JPS61117284A - Production of low-iron loss grain-oriented electromagnetic steel sheet - Google Patents
Production of low-iron loss grain-oriented electromagnetic steel sheetInfo
- Publication number
- JPS61117284A JPS61117284A JP23697384A JP23697384A JPS61117284A JP S61117284 A JPS61117284 A JP S61117284A JP 23697384 A JP23697384 A JP 23697384A JP 23697384 A JP23697384 A JP 23697384A JP S61117284 A JPS61117284 A JP S61117284A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- iron loss
- annealing
- electromagnetic steel
- oriented electromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1294—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/74—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は歪取焼鈍を行っても磁気特性の劣化が少ない
低鉄損の一方向性電磁鋼板の製造方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a grain-oriented electrical steel sheet with low core loss and whose magnetic properties hardly deteriorate even when subjected to strain relief annealing.
(従来の技術)
方向性電磁鋼板においてエネルギー節約の観点から鉄損
を低減することが重要である。鉄損を低減する方法とし
てはレーザー照射により磁区な細分化する方法が既に特
開昭58−26405号公報に開示されているが、該方
法による鉄損の低減はレーデ−照射により導入された歪
みに起因している。したがって歪取り焼鈍を必要としな
い積鉄心トランス用として使用出来るが、歪取り焼鈍を
必要とする巻き鉄心トランス用としては使用出来ない。(Prior Art) In grain-oriented electrical steel sheets, it is important to reduce iron loss from the viewpoint of energy conservation. As a method for reducing iron loss, a method of subdividing magnetic domains by laser irradiation has already been disclosed in Japanese Patent Application Laid-Open No. 58-26405. This is caused by Therefore, it can be used for laminated core transformers that do not require strain relief annealing, but cannot be used for wound core transformers that require strain relief annealing.
また特開昭56−130454号公報において、歪みを
導入した鋼板を二次再結晶焼鈍する際、この焼鈍によっ
て生ずる微細結晶粒群を利用して鉄損、低減を図る方法
が開示されている。該方法は鉄損値の低減が鋼板表面に
生ずる微細再結晶粒を利用するため歪取り焼鈍により鉄
損値が劣化することはないが、上記レーザー照射により
得られたような低鉄損値を得ることはむずかしい。Furthermore, Japanese Patent Application Laid-Open No. 56-130454 discloses a method of reducing iron loss by utilizing fine crystal grain groups produced by the annealing when a strained steel plate is subjected to secondary recrystallization annealing. This method uses fine recrystallized grains generated on the surface of the steel sheet to reduce the iron loss value, so the iron loss value does not deteriorate due to strain relief annealing. It's difficult to obtain.
(発明が解決しようとする問題点)
この発明は、前記の如くレーザー照射技術により、低鉄
損値は得られるが歪取り焼鈍を施すことができないとい
う問題点及び微細再結晶粒生成技術によれば歪取り焼鈍
を行りても磁性が劣化しないという利点がある反面、磁
気特性の改良が不十分であるという問題点を同時に解決
することができる低鉄損一方向性電磁鋼板の製造方法を
提供するものである。(Problems to be Solved by the Invention) This invention solves the problem that although a low core loss value can be obtained by laser irradiation technology as described above, strain relief annealing cannot be performed, and by the fine recrystallized grain generation technology. We developed a method for manufacturing unidirectional electrical steel sheets with low iron loss that has the advantage of not degrading magnetic properties even after strain relief annealing, but at the same time solves the problem of insufficient improvement of magnetic properties. This is what we provide.
(問題点を解決するための手段)
本発明はかかる従来技術の問題点を、仕上焼鈍済の一方
向性電磁鋼板又は仕上焼鈍後、絶縁皮膜処理を施した一
方向性電磁鋼板の地鉄の一部を除去し、次いで該鋼板に
リン酸系張力付加皮膜処理を施すことを特徴とする低鉄
損一方向性電磁鋼板の製造方法により解決しようとする
もので、鋼板地鉄の上記除去部に該地鉄よりも焼付熱処
理後の熱膨張係数が小さい化合物を充填し、これによっ
て、磁気特性を高水準に維持しつつ歪取り焼鈍後の磁性
劣化を低減しようとするものである。(Means for Solving the Problems) The present invention solves the problems of the prior art by using a base iron of a finish annealed unidirectional electrical steel sheet or a unidirectional electrical steel sheet subjected to an insulation coating treatment after finish annealing. This problem is solved by a method for producing a low core loss unidirectional electrical steel sheet, which is characterized by removing a portion of the steel sheet and then subjecting the steel sheet to a phosphoric acid-based tension-adding film treatment. The steel is filled with a compound whose thermal expansion coefficient after baking heat treatment is smaller than that of the base steel, thereby reducing magnetic deterioration after strain relief annealing while maintaining magnetic properties at a high level.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
814%以下を含む珪素鋼スラブを加熱し、中間板厚で
熱間圧延し、得られた熱延板を酸洗し、必要に応じてこ
の段階で熱処理を行なう。次いで中間焼鈍をはさむ2回
の冷間圧延又は1回の冷間圧延を行なって最終板厚にし
、得られた冷延板を脱炭焼鈍する。その後焼鈍分離剤を
塗布し、さらに二次再結晶焼鈍を施して通常の一方向性
電磁鋼板を製造する。このようにして得られた鋼板又は
該鋼板に絶縁皮膜を塗布し、焼付けた鋼板の地鉄の一部
を除去する。A silicon steel slab containing 814% or less is heated and hot-rolled to an intermediate thickness, and the obtained hot-rolled sheet is pickled and, if necessary, heat treated at this stage. Next, cold rolling is performed twice or once with intermediate annealing to obtain the final plate thickness, and the obtained cold rolled plate is decarburized and annealed. Thereafter, an annealing separator is applied, and secondary recrystallization annealing is performed to produce a normal grain-oriented electrical steel sheet. An insulating film is applied to the thus obtained steel plate or the steel plate, and a part of the base iron of the baked steel plate is removed.
この地鉄の除去方法としては、鋼板表面に機械的に応力
を付加する罫書きのような手段又はレーデ−照射のよう
な手段で先ず鋼板の絶縁皮膜の一部を剥離した後、塩酸
、硝酸などの酸で鋼板地鉄を溶解除去する。熱論罫書き
等の手段で直接地鉄に所望の形状の溝を形成してもよい
。このように大きな応力で地鉄表面に溝を形成すると、
後の焼鈍工程で微細再結晶粒が生じ、鉄損低減に効果的
に働く。The method for removing this base metal is to first peel off a part of the insulating film of the steel plate using a method such as scribing that mechanically applies stress to the surface of the steel plate or a method such as radar irradiation, and then remove it using hydrochloric acid or nitric acid. Dissolve and remove the base steel plate with acid such as. Grooves of a desired shape may be formed directly on the base metal by means such as thermal scribing. When grooves are formed on the surface of the steel base with such large stress,
Fine recrystallized grains are generated in the subsequent annealing process, which effectively reduces iron loss.
地鉄除去の溝の形は圧延方向(<001>方位)に対し
て直角方向が好ましいが例えば圧延方向に45°の方向
をもったものでもよい。あまり傾きを大きくすると鉄損
低減に対して不利になるので好ましくない。本発明はレ
ーザー照射による鉄損値低減法と歪導入という点では同
じであるが、歪取り焼鈍を行なっても局所的に歪が生じ
ている点が異なっている。したがって圧延方向に対する
溝の間隔は特公昭58−26406号公報に開示されて
いる如く5〜10埴が最も好ましい。この理由はこの範
囲で鉄損値が最も低下するからである。溝は線で形成さ
れていても点状で形成されていてもどちらでもよいが点
で形成されている場合は点と点との間隔が0.3 ms
以下が好ましい。これより大きくなると鉄損値低減に対
して効果は小さくなる。The shape of the groove for removing the base metal is preferably perpendicular to the rolling direction (<001> direction), but may be oriented at 45° to the rolling direction, for example. It is not preferable to make the slope too large because it will be disadvantageous to reducing iron loss. The present invention is the same as the iron loss value reduction method by laser irradiation in terms of introducing strain, but differs in that strain is locally generated even if strain relief annealing is performed. Therefore, the distance between the grooves in the rolling direction is most preferably 5 to 10 mm as disclosed in Japanese Patent Publication No. 58-26406. The reason for this is that the iron loss value decreases the most within this range. The grooves may be formed as lines or dots, but if they are formed as dots, the interval between the dots should be 0.3 ms.
The following are preferred. If it is larger than this, the effect on reducing the iron loss value will be small.
本発明による溝の形状9幅、深さと磁気特性との関係は
第1図のようになる。The relationship between the groove shape 9 width and depth and magnetic properties according to the present invention is as shown in FIG.
第1図(−はリン酸系或いは有機系化合物をコーティン
グして絶縁処理を施した板厚0.23 tmの鋼板に深
さ0.05 vm、間隔5瓢で幅を種々変えた溝を形成
し、更に該溝に地鉄より熱膨張係数の小さい化合物とし
て上記リン酸系張力付加皮膜処理液を塗布した後、85
0℃×5分の焼付処理をした結果の磁性との関係を示す
。Figure 1 (- indicates grooves with a depth of 0.05 vm and various widths formed at 5 mm intervals on a 0.23 tm thick steel plate coated with a phosphoric acid or organic compound for insulation treatment. Then, after applying the above-mentioned phosphoric acid-based tension coating treatment liquid as a compound having a coefficient of thermal expansion smaller than that of the base steel to the groove, 85
The relationship with magnetism as a result of baking treatment at 0°C for 5 minutes is shown.
上記リン酸系張力付加皮膜処理はコロイド状シリカとリ
ン酸塩を主成分とするコーテイング液を塗布した後、約
350℃以上の温度で焼付けて皮膜を形成する処理を云
う。第1図の例ではコーテイング液として、コロイド状
シリカ、リン酸アルミニウム、無水クロム酸及びクロム
酸塩の1種又は2種以上から構成された液を使用したが
、勿論これに限ることなく、リン酸塩としてリン酸マグ
ネシウム又はこれらの組合せなど種々のものが使用され
る。The above-mentioned phosphoric acid-based tension-adding film treatment is a process in which a coating liquid containing colloidal silica and phosphate as main components is applied and then baked at a temperature of about 350° C. or higher to form a film. In the example shown in Fig. 1, a coating liquid composed of one or more of colloidal silica, aluminum phosphate, chromic anhydride, and chromate salts was used, but the coating liquid is not limited thereto. Various acid salts are used, such as magnesium phosphate or combinations thereof.
なお、上記例では鋼板の地鉄よりも熱膨張係数の小さい
化合物としてコロイド状シリカとリン酸塩を主成分とす
るコーテイング液を使用したが、これに代るものとしズ
該コーティング液と同等の効果を有するコーティング材
料を使用してもよいことは勿論である。In the above example, a coating liquid mainly composed of colloidal silica and phosphate was used as a compound with a smaller coefficient of thermal expansion than the base metal of the steel plate, but instead of this, a coating liquid equivalent to the above coating liquid may be used. Of course, effective coating materials may also be used.
第1図(a)によれば磁気特性の一つの磁束密度は溝の
幅が増加すると共に低下するが、溝の幅をあまり狭くす
ると歪み発生量が少なくなり、鉄損値が劣化するので0
.1■より大きいことが必要である。溝の幅の上限は0
.4瓢程度まで良好な磁気特性が得られる。According to Fig. 1(a), the magnetic flux density, one of the magnetic characteristics, decreases as the groove width increases, but if the groove width is made too narrow, the amount of distortion will decrease and the iron loss value will deteriorate.
.. It is necessary that the value be larger than 1■. The upper limit of groove width is 0
.. Good magnetic properties can be obtained up to about 4 ounces.
第1図伽)は板厚0.23 mの鋼板に幅0.3m、間
隔51II+、深さを椎々変えた溝を形成し、該溝に上
記コーテイング液が充てんされるように塗布処理した鋼
板を850℃×5分焼付は処理した後の結果を示したも
のである。In Figure 1, grooves with a width of 0.3 m, an interval of 51II+, and varying depths were formed in a steel plate with a thickness of 0.23 m, and the coating liquid was applied so that the grooves were filled with the coating liquid. The results are shown after baking the steel plate at 850°C for 5 minutes.
溝の深さは0.02−以上で鉄損低減に効果があられれ
、0.1w以上になると鉄損値劣化は少ないが磁束密度
が著しく低下するので、溝の深さは0.02〜0.1鴫
が好ましい。A groove depth of 0.02- or more is effective in reducing iron loss, and if it is 0.1 w or more, there is little deterioration of the iron loss value, but the magnetic flux density decreases significantly, so the groove depth should be 0.02- or more. A value of 0.1 is preferred.
このように本発明では鋼板地鉄表面に部分的除去部を形
成した後、鋼板地鉄の熱膨張係数(約13X10 )
より小さい熱膨張係数を有する化合物、例えば上述のよ
うなコーテイング液、即ちリン酸系張力付加皮膜処理液
が該除去部に充てんされるように鋼板に塗布する。ここ
では、工業的にみて局部塗布より全面塗布の方が容易で
あるので全面塗布を行なっているが局部塗布しても同様
な効果が得られるのは勿論である。充填方法は塗布など
いかなる方法でもよい。In this way, in the present invention, after forming a partially removed portion on the surface of the steel plate substrate, the thermal expansion coefficient (approximately 13×10 ) of the steel plate substrate is
A compound having a smaller coefficient of thermal expansion, such as a coating liquid as described above, ie, a phosphoric acid-based tension coating treatment liquid, is applied to the steel plate so that the removed portion is filled. Here, the entire surface is coated because it is easier from an industrial perspective than the local coating, but it goes without saying that the same effect can be obtained by local coating. The filling method may be any method such as coating.
更に充填物と地鉄との結合力を高めるため地鉄除去部に
金属メッキを行なうと、効果は一層高められる。コロイ
ド状シリカを含有する上記溶液の場合には1融以下のN
lメッキをすることが充填物と下地との結合力を高める
のに有効である。Furthermore, the effect can be further enhanced by metal plating the removed part of the base metal in order to increase the bonding strength between the filler and the base metal. In the case of the above solution containing colloidal silica, the N
L plating is effective in increasing the bonding strength between the filler and the base.
第2図は走査型電子顕微鏡による、磁区観察の結果を示
す写真図である。この試料は、張力皮膜の施された電磁
鋼板をレーデ−照射後、硝酸溶液中で腐食し約0.02
5m深さの孔をつくり、す/酸アルミニウム、コロイダ
ルシリカ、クロム酸からなるコーテイング液を350℃
で焼付けた後、大気中で850℃×2分の熱処理を行な
い850℃×4時間の歪取り焼鈍を行なったものである
@孔の部分より磁区が発生しているのが明瞭に観察され
る。このように充填物より、圧延方向に磁区が発生し磁
区を細分化することにより鉄損値を低減すると考えられ
る。FIG. 2 is a photographic diagram showing the results of magnetic domain observation using a scanning electron microscope. This sample corroded in a nitric acid solution after irradiating an electrical steel sheet with a tension coating, and the result was approximately 0.02
A 5m deep hole was created and a coating solution consisting of aluminum acid, colloidal silica, and chromic acid was heated at 350°C.
After baking, it was heat treated in the air at 850°C for 2 minutes, and strain relief annealed at 850°C for 4 hours. It is clearly observed that magnetic domains are generated from the holes. . In this way, it is thought that the filler generates magnetic domains in the rolling direction and subdivides the magnetic domains to reduce the iron loss value.
ここでは最も経済的に製品をつくることを意識して、仕
−ヒ焼鈍後、あるいはリン酸系皮膜等の絶縁皮膜の施さ
れた鋼板を対象として説明したが、全く皮膜のない二次
再結晶した鋼板(仕上焼鈍済みの鋼板)に本発明の処理
を行なっても鉄損値低減の効果が期待できる。Here, with the aim of manufacturing products in the most economical way, we have explained steel sheets that have been subjected to annealing or an insulating coating such as a phosphoric acid coating, but secondary recrystallization that has no coating at all has been explained. Even if the treatment of the present invention is applied to a steel plate that has undergone finish annealing (finish annealed steel plate), the effect of reducing the iron loss value can be expected.
以下、本発明の実施例について述べる。Examples of the present invention will be described below.
(実施例)
実施例1
1回冷延法によ!l 0.23 m厚まで仕上げた一方
向性電磁鋼板の仕上焼鈍板を、ナイフ先端によって板圧
延方向に直角に直線溝状に5調間隔で罫書きし、下地金
属に深さ約0.03 m 、幅0.2 tWの溝を形成
した。次いでコロイド状シリカ20%水分散液100
cc 、リン酸アルミニウム50チ水溶液60 cc
、無水クロム酸6gの組成のコーテイング液を塗布し、
830℃で3分間焼付けた。それを更に850℃×4時
間の歪取り焼鈍を行なった。(Example) Example 1 One-time cold rolling method! l A finish annealed unidirectional electrical steel sheet finished to a thickness of 0.23 m was scored with the tip of a knife in the form of straight grooves at 5-tone intervals perpendicular to the sheet rolling direction, to a depth of approximately 0.03 m on the base metal. A groove with a width of 0.2 tW and a width of 0.2 tW was formed. Then 100% colloidal silica 20% aqueous dispersion
cc, aluminum phosphate 50% aqueous solution 60 cc
, apply a coating liquid with a composition of 6 g of chromic anhydride,
It was baked at 830°C for 3 minutes. It was further subjected to strain relief annealing at 850°C for 4 hours.
歪取り前後の該鋼板の圧延方向の鉄損値と、仕上焼鈍後
、す/酸系張力皮膜を付与しただけで歪取シ焼鈍した鋼
板、仕上焼鈍後リン酸系張力皮膜を付与したのち5w間
間隔的約0.03深さ、0.2−幅の溝を罫書いて歪取
り焼鈍した鋼板の圧延方向での鉄損値をそれぞれ第1表
に示した。The iron loss value in the rolling direction of the steel sheet before and after strain relief, and the steel sheet that was strain relief annealed with only a phosphoric acid-based tension film applied after final annealing, and the 5W steel plate after final annealing and after applying a phosphoric acid-based tension film. Table 1 shows the iron loss values in the rolling direction of steel plates that were annealed to relieve strain by scoring grooves with a depth of about 0.03 and a width of 0.2 at intervals.
第 1 表
第1表かられかるように、罫書きのみでも二次再結晶粒
中に微細粒が発生するため鉄損は低下するが本発明によ
れば仕上焼鈍+リン酸系張力皮膜付与のものにくらべ鉄
損値がWj 715Gで0.1mm、〜0、13 W/
に9低下しており罫書き後歪取り焼鈍した鋼板の鉄損値
にくらぺ0,03〜0.05 W/kII低下しておシ
、明らかに溝部に熱膨張係数の小さいリン酸系皮膜張力
付与物質の充填が有効であることを示している。Table 1 As can be seen from Table 1, the iron loss decreases even with only scribing, as fine grains are generated in the secondary recrystallized grains, but according to the present invention, finishing annealing + applying a phosphoric acid tension coating reduces the iron loss. The iron loss value is 0.1 mm at Wj 715G, ~0.13 W/
The iron loss value has decreased by 0.03 to 0.05 W/kII, which is comparable to the iron loss value of a steel plate that has been annealed to remove strain after scoring. This shows that filling with tensioning material is effective.
実施例2
1回冷延法により製造した0、 23 m厚の方向性電
磁鋼板の仕上焼鈍皮膜にリン酸系張力皮膜を付与した鋼
板表面皮膜をヤグレーデーによシ約4mJのパルス強度
で0.2 swφ、0.3+w間隔で圧延方向に対し直
角に点線状に剥離した。Example 2 A phosphoric acid-based tension coating was applied to the finish annealing coating of a grain-oriented electrical steel sheet with a thickness of 0.23 m produced by a single cold rolling method, and a steel plate surface coating was applied to the surface coating of the steel plate using a Yagra day with a pulse intensity of approximately 4 mJ. Peeling occurred in dotted lines perpendicular to the rolling direction at intervals of 2 swφ and 0.3+w.
線と線との間隔は5mとした。剥離後61チの硝酸中に
20秒間浸漬して約0.04+m深さの孔とした。その
後Wa t t @浴(硫El 二yケル2401mm
、/l。The distance between the lines was 5 m. After peeling, it was immersed in 61 cm of nitric acid for 20 seconds to form a hole with a depth of about 0.04+ m. After that, Wa t t @ bath (Sulfur El 2y Kel 2401mm
,/l.
塩化ニッケル451mm、/l 、硼酸301!/l
、温度60℃)中で5 A/ dm”の電流密度で5秒
間Niメッヤを施したのちコロイド状シリカの20%水
分”散液100 cc 、リン酸ア・ルミニウム50チ
水溶液60CC、クロム酸マグネシウム約25%水溶液
15cc。Nickel chloride 451mm,/l, boric acid 301! /l
Ni-plating was applied at a current density of 5 A/dm for 5 seconds at a temperature of 60 °C, followed by 100 cc of a 20% water dispersion of colloidal silica, 60 cc of an aqueous solution of aluminum phosphate, 50 cc of aluminum phosphate, and magnesium chromate. Approximately 15 cc of 25% aqueous solution.
硼酸3IIの組成のコーテイング液を塗布し、850℃
で3分間焼付けた。それを更に800℃×4時間の歪取
り焼鈍を行なった。他の一つは上記と同様の処理をNi
メッキをすることなしく施した。その時の鋼板の圧延方
向の鉄損値をそれぞれ第2表尤示した。Coating liquid with composition of boric acid 3II was applied and heated to 850℃.
Bake for 3 minutes. It was further subjected to strain relief annealing at 800°C for 4 hours. The other one is Ni
It was applied without plating. Table 2 shows the iron loss values of the steel plates in the rolling direction at that time.
第 2 表
第2表の結果から明らかなように、Niメッキ有無で歪
取り焼鈍後若干劣化の程度は異なるが従来法にくらべて
、極めて優れた鉄損値を示している。Table 2 As is clear from the results in Table 2, the degree of deterioration after strain relief annealing is slightly different depending on whether Ni plating is applied or not, but the iron loss value is extremely superior to that of the conventional method.
(発明の効果)
本発明くよれば歪取り焼鈍を行なってもレーザー照射に
よって得られる鉄損値なみの値が得られるので、得られ
た電磁鋼板は巻き鉄心トランス用としても使用でき、そ
の工業的効果は極めて大きい、また本発明によって得ら
れた電磁鋼板は歪取り焼鈍なしでも良好な鉄損値を示す
ことから、!R鉄心トランス用としても使用することが
出来るという利点がある。(Effects of the Invention) According to the present invention, even if strain relief annealing is performed, a value equivalent to the iron loss value obtained by laser irradiation can be obtained, so the obtained electrical steel sheet can also be used for wound core transformers, and its industrial This is because the electrical steel sheet obtained by the present invention shows a good iron loss value even without strain relief annealing! It has the advantage that it can also be used for R-core transformers.
第1図は鋼板地鉄に形成された溝の幅および深さと磁気
特性との関係を示す図、第2図は、走査型電子顕微鏡に
よる本発明鋼板の磁区細分化の結晶構造を示す写真図で
ある。
第1図
(b)
溝の原で
第2図
ダ/nA
手続補正書(自発)
昭和60年3月7日
特許庁長官 志 賀 学 殿
l、事件の表示
昭和59年特許願第236973号
2、発明の名称
低鉄損一方向性電磁筒板の製造方法
3、蒲正をする者
事件との関係 特許出願人
東京都千代田区大手町二丁目6番3号
(665)新日本製鐵株式會社
代表者 武 1) 豊
4、代理人〒100
東京都千代田区丸の内二丁目4番1号
5、補正命令の日付 昭和 年 月 日6、補
正の対象
明細書の発明の詳細な説明の欄
7、補正の内容
(す明細書5頁下から4行「低下するJを「低減する」
に補正する。
(2)同8頁1行「好ましい。」を「好ましい。なお、
溝の深さが0.01m1以上でも従来法に比べて磁気特
性の向上がみられる。」に補正する。
手続補正書 (自発)
昭和60年7月2日
特許庁長官 志 賀 学 殿
1、事件の表示
憫軽昭和59年特許願第236973号
2、発明の名称
低鉄損一方向性電磁鋼板の製造方法
3、補正をする者
事件との関係 特許出願人
東京都千代田区大手町二丁目6番3号
(665)新日本製鐵株式會社
代表者 武 1) 豊
4、代理人〒100
6 補正の対象
明紀書の特許請求の範囲のIfI4及び発明の詳細な説
明(1)特許請求の範囲を別紙の通り補正する。
(2)明細書5頁下から5行「5〜lQawJを「2.
5〜10alJに補正する。
(3)同9頁14行「期待できる。」の次に「なお、歪
取焼鈍後の磁歪特性は通常材と同等であった。」を挿入
する。
(4)同12頁1mm、行「硝酸中に」を「硝酸中(2
5℃)に」に補正する。
(5)同13頁第2表中、最上欄左側「工程」を「区分
」に補正する。
鈍後、絶縁皮膜処理を施した一方向性電磁鋼板の地鉄の
一部を除去し、次いで該鋼板にリン酸系張力付加皮膜処
理を施すことを特徴とする低鉄損一方向性電磁鋼板の製
造方法。
(2) 鋼板表面の皮膜の一部を剥離した後、酸洗する
特許請求の範囲第1項記載の方法。
(3)鋼板表面に機械的手段を加えることにより鋼板地
鉄の一部を除去する特許請求の範囲第1項記載の方法。
(4) 鋼板地鉄の除去部に金属メッキを施した後、リ
ン酸系張力付加皮膜処理を行う特許請求の範囲第1項記
載の方法。
(5)地鉄除去部が線状又は点線状で形成されている特
許請求の範囲第1項記載の方法。
(6)線状又は点線状の溝の間隔が2.5〜10麿。
該溝の幅が0.1〜0.43Em、該溝の深さが0.0
2〜0、1 gl、点と点の間隔が0.3 ml以下で
ある特許請求の範囲第5項記載の方法。Fig. 1 is a diagram showing the relationship between the width and depth of a groove formed in a steel sheet base steel and magnetic properties, and Fig. 2 is a photograph showing the crystal structure of the magnetic domain refinement of the steel sheet of the present invention taken with a scanning electron microscope. It is. Figure 1 (b) At Mizonohara Figure 2 DA/nA Procedural amendment (voluntary) March 7, 1985 Manabu Shiga, Commissioner of the Patent Office, Indication of the case 1988 Patent Application No. 236973 2 , Name of the invention: Method for manufacturing a low core loss unidirectional electromagnetic cylindrical plate 3, Relationship to the case of a person who performs arranging Patent applicant: Nippon Steel Corporation, 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665) Company Representative: Takeshi 1) Yutaka 4, Agent: 2-4-1-5 Marunouchi, Chiyoda-ku, Tokyo 100, Japan Date of amendment order: Month, Day 6, 1939, Column 7 for detailed description of the invention in the specification to be amended , Contents of the amendment (4 lines from the bottom of page 5 of the specification ``Reduce the decreasing J''
Correct to. (2) On page 8, line 1, “preferable.” should be changed to “preferable.”
Even when the depth of the groove is 0.01 m1 or more, the magnetic properties are improved compared to the conventional method. ”. Procedural amendment (voluntary) July 2, 1985 Manabu Shiga, Commissioner of the Patent Office 1, Indication of the case
Kikaru Patent Application No. 236973 of 1982 2, Title of invention: Method for manufacturing low iron loss unidirectional electrical steel sheet 3, Relationship with the person making the amendment case Patent applicant: 2-6-3 Otemachi, Chiyoda-ku, Tokyo No. (665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 〒100 6 Subject of amendment IfI 4 of the claims of Meikisho and detailed description of the invention (1) Attach the claims Correct as shown. (2) Five lines from the bottom of page 5 of the specification “5~lQawJ”.
Correct to 5-10 alJ. (3) After "We can expect it." on page 9, line 14, insert "The magnetostrictive properties after strain relief annealing were the same as those of normal materials." (4) Same page 12, 1mm, line “in nitric acid” changed to “in nitric acid (2
5℃). (5) In Table 2 on page 13, "Process" on the left side of the top column has been amended to "Category." A low iron loss unidirectional electrical steel sheet characterized by removing a part of the base iron of the unidirectional electrical steel sheet which has been subjected to an insulation coating treatment after being blunted, and then subjecting the steel sheet to a phosphoric acid-based tension adding coating treatment. manufacturing method. (2) The method according to claim 1, in which a portion of the film on the surface of the steel sheet is peeled off and then pickled. (3) The method according to claim 1, wherein a part of the steel sheet base is removed by applying mechanical means to the surface of the steel sheet. (4) The method according to claim 1, wherein after applying metal plating to the removed portion of the steel plate base metal, a phosphoric acid-based tension-adding coating treatment is performed. (5) The method according to claim 1, wherein the base metal removal portion is formed in a linear or dotted line shape. (6) The distance between the linear or dotted grooves is 2.5 to 10 mm. The width of the groove is 0.1 to 0.43Em, and the depth of the groove is 0.0
6. The method according to claim 5, wherein the volume is 2 to 0.1 gl, and the distance between the points is 0.3 ml or less.
Claims (6)
絶縁皮膜処理を施した一方向性電磁鋼板の地鉄の一部を
除去し、次いで該鋼板にリン酸系張力付加皮膜処理を施
すことを特徴とする低鉄損一方向性電磁鋼板の製造方法
。(1) Finish annealed unidirectional electrical steel sheet or after finish annealing,
A method for producing a low core loss unidirectional electrical steel sheet, which comprises removing a part of the base iron of a unidirectional electrical steel sheet that has been subjected to an insulation coating treatment, and then subjecting the steel sheet to a phosphoric acid-based tension addition coating treatment. .
許請求の範囲第1項記載の方法。(2) The method according to claim 1, wherein a portion of the film on the surface of the steel plate is peeled off and then pickled.
鉄の一部を除去する特許請求の範囲第1項記載の方法。(3) The method according to claim 1, wherein a part of the steel sheet base is removed by applying mechanical means to the surface of the steel sheet.
酸系張力付加皮膜処理を行う特許請求の範囲第1項記載
の方法。(4) The method according to claim 1, wherein after metal plating is applied to the removed portion of the steel sheet base, a phosphoric acid-based tension coating treatment is performed.
許請求の範囲第1項記載の方法。(5) The method according to claim 1, wherein the base metal removal portion is formed in a linear or dotted line shape.
の幅が0.1〜0.4mm、該溝の深さが0.02〜0
.1mm、点と点の間隔が0.3mm以下である特許請
求の範囲第5項記載の方法。(6) The distance between the linear or dotted grooves is 5 to 10 mm, the width of the groove is 0.1 to 0.4 mm, and the depth of the groove is 0.02 to 0.
.. The method according to claim 5, wherein the distance between the points is 1 mm or less, and the distance between the points is 0.3 mm or less.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23697384A JPS61117284A (en) | 1984-11-10 | 1984-11-10 | Production of low-iron loss grain-oriented electromagnetic steel sheet |
CA000494900A CA1246968A (en) | 1984-11-10 | 1985-11-08 | Grain-oriented electrical steel sheet having stable magnetic properties resistant to stress-relief annealing, and method and apparatus for producing the same |
DE3539731A DE3539731C2 (en) | 1984-11-10 | 1985-11-08 | Grain-oriented electrical steel sheet having stable stress-relieving magnetic properties and method and apparatus for making the same |
SE8505295A SE465129B (en) | 1984-11-10 | 1985-11-08 | CORN-ORIENTED STEEL TUNNER PLATE FOR LOW WATER LOSS ELECTRICITY AFTER RELAXATION GLOVES AND PROCEDURE FOR PREPARATION OF THE PLATE |
BE0/215845A BE903619A (en) | 1984-11-10 | 1985-11-08 | ORIENTED GRAIN ELECTRIC STEEL SHEETS HAVING STABLE MAGNETIC PROPERTIES, THEIR PRODUCTION METHOD AND APPARATUS FOR OBTAINING SAME |
GB08527599A GB2168626B (en) | 1984-11-10 | 1985-11-08 | Grain-oriented electrical steel sheet having stable magnetic properties resistant to stress-relief annealing, and method and apparatus for producing the same |
KR1019850008408A KR910002866B1 (en) | 1984-11-10 | 1985-11-11 | Grain-oriented electrical steel sheet having stable magnetic proporties resistant to stress relief annealing and method and apparatus for producing the same |
IT67947/85A IT1182667B (en) | 1984-11-10 | 1985-11-11 | ORIENTED GRAIN ELECTRIC STEEL SHEET HAVING STABLE MAGNETIC PROPERTIES RESISTANT TO DISTENSION ANNEALING AND METHOD AND EQUIPMENT FOR ITS MANUFACTURE |
FR858516665A FR2575588B1 (en) | 1984-11-10 | 1985-11-12 | ORIENTED GRAIN ELECTRIC STEEL SHEET HAVING STABLE MAGNETIC PROPERTIES RESISTANT TO RELAXATION ANNUIT, AS WELL AS METHOD AND APPARATUS FOR PRODUCING SAME |
US06/796,869 US4750949A (en) | 1984-11-10 | 1985-11-12 | Grain-oriented electrical steel sheet having stable magnetic properties resistant to stress-relief annealing, and method and apparatus for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23697384A JPS61117284A (en) | 1984-11-10 | 1984-11-10 | Production of low-iron loss grain-oriented electromagnetic steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61117284A true JPS61117284A (en) | 1986-06-04 |
JPS6254873B2 JPS6254873B2 (en) | 1987-11-17 |
Family
ID=17008504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23697384A Granted JPS61117284A (en) | 1984-11-10 | 1984-11-10 | Production of low-iron loss grain-oriented electromagnetic steel sheet |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS61117284A (en) |
CA (1) | CA1246968A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5141573A (en) * | 1988-04-23 | 1992-08-25 | Nippon Steel Corporation | High flux density grain-oriented electrical steel sheet having improved watt loss characteristic and process for preparation thereof |
JP2003034822A (en) * | 2001-07-26 | 2003-02-07 | Nippon Steel Corp | Grain-oriented electromagnetic steel sheet superior in magnetic properties |
JP2003301272A (en) * | 2002-04-11 | 2003-10-24 | Nippon Steel Corp | Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss |
CN103728366A (en) * | 2013-12-30 | 2014-04-16 | 中国计量科学研究院 | Signal analysis device for silicon steel continuous iron loss measurement and signal analysis method thereof |
JP2017095745A (en) * | 2015-11-19 | 2017-06-01 | 新日鐵住金株式会社 | Grain oriented silicon steel sheet and method for manufacturing the same |
JP2019024039A (en) * | 2017-07-24 | 2019-02-14 | 新日鐵住金株式会社 | Wound iron core |
WO2021054409A1 (en) | 2019-09-18 | 2021-03-25 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet |
WO2022013960A1 (en) | 2020-07-15 | 2022-01-20 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet, and method for manufacturing grain-oriented electromagnetic steel sheet |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102834529A (en) | 2010-04-01 | 2012-12-19 | 新日本制铁株式会社 | Directional electromagnetic steel plate and method for manufacturing same |
US10629346B2 (en) | 2012-04-26 | 2020-04-21 | Jfe Steel Corporation | Method of manufacturing grain-oriented electrical steel sheet |
CN104284994B (en) | 2012-04-26 | 2017-03-01 | 杰富意钢铁株式会社 | Orientation electromagnetic steel plate and its manufacture method |
EP2843062B1 (en) | 2012-04-27 | 2020-07-29 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and manufacturing method therefor |
JP6455593B2 (en) | 2015-04-20 | 2019-01-23 | 新日鐵住金株式会社 | Oriented electrical steel sheet |
BR112017019141B1 (en) | 2015-04-20 | 2021-09-08 | Nippon Steel Corporation | GRAIN ORIENTED ELECTRIC STEEL SHEET |
CN111684087B (en) | 2018-02-08 | 2023-03-31 | 日本制铁株式会社 | Grain-oriented electromagnetic steel sheet |
KR102471550B1 (en) | 2018-02-09 | 2022-11-29 | 닛폰세이테츠 가부시키가이샤 | Grain-oriented electrical steel sheet and its manufacturing method |
PL3913076T3 (en) | 2019-01-16 | 2024-06-24 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and method for manufacturing the same |
CN110507229A (en) * | 2019-08-18 | 2019-11-29 | 应伟明 | A kind of manufacturing method and composite ganoine defrosting chopping board of composite ganoine defrosting chopping board |
CN115055911B (en) * | 2021-11-23 | 2023-06-27 | 全球能源互联网研究院有限公司 | Heat-resistant extremely-low-loss oriented silicon steel and preparation method thereof |
WO2023195470A1 (en) | 2022-04-04 | 2023-10-12 | 日本製鉄株式会社 | Oriented electromagnetic steel sheet and method for producing same |
WO2023195466A1 (en) | 2022-04-04 | 2023-10-12 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet and production method for same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5314419A (en) * | 1976-05-06 | 1978-02-09 | Commercial Shearing | Control valve |
JPS56130454A (en) * | 1980-03-14 | 1981-10-13 | Nippon Steel Corp | Anisotropic electrical steel sheet with low iron loss and its manufacture |
JPS5928525A (en) * | 1982-07-19 | 1984-02-15 | アレゲニ−・ラドラム・スチ−ル・コ−ポレ−シヨン | Manufacture of cube-on-edge silicon steel |
JPS59197520A (en) * | 1983-04-20 | 1984-11-09 | Kawasaki Steel Corp | Manufacture of single-oriented electromagnetic steel sheet having low iron loss |
JPS60103124A (en) * | 1983-11-09 | 1985-06-07 | Kawasaki Steel Corp | Grain oriented silicon steel sheet which obviates deterioration of characteristic by stress relief annealing and production thereof |
-
1984
- 1984-11-10 JP JP23697384A patent/JPS61117284A/en active Granted
-
1985
- 1985-11-08 CA CA000494900A patent/CA1246968A/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5314419A (en) * | 1976-05-06 | 1978-02-09 | Commercial Shearing | Control valve |
JPS56130454A (en) * | 1980-03-14 | 1981-10-13 | Nippon Steel Corp | Anisotropic electrical steel sheet with low iron loss and its manufacture |
JPS5928525A (en) * | 1982-07-19 | 1984-02-15 | アレゲニ−・ラドラム・スチ−ル・コ−ポレ−シヨン | Manufacture of cube-on-edge silicon steel |
JPS59197520A (en) * | 1983-04-20 | 1984-11-09 | Kawasaki Steel Corp | Manufacture of single-oriented electromagnetic steel sheet having low iron loss |
JPS60103124A (en) * | 1983-11-09 | 1985-06-07 | Kawasaki Steel Corp | Grain oriented silicon steel sheet which obviates deterioration of characteristic by stress relief annealing and production thereof |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5141573A (en) * | 1988-04-23 | 1992-08-25 | Nippon Steel Corporation | High flux density grain-oriented electrical steel sheet having improved watt loss characteristic and process for preparation thereof |
JP2003034822A (en) * | 2001-07-26 | 2003-02-07 | Nippon Steel Corp | Grain-oriented electromagnetic steel sheet superior in magnetic properties |
JP2003301272A (en) * | 2002-04-11 | 2003-10-24 | Nippon Steel Corp | Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss |
CN103728366A (en) * | 2013-12-30 | 2014-04-16 | 中国计量科学研究院 | Signal analysis device for silicon steel continuous iron loss measurement and signal analysis method thereof |
JP2017095745A (en) * | 2015-11-19 | 2017-06-01 | 新日鐵住金株式会社 | Grain oriented silicon steel sheet and method for manufacturing the same |
JP2019024039A (en) * | 2017-07-24 | 2019-02-14 | 新日鐵住金株式会社 | Wound iron core |
WO2021054409A1 (en) | 2019-09-18 | 2021-03-25 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet |
KR20220044350A (en) | 2019-09-18 | 2022-04-07 | 닛폰세이테츠 가부시키가이샤 | grain-oriented electrical steel sheet |
US12065713B2 (en) | 2019-09-18 | 2024-08-20 | Nippon Steel Corporation | Grain-oriented electrical steel sheet |
WO2022013960A1 (en) | 2020-07-15 | 2022-01-20 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet, and method for manufacturing grain-oriented electromagnetic steel sheet |
KR20220156644A (en) | 2020-07-15 | 2022-11-25 | 닛폰세이테츠 가부시키가이샤 | Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JPS6254873B2 (en) | 1987-11-17 |
CA1246968A (en) | 1988-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61117284A (en) | Production of low-iron loss grain-oriented electromagnetic steel sheet | |
EP0033878B1 (en) | Method for treating an electromagnetic steel sheet by laser-beam irradiation | |
US4863531A (en) | Method for producing a grain-oriented electrical steel sheet having a low watt loss | |
KR900007448B1 (en) | Method for producing a grain oriented electrical steel sheet having a low watt-loss | |
US4750949A (en) | Grain-oriented electrical steel sheet having stable magnetic properties resistant to stress-relief annealing, and method and apparatus for producing the same | |
EP3561087A1 (en) | Grain-oriented electrical steel sheet and magnetic domain refinement method therefor | |
KR102133909B1 (en) | Grain oriented electrical steel sheet and method for manufacturing the same | |
JP7561194B2 (en) | Grain-oriented electrical steel sheet and method for refining magnetic domains therein | |
JP7440638B2 (en) | Grain-oriented electrical steel sheet and its magnetic domain refinement method | |
JPS60255926A (en) | Manufacture of grain oriented electrical steel sheet low in iron loss | |
US4963199A (en) | Drilling of steel sheet | |
JP7365416B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JPS5836051B2 (en) | Processing method for electrical steel sheets | |
JPH01191744A (en) | Manufacture of grain-oriented electrical steel sheet with low iron loss | |
US5067992A (en) | Drilling of steel sheet | |
CN113196423B (en) | Oriented electrical steel sheet and method for manufacturing same | |
JPS62182223A (en) | Production of low iron loss grain oriented electrical steel sheet | |
JPH01309922A (en) | Production of grain-oriented magnetic steel sheet having low iron loss | |
JPH01252726A (en) | Manufacture of grain-oriented silicon steel sheet with low iron loss | |
JPH0387314A (en) | Production of grain-oriented silicon steel sheet reduced in iron loss | |
JPH0565543A (en) | Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing | |
JPH04214819A (en) | Manufacture of low core loss grain-oriented silicon steel sheet free from deterioration in magnetic property even if stress relieving annealing is executed and continuous manufacturing equipment train for low core loss grain-oriented silicon steel sheet | |
JPH0218392B2 (en) | ||
JPH0218391B2 (en) | ||
JPS61117222A (en) | Production of ultra-low iron loss grain-oriented electrical steel sheet |