JPS62182223A - Production of low iron loss grain oriented electrical steel sheet - Google Patents

Production of low iron loss grain oriented electrical steel sheet

Info

Publication number
JPS62182223A
JPS62182223A JP2418386A JP2418386A JPS62182223A JP S62182223 A JPS62182223 A JP S62182223A JP 2418386 A JP2418386 A JP 2418386A JP 2418386 A JP2418386 A JP 2418386A JP S62182223 A JPS62182223 A JP S62182223A
Authority
JP
Japan
Prior art keywords
laser
steel plate
plastic strain
irradiation
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2418386A
Other languages
Japanese (ja)
Inventor
Takashi Kobayashi
尚 小林
▲籔▼本 政男
Masao Yabumoto
Soji Matsuo
松尾 宗次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2418386A priority Critical patent/JPS62182223A/en
Publication of JPS62182223A publication Critical patent/JPS62182223A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a low iron loss grain oriented electrical steel sheet which is free from deterioration in magnetic characteristics even after a stress relief annealing treatment by periodically providing plural strain introducing zones partly superposed with plastic strain regions to a finish annealed sheet in the rolling direction thereof then subjecting the sheet to a heat treatment. CONSTITUTION:The plural strain introducing zones in proximity with the plastic strain regions so as to be partly superposed within the steel sheet are periodically provided in the rolling direction at 0.2-2.5mm width, 2-12mm intervals and the angle ranging right angle - 45 deg. with the rolling direction to the finish annealed sheet contg. about <=4% Si or after the sheet is subjected to a treatment to form a tension applying film thereon. The above-mentioned plastic strain introducing zones are adequately formed by the irradiation of a laser and are preferably constituted by plural times of the laser irradiation and by plural pieces of laser beams having 0.1-0.5mm width. The strength of the above-mentioned laser beam is adequately made U=1-100J/cm<2>. The steel sheet provided with the above-mentioned strain introducing zones is then subjected to the treatment such as stress relief annealing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は歪取り焼鈍を行なっても磁気特性の劣化しな
い低鉄損一方向性電磁鋼板およびその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a low core loss unidirectional electrical steel sheet whose magnetic properties do not deteriorate even after strain relief annealing, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

方向性電磁鋼板においてエネルギー節約の観点から鉄損
を低減することが要望されている。鉄損を低減する方決
としてはレーザー照射により磁区を細分化する方法が既
に特公昭58−26405号に開示されている。該方法
による鉄損の低減はレーザーにより導入された歪に起因
している。したがって歪取り焼鈍を必要としない積鉄心
トランス用としては使用出来るが歪取り焼鈍を必要とす
る巻鉄心トランス用としては使用出来ない。
It is desired to reduce iron loss in grain-oriented electrical steel sheets from the viewpoint of energy saving. As a method of reducing iron loss, a method of subdividing magnetic domains by laser irradiation has already been disclosed in Japanese Patent Publication No. 58-26405. The reduction in core loss by this method is due to the strain introduced by the laser. Therefore, it can be used for laminated core transformers that do not require strain relief annealing, but cannot be used for wound core transformers that require strain relief annealing.

又特公昭59−23822号にレーザー照射後歪取り焼
鈍を行なっても鉄損値が低減する旨の開示がなされてい
るが、該方法によれば鉄損値の低減率はレーザー照射に
より向上する鉄損値の向上化の50%程度である。
Further, Japanese Patent Publication No. 59-23822 discloses that the iron loss value is reduced even if strain relief annealing is performed after laser irradiation, but according to this method, the reduction rate of the iron loss value is improved by laser irradiation. This is about 50% of the improvement in iron loss value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は一方向性電磁鋼板において、応力除去焼なまし
を行なうと鋼板に導入した弾性歪が消失し低鉄損化がは
かれないという難点及び応力除去焼なましによる効果の
消失はないがレーザー照射材なみの低鉄損値が得られな
いという難点、を同時に解決し、応力除去焼なましを行
なっても磁気特性の劣化しない低鉄損一方向性電磁鋼板
を提供しようとするものである。
The present invention has the drawback that when stress relief annealing is performed on unidirectional electrical steel sheets, the elastic strain introduced into the steel sheet disappears, making it impossible to achieve low iron loss, and the effect of stress relief annealing does not disappear. The aim is to simultaneously solve the problem of not being able to obtain a low core loss value comparable to that of laser irradiated materials, and to provide a low core loss unidirectional electrical steel sheet whose magnetic properties do not deteriorate even after stress relief annealing. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するために、仕上焼鈍法又は
張力付与皮膜処理済の鋼板に、鋼板内で塑性歪域が一部
重畳するように近接した複数の歪導入帯を圧延方向に周
期的に付した後熱処理を施すことを特徴とする低鉄損一
方向性電磁鋼板の製造方法を提供するものである。
In order to solve the above-mentioned problems, the present invention provides a steel plate that has been subjected to finish annealing or a tension imparting film treatment, by periodically applying a plurality of strain introducing zones in close proximity in the rolling direction so that the plastic strain regions partially overlap within the steel plate. The present invention provides a method for producing a unidirectional electrical steel sheet with low core loss, which is characterized by subjecting the steel sheet to heat treatment after being subjected to heat treatment.

本発明者らはレーザー照射材を詳細に検討した結果、該
レーザー照射材に750℃以上の高温の熱処理を行なっ
ても該照射材に塑性歪が残存していることに着目し、こ
れらの塑性歪域を従来のレーザー照射後の応力除去焼な
まし材にくらべて広い領域に残存させれば磁区細分化が
はかれるのではないかと考え、レーザービームを照射区
域を変えて近接して複数回照射することにより塑性歪が
焼鈍により消滅しにくいとの結論を得たのである。
As a result of a detailed study of laser-irradiated materials, the present inventors noticed that plastic strain remained in the laser-irradiated materials even after heat treatment at a high temperature of 750°C or higher. We thought that if the strained region remained in a wider area than in conventional stress-relieving annealed material after laser irradiation, magnetic domain refinement could be achieved, so we irradiated the laser beam multiple times in close proximity by changing the irradiation area. This led to the conclusion that plastic strain is difficult to eliminate by annealing.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

Si4%以下を含むスラブを加熱し、中間厚まで熱間圧
延し、得られた熱延板を酸洗し必要に応じてこの段階で
熱処理を行ない、次いで中間圧延をはさむ2回の冷間圧
延または1回の冷間圧延を行なって最終板厚にし得られ
た冷延板を脱炭焼鈍しさらに二次再結晶焼鈍を施すこと
からなる通常の一方向性電磁鋼板を製造する工程で、得
られた銅板又は該鋼板上に1ノン酸系張力付与皮膜等の
絶縁皮膜形成用コーテイング液を塗布し焼付けた鋼板に
第1図に示すように、U−1〜100 J/ c m”
のエネルギー強度で圧延方向に対して複数の照射条痕よ
りなる巾0.2〜2.5 m m範囲の帯状のレーザー
照射域を圧延方向から直角ないし、45°の範囲で導入
し、圧延方向に対して巾2〜12mmの帯状のレーザー
照射を行なわない領域と交互に配置する。
A slab containing 4% Si or less is heated and hot rolled to an intermediate thickness, the resulting hot rolled plate is pickled and heat treated at this stage if necessary, and then cold rolled twice with an intermediate rolling in between. Or, in the process of producing a normal grain-oriented electrical steel sheet, which consists of decarburizing the cold-rolled sheet obtained by performing one cold rolling to the final sheet thickness and then subjecting it to secondary recrystallization annealing. As shown in Fig. 1, a coating liquid for forming an insulating film such as a 1-non-acid-based tension imparting film is coated on a copper plate or a steel plate coated with a coating solution for forming an insulating film such as a 1-non-acid tension imparting film.
A belt-shaped laser irradiation area with a width of 0.2 to 2.5 mm, consisting of multiple irradiation marks, is introduced in the range of 45 degrees orthogonal to the rolling direction with an energy intensity of The area is alternately arranged with a band-shaped area having a width of 2 to 12 mm where laser irradiation is not performed.

このように本発明では、照射領域を広くし、また該領域
内で照射区域を変え近接して複数回のレーザー照射を行
なうためレーザー照射ままでは照射前より鉄損値が悪く
なるが焼鈍後は転位が整理されるものの重畳された歪の
ためレーザー照射による塑性歪域が残存し、この残存歪
により磁区が細分化されるのである。また塑性歪域には
応力除去焼なまし後微細再結晶は認められず擬コツセル
法によれば結晶の塑性歪が認められるだけである。
In this way, in the present invention, the irradiation area is widened, and the irradiation area is changed within the area and the laser irradiation is performed multiple times in close proximity, so if the laser irradiation is continued, the iron loss value will be worse than before irradiation, but after annealing. Although the dislocations are organized, a plastic strain region remains due to the laser irradiation due to the superimposed strain, and this residual strain fragments the magnetic domain. Moreover, in the plastic strain region, no fine recrystallization is observed after stress relief annealing, and only plastic strain of the crystals is observed using the pseudo-Kottsel method.

ここでUは以下の様に定義する。第2図(a)。Here, U is defined as follows. Figure 2(a).

(b)はそれぞれC方向へ連続発振、パルス発振の状態
で該綱板面にレーザービーム照射した場合の代表的な照
射痕パターンを示したものである。図中Fは連続発振レ
ーザー照射部分、dは照射痕中である。第2図(a)の
場合、鋼板単位面積当りに投入するレーザーエネルギー
U(J/cm”)は■ ・ 2 で表わされ、第2図(b)の場合は、 で示される。ここでPaはレーザー発振パワー(W) 
、V (c m/ s )は綱板C方向へのレーザービ
ーム照射の走査速度、j!(cm)はC方向の線または
点列のL方向間隔、a  (cm)はC方向のパルス点
間隔である。nはL方向での線列または点列の数を示す
(b) shows typical irradiation mark patterns when the steel plate surface is irradiated with a laser beam in continuous oscillation and pulse oscillation states, respectively, in the C direction. In the figure, F is the continuous wave laser irradiation area, and d is the inside of the irradiation trace. In the case of Fig. 2(a), the laser energy U (J/cm'') input per unit area of the steel plate is expressed as ■ 2, and in the case of Fig. 2(b), it is expressed as Pa is the laser oscillation power (W)
, V (cm/s) is the scanning speed of laser beam irradiation in the direction of the steel plate C, j! (cm) is the interval in the L direction of a line or dot sequence in the C direction, and a (cm) is the interval between pulse points in the C direction. n indicates the number of line rows or dot rows in the L direction.

上記のレーザーによる塑性歪導入の時重要なことは歪導
入域に2回以上のレーザー走査により照射区域を変え歪
導入を行なうことである。例えば0.35mm巾にレー
ザー照射を行なう場合は0.11巾のビームが3回のビ
ーム走査を行なうことにより近接した3本の塑性歪導入
帯を構成する。このようにすることの利点は強度の大き
いビームで1回の走査をすることにくらべて第一にビー
ム照射による板の曲がりが小さくなること、第二に1回
のレーザー照射にくらべて異なるθ■域を複数回の或い
は複数本のレーザー照射を行なうことにより応力除去焼
なまし後の歪みの回復が著しく悪くなり、磁区細分化に
対して大きな効果をもたらすことである。本発明のレー
ザー照射後の鉄損値は歪導入域で歪が重畳するため転位
のタンゲルが大きいためか照射前よりも悪くなる。しか
しながら応力除去焼きなましを行なうと余分の転位が整
理されるため鉄損値はレーザー照射前の値より著しく良
くなり、同一試料に通常のレーザー処理を行なった試料
とほぼ同等の鉄損値が得られる。又本発明によれば歪導
入域に微細結晶粒の発生が見られないためかBsff1
の低下が他の方法にくらべて極めて小さい。通常800
℃×2時間の応力除去焼なましを行なうと処理前と処理
後のB、値の低下は50ガウス以下である。第3図は上
記の現象をi示したもので、0.23mm厚の仕上焼鈍
板に張力皮膜付与処理した一方向性電磁鋼板に圧延方向
と直角方向に0.1 m mφのレーザービーム径でQ
、4mm巾の帯状の照射域と4mm巾のレーザー照射を
行なわない領域とを交互に配置した時の各熱処理後にお
ける鉄損値およびB、値の変化をレーザー照射前の試料
、通常のレーザー処理材と比較して示した図である。レ
ーザー照射強度はU−10J/−である。
What is important when introducing plastic strain using the above-mentioned laser is to change the irradiation area and introduce strain by scanning the strain introduction region twice or more with the laser. For example, when laser irradiation is performed over a width of 0.35 mm, a beam having a width of 0.11 scans the beam three times to form three adjacent plastic strain introduction zones. The advantage of doing this is that firstly, the bending of the plate due to beam irradiation is smaller than scanning once with a high-intensity beam, and secondly, compared to one-time laser irradiation, the difference in θ (2) By irradiating the region multiple times or with multiple laser beams, recovery of strain after stress-relieving annealing becomes significantly worse, which has a large effect on magnetic domain refining. The iron loss value after laser irradiation of the present invention is worse than before irradiation, probably because the tangle of dislocations is large due to the superposition of strain in the strain introduction region. However, when stress relief annealing is performed, excess dislocations are sorted out, so the iron loss value becomes significantly better than the value before laser irradiation, and an iron loss value almost equivalent to that of the same sample subjected to normal laser treatment is obtained. . Also, according to the present invention, Bsff1 may be because no fine crystal grains are observed in the strain introduction region.
The decrease in the amount of water is extremely small compared to other methods. Usually 800
When stress relief annealing is performed for 2 hours at ℃, the decrease in B value before and after treatment is less than 50 Gauss. Figure 3 shows the above phenomenon, in which a unidirectional electrical steel sheet with a tension coating applied to a 0.23 mm thick finish annealed plate is exposed to a laser beam diameter of 0.1 mmφ in a direction perpendicular to the rolling direction. Q
, Changes in iron loss value and B value after each heat treatment when 4 mm wide belt-shaped irradiated areas and 4 mm wide non-laser irradiated areas are arranged alternately are shown for samples before laser irradiation and for normal laser treatment It is a figure shown in comparison with the material. The laser irradiation intensity was U-10J/-.

このように本発明に従えば、透磁率の低下が見られない
と共に、低鉄損の効果が著しい。
As described above, according to the present invention, no decrease in magnetic permeability is observed, and the effect of low core loss is remarkable.

次に第4図はパルス発振YAGレーザーにてU=10J
/cm”のエネルギー強度で0.23mm厚の一方向性
電磁鋼板にビーム径Q、l m mφで5回のビーム走
査後応力除去焼なましく800℃×2時間)をした時の
Wl 7150の鉄損値の向上化(レーザー照射前基準
)を圧延方向の直角方向からはかったレーザー照射角(
α)の関数として示したものであるが照射角が45°ま
では効果があることがわかる。
Next, Figure 4 shows U=10J using a pulse oscillation YAG laser.
Wl 7150 when a unidirectional electrical steel sheet with a thickness of 0.23 mm is subjected to stress-removal annealing at 800°C for 2 hours after scanning the beam 5 times with a beam diameter of Q and 1 mm mφ at an energy intensity of 0.23 mm. Laser irradiation angle (measured from the direction perpendicular to the rolling direction) to improve the iron loss value (based on before laser irradiation)
It is shown as a function of α), and it can be seen that the effect is effective up to an irradiation angle of 45°.

第5 図ハ0.1 m mφのレーザービームで歪導入
後の試料(仕上焼鈍後リン酸系張力皮膜付与)を800
℃×2時間応力除去焼なましを行なった時の0.23m
m厚一方開一方向鋼板のレーザー照射域とレーザー照射
を行なわない領域と到達鉄損値の関係を示したものであ
る。斜線をほどこした領域ではWl 7150≦0.8
2W/kgが得られる領域であり、うすい斜線をほどこ
した領域は効果が認められる領域であり、その他のとこ
ろは元の値と同じ鉄損値が得られる領域である。この図
から効果があるレーザー照射域即ち、近接する複数の塑
性導入帯は0.2〜2.5 m mであり最も好ましい
範囲は0.3〜l、2mmである。レーザー照射を行な
わない領域は2〜12mmの範囲で効果があり、あまり
狭くなるとB、が低下するので好ましくない。最も好ま
しい範囲は3〜7mmである。
FIG.
0.23m when subjected to stress relief annealing for 2 hours at °C
This figure shows the relationship between the laser irradiation area, the non-laser irradiation area, and the achieved iron loss value for a m-thick one-way open unidirectional steel plate. In the shaded area Wl 7150≦0.8
This is the area where 2W/kg is obtained, the area with thin diagonal lines is the area where the effect is recognized, and the other areas are the areas where the same iron loss value as the original value is obtained. From this figure, the effective laser irradiation range, that is, a plurality of adjacent plasticity introduction zones, is 0.2 to 2.5 mm, and the most preferable range is 0.3 to 2 mm. It is effective if the area where laser irradiation is not performed is in the range of 2 to 12 mm, but if it becomes too narrow, B will decrease, which is not preferable. The most preferred range is 3-7 mm.

1本の歪導入帯の巾はO,l〜Q、5mmである。The width of one strain introducing band is O,l~Q,5 mm.

第6図はレーザービーム0.1mm巾で圧延方向に直角
方向にビーム中心間隔をかえて歪4人した時の歪導入後
の鉄損値の変化を示したものである。
FIG. 6 shows the change in iron loss value after the introduction of strain when four people strain the laser beam with a width of 0.1 mm and change the beam center spacing in the direction perpendicular to the rolling direction.

中心間隔を変えることにより鉄損値が元の値より悪くな
ることがわかる。ビーム中心間隔がビーム径の3倍以内
のところで歪導入の効果が大きいが特に2倍以内のとこ
ろで顕著である。
It can be seen that by changing the center spacing, the iron loss value becomes worse than the original value. The effect of introducing strain is large when the beam center spacing is within 3 times the beam diameter, and is particularly noticeable when the spacing is within 2 times the beam diameter.

本発明は二次再結晶焼鈍を行ったグラス皮膜材に適用し
、高温で張力付与皮膜処理を行っても同等の効果が得ら
れるのはもちろんである。
Of course, the present invention can be applied to a glass coating material that has been subjected to secondary recrystallization annealing, and the same effect can be obtained even if the coating is subjected to tension imparting coating treatment at a high temperature.

本発明の実施において用いるレーザー装置の種類および
レーザーの発振状態については何ら限定されるものでな
く、例えば市販のCOx、C○。
The type of laser device and the oscillation state of the laser used in carrying out the present invention are not limited at all, and for example, commercially available COx and C○.

YAG、Arレーザー等の各種レーザー装置が使用出来
、連続、発振、パルス発振のいずれでも効果がある。レ
ーザービーム照射面は片面だけでもよく両面に照射して
もよい。
Various laser devices such as YAG and Ar lasers can be used, and any of continuous, oscillation, and pulse oscillation is effective. The laser beam may be irradiated on only one side or on both sides.

本発明ではレーザー照射後の熱処理としてヒートフラッ
トニング、絶縁皮膜焼付の加熱処理を利用出来る。また
YAGの連続発振モードやCOzレーザーにおいて絶縁
皮膜が照射条件により剥離しない様な条件では絶縁皮膜
の再コートの必要がないことは無給である。この様な場
合はレーザー照射後鉄損低域のための熱処理が必要とな
る。なお、レーザー照射の代りに、本発明の要件を満足
するような歯■型ロール、例えば歯先が波形のロール等
を用いてもよい。
In the present invention, heat treatment such as heat flattening and insulation film baking can be used as heat treatment after laser irradiation. Furthermore, under conditions where the insulating film does not peel off due to the irradiation conditions in YAG continuous wave mode or COz laser, there is no need to recoat the insulating film. In such cases, heat treatment is required to reduce iron loss after laser irradiation. Note that instead of laser irradiation, a tooth-shaped roll that satisfies the requirements of the present invention, for example, a roll with corrugated tooth tips, etc. may be used.

〔実施例〕〔Example〕

実施例1゜ 仕上焼鈍し、張力皮膜付与後の0.23mm厚の一方向
性電磁鋼板にパルス発振YAGレーザー装置を利用して
圧延方向と直角方向にビーム径0.1mm巾のレーザー
ビームで4回のビーム走査を行い、複数の塑性歪導入照
射域0.5 m m巾を形成し、’5 m m巾のレー
ザービーム非照射域を間において、周期的に該照射域を
形成した。このときの綱板単位面積当りのエネルギーU
を0.1−100 J/cm”の間で変化させ、レーザ
ー照射後800℃×2時間の応力除去焼なまし後の鉄損
値の増減をレーザー照射前を基準にして第7図に示した
。この図かられかる様にU−IJ/cm”以上の範囲で
複数回のビーム走査を行なうと照射後の鉄損値は一旦悪
(なるが応力除去焼なましにより元の値より良くなるこ
とがわかる。レーザー照射後皮膜剥離部を補τ′のする
意味で張力皮膜を再コートしたものでは鉄損値が第7図
の黒丸より平均で0.025W良い値となった。
Example 1 A unidirectional electrical steel sheet with a thickness of 0.23 mm after finish annealing and a tension coating was applied was subjected to 4 laser beams with a beam diameter of 0.1 mm in a direction perpendicular to the rolling direction using a pulsed YAG laser device. The beam was scanned twice to form a plurality of 0.5 mm wide plastic strain introduction irradiation areas, and the irradiation areas were periodically formed with 5 mm wide laser beam non-irradiation areas in between. Energy U per unit area of the steel plate at this time
Figure 7 shows the increase and decrease in iron loss value after stress relief annealing at 800°C for 2 hours after laser irradiation, with 0.1-100 J/cm'', based on the value before laser irradiation. As can be seen from this figure, when beam scanning is performed multiple times in the range of U-IJ/cm or more, the iron loss value after irradiation becomes bad (although it becomes better than the original value due to stress relief annealing). It can be seen that the iron loss value was on average 0.025 W better than the black circle in FIG. 7 in the case where the tension film was recoated to compensate for the peeled part after laser irradiation.

実施例2゜ 仕上焼鈍後、0.23mm厚の一方向性1i磁m板にパ
ルス発振YAGレーザー装置により、圧延方向と直角方
向にビーム径0.2mm巾のレーザービームにて5回の
ビーム走査を行って複数の塑性歪導火帯照射域1mm巾
を形成し、7mm巾のレーザービーム非照射域を間に置
いて周期的に上記照射域を形成した。照射エネルギーU
はIQJ/cm”であった、この時のレーザー照射前、
照射後、応力除去焼なましく800℃×2時間)後の鉄
損値をそれぞれ第1表に示した。第1表に示される如く
レーザー照射後の鉄損値は応力除去焼なまし後極めて良
い値となることがわかる。
Example 2 After final annealing, a unidirectional 1i magnetic plate with a thickness of 0.23 mm was scanned five times with a laser beam having a beam diameter of 0.2 mm in a direction perpendicular to the rolling direction using a pulse oscillation YAG laser device. A plurality of plastic strain fuse zone irradiation regions each having a width of 1 mm were formed, and the irradiation regions were periodically formed with a laser beam non-irradiation region having a width of 7 mm interposed therebetween. Irradiation energy U
was IQJ/cm" before laser irradiation at this time,
Table 1 shows the iron loss values after irradiation and stress relief annealing at 800° C. for 2 hours. As shown in Table 1, it can be seen that the iron loss value after laser irradiation becomes an extremely good value after stress relief annealing.

第1表 実施例3゜ 仕上焼鈍、張力皮膜付与後の0.20mm厚の一方向性
電磁鋼板にCOz レーザー装置を利用して圧延方向と
直角方向にビーム径0.15mmφのレーザービームに
て4回ビーム走査を行って、0.6mm巾の塑性歪導入
照射域を形成し、5mm巾のレーザービーム非照射域を
間において周期的に該照射域を形成した。照射エネルギ
ーUは15J/cm”であった。この時のレーザー照射
前、照射後、応力除去焼なましく800℃×2時間)後
のそれぞれの鉄損値を第2表に示した。第2表に示され
る如く本発明鋼は著しく鉄損値が低いことがわかる。
Table 1 Example 3 A unidirectional electrical steel sheet with a thickness of 0.20 mm after finish annealing and the application of a tension coating was heated with a laser beam with a beam diameter of 0.15 mmφ in a direction perpendicular to the rolling direction using a COz laser device. The beam was scanned twice to form a plastic strain introduction irradiation area with a width of 0.6 mm, and the irradiation area was periodically formed with a laser beam non-irradiation area of 5 mm width in between. The irradiation energy U was 15 J/cm''. Table 2 shows the iron loss values before laser irradiation, after irradiation, and after stress relief annealing at 800°C for 2 hours. As shown in Table 2, it can be seen that the steel of the present invention has a significantly low iron loss value.

第2表 〔効 果〕 本発明法により得られた鋼板は極めて良い鉄損値を示す
。したがって、本発明によれば連続ラインに適用して低
鉄損の電磁鋼板を得ることが可能である。
Table 2 [Effects] The steel plates obtained by the method of the present invention exhibit extremely good iron loss values. Therefore, according to the present invention, it is possible to obtain an electrical steel sheet with low iron loss by applying it to a continuous line.

本発明によれば応力除去焼なましを行なっても通常のレ
ーザー照射によって得られた鉄損値なみの値が得られる
ので得られた電磁鋼板は巻鉄心トランスのみならず、積
鉄心トランスとしても使用出来、その工業的効果は極め
て大なるものがある。
According to the present invention, even if stress-relieving annealing is performed, an iron loss value equivalent to that obtained by ordinary laser irradiation can be obtained, so the obtained electrical steel sheet can be used not only as a wound core transformer but also as a stacked core transformer. It can be used and its industrial effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるレーザー照射域を示す図、 第2図(a)(b)は本発明における照射パターン模式
図、 第3図はレーザー照射前、照射後、各熱処理後、レーザ
ー処理材のそれぞれの鉄損値、B8値の変化を示した図
、 第4図はレーザーの板圧延方向と直角方向からはかった
照射角度と鉄損値の向上を示す図、第5図はレーザー照
射域中とレーザー非照射域中と到達鉄損値との関係を示
す図、 第6図はレーザービームの中心間隔を変えて歪導入した
ときの歪導入後の鉄損値の変化を示す図、第7図はレー
ザー照射エネルギーと、レーザー照射後応力除去焼なま
し後の鉄損値の向上代、劣化化を示す図である。
Figure 1 is a diagram showing the laser irradiation area in the present invention. Figure 2 (a) and (b) are schematic diagrams of the irradiation pattern in the present invention. Figure 3 is a diagram showing the laser treated material before, after, and after each heat treatment. Figure 4 is a diagram showing the improvement in iron loss value and the laser irradiation angle measured from the direction perpendicular to the plate rolling direction, Figure 5 is the laser irradiation area Figure 6 is a diagram showing the relationship between the core loss value reached during the laser beam and the laser non-irradiation area. FIG. 7 is a diagram showing the laser irradiation energy and the improvement and deterioration of the iron loss value after stress relief annealing after laser irradiation.

Claims (1)

【特許請求の範囲】 1、仕上焼鈍板又は該仕上焼鈍板上への張力付与皮膜処
理済鋼板に、鋼板内で塑性歪域が一部重畳するように近
接した複数の歪導入帯を圧延方向に周期的に付した後、
熱処理を施すことを特徴とする低鉄損一方向性電磁鋼板
の製造方法。 2、複数の塑性歪導入帯の巾が0.2〜2.5mmであ
る特許請求の範囲第1項記載の鋼板の製造方法。 3、塑性歪導入帯の巾が0.1〜0.5mmである特許
請求の範囲第1項記載の鋼板の製造方法。 4、隣接する塑性歪導入帯が当該導入帯の巾の2倍以内
にある特許請求の範囲第1項記載の鋼板の製造方法。 5、複数の塑性歪導入帯相互の間隙が圧延方向に対し2
〜12mmの範囲にある特許請求の範囲第1項記載の鋼
板の製造方法。 6、複数の塑性歪導入帯が圧延方向に対し直角方向から
45°の範囲にある特許請求の範囲第1項記載の鋼板の
製造方法。 7、塑性歪導入帯をレーザー照射によって構成する特許
請求の範囲第1項記載の鋼板の製造方法。 8、複数回のレーザービームの走査により塑性歪導入帯
を構成する特許請求の範囲第1項記載の鋼板の製造方法
。 9、複数本のレーザービームの走査により塑性歪導入帯
を構成する特許請求の範囲第1項記載の鋼板の製造方法
。 10、レーザービームのエネルギー強度をU=1〜10
0J/cm^2とする特許請求の範囲第1項記載の鋼板
の製造方法。 11、近接した複数の歪導入帯を圧延方向に周期的に付
した後、張力付与皮膜処理を施す特許請求の範囲第1項
記載の鋼板の製造方法。
[Scope of Claims] 1. A plurality of strain introduction zones are formed in the rolling direction of the finished annealed plate or the steel plate that has been treated with a tension coating on the finished annealed plate, so that the plastic strain regions are partially overlapped within the steel plate. After periodically applying
A method for producing a low iron loss unidirectional electrical steel sheet, which is characterized by subjecting it to heat treatment. 2. The method for manufacturing a steel plate according to claim 1, wherein the width of the plurality of plastic strain introduction zones is 0.2 to 2.5 mm. 3. The method for manufacturing a steel plate according to claim 1, wherein the width of the plastic strain introduction zone is 0.1 to 0.5 mm. 4. The method for manufacturing a steel plate according to claim 1, wherein the width of adjacent plastic strain introduction zones is within twice the width of the said introduction zone. 5. The gap between the plurality of plastic strain introducing zones is 2 in the rolling direction.
The method for manufacturing a steel plate according to claim 1, wherein the thickness is in the range of 12 mm. 6. The method for manufacturing a steel plate according to claim 1, wherein the plurality of plastic strain introducing zones are within a range of 45° from a direction perpendicular to the rolling direction. 7. The method for manufacturing a steel plate according to claim 1, wherein the plastic strain introduction zone is formed by laser irradiation. 8. The method of manufacturing a steel plate according to claim 1, wherein the plastic strain introduction zone is formed by scanning the laser beam a plurality of times. 9. The method of manufacturing a steel plate according to claim 1, wherein the plastic strain introduction zone is formed by scanning with a plurality of laser beams. 10. Set the energy intensity of the laser beam to U=1~10
0J/cm^2 The method for manufacturing a steel plate according to claim 1. 11. The method for producing a steel sheet according to claim 1, wherein a plurality of adjacent strain introduction bands are periodically applied in the rolling direction and then a tension imparting coating treatment is performed.
JP2418386A 1986-02-07 1986-02-07 Production of low iron loss grain oriented electrical steel sheet Pending JPS62182223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2418386A JPS62182223A (en) 1986-02-07 1986-02-07 Production of low iron loss grain oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2418386A JPS62182223A (en) 1986-02-07 1986-02-07 Production of low iron loss grain oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
JPS62182223A true JPS62182223A (en) 1987-08-10

Family

ID=12131221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2418386A Pending JPS62182223A (en) 1986-02-07 1986-02-07 Production of low iron loss grain oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPS62182223A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057219A (en) * 2010-09-09 2012-03-22 Jfe Steel Corp Grain-oriented electromagnetic steel sheet and method of manufacturing the same
JP2012172215A (en) * 2011-02-23 2012-09-10 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet excellent in iron loss characteristic
JP2012177164A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for manufacturing grain-oriented magnetic steel sheet
JP5841594B2 (en) * 2011-06-01 2016-01-13 新日鐵住金株式会社 Method for producing grain-oriented electrical steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057219A (en) * 2010-09-09 2012-03-22 Jfe Steel Corp Grain-oriented electromagnetic steel sheet and method of manufacturing the same
JP2012172215A (en) * 2011-02-23 2012-09-10 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet excellent in iron loss characteristic
JP2012177164A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for manufacturing grain-oriented magnetic steel sheet
JP5841594B2 (en) * 2011-06-01 2016-01-13 新日鐵住金株式会社 Method for producing grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
US4363677A (en) Method for treating an electromagnetic steel sheet and an electromagnetic steel sheet having marks of laser-beam irradiation on its surface
KR900007448B1 (en) Method for producing a grain oriented electrical steel sheet having a low watt-loss
JPS61117284A (en) Production of low-iron loss grain-oriented electromagnetic steel sheet
JPS6342332A (en) Production of low iron loss grain oriented electrical steel sheet
JPS62182223A (en) Production of low iron loss grain oriented electrical steel sheet
JPS61157631A (en) Introducing method of strain for improving iron loss of directional electromagnetic steel strip
JPS5836051B2 (en) Processing method for electrical steel sheets
JPS6046325A (en) Treatment of electromagnetic steel plate
JPS5836053B2 (en) Processing method for electrical steel sheets
JPS61139679A (en) Production of grain oriented electrical steel sheet having low iron loss
JPH03260020A (en) Method for radiating eb
JPH0347974A (en) Heat-stable extremely low-iron loss grain-oriented silicon steel sheet and its production
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JP3393218B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP2019135323A (en) Grain-oriented electromagnetic steel sheet, wound iron core, method for manufacturing grain-oriented electromagnetic steel sheet, and method for manufacturing wound iron core
JP2003301272A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss
JPH02277780A (en) Grain-oriented silicon steel sheet having small iron loss and production thereof
JPS61186422A (en) Improvement of iron loss of grain oriented electrical steel sheet strip and steel sheet
JPS5923822A (en) Directional electrical steel sheet with superior magnetic characteristic and its manufacture
JP7365416B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH01309922A (en) Production of grain-oriented magnetic steel sheet having low iron loss
JPH01191743A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss excellent in adhesive strength of film
JPS61248507A (en) Method for improvement in magnetic properties of amorphous alloy stacked core
JPH08176840A (en) Low iron loss grain oriented silicon steel sheet not deteriorated in characteristic by stress relief annealing and its production
JPH01252726A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss