 B2 JP 6116793B2
Authority
JP
Japan
Prior art keywords
steel sheet
electron beam
curvature
magnetic domain
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010212651A
Other languages
Japanese (ja)
Other versions
JP2012067349A (en
Inventor
木島 剛
剛 木島
岡部 誠司
誠司 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010212651A priority Critical patent/JP6116793B2/en
Publication of JP2012067349A publication Critical patent/JP2012067349A/en
Application granted granted Critical
Publication of JP6116793B2 publication Critical patent/JP6116793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、トランスなどの鉄心材料に用いる方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet used for a core material such as a transformer.

方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。
そのためには、鋼板中の二次再結晶粒を、(110)[001]方位(いわゆる、ゴス方位)に高度に揃えることや、製品鋼板中の不純物を低減することが重要である。しかしながら、結晶方位を制御することや、不純物を低減することは、製造コストとの兼ね合い等で限界がある。そこで、鋼板の表面に対して物理的な手法で不均一性(歪)を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
For this purpose, it is important to highly align the secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel sheet. However, controlling the crystal orientation and reducing impurities are limited in view of the manufacturing cost. In view of this, a technique for reducing the iron loss by introducing non-uniformity (strain) to the surface of the steel sheet by a physical method and subdividing the width of the magnetic domain has been developed.

例えば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に線状の高転位密度領域を導入し、磁区幅を狭くすることによって、鋼板の鉄損を低減する技術が提案されている。レーザー照射を用いる磁区細分化技術は、その後改良され(特許文献2、特許文献3および特許文献4などを参照)鉄損特性が良好な方向性電磁鋼板が得られるようになってきている。   For example, Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating the final product plate with a laser, introducing a linear high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width. ing. Magnetic domain fragmentation technology using laser irradiation has been improved thereafter (see Patent Document 2, Patent Document 3, and Patent Document 4), and grain oriented electrical steel sheets having good iron loss characteristics have been obtained.

ここで、レーザーを用いた手法は歪取焼鈍を施さない積鉄心向けトランス材料に対しては有効であるが、歪取焼鈍を施す、主として巻き鉄心向けトランス材料としては、レーザー照射によってせっかく導入された局部の歪が焼鈍処理によって開放されて磁区幅が広くなるため、レーザー照射効果がなくなるという欠点がある。この問題を解決するため、局所的な歪を導入する手法として電子ビームを照射する方法が提案されている(例えば、特許文献5参照)。   Here, the laser-based technique is effective for transformer materials for core products that are not subjected to strain relief annealing. However, the transformer materials for cores that are subject to strain relief annealing are mainly introduced by laser irradiation. Further, since the local distortion is released by the annealing process and the magnetic domain width is widened, there is a disadvantage that the laser irradiation effect is lost. In order to solve this problem, a method of irradiating an electron beam has been proposed as a technique for introducing local distortion (see, for example, Patent Document 5).

特公昭57−2252号公報Japanese Patent Publication No.57-2252 特開2006−117964号公報JP 2006-117964 A 特開平10−204533号公報JP-A-10-204533 特開平11−279645号公報Japanese Patent Laid-Open No. 11-279645 特開昭58−144424号公報JP 58-144424 A

以上の通り、電磁鋼板の鉄損低減に向けて、種々の技術的改善がなされてはいるものの、近年の省エネルギーや環境保護に対する意識の高まりから、方向性電磁鋼板に対して、更なる鉄損特性の改善が要求されている。しかしながら、上記した磁区細分化手法は、局所的な歪みの導入方法の如何にかかわらず、かような要求に対して十分に応えられるものではなかった。
そこで、本発明は、磁区細分化により鉄損を低減させる方向性電磁鋼板の製造方法において、磁区細分化をより確実に実現する手法について提案することを目的とする。
As described above, although various technical improvements have been made to reduce the iron loss of electrical steel sheets, due to the recent increase in awareness of energy saving and environmental protection, there is a further increase in iron loss for grain-oriented electrical steel sheets. Improvement of characteristics is required. However, the above-mentioned magnetic domain subdivision method cannot sufficiently meet such a requirement regardless of the method of introducing local strain.
Accordingly, an object of the present invention is to propose a technique for more reliably realizing magnetic domain subdivision in a method of manufacturing a grain-oriented electrical steel sheet that reduces iron loss by magnetic domain subdivision.

発明者らは、方向性電磁鋼板の仕上焼鈍時における結晶粒があった位置の、鋼板の曲率半径と磁区幅との関係を詳細に調べた。その結果、前記曲率半径が大きくなると後述のβ角の変化による影響のため磁区幅が広くなる領域が増加する、という知見を得た。
すなわち、仕上焼鈍は長時間を要するために、鋼板をコイルに巻き取った状態でバッチ焼鈍によって行うのが通例である。この仕上焼鈍においては、鋼板が圧延方向に所定の曲率半径を有した状態で二次再結晶が進行する。したがって、仕上焼鈍後の鋼板がそのままの曲率で保持されていれば、同一結晶粒内では結晶方向が同一方向となっているが、仕上焼鈍後に平坦化焼鈍によって矯正し、鋼板を曲率のない平坦な状態とすると、結晶は撓んだ形状になり、同一結晶粒内で鋼板矯正前の当該結晶粒における曲率半径に応じて圧延方向に結晶方位が徐々に変化することになる。これは、比較的に大きな二次再結晶粒を有する方向性電磁鋼板において顕著である。
そのため、仕上焼鈍後に平坦化した状態では、特に、仕上焼鈍時の曲率半径に応じて同一結晶粒内でも圧延方向にβ角が変化することになる。ここで、β角は、二次再結晶方位の圧延面内直角方向(TD)周りにおける理想ゴス方位からのずれ角(°)である。このβ角は、磁区幅に影響を及ぼし、β角が小さいほど磁区幅が広くなる傾向がある。
The inventors examined in detail the relationship between the radius of curvature of the steel sheet and the magnetic domain width at the position where the crystal grains were present during finish annealing of the grain-oriented electrical steel sheet. As a result, the inventors have found that when the radius of curvature is increased, the region where the magnetic domain width is widened is increased due to the influence of a change in β angle described later.
That is, since finish annealing requires a long time, it is usually performed by batch annealing in a state where a steel sheet is wound around a coil. In this finish annealing, secondary recrystallization proceeds with the steel sheet having a predetermined radius of curvature in the rolling direction. Therefore, if the steel sheet after finish annealing is held with the same curvature, the crystal direction is the same direction in the same crystal grain, but the steel sheet is flattened without curvature by correcting by flattening annealing after finish annealing. In such a state, the crystal has a bent shape, and the crystal orientation gradually changes in the rolling direction in accordance with the radius of curvature of the crystal grain before the steel plate correction within the same crystal grain. This is remarkable in the grain-oriented electrical steel sheet having relatively large secondary recrystallized grains.
Therefore, in the state of flattening after finish annealing, the β angle changes in the rolling direction even within the same crystal grain, particularly in accordance with the radius of curvature during finish annealing. Here, the β angle is a deviation angle (°) from the ideal Goss direction around the perpendicular direction (TD) in the rolling plane of the secondary recrystallization orientation. This β angle affects the magnetic domain width, and the magnetic domain width tends to increase as the β angle decreases.

上記した磁区細分化処理は、処理前の磁区幅が広いほど、磁区細分化効果すなわち鉄損低減効果が高くなる。一方、磁区細分化処理前に既に磁区幅が狭い場合は、磁区細分化の効果が少ない。磁区細分化処理は、処理領域周辺を磁区細分化して鉄損を低減する効果があるが、処理領域直下だけをみれば磁区構造が乱れるため、鉄損に関して不利がある。したがって、コイル全体で見た場合、特に磁区細分化処理がより有効である、β角が小さい領域の量は、仕上焼鈍時の曲率半径によって異なるから、最適な磁区細分化条件も、先の仕上焼鈍中に付与されていた曲率半径に応じて異なると考えられる。しかしながら、現在まで以上の点を考慮に入れて磁区細分化が行われることはなかったのである。   In the above-mentioned magnetic domain subdivision process, the magnetic domain subdivision effect, that is, the iron loss reduction effect increases as the magnetic domain width before the process increases. On the other hand, when the magnetic domain width is already narrow before the magnetic domain refinement process, the effect of the magnetic domain refinement is small. The magnetic domain subdivision process has an effect of reducing the iron loss by subdividing the periphery of the processing region, but there is a disadvantage with respect to the iron loss because the magnetic domain structure is disturbed if only the processing region is viewed. Therefore, when viewed from the whole coil, the amount of the region with a small β angle, which is particularly effective for the magnetic domain refinement process, differs depending on the radius of curvature at the time of finish annealing. It is thought that it differs depending on the radius of curvature that was imparted during annealing. However, magnetic domain subdivision has never been performed taking into account the above points.

かように、磁区細分化処理を実施する際に、仕上焼鈍時の曲率半径を考慮に入れて行うことによって、より確実かつ効果的に磁区細分化をはかれることを新たに知見し、本発明を完成するに到った。   Thus, when carrying out the magnetic domain subdivision process, by taking into account the radius of curvature at the time of finish annealing, it has been newly found that the magnetic domain subdivision can be more reliably and effectively removed, the present invention It came to completion.

本発明の要旨構成は、次の通りである。
(1)コイル状に巻き取った方向性電磁鋼板に仕上焼鈍を施し、次いで平坦化焼鈍を施してから、該鋼板の圧延方向と交差する向きに電子ビームを照射する、磁区細分化処理を施すに当り、該仕上焼鈍時のコイルの内巻き部分から外巻き部分に向けて、当該鋼板部分の仕上焼鈍時のコイルの曲率半径Rに応じて、当該鋼板部分に照射する電子ビームのエネルギー密度を高めていくことを特徴とする方向性電磁鋼板の製造方法。
The gist configuration of the present invention is as follows.
(1) A directional magnetic steel sheet wound in a coil shape is subjected to finish annealing, and then subjected to flattening annealing, and then subjected to a magnetic domain fragmentation treatment in which an electron beam is irradiated in a direction crossing the rolling direction of the steel sheet. The energy density of the electron beam applied to the steel sheet portion is determined according to the radius of curvature R of the coil during the finish annealing of the steel plate portion from the inner winding portion of the coil during the finish annealing to the outer winding portion. A method for producing a grain-oriented electrical steel sheet, characterized by increasing.

(2)前記仕上焼鈍時のコイルの曲率半径の最大値をR1(mm)および最小値をR0(mm)、照射する電子ビームの平均エネルギー密度の最大値をE1(mJ/mm2)および最小値をE0(mJ/mm2)、そしてkを任意定数とした際、下記式を満足する平均エネルギー密度にて電子ビームの照射を行うことを特徴とする前記(1)に記載の方向性電磁鋼板の製造方法。

E1=k(R1−R0)+E0
(2) The maximum value of the radius of curvature of the coil during the finish annealing is R1 (mm) and the minimum value is R0 (mm), and the maximum value of the average energy density of the irradiated electron beam is E1 (mJ / mm 2 ) and the minimum When the value is E0 (mJ / mm 2 ) and k is an arbitrary constant, the electron beam is irradiated at an average energy density satisfying the following formula: A method of manufacturing a steel sheet.
E1 = k (R1-R0) + E0

なお、上記のR1およびR0、E1およびE0の好適範囲は、R0:500〜1000 mmおよびR1の範囲を1000〜2000mmとすることが好ましく、さらにE0の範囲を2〜3mJ/mm2およびE1の範囲を6〜9mJ/mm2とすることが好ましい。その理由については後述する。 The preferred ranges of R1 and R0, E1 and E0 are preferably R0: 500 to 1000 mm and the range of R1 is 1000 to 2000 mm, and the range of E0 is 2 to 3 mJ / mm 2 and E1. The range is preferably 6 to 9 mJ / mm 2 . The reason will be described later.

本発明によれば、電子ビームを照射する際のエネルギー密度を照射領域にある結晶粒があった位置の鋼板の曲率半径に応じて変化させることによって、低鉄損の方向性電磁鋼板を特性がばらつくことなく確実に製造することができる。   According to the present invention, by changing the energy density when irradiating the electron beam according to the radius of curvature of the steel sheet at the position where the crystal grains in the irradiated region exist, the characteristics of the directional electrical steel sheet with low iron loss can be improved. It can be manufactured reliably without variation.

上述したように、方向性電磁鋼板の仕上焼鈍時における結晶粒があった位置の鋼板の曲率半径が大きくなると、β角の変化による影響のため磁区幅が広くなる領域が増加することを知見した。この知見に立脚すると、曲率半径が大きくなるほど磁区幅が広くなる領域が多くなるため、電子ビーム照射による磁区細分化処理を施す必要性が高まるが、一方で曲率半径が小さい場合は磁区幅がすでに比較的狭い状態であるから、電子ビーム照射による磁区細分化処理は必ずしも必要とならず、処理の程度が強まると却って前述した弊害を生じることになる。すなわち、電子ビーム照射は、仕上焼鈍時のコイルにおける曲率半径が大きい鋼板部分ほど強力な条件下、つまり電子ビーム照射のエネルギー密度が高くなるように施した方が、曲率半径に関わらず一定の条件下で施した時に比べてコイル全体として見た場合に鉄損を低減することが可能となる。   As described above, when the radius of curvature of the steel sheet at the position where the crystal grains were present during finish annealing of the grain-oriented electrical steel sheet was increased, it was found that the region in which the magnetic domain width was increased due to the influence of the β angle change. . Based on this knowledge, the larger the radius of curvature, the greater the area where the magnetic domain width becomes wider, increasing the need for magnetic domain subdivision processing by electron beam irradiation. On the other hand, if the radius of curvature is small, the magnetic domain width is already Since it is in a relatively narrow state, the magnetic domain subdivision process by electron beam irradiation is not always necessary, and the above-described disadvantages are caused when the degree of the process increases. In other words, the electron beam irradiation is performed under conditions that are stronger under the condition that the steel plate portion having a larger curvature radius in the coil during finish annealing is stronger, that is, the energy density of the electron beam irradiation is higher, regardless of the curvature radius. It is possible to reduce iron loss when viewed as a whole coil compared to when applied below.

従って、本発明では、仕上焼鈍後に電子ビーム照射を行うに当って、該仕上焼鈍時のコイルの内巻き部分から外巻き部分に向けて照射する電子ビームのエネルギー密度を高めていくことによって、仕上焼鈍時のコイルにおける曲率半径に応じて照射する電子ビームのエネルギー密度を調整するようにした。   Therefore, in the present invention, when performing electron beam irradiation after finish annealing, the energy density of the electron beam irradiated from the inner winding portion of the coil to the outer winding portion at the time of the finish annealing is increased. The energy density of the irradiated electron beam is adjusted according to the radius of curvature of the coil during annealing.

より具体的には、仕上焼鈍時にコイル状に巻かれた鋼板の曲率半径の最大値をR1(mm)および最小値をR0(mm)、電子ビームの平均エネルギー密度Eの最大値をE1(mJ/mm2)および最小値をE0(mJ/mm2)、そしてkを任意定数とした場合に、次式
E1=k(R1−R0)+E0
を満足する電子ビームを照射すれば、仕上焼鈍時の曲率半径を考慮することなく一定の条件下で電子ビーム照射を行っていた在来処理に比べて、コイル全体で評価したときの鉄損が低減することを見出した。なお、電子ビームの平均エネルギー密度E(mJ/mm2)とは、電子ビームの加速電圧をV(V)、電流をI(A)、電子ビームの走査速度をv(m/s)、レーザー照射の圧延方向の反復間隔をL(mm)とした場合に、E=(V×I)/(v×L)で定義される値である。
More specifically, the maximum radius of curvature R1 (mm) and the minimum value R0 (mm) of the steel sheet wound in a coil shape during finish annealing is set to R1 (mm), and the maximum value of the average energy density E of the electron beam is E1 (mJ / mm 2 ), the minimum value is E0 (mJ / mm 2 ), and k is an arbitrary constant, E1 = k (R1−R0) + E0
If an electron beam that satisfies the above conditions is irradiated, the iron loss when the entire coil is evaluated compared to the conventional process in which the electron beam is irradiated under certain conditions without considering the radius of curvature during the final annealing. Found to reduce. The average energy density E (mJ / mm 2 ) of the electron beam is the acceleration voltage of the electron beam V (V), the current I (A), the scanning speed of the electron beam v (m / s), the laser This is a value defined by E = (V × I) / (v × L) where L (mm) is the repetition interval in the rolling direction of irradiation.

すなわち、仕上焼鈍時にコイル状に巻かれた鋼板の曲率半径が最大となるのはコイルの外巻き部分であり、同最小値となるのは同内巻き部分であり、これら曲率半径は予め定まるから、これら曲率半径に応じた適切な電子ビームの平均エネルギー密度との関係からエネルギー密度の変化率であるkが求まる。従って、仕上焼鈍時にコイルに応じて、上式を満足する電子ビーム照射を適用すれば、結果として、仕上焼鈍時のコイルの内巻き部分から外巻き部分に向けて照射する電子ビームのエネルギー密度を適切に高めることができる。   That is, the radius of curvature of the steel sheet wound in a coil shape at the time of finish annealing is the coil's outer winding portion, and the minimum value is the inner winding portion, because these curvature radii are determined in advance. From the relationship with the average energy density of an appropriate electron beam corresponding to the radius of curvature, k, which is the energy density change rate, is obtained. Therefore, if electron beam irradiation satisfying the above equation is applied according to the coil during finish annealing, as a result, the energy density of the electron beam irradiated from the inner winding portion of the coil to the outer winding portion during the finish annealing is reduced. Can be raised appropriately.

次に、上記した本発明において曲率半径Rや電子ビームの平均的エネルギー密度Eの好適範囲について説明する。
上述の知見に基づいて鋭意究明したところ、前記曲率半径R0が1000mm以下の範囲は比較的磁区幅が狭い鋼板部分であり、電子ビームの平均エネルギー密度が2〜3mJ/mm2までは磁区細分化効果が認められたが、さらにエネルギー密度を大きくしても、それ以上の磁区細分化効果は認められなかった。また、R0が500mm未満の範囲では既に磁区幅が充分狭くなっており、電子ビームによる磁区細分化効果はみられないから、R0は500mm以上とした。このような場合に電子ビームを照射すると過剰な局所歪みの導入により磁区構造に乱れが生じて履歴損が劣化するので好ましくない。
Next, preferred ranges of the radius of curvature R and the average energy density E of the electron beam in the present invention will be described.
As a result of earnest investigation based on the above-mentioned knowledge, the range where the radius of curvature R0 is 1000 mm or less is a steel plate portion having a relatively narrow magnetic domain width, and the magnetic energy is subdivided when the average energy density of the electron beam is 2 to 3 mJ / mm 2 . Although the effect was recognized, even if the energy density was further increased, no further magnetic domain fragmentation effect was observed. Further, in the range where R0 is less than 500 mm, the magnetic domain width is already sufficiently narrow, and the magnetic domain fragmentation effect by the electron beam is not observed, so R0 is set to 500 mm or more. Irradiation with an electron beam in such a case is not preferable because disturbance of the magnetic domain structure occurs due to the introduction of excessive local strain, and hysteresis loss deteriorates.

一方、R1:1000mm〜2000mmでは磁区幅が比較的広いため、電子ビームの平均エネルギー密度が6〜9mJ/mm2の強い領域とすることで十分な磁区細分化の効果が認められたが、それ以上の平均的エネルギー密度では更なる磁区細分化効果は認められなかった。これ以上の平均的エネルギー密度の領域では、磁区細分化効果は飽和する一方で、上記の場合と同様に過剰な局所歪みの導入により履歴損が劣化するので好ましくない。 On the other hand, since the magnetic domain width is relatively wide at R1: 1000 mm to 2000 mm, a sufficient domain subdivision effect was recognized by making the electron beam average energy density 6 to 9 mJ / mm 2 strong. No further magnetic domain refinement effect was observed at the above average energy density. In the region of an average energy density higher than this, while the magnetic domain refinement effect is saturated, the hysteresis loss is deteriorated due to the introduction of excessive local strain as in the above case, which is not preferable.

したがって、本発明ではR0の範囲を500〜1000 mm、およびR1の範囲を1000〜2000 mmとすることが好ましく、さらにE0の範囲を2〜3mJ/mm2およびE1の範囲を6〜9mJ/mm2とすることが好ましい。そして、これらR0およびR1を満たすようなコイル形状において仕上焼鈍を施し、その後の磁区細分化処理における電子ビームの平均エネルギー密度E0およびE1は、曲率半径に応じた適切な電子ビームの平均エネルギー密度との関係から定めればよく、そのコイル形状やコイル素材、その他性状に応じて具体的な値を定められる。 Accordingly, in the present invention, the range of R0 is preferably 500 to 1000 mm, and the range of R1 is preferably 1000 to 2000 mm. Further, the range of E0 is 2 to 3 mJ / mm 2 and the range of E1 is 6 to 9 mJ / mm. 2 is preferable. Then, finish annealing is performed in a coil shape that satisfies these R0 and R1, and the average energy density E0 and E1 of the electron beam in the subsequent magnetic domain subdivision processing is an appropriate average energy density of the electron beam according to the radius of curvature. The specific value can be determined according to the coil shape, coil material, and other properties.

同様に、上式における比例定数kの範囲について述べる。最適なkの値は、鋼板の平均的な被膜張力や二次再結晶粒径によっても変化する。これは被膜張力が大きくなることによって、もしくは二次再結晶粒径が小さくなることによって磁区が細分化するために、各照射領域において仕上焼鈍時に同じ曲率半径であっても磁区細分化に最適な電子ビーム照射条件が変化するからである。
なお、この発明では磁区細分化方法として電子ビームを照射するとしているが、曲率半径に応じて電子ビームの照射強度を変化させられればよく、他の電子ビームの条件については何ら問われるものではないが、以下に示す条件が推奨される。
Similarly, the range of the proportionality constant k in the above equation will be described. The optimum value of k varies depending on the average film tension of the steel sheet and the secondary recrystallization grain size. This is because the magnetic domain is subdivided by increasing the film tension or by reducing the secondary recrystallization grain size, so it is optimal for magnetic domain subdivision even in the case of the same curvature radius during finish annealing in each irradiation region. This is because the electron beam irradiation conditions change.
In the present invention, the electron beam irradiation is performed as the magnetic domain subdivision method. However, it is only necessary to change the irradiation intensity of the electron beam according to the radius of curvature, and the conditions of other electron beams are not questioned at all. However, the following conditions are recommended.

本発明における電子ビーム照射の圧延方向の反復間隔は3〜15mm程度とすればよい。また、圧延方向にほぼ直交する方向(概ね90°〜60°)の線状の局所歪については、その圧延方向の反復間隔は2〜20mm程度とすればよい。
また、電子ビームのスポット径は0.005〜5mm程度の範囲とし、圧延方向の繰返し間隔は1〜20mm程度の範囲とすることが好ましい。
なお、鋼板に付与される塑性歪の深さは、5〜50μm程度とするのが好適である。
The repetition interval in the rolling direction of electron beam irradiation in the present invention may be about 3 to 15 mm. For linear local strains in a direction substantially orthogonal to the rolling direction (generally 90 ° to 60 °), the repetition interval in the rolling direction may be about 2 to 20 mm.
The spot diameter of the electron beam is preferably in the range of about 0.005 to 5 mm, and the repetition interval in the rolling direction is preferably in the range of about 1 to 20 mm.
In addition, it is suitable that the depth of the plastic strain given to a steel plate shall be about 5-50 micrometers.

本発明において、上述した条件を満たす電子ビーム照射による線状の局所歪を鋼板表面に付与する対象となる方向性電磁鋼板(仕上焼鈍済みの鋼板)は、従来公知のいずれの成分組成範囲になる方向性電磁鋼板もが包含される。一般的には、鋼の比抵抗を高めて鉄損を低減する効果のあるSiを2mass%程度以上で含有する成分の鋼板である。   In the present invention, the grain-oriented electrical steel sheet (finished steel sheet) to be subjected to linear local strain caused by electron beam irradiation that satisfies the above-described conditions on the steel sheet surface is in any conventionally known component composition range. A grain-oriented electrical steel sheet is also included. In general, it is a steel sheet having a component containing about 2 mass% or more of Si having an effect of increasing the specific resistance of steel and reducing iron loss.

さらに、製造条件についても制限はなく、仕上焼鈍(二次再結晶焼鈍)が曲率半径を有した状態、すなわちコイル状態で施されるものであればよい。従って、方向性電磁鋼板のその他の製造条件は、二次再結晶を生じさせて方向性電磁鋼板が得られるものであれば、従来公知のいずれの方法も利用することができる。   Furthermore, there is no restriction | limiting also about manufacturing conditions, What is necessary is just to perform finishing annealing (secondary recrystallization annealing) in the state with the curvature radius, ie, a coil state. Therefore, any other known method can be used as the other manufacturing conditions for the grain-oriented electrical steel sheet as long as the grain-oriented electrical steel sheet can be obtained by causing secondary recrystallization.

例えば、仕上焼鈍までの工程は、一般的には、Si及びインヒビター成分を含有する鋼を加熱してから熱間圧延を施し、必要に応じて熱延板焼鈍を施してから、1回又は中間焼鈍を含む2回以上の冷間圧延を施して最終板厚とし、次いで脱炭焼鈍、更に焼鈍分離剤を塗布してから仕上焼鈍に供する工程になる。なお、素材のAl、N、SおよびSeの含有量を制限したインヒビターを利用しないで二次再結晶させる方法も利用可能である。   For example, the process until finish annealing is generally performed by heating a steel containing Si and an inhibitor component, followed by hot rolling, and by performing hot rolling sheet annealing as necessary, once or in the middle. It is a step of subjecting to final annealing after applying cold rolling at least twice including annealing to a final thickness, then applying decarburization annealing, and further applying an annealing separator. A secondary recrystallization method can also be used without using an inhibitor that limits the contents of the raw materials Al, N, S, and Se.

上述のとおり、本発明の方法では、素材については方向性電磁鋼板の一般に従えばよい。例えば、Si:2.0〜8.0mass%を含む電磁鋼素材を用いればよい。
Si:2.0〜8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できず、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜8.0質量%の範囲とすることが好ましい。
As described above, in the method of the present invention, the material may be in accordance with general grain-oriented electrical steel sheets. For example, an electromagnetic steel material containing Si: 2.0 to 8.0 mass% may be used.
Si: 2.0 to 8.0 mass%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved, while 8.0% by mass. If it exceeds 1, the workability is remarkably lowered and the magnetic flux density is also lowered. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.

ここで、Siの他の基本成分および任意添加成分について述べると次のとおりである。
C:0.08質量%以下
Cは、熱延板組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Here, other basic components and optional addition components of Si will be described as follows.
C: 0.08 mass% or less C is added to improve the hot-rolled sheet structure, but if it exceeds 0.08 mass%, it is difficult to reduce C to 50 mass ppm or less where no magnetic aging occurs during the manufacturing process. Therefore, the content is preferably 0.08% by mass or less. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005% by mass, the effect of addition is poor, whereas if it exceeds 1.0% by mass, the magnetic flux density of the product plate decreases. The amount of Mn is preferably in the range of 0.005 to 1.0 mass%.

ここで、先に述べたように、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.01〜0.065質量%、N:0.005〜0.012質量%、S:0.005〜0.03質量%、Se:0.005〜0.03質量%である。
さらに、本発明は、Al、N、S、Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。この場合、Al、N、SおよびSe量はそれぞれ、Al:100 質量ppm以下、N:50 質量ppm以下、S:50 質量ppm以下、Se:50 質量ppm以下に抑制することが好ましい。
Here, as described above, when an inhibitor is used, for example, when using an AlN-based inhibitor, Al and N are used. When using an MnS · MnSe-based inhibitor, Mn and Se and / or Or an appropriate amount of S may be contained. Of course, both inhibitors may be used in combination. The preferred contents of Al, N, S and Se in this case are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .
Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets in which the contents of Al, N, S, and Se are limited and no inhibitor is used. In this case, the amounts of Al, N, S, and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less.

上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.50質量%、Sn:0.01〜1.50質量%、Sb:0.005〜1.50質量%、Cu:0.03〜3.0質量%、P:0.03〜0.50質量%、Mo:0.005〜0.10質量%およびCr:0.03〜1.50質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.5質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.5質量%の範囲とするのが好ましい。
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03-1.50% by mass, Sn: 0.01-1.50% by mass, Sb: 0.005-1.50% by mass, Cu: 0.03-3.0% by mass, P: 0.03-0.50% by mass, Mo: 0.005-0.10% by mass and Cr: At least one selected from 0.03 to 1.50 mass%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03% by mass, the effect of improving the magnetic properties is small. On the other hand, if the content exceeds 1.5% by mass, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.5 mass%.

また、Sn、Sb、Cu、P、CrおよびMoはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
Sn, Sb, Cu, P, Cr and Mo are elements useful for improving the magnetic properties, respectively, but if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small. If the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

AlN 及びMnSeをインヒビター成分として含有するスラブを素材として、中間焼鈍を含む2回冷延法によって仕上げ焼鈍まで施し、平坦化焼鈍を行って0.23mm厚の3.2 質量%のSiを含有する方向性電磁鋼板を得た。なお、仕上げ焼鈍はコイルに巻き取った状態で行った。この鋼板コイルから、仕上げ焼鈍時のコイル曲率半径R(mm)が300 mmから100mm間隔で2500 mmまで変えた各位置で試料を採取し、それぞれの位置について幅30mmおよび長さ280 mmの試験片を5枚作製した。   A slab containing AlN and MnSe as inhibitor components is subjected to final annealing by two cold rolling methods including intermediate annealing, followed by flattening annealing, and a directional electromagnetic wave containing 3.2 mass% Si of 0.23 mm thickness A steel plate was obtained. In addition, finish annealing was performed in the state wound up by the coil. From this steel sheet coil, samples were taken at each position where the coil curvature radius R (mm) during finish annealing was changed from 300 mm to 2500 mm at intervals of 100 mm, and test pieces with a width of 30 mm and a length of 280 mm at each position. 5 sheets were produced.

次いで、リン酸マグネシウム、コロイダルシリカおよび重クロム酸を主成分とする張力コーティングを施した。その後、この試験片の表面に電子ビームを照射した。このとき、電子ビームの平均エネルギー密度を、曲率半径に応じて変化させた。また、比較として曲率半径に関係なく一定のエネルギー密度で照射させた。以上の磁区細分化処理後の試験片について鉄損を測定した。その測定結果を表1に示す。   Next, a tension coating mainly composed of magnesium phosphate, colloidal silica and dichromic acid was applied. Thereafter, the surface of the test piece was irradiated with an electron beam. At this time, the average energy density of the electron beam was changed according to the radius of curvature. For comparison, irradiation was performed at a constant energy density regardless of the radius of curvature. The iron loss was measured for the test piece after the above magnetic domain fragmentation treatment. The measurement results are shown in Table 1.

なお、表1における、W17/50改善値の平均および分散は、電子ビーム照射前後での鉄損W17/50の改善代を、500 mmから100mm間隔で2000 mmまで変えた各位置にて、幅30mmおよび長さ280 mmの試験片5枚について個別に測定した結果に対して、その平均値および分散値を計算したものである。 In Table 1, the average and dispersion of the W 17/50 improvement values are the values obtained by changing the iron loss W 17/50 improvement before and after electron beam irradiation from 500 mm to 2000 mm at 100 mm intervals. The average value and the dispersion value are calculated for the results of individual measurement of five test pieces having a width of 30 mm and a length of 280 mm.

表1に示すように、本発明に従う条件下では、エネルギー密度を一定として電子ビーム照射した場合に比べて、比較的高い鉄損低減効果があったことがわかる。一方、エネルギー密度が一定(k=0)の場合、比較的低いエネルギー密度では磁区幅が広い時に磁区細分化効果が充分ではなく、一方比較的高いエネルギー密度では過剰に局所歪みが導入されたことによる履歴損増加の影響があるため、どちらもコイル全体で考えた時に効率的に磁区細分化処理が行われなかったためと考えられる。
As shown in Table 1, it can be seen that under the conditions according to the present invention, there was a relatively high iron loss reduction effect as compared with the case where the electron beam was irradiated with the energy density kept constant. On the other hand, when the energy density is constant (k = 0), the domain fragmentation effect is not sufficient when the domain width is wide at a relatively low energy density, whereas excessive local strain is introduced at a relatively high energy density. It is considered that the magnetic domain subdivision processing was not performed efficiently when considering the entire coil because of the influence of the history loss increase due to.

Claims (2)

コイル状に巻き取った方向性電磁鋼板に仕上焼鈍を施し、次いで平坦化焼鈍を施してから、該鋼板の圧延方向と交差する向きに電子ビームを照射する、磁区細分化処理を施すに当り、該仕上焼鈍時のコイルの内巻き部分から外巻き部分に向けて、当該鋼板部分の仕上焼鈍時のコイルの曲率半径Rに応じて、当該鋼板部分に照射する電子ビームのエネルギー密度を高めていくことを特徴とする方向性電磁鋼板の製造方法。 Applying on sintered blunt specifications in the wound-oriented electrical steel sheet in a coil shape, then the subjected to flattening annealing, is irradiated with an electron beam in a direction crossing the rolling direction of the steel plate, the subjected to magnetic domain refining treatment The energy density of the electron beam applied to the steel sheet portion is increased according to the radius of curvature R of the coil during the finish annealing of the steel plate portion from the inner winding portion of the coil during the finish annealing to the outer winding portion. A method for producing a grain-oriented electrical steel sheet, characterized by comprising: 前記仕上焼鈍時のコイルの曲率半径の最大値をR1(mm)および最小値をR0(mm)、照射する電子ビームの平均エネルギー密度の最大値をE1(mJ/mm2)および最小値をE0(mJ/mm2)、そしてkを任意定数とした際、下記式を満足する平均エネルギー密度にて電子ビームの照射を行うことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。

E1=k(R1−R0)+E0
The maximum value of the radius of curvature of the coil during the final annealing is R1 (mm) and the minimum value is R0 (mm), the maximum value of the average energy density of the irradiated electron beam is E1 (mJ / mm 2 ), and the minimum value is E0. 2. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the electron beam is irradiated at an average energy density satisfying the following formula when k is an arbitrary constant: .
E1 = k (R1-R0) + E0
JP2010212651A 2010-09-22 2010-09-22 Method for producing grain-oriented electrical steel sheet Active JP6116793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010212651A JP6116793B2 (en) 2010-09-22 2010-09-22 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010212651A JP6116793B2 (en) 2010-09-22 2010-09-22 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2012067349A JP2012067349A (en) 2012-04-05
JP6116793B2 true JP6116793B2 (en) 2017-04-19

Family

ID=46164954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010212651A Active JP6116793B2 (en) 2010-09-22 2010-09-22 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6116793B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2933343B1 (en) * 2012-10-31 2019-04-17 JFE Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293340A (en) * 1998-04-08 1999-10-26 Kawasaki Steel Corp Low core loss oriented silicon steel sheet and its production
JP5691265B2 (en) * 2010-06-30 2015-04-01 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2012067349A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5593942B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US9514868B2 (en) Grain oriented electrical steel sheet and method for manufacturing the same
WO2012032792A1 (en) Grain-oriented magnetic steel sheet and process for producing same
JP5835557B2 (en) Method for producing grain-oriented electrical steel sheet
WO2017006955A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
EP2602340A1 (en) Oriented electromagnetic steel plate and production method for same
JP5742294B2 (en) Method for producing grain-oriented electrical steel sheet
US9761361B2 (en) Grain-oriented electrical steel sheet
KR101607909B1 (en) Grain-oriented electrical steel sheet and transformer iron core using same
JP2012177162A (en) Method for manufacturing grain-oriented magnetic steel sheet
JP2017106111A (en) Manufacturing method of oriented electromagnetic steel sheet
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP6116793B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
JP5691265B2 (en) Method for producing grain-oriented electrical steel sheet
JP4016552B2 (en) Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP5754170B2 (en) Method for producing grain-oriented electrical steel sheet
JP4876799B2 (en) Oriented electrical steel sheet
CN117321234A (en) Grain oriented electromagnetic steel sheet
JP5533348B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6116793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250