JP5742294B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5742294B2
JP5742294B2 JP2011040745A JP2011040745A JP5742294B2 JP 5742294 B2 JP5742294 B2 JP 5742294B2 JP 2011040745 A JP2011040745 A JP 2011040745A JP 2011040745 A JP2011040745 A JP 2011040745A JP 5742294 B2 JP5742294 B2 JP 5742294B2
Authority
JP
Japan
Prior art keywords
groove
irradiation
steel sheet
oriented electrical
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011040745A
Other languages
Japanese (ja)
Other versions
JP2012177164A (en
Inventor
山口 広
山口  広
岡部 誠司
誠司 岡部
大村 健
大村  健
重宏 ▲高▼城
重宏 ▲高▼城
博貴 井上
博貴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011040745A priority Critical patent/JP5742294B2/en
Publication of JP2012177164A publication Critical patent/JP2012177164A/en
Application granted granted Critical
Publication of JP5742294B2 publication Critical patent/JP5742294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、変圧器などの鉄心材料に用いる鉄損特性に優れた方向性電磁鋼板の製造方法に関するもので、特に、歪取り焼鈍後に磁気特性が劣化しない方向性電磁鋼板を得ようとするものである。   The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet having excellent iron loss characteristics used for iron core materials such as transformers, and in particular, to obtain a grain-oriented electrical steel sheet that does not deteriorate in magnetic properties after strain relief annealing. It is.

方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。
そのためには、鋼板中の二次再結晶粒を、(110)[001]方位(いわゆる、ゴス方位)に高度に揃えることや、製品鋼板中の不純物を低減することが重要である。しかしながら、結晶方位の制御や、不純物を低減することは、製造コストとの兼ね合い等で限界がある。そこで、鋼板の表面に対して物理的な手法で不均一歪を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
For this purpose, it is important to highly align the secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel sheet. However, control of crystal orientation and reduction of impurities are limited in view of the manufacturing cost. In view of this, a technique for reducing the iron loss by introducing non-uniform strain to the surface of the steel sheet by a physical method and subdividing the width of the magnetic domain has been developed, that is, a magnetic domain refinement technique.

例えば、特許文献1には、最終製品板にレーザを照射し、鋼板表層に高転位密度領域を導入し、磁区幅を狭くすることで、鋼板の鉄損を低減する技術が提案されている。また、特許文献2には、プラズマ炎を照射する方法が開示されている。
しかしながら、これらの熱歪みを導入する手法は、歪取り焼鈍を行う際に効果が消失してしまうため、積変圧器には使用できるが巻変圧器には使用できないという問題がある。
For example, Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating a final product plate with a laser, introducing a high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width. Patent Document 2 discloses a method of irradiating a plasma flame.
However, these methods of introducing thermal strain lose their effect when performing strain relief annealing, and thus can be used for product transformers but not for winding transformers.

歪取り焼鈍により磁区細分化効果が消失しない手法としては、電解エッチングや歯車ロールを用いて、鋼板表面に溝を形成する手法が、特許文献3および4にそれぞれ開示されている。しかしながら、これらの手法は、溝や鋼板が形状不良となる問題が、十分に解決できているとは言い難い。
これに対し、特許文献5には、最終冷延の途中板厚段階で、レーザ光あるいはプラズマ炎を用いて溝形成を行い、ついで、最終板厚まで仕上げることにより鋼板の形状矯正やバリの除去を行う手法が開示されている。
Patent Documents 3 and 4 disclose a technique of forming grooves on the surface of a steel sheet using electrolytic etching or a gear roll as a technique in which the magnetic domain refinement effect does not disappear by strain relief annealing. However, it is difficult to say that these methods have sufficiently solved the problem that the groove and the steel plate have a defective shape.
On the other hand, in Patent Document 5, in the plate thickness stage during the final cold rolling, grooves are formed using a laser beam or a plasma flame, and then finished to the final plate thickness to correct the shape of the steel plate and remove burrs. A method of performing is disclosed.

特公昭57−2252号公報Japanese Patent Publication No.57-2252 特開昭59-25928号公報JP 59-25928 A 特公平03−69968号公報Japanese Examined Patent Publication No. 03-69968 特開昭61−117218号公報JP 61-117218 A 特開平09-49024号公報Japanese Patent Application Laid-Open No. 09-49024

しかしながら、上述した方向性電磁鋼板では、溝形成後に冷間圧延を行うために、やはり磁区細分化に適正な溝形状を得ることが難しく、鉄損を十分に下げるまでに至っていない。   However, in the grain-oriented electrical steel sheet described above, since cold rolling is performed after the grooves are formed, it is difficult to obtain a groove shape suitable for magnetic domain fragmentation, and the iron loss has not been sufficiently reduced.

本発明は、上記の現状に鑑み開発されたもので、溝形成により、磁区構造を制御して鉄損を低下させる方向性電磁鋼板の製造方法において、歪取り焼鈍を施した場合であっても、より効果的に、鋼板の鉄損を低減させる溝を形成することを目的とする。   The present invention has been developed in view of the above-described situation, and even in the case of performing strain relief annealing in the method of manufacturing a grain-oriented electrical steel sheet in which the magnetic domain structure is controlled and the iron loss is reduced by groove formation. An object of the present invention is to more effectively form a groove that reduces the iron loss of a steel sheet.

溝形成による磁区細分化手法においては、溝の断面形状が、いわゆる矩形に近ければ近いほど、溝の側面に現れる磁極の反磁界効果をより有利に利用することができ、磁区細分化効果が大きくなる。しかしながら、レーザ照射により線状に溝形成を行う場合、1条の照射で溝形成を行っても、溝の断面形状を矩形に近づけることは難しい。
図1に、レーザ等の照射により形成される溝の断面形状を模式的に示す。図1(a)に示したように、1条の照射では、溝の断面形状がU字型に形成されてしまうので、溝の壁面は底部に行くほど傾斜し、矩形とはならない。
In the magnetic domain subdivision technique by groove formation, the closer the cross-sectional shape of the groove is to the so-called rectangle, the more advantageous the demagnetizing effect of the magnetic pole appearing on the side surface of the groove is, and the larger the magnetic domain subdivision effect is. Become. However, when the groove is formed linearly by laser irradiation, it is difficult to make the cross-sectional shape of the groove close to a rectangle even if the groove is formed by single irradiation.
FIG. 1 schematically shows a cross-sectional shape of a groove formed by irradiation with a laser or the like. As shown in FIG. 1 (a), in the case of single irradiation, the cross-sectional shape of the groove is formed in a U-shape, so that the wall surface of the groove is inclined toward the bottom and does not become rectangular.

そこで、発明者らは、レーザの照射条件を変更して、種々の照射パターンで線状溝を形成し、鉄損を低減した方向性電磁鋼板を作製した。図1(b)に示したのように、最終的な溝幅よりも、小さいビーム径のレーザを、複数条照射することにより、矩形に近い溝形状が得られることが分かった。さらに、レーザ照射は連続ではなくパルス照射とすることにより、照射と同時に溝壁面の上部に形成されるバリを抑制することが可能となることが分かった。また、溝形成処理としては電子ビーム照射でも同じ効果が得られることが分かった。
本発明は上記知見に立脚するものである。
Therefore, the inventors changed the laser irradiation conditions, formed linear grooves with various irradiation patterns, and produced grain-oriented electrical steel sheets with reduced iron loss. As shown in FIG. 1B, it was found that a groove shape close to a rectangle can be obtained by irradiating a plurality of laser beams having a beam diameter smaller than the final groove width. Furthermore, it has been found that by using pulse irradiation instead of continuous laser irradiation, it is possible to suppress burrs formed on the upper surface of the groove wall simultaneously with irradiation. Further, it has been found that the same effect can be obtained by the electron beam irradiation as the groove forming treatment.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.最終冷延後であって、二次再結晶を伴う最終仕上げ焼鈍の前または後の方向性電磁鋼板の圧延方向に対して交差する方向に、レーザまたは電子ビームを、パルス状に照射して線状溝を形成するに際し、
上記鋼板のエッジ部の一端から他端にわたる1条の照射で形成する溝幅を、最終の溝幅よりも小さな溝幅とし、2条以上の照射で、最終溝幅の線状溝とすることを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. After the final cold rolling , before or after the final finish annealing with secondary recrystallization, in the direction crossing the rolling direction of the grain- oriented electrical steel sheet, a laser or electron beam is irradiated in a pulsed line When forming the groove,
The groove width formed by irradiation of one strip from one end to the other end of the edge portion of the steel sheet is smaller than the final groove width, and a linear groove having the final groove width is formed by irradiation of two or more strips. A method for producing a grain-oriented electrical steel sheet characterized by the above.

2.前記1条の照射で形成する溝幅を、前記最終溝幅に対し、5〜75%とすることを特徴とする前記1に記載の方向性電磁鋼板の製造方法。 2. 2. The method for producing a grain-oriented electrical steel sheet according to 1 above, wherein a width of the groove formed by the irradiation of the one line is 5 to 75% with respect to the final groove width.

本発明によれば、レーザまたは電子ビームを用いた磁区細分化による鉄損低減効果が、歪取り焼鈍を施した場合であっても、効果的に維持されるため、変圧器、特に巻変圧器において優れた低鉄損特性を発現する方向性電磁鋼板を得ることができる。   According to the present invention, the effect of reducing iron loss by magnetic domain subdivision using a laser or electron beam is effectively maintained even when subjected to strain relief annealing. The grain-oriented electrical steel sheet exhibiting excellent low iron loss characteristics can be obtained.

レーザ等の照射により形成される溝の断面形状を示した模式図である。It is the schematic diagram which showed the cross-sectional shape of the groove | channel formed by irradiation, such as a laser.

以下、本発明に従う方向性電磁鋼板の製造条件に関して具体的に説明する。
ここに、本発明に用いる方向性電磁鋼板用スラブの成分組成は、二次再結晶が生じる成分組成であればよい。
また、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、質量%で、Al:0.01〜0.065%、N:0.005〜0.012%、S:0.005〜0.03%、Se:0.005〜0.03%である。
Hereinafter, the manufacturing conditions of the grain-oriented electrical steel sheet according to the present invention will be specifically described.
Here, the component composition of the slab for grain-oriented electrical steel sheet used in the present invention may be a component composition that causes secondary recrystallization.
Further, when using an inhibitor, for example, when using an AlN-based inhibitor, Al and N, and when using an MnS / MnSe-based inhibitor, an appropriate amount of Mn and Se and / or S should be contained. Good. Of course, both inhibitors may be used in combination. In this case, the preferred contents of Al, N, S and Se are, respectively, by mass, Al: 0.01 to 0.065%, N: 0.005 to 0.012%, S: 0.005 to 0.03%, Se: 0.005 to 0.03%. .

さらに、本発明は、Al、N、S、Seの含有量を制限した、いわゆるインヒビターレスの方向性電磁鋼板にも適用することができる。
この場合には、Al、N、SおよびSe量はそれぞれ、質量ppmで、Al:100ppm以下、N:50ppm以下、S:50ppm以下、Se:50ppm以下に抑制することが好ましい。
Furthermore, the present invention can be applied to a so-called inhibitorless grain-oriented electrical steel sheet in which the contents of Al, N, S, and Se are limited.
In this case, the amounts of Al, N, S, and Se are preferably suppressed to mass ppm, and Al: 100 ppm or less, N: 50 ppm or less, S: 50 ppm or less, and Se: 50 ppm or less.

本発明に供して好適な方向性電磁鋼板用スラブの、基本成分および任意添加成分について具体的に述べると次のとおりである。なお、以下、鋼板成分においての%およびppm表示は、特に断らない限り、質量%および質量ppmを意味する。
C:0.08%以下
Cは、熱延板組織の改善のために添加をするが、0.08%を超えると製造工程中に磁気時効の起こらない50ppm以下までCを低減することが困難になるため、0.08%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
The basic components and optional added components of the slab for grain-oriented electrical steel sheets suitable for the present invention will be specifically described as follows. Hereinafter, “%” and “ppm” in steel sheet components mean “% by mass” and “ppm by mass” unless otherwise specified.
C: 0.08% or less C is added to improve the hot-rolled sheet structure, but if it exceeds 0.08%, it becomes difficult to reduce C to 50 ppm or less at which no magnetic aging occurs during the manufacturing process. It is preferable to make it 0.08% or less. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, there is no need to provide it.

Si:2.0〜4.5%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0%に満たないと十分な鉄損低減効果が達成できず、一方、4.5%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜4.5%の範囲とすることが好ましい。
Si: 2.0-4.5%
Si is an element effective for increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0%, sufficient iron loss reduction effect cannot be achieved, while it exceeds 4.5%. Since the workability is remarkably lowered and the magnetic flux density is also lowered, the Si content is preferably in the range of 2.0 to 4.5%.

Mn:0.005〜1.0%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005%未満ではその添加効果に乏しく、一方1.0%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0%の範囲とすることが好ましい。
Mn: 0.005 to 1.0%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005%, the effect of addition is poor, while if it exceeds 1.0%, the magnetic flux density of the product plate decreases. The amount is preferably in the range of 0.005 to 1.0%.

上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.50%、Sn:0.01〜1.50%、Sb:0.005〜1.50%、Cu:0.03〜3.0%、P:0.03〜0.50%、Mo:0.005〜0.10%およびCr:0.03〜1.50%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03%未満では磁気特性の向上効果が小さく、一方1.5%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.5%の範囲とするのが好ましい。
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03-1.50%, Sn: 0.01-1.50%, Sb: 0.005-1.50%, Cu: 0.03-3.0%, P: 0.03-0.50%, Mo: 0.005-0.10% and Cr: 0.03-1.50% At least one selected from
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03%, the effect of improving the magnetic properties is small. On the other hand, if it exceeds 1.5%, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the Ni content is preferably in the range of 0.03 to 1.5%.

また、Sn、Sb、Cu、P、MoおよびCrはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
Sn, Sb, Cu, P, Mo and Cr are elements useful for improving the magnetic properties, respectively, but if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small, If the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

次いで、上記した成分組成を有するスラブは、常法に従い加熱して熱間圧延に供するが、鋳造後、加熱せずに直ちに熱間圧延してもよい。薄鋳片の場合には熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進んでもよい。   Next, the slab having the above-described component composition is heated and subjected to hot rolling according to a conventional method, but may be immediately hot rolled after casting without being heated. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.

さらに、必要に応じて熱延板焼鈍を施す。この時、ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度として800〜1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難になり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織の実現が極めて困難となる。   Furthermore, hot-rolled sheet annealing is performed as necessary. At this time, in order to develop a goth structure at a high level in the product plate, a range of 800 to 1100 ° C. is preferable as the hot-rolled sheet annealing temperature. When the hot-rolled sheet annealing temperature is less than 800 ° C, the band structure in hot rolling remains, making it difficult to achieve a sized primary recrystallization structure and inhibiting the development of secondary recrystallization. . On the other hand, when the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it is very difficult to realize a sized primary recrystallized structure.

熱延板焼鈍後は、1回または中間焼鈍を挟む2回以上の冷間圧延を施す。
さらに、再結晶焼鈍(脱炭焼鈍)を行い、焼鈍分離剤を塗布する。焼鈍分離剤を塗布した後に、二次再結晶の形成および必要に応じてフォルステライト被膜の形成を目的として最終仕上げ焼鈍を施す。
After hot-rolled sheet annealing, cold rolling is performed once or two or more times with intermediate annealing.
Furthermore, recrystallization annealing (decarburization annealing) is performed, and an annealing separator is applied. After applying the annealing separator, a final finish annealing is performed for the purpose of forming secondary recrystallization and, if necessary, forming a forsterite film.

最終仕上げ焼鈍後には、平坦化焼鈍を行って形状を矯正することが有効である。なお、本発明では、平坦化焼鈍前または後に、鋼板表面に絶縁被膜を施す。ここに、この絶縁被膜は、鉄損低減のために、鋼板に張力を付与できる被膜(以下、張力コーティングという)を意味する。なお、張力コーティングとしては、シリカを含有する無機系コーティングや物理蒸着法、化学蒸着法等によるセラミックコーティング等が挙げられる。   After the final finish annealing, it is effective to correct the shape by performing flattening annealing. In the present invention, an insulating coating is applied to the surface of the steel sheet before or after planarization annealing. Here, this insulating coating means a coating (hereinafter referred to as tension coating) capable of imparting tension to the steel sheet in order to reduce iron loss. Examples of the tension coating include silica-containing inorganic coating, physical vapor deposition, and ceramic coating by chemical vapor deposition.

ここに、本発明では、上記した方向性電磁鋼板に、溝形成による磁区細分化処理(溝形成処理)を施すが、線状溝の形成は、最終冷延後であれば、磁区細分化に理想的な線状溝の断面形状を維持することができるので、二次再結晶を伴う最終仕上げ焼鈍の前でも後でも構わない。
また、鋼板は、上述したように、製品とする直前に絶縁コーティングを施すが、その後で、本発明を適用することも可能である。その場合には、溝形成により部分的に絶縁コーティングが除去されるので再コートが必要となる。
Here, in the present invention, the above-mentioned grain-oriented electrical steel sheet is subjected to magnetic domain subdivision treatment (groove formation treatment) by groove formation. Since the ideal cross-sectional shape of the linear groove can be maintained, it may be before or after the final finish annealing with secondary recrystallization.
In addition, as described above, the steel sheet is subjected to an insulating coating immediately before being made into a product, but it is also possible to apply the present invention thereafter. In that case, since the insulating coating is partially removed by the groove formation, re-coating is necessary.

溝形成処理を最終仕上げ焼鈍後に行った場合、鋼板に溝形成処理による熱歪みが導入され、溝形成の効果と熱歪み導入の効果とが組み合わさって、極めて優れた鉄損低減効果が得られる。従って、本発明に従う溝形成処理は、最終仕上げ焼鈍後に行うことが望ましい。   When the groove forming process is performed after the final finish annealing, thermal strain due to the groove forming process is introduced into the steel sheet, and the effect of groove forming and the effect of introducing the thermal strain are combined to obtain an extremely excellent iron loss reducing effect. . Therefore, it is desirable to perform the groove forming process according to the present invention after the final finish annealing.

その際、溝の断面形状が、いわゆる矩形に近ければ近いほど、溝の側面に現れる磁極の反磁界効果をより有利に利用することができ、磁区細分化効果が大きくなるのは前述したとおりである。
前掲図1(a)に示したように、1条の照射では、溝の断面形状がU字型に形成されてしまうので、溝の壁面は底部に行くほど傾斜し、矩形とはならない。
At that time, as the cross-sectional shape of the groove is closer to a so-called rectangle, the demagnetizing effect of the magnetic pole appearing on the side surface of the groove can be used more advantageously, and the magnetic domain refinement effect is increased as described above. is there.
As shown in FIG. 1 (a), since the cross-sectional shape of the groove is formed in a U shape by irradiation of one line, the wall surface of the groove is inclined toward the bottom and does not become rectangular.

そこで、本発明では、図1(b)に示したのように、最終的な溝幅よりも、小さな幅の溝を形成する条件で、レーザを複数条照射することにより、矩形に近い溝形状が得られる。さらに、レーザ照射を、連続ではなくパルス状照射とすることにより、照射と同時に溝壁面の上部に形成されるバリを抑制することができる。また、溝形成処理の手段としては、パルス状の電子ビーム照射でも良い。   Therefore, in the present invention, as shown in FIG. 1B, a groove shape close to a rectangle is formed by irradiating a plurality of laser beams under the condition that a groove having a width smaller than the final groove width is formed. Is obtained. Furthermore, by using laser irradiation as pulsed irradiation instead of continuous, burrs formed on the upper portion of the groove wall surface at the same time as irradiation can be suppressed. Further, as means for forming a groove, pulsed electron beam irradiation may be used.

すなわち、1条の照射で形成する溝幅を、最終の溝幅よりも小さな溝幅とし、2条以上の照射で、最終溝幅の線状溝とする溝形成処理を行う。なお、1条の照射で形成する溝幅を、前記最終溝幅に対し、5〜75%とすることが好ましい。また、1本の最終溝幅の線状溝を形成するための、照射回数としては、2〜20条の範囲で照射することが好ましい。なお、図1(b)にも示したとおり、本発明における照射は、重なり合って照射しても何ら問題はない。
ここに、上記の1条の照射とは、パルス状の照射であって、鋼板のエッジ部の一端から他端にわたって行う1筋の照射を意味する。
That is, the groove forming process is performed such that the groove width formed by the irradiation of one line is smaller than the final groove width, and the line groove having the final groove width is formed by irradiation of two or more lines. In addition, it is preferable that the groove width formed by one line of irradiation is 5 to 75% with respect to the final groove width. In addition, the number of times of irradiation for forming one linear groove having the final groove width is preferably in the range of 2 to 20. As shown in FIG. 1 (b), there is no problem even if the irradiations in the present invention are overlapped.
Here, the above-mentioned one-line irradiation is pulse-shaped irradiation, and means one-line irradiation performed from one end to the other end of the edge portion of the steel plate.

磁区細分化効果は、二次再結晶後の結晶粒の方位が磁化容易軸である<100>方向に集積しているほど大きくなるので、集積度の指標であるB8値が高いほど、鉄損低減効果も大きくなる。 The magnetic domain refinement effect increases as the orientation of crystal grains after secondary recrystallization accumulates in the <100> direction, which is the easy axis of magnetization. Therefore, the higher the B 8 value, which is an index of accumulation, the higher the iron The loss reduction effect is also increased.

なお、本発明で使用する電子ビーム、レーザ等は、いずれも、パルス状に照射できることが必要である。というのは、前述したように、パルス照射の方が矩形に近い溝形成が可能となるからである。   Note that the electron beam, laser, and the like used in the present invention must be capable of being irradiated in a pulsed manner. This is because, as described above, the pulse irradiation can form a groove closer to a rectangle.

また、レーザの発振形態は、Qスイッチパルスまたはレーザのパルス状照射のいずれでも良いが、Qスイッチ式はビーム径を細く絞り難いため、精密な溝形状加工には、レーザを用いる方が好ましい。
さらに、レーザの場合は、シングルモードファイバレーザをパルス状照射するのが好適である。一方、電子ビームの場合も、連続照射ではバリが高くなる傾向があり、パルス状に照射する方が好ましい。
The laser oscillation mode may be either Q switch pulse or laser pulse irradiation. However, since the Q switch type is difficult to narrow the beam diameter, it is preferable to use a laser for precise groove shape processing.
Further, in the case of a laser, it is preferable to irradiate a single mode fiber laser in a pulsed manner. On the other hand, in the case of an electron beam, burrs tend to increase with continuous irradiation, and irradiation with pulses is preferable.

本発明において、溝形成方向は、圧延方向に対して90°から45°の範囲が鉄損低減に有効で、溝幅は5〜400μmが好適である。というのは、5μm未満の溝形成は技術的に困難であり、400μmより大きい場合には製造上の負荷が大きくなるからである。また、溝の深さは5〜50μmが最適である。というのは、5μm未満では鉄損低減効果は小さく、50μmより深い場合には磁束密度B8の劣化が大きくなりすぎるからである。 In the present invention, the groove forming direction is effectively in the range of 90 ° to 45 ° with respect to the rolling direction for reducing iron loss, and the groove width is preferably 5 to 400 μm. This is because it is technically difficult to form a groove of less than 5 μm, and when it is larger than 400 μm, the manufacturing load increases. The optimum groove depth is 5 to 50 μm. This is because the effect of reducing the iron loss is small when the thickness is less than 5 μm, and the deterioration of the magnetic flux density B 8 becomes too large when the depth is deeper than 50 μm.

さらに、本発明における線状溝は、直線状だけでなく点状に形成してもよい。但し、点状の場合、点の間隔が1mmより大きいと、磁区細分化効果がほとんど得られないので1mm以下が望ましい。
また、線状溝の間隔は1mm以上20mm以下が好ましく、1mm未満では鉄損劣化が生じ、20mmより大きい場合には鉄損低減効果が得られない。
Furthermore, the linear groove in the present invention may be formed not only in a linear shape but also in a dot shape. However, in the case of dots, if the distance between the dots is larger than 1 mm, the effect of subdividing the magnetic domain is hardly obtained, so 1 mm or less is desirable.
Further, the interval between the linear grooves is preferably 1 mm or more and 20 mm or less, and if it is less than 1 mm, the iron loss is deteriorated, and if it is more than 20 mm, the effect of reducing the iron loss cannot be obtained.

なお、本発明において、上述した工程や製造条件以外については、従来公知の、レーザーや電子ビームを用いた磁区細分化処理を施す方向性電磁鋼板の製造方法を適用することができる。   In addition, in this invention, except the process and manufacturing conditions mentioned above, the conventionally well-known manufacturing method of the grain-oriented electrical steel sheet which performs the magnetic domain fragmentation process using a laser or an electron beam is applicable.

(実施例1)
Si=3.25%、C=500ppm、Mn=0.03%、S=20ppm、Al=60ppmおよびN=40ppmを含む鋼スラブを、連続鋳造にて製造し1400℃に加熱した後、熱間圧延により板厚:2.0mmの熱延板に仕上げ、1000℃で熱延板焼鈍を施した。ついで中間焼鈍を含む二回冷延法にて0.23mmの最終冷延板とした。この最終冷延板に、シングルモードファイバレーザを用いて最終溝幅:50μm、溝深さ:20μmの線状溝を、圧延方向と直角方向に7.5mm間隔で、片面のみ形成した。
Example 1
A steel slab containing Si = 3.25%, C = 500ppm, Mn = 0.03%, S = 20ppm, Al = 60ppm and N = 40ppm was manufactured by continuous casting, heated to 1400 ° C, and then hot rolled to obtain a plate thickness : Finished on a 2.0 mm hot-rolled sheet and annealed at 1000 ° C. Then, a final cold-rolled sheet having a thickness of 0.23 mm was obtained by a double cold-rolling method including intermediate annealing. On this final cold-rolled sheet, a single-mode fiber laser was used to form linear grooves having a final groove width of 50 μm and a groove depth of 20 μm on only one side at intervals of 7.5 mm in the direction perpendicular to the rolling direction.

照射条件は、表1に示すように、通常の連続照射と、波形制御器を用いてON/OFFのデューティ比を変えたパルス照射を行った。ビーム径は10〜50μmとし、複数条の照射で、線状溝を形状した。なお、1条当たりの照射幅/最終溝幅の比率(%)(以下および表中では、溝幅比率という。)を表1に併記する。
その後、850℃で脱炭焼鈍を行い、MgOを主成分とする焼鈍分離剤を塗布した。ついで、二次再結晶と純化を目的とした最終仕上げ焼鈍を1200℃で実施した。さらに、50%のコロイダルシリカとリン酸マグネシウムからなる絶縁コートを塗布した。
各照射の条件に対し、形成された溝の断面形状の評価と、製品の鉄損値W17/50値について表1に併記する。なお、断面形状の評価は、図1に示される理想的な溝断面形状(矩形)の断面積に対する実際に形成された溝の断面積の比率(%)(表中、矩形度と表記する)を求めることで評価した。
As shown in Table 1, the irradiation conditions were normal continuous irradiation and pulse irradiation with the ON / OFF duty ratio changed using a waveform controller. The beam diameter was 10 to 50 μm, and linear grooves were formed by irradiation with a plurality of strips. In addition, the ratio (%) of irradiation width per one line / final groove width (hereinafter referred to as the groove width ratio) is also shown in Table 1.
Thereafter, decarburization annealing was performed at 850 ° C., and an annealing separator mainly composed of MgO was applied. Then, a final finish annealing for the purpose of secondary recrystallization and purification was performed at 1200 ° C. Further, an insulating coat composed of 50% colloidal silica and magnesium phosphate was applied.
Table 1 shows the evaluation of the cross-sectional shape of the formed groove and the iron loss value W 17/50 of the product for each irradiation condition. In addition, the evaluation of the cross-sectional shape is the ratio (%) of the cross-sectional area of the actually formed groove to the cross-sectional area of the ideal groove cross-sectional shape (rectangular shape) shown in FIG. It was evaluated by seeking.

Figure 0005742294
Figure 0005742294

同表に示したとおり、連続照射により溝を形成したNo.1、4、7、9や、さらに1条で溝形成を行ったNo.9、10では鉄損の低減効果が十分に得られていない。これに対し、本発明の条件に従うNo.2、3、5、6、8は、いずれも高い矩形度と共に、優れた鉄損特性が得られている。   As shown in the table, No. 1, 4, 7, and 9 where grooves were formed by continuous irradiation, and No. 9 and 10 where grooves were formed with one line, a sufficient iron loss reduction effect was obtained. Not. On the other hand, Nos. 2, 3, 5, 6, and 8 according to the conditions of the present invention all have excellent iron loss characteristics with high rectangularity.

(実施例2)
Si=3.30%、C=600ppm、Mn=0.10%、Sb=0.03%、Al=300ppmおよびN=80ppmを含む鋼スラブを、連続鋳造にて製造し1400℃に加熱した後、熱間圧延により板厚:2.0mmの熱延板に仕上げ、1000℃で熱延板焼鈍を施した。ついで中間焼鈍を含む二回冷延法にて0.20mmの冷延板とし、さらに825℃で脱炭焼鈍を行った。
(Example 2)
A steel slab containing Si = 3.30%, C = 600ppm, Mn = 0.10%, Sb = 0.03%, Al = 300ppm and N = 80ppm was manufactured by continuous casting, heated to 1400 ° C, and then hot rolled into a sheet Thickness: Finished on a 2.0 mm hot-rolled sheet and subjected to hot-rolled sheet annealing at 1000 ° C. Next, a 0.20 mm cold-rolled sheet was formed by a double cold rolling method including intermediate annealing, and decarburization annealing was further performed at 825 ° C.

この脱炭焼鈍板に、電子ビームを用いて、溝幅:100μm、溝深さ:15μmの線状溝を圧延方向と直角方向に5mm間隔で片面のみ形成させた。照射条件は、連続照射とパルス照射の二条件で行った。ここに、前者は、照射位置の座標が鋼板を横断するように広く設定することにより、連続ビームで溝形成処理を行った。一方、後者は、照射位置の座標間隔をビーム径程度に小さく設定し、滞留時間を設けることによってパルス的に溝形成処理を行った。
なお、処理時の雰囲気圧力は1Pa、加速電圧は40kVで、ビーム径は同定できないがビーム電流、収束電流値にて、ビーム径を調整し、実際に1条当たりの溝幅を計測し、溝幅比率とした。また、溝形状を整えるために、照射位置をわずかにずらして複数条の照射処理を行った。
On this decarburized annealing plate, linear grooves having a groove width of 100 μm and a groove depth of 15 μm were formed on only one side at intervals of 5 mm in the direction perpendicular to the rolling direction using an electron beam. Irradiation conditions were two conditions of continuous irradiation and pulse irradiation. Here, the former performed the groove forming process with a continuous beam by setting the coordinates of the irradiation position so as to cross the steel plate. On the other hand, the latter performed the groove forming process in a pulse manner by setting the coordinate interval of the irradiation position as small as the beam diameter and providing a residence time.
The atmospheric pressure during processing is 1 Pa, the acceleration voltage is 40 kV, and the beam diameter cannot be identified. However, the beam diameter is adjusted by the beam current and the convergence current value, and the groove width per line is actually measured. The width ratio was used. Moreover, in order to adjust the groove shape, the irradiation position was slightly shifted and a plurality of irradiation processes were performed.

溝形成処理後、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶と純化を目的とした最終仕上げ焼鈍を1200℃で実施した。ついで50%のコロイダルシリカとリン酸マグネシウムからなる絶縁コートを塗布した。
各照射条件に対し、形成された溝の断面形状の評価と、製品の鉄損値W17/50値について表2に示す。なお、表中の矩形度は、実施例1と同じ定義の数値である。
After the groove formation treatment, an annealing separator containing MgO as a main component was applied, and a final finish annealing was performed at 1200 ° C. for the purpose of secondary recrystallization and purification. Then, an insulating coat composed of 50% colloidal silica and magnesium phosphate was applied.
Table 2 shows the evaluation of the cross-sectional shape of the formed groove and the iron loss value W 17/50 of the product for each irradiation condition. The rectangularity in the table is a numerical value having the same definition as in the first embodiment.

Figure 0005742294
Figure 0005742294

同表に示したとおり、連続照射により溝を形成したNo.1、4、7や、1条の処理で溝形成を行ったNo.7、8では鉄損の低減効果が十分に得られていない。これに対し、本発明の条件に従うNo.2、3、5、6は、いずれも高い矩形度と共に、優れた鉄損特性が得られている。   As shown in the table, No. 1, 4, 7 where grooves were formed by continuous irradiation, and No. 7, 8 where grooves were formed by the treatment of one line, the effect of reducing iron loss was sufficiently obtained. Absent. On the other hand, Nos. 2, 3, 5, and 6 according to the conditions of the present invention all have excellent iron loss characteristics with high rectangularity.

Claims (2)

最終冷延後であって、二次再結晶を伴う最終仕上げ焼鈍の前または後の方向性電磁鋼板の圧延方向に対して交差する方向に、レーザまたは電子ビームを、パルス状に照射して線状溝を形成するに際し、
上記鋼板のエッジ部の一端から他端にわたる1条の照射で形成する溝幅を、最終の溝幅よりも小さな溝幅とし、2条以上の照射で、最終溝幅の線状溝とすることを特徴とする方向性電磁鋼板の製造方法。
After the final cold rolling , before or after the final finish annealing with secondary recrystallization, in the direction crossing the rolling direction of the grain- oriented electrical steel sheet, a laser or electron beam is irradiated in a pulsed line When forming the groove,
The groove width formed by irradiation of one strip from one end to the other end of the edge portion of the steel sheet is smaller than the final groove width, and a linear groove having the final groove width is formed by irradiation of two or more strips. A method for producing a grain-oriented electrical steel sheet characterized by the above.
前記1条の照射で形成する溝幅を、前記最終溝幅に対し、5〜75%とすることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein a groove width formed by the irradiation of the first strip is set to 5 to 75% with respect to the final groove width.
JP2011040745A 2011-02-25 2011-02-25 Method for producing grain-oriented electrical steel sheet Active JP5742294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040745A JP5742294B2 (en) 2011-02-25 2011-02-25 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040745A JP5742294B2 (en) 2011-02-25 2011-02-25 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2012177164A JP2012177164A (en) 2012-09-13
JP5742294B2 true JP5742294B2 (en) 2015-07-01

Family

ID=46979196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040745A Active JP5742294B2 (en) 2011-02-25 2011-02-25 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5742294B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941413B (en) * 2012-11-23 2015-07-01 武汉钢铁(集团)公司 Method for reducing iron loss of oriented silicon steel through multiple times of laser grooving
JP6146583B2 (en) * 2014-05-09 2017-06-14 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
KR101719231B1 (en) 2014-12-24 2017-04-04 주식회사 포스코 Grain oriented electical steel sheet and method for manufacturing the same
KR101693516B1 (en) * 2014-12-24 2017-01-06 주식회사 포스코 Grain-orientied electrical steel sheet and method for manufacturing the smae
US10675714B2 (en) 2015-04-20 2020-06-09 Nippon Steel Corporation Grain-oriented electrical steel sheet
KR101751525B1 (en) * 2015-12-24 2017-07-11 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
US20190010566A1 (en) * 2015-12-30 2019-01-10 Posco Method for refining magnetic domain of grain-oriented electrical steel sheet, and device therefor
WO2017171013A1 (en) 2016-03-31 2017-10-05 新日鐵住金株式会社 Grain-oriented electrical steel sheet
JP7188458B2 (en) 2019-01-16 2022-12-13 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method thereof
WO2020207576A1 (en) * 2019-04-10 2020-10-15 Pierburg Pump Technology Gmbh Automotive auxiliary unit with an electric motor
EP4206339A4 (en) * 2020-08-27 2024-02-21 Jfe Steel Corp Oriented electromagnetic steel sheet manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182223A (en) * 1986-02-07 1987-08-10 Nippon Steel Corp Production of low iron loss grain oriented electrical steel sheet
JPH0432517A (en) * 1990-05-30 1992-02-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
JP4384451B2 (en) * 2003-08-14 2009-12-16 新日本製鐵株式会社 Oriented electrical steel sheet with excellent magnetic properties and method for producing the same

Also Published As

Publication number Publication date
JP2012177164A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5742294B2 (en) Method for producing grain-oriented electrical steel sheet
JP6157360B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP5594437B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5532185B2 (en) Oriented electrical steel sheet and method for improving iron loss thereof
JP5954421B2 (en) Oriented electrical steel sheet for iron core and method for producing the same
JP6084351B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US10431359B2 (en) Method for producing grain-oriented electrical steel sheet
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
JP5740854B2 (en) Oriented electrical steel sheet
JP5712667B2 (en) Method for producing grain-oriented electrical steel sheet
JP5842410B2 (en) Method for producing grain-oriented electrical steel sheet
JP5953690B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2012017669A1 (en) Grain-oriented electrical steel sheet, and method for producing same
JP6465048B2 (en) Method for producing grain-oriented electrical steel sheet
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP6116793B2 (en) Method for producing grain-oriented electrical steel sheet
JP5754170B2 (en) Method for producing grain-oriented electrical steel sheet
JP5691265B2 (en) Method for producing grain-oriented electrical steel sheet
JP5533348B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250