JPH0218391B2 - - Google Patents

Info

Publication number
JPH0218391B2
JPH0218391B2 JP8738785A JP8738785A JPH0218391B2 JP H0218391 B2 JPH0218391 B2 JP H0218391B2 JP 8738785 A JP8738785 A JP 8738785A JP 8738785 A JP8738785 A JP 8738785A JP H0218391 B2 JPH0218391 B2 JP H0218391B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
applying
insulating coating
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8738785A
Other languages
Japanese (ja)
Other versions
JPS61246375A (en
Inventor
Yoshiaki Iida
Ujihiro Nishiike
Kimimichi Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8738785A priority Critical patent/JPS61246375A/en
Publication of JPS61246375A publication Critical patent/JPS61246375A/en
Publication of JPH0218391B2 publication Critical patent/JPH0218391B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 鉄損の低い方向性けい素鋼板とその製造方法に
関して、この明細書に述べる技術内容は、けい素
鋼板表面の被膜とくにフオルステライト被膜上に
重ねて被成される張力付与型の絶縁コーテイング
被膜に不均一性を付与して該表面に異張力の働く
領域を区画形成させることにより、鉄損を向上さ
せることに関連している。 方向性けい素鋼板は、主として変圧器その他の
電気機器の鉄心として利用され、その磁化特性が
優れていること、とくに鉄損(W17/50で代表さ
れる)が低いことが要求されている。 このためには、第一に鋼板中の2次再結晶粒の
<001>粒方位を圧延方向に高度に揃えることが
必要であり、第二には、最終製品の鋼中に存在す
る不純物が析出物をできるだけ減少させる必要が
ある。かかる配慮の下に製造される方向性けい素
鋼板は、今日までの多くの改善努力によつて、そ
の鉄損値も年を追つて改善され、最近では板厚
0.30mmの製品でW17/50の値が1.05W/Kgの低鉄
損のものが得られている。 しかし、数年前のエネルギー危機を境にして、
電力損失のより少ない電気機器を求める傾向が一
段と強まり、それらの鉄芯材料として、さらに鉄
損の低い方向けい素鋼板が要請されるようになつ
てきた。 (従来の技術) ところで、方向性けい素鋼板の鉄損を下げる手
法としては、Si含有量を高める、製品板厚を薄く
する、2次再結晶粒を細くする。不純物含有量を
低減する、そして(110)〔001〕方位の2次再結
晶粒をより高度に揃えるなど、主に冶金学的方法
が一般に知られているが、これらの手法は、現行
の生産手段の上からはもはや限界に達していて、
これ以上の改善は極めて難しく、たとえ多少の改
善が認められたとしても、その努力の割には鉄損
改善の実効は僅かとなるに至つていた。 これらの方法とは別に、特公昭54−23647号公
報に開示されているように、鋼板表面に2次再結
晶阻止領域を形成させることにより、2次再結晶
粒を細粒化させる方法が提案されている。しかし
ながらこの方法は、2次再結晶粒径の制御が安定
していないため、実用的とは云いがたい。 その他特公昭58−5968号公報には、2次再結晶
後の鋼板の表面にボールペン状小球により、微小
歪を鋼板表層に導入することにより、磁区の幅を
微細化し、鉄損を低減する技術が、また、特公昭
57−2252号公報には、最終製品板表面に、圧延方
向にほぼ直角にレーザービームを数mm間隔に照射
し、鋼板表層に高転位密度領域を導入することに
より、磁区の幅を微細化し、鉄損を低減する技術
が提案されている。さらに、特開昭57−188810号
公報には、放電加工により鋼板表層に微小歪を導
入し、磁区幅を微細化し、鉄損を低減する同様の
技術が提案されている。 (発明が解決しようとする問題点) これら3種類の方法は、いずれも2次再結晶後
の鋼板の地鉄表層に微小な塑性歪を導入すること
により磁区幅を微細化し鉄損の低減を図るもので
あつて、均しく実用的であり、かつ鉄損低減効果
も優れているが、鋼板の打抜き加工、せん断加
工、巻き加工などの後の歪取り焼鈍や、コーテイ
ングの焼付け処理の如き熱処理によつて、塑性歪
導入による効果が減殺される欠点を伴う。なおコ
ーテイング処理後に微小な塑性歪の導入を行う場
合は、例えば、特開昭57−192223号公報に開示さ
れているごとく、絶縁性を維持するために絶縁コ
ーテイングの再塗布を行わねばならず歪付与工
程、再塗布工程と、工程の大幅増加になり、コス
トアツプをもたらす。 この発明は、上記した先行技術とは発想を異に
した磁区幅の細分化手段をもつて、高温における
歪取り焼鈍の後においても特性劣化を伴わずに、
製品の磁区幅細分化の実効を確保し得るようにし
た方向性けい素鋼板を与えることを目的とする。 (問題点を解決するための手段) この発明は、方向性けい素鋼板の表面被膜を構
成する通常のフオルステライト被膜の上に、磁気
特性や、表面特性の改善の目的で被成される張力
付与型コーテイング被膜において、張力付与効果
の異なる領域を区画形成することにより、鋼板の
磁区幅細分化が、助長されることの新規知見に立
脚する。 まず解決手段の解明経偉について説明する。 方向性けい素鋼板の製造工程において、最終板
厚に冷間圧延された鋼板は有害な炭素を取除くた
め通常脱炭焼鈍が施される。かかる焼鈍によつて
鋼板は、内部に微細な分散第2相からなる抑制剤
を含有した1次再結晶粒径集合組織となるが、同
時に鋼板表面層は微細なSiO2粒子が地鉄内に分
散したサブスケール構造となる。この脱炭・1次
再結晶板には、その表面にMgOを主成分とする
焼鈍分離剤を塗布したのち、2次再結晶焼鈍つい
でそれに引き続き1200℃前後での高温純化焼鈍が
施される。この2次再結晶焼鈍によつて鋼板の結
晶粒は、(110)〔001〕方位の粗大な粒になる。ま
た高温純化焼鈍によつて鋼板内部に存在していた
抑制剤の1部であるSやSeやNなどは鋼板地鉄
外に除去される。 さらに、この純化焼鈍において、鋼板表層のサ
ブスケール中のSiO2の表面に塗布された焼鈍分
離剤中のMgOとが、次式 2MgO+SiO2→Mg2SiO4 のように反応して鋼板表面に、フオルステライト
(Mg2SiO4)の多結晶からなる被膜を形成する。
このとき、余剰のMgOは未反応物として、鋼板
と鋼板との融着を防止する役割を果す。そして高
温純化焼鈍を終えた鋼板は未反応の焼鈍分離剤を
取除き、絶縁コーテイングの上塗りやコイルセツ
トを取除くための処理を施して製品となすわけで
ある。 この時、絶縁コーテイングとしては、磁歪特性
や鉄損の改善の目的で張力付与型コーテイングが
施される場合が多い。この張力付与型コーテイン
グは、鋼板表面に被成された場合、けい素鋼の熱
膨張係数よりも、小さな熱膨張係数を呈するた
め、鋼板に張力を付与することができる。すなわ
ち、高温焼付時に無応力状態で鋼板表面に被成し
ていたものが、常温まで冷却される際、その熱膨
張係数の差に応じて鋼板の地鉄部とコーテイング
膜とで収縮量に差異が生じるため、鋼板の地鉄表
面には弾性的張力が、一方コーテイング膜には弾
性的圧縮力が働くのである。したがつて焼付け処
理は高温度で行うことが、張力付与効果の上で一
層有利なわけである。 この張力付与型絶縁コーテイング被膜によつて
鋼板の磁区の幅はある程度細分化されるが、発明
者らは、種々研究を重ねた結果、張力付与型絶縁
コーテイング被膜に欠損領域を区画形成すること
により、さらに、鋼板の磁区の幅が細分化され、
鋼板の鉄損が一層改善されることを突止めたので
ある。 この発明は、上記の知見に由来するものであ
る。 すなわちこの発明は、地鉄表層部に塑性歪域が
みられない、フオルステライト被膜および張力付
与型絶縁コーテイング被膜付きの方向性けい素鋼
板であつて、該絶縁コーテイング被膜が連続また
は非連続の線状欠損領域を有することを特徴とす
る、歪取り焼鈍による特性の劣化がない低鉄損方
向性けい素鋼板である。 またこの発明は、含けい素鋼スラブを熱間圧延
して得られた熱延板に、1回または中間焼鈍を挾
む2回の冷間圧延を施して最終板厚としたのち、
脱炭・1次再結晶焼鈍を施し、ついで鋼板表面に
MgOを主成分とす焼鈍分離剤を塗布してから最
終仕上げ焼鈍を施し、しかるのち上塗り絶縁コー
テイングを施す一連の工程よりなる方向性けい素
鋼板の製造方法において、 最終仕上げ焼鈍を経たフオルステライト被膜付
きの方向性けい素鋼板の表面に、上塗り絶縁コー
テイングとして張力付与型の絶縁コテイング被膜
を被成するに際し、 該コーテイング処理液の塗布に先立つて、該コ
ーテイング処理液に対して撥液性を有しかつその
後の焼付け工程において燃焼または揮散して消失
する有機質被膜を連続または非連続の線状に形成
させ、しかるのち該コーテイング処理液を塗布つ
いで焼付けることにより、張力付与型絶縁コーテ
イング被膜中に線状欠損領域を区画形成すること
を特徴とする、歪取り焼鈍による特性の劣化がな
い低鉄損方向性けい素鋼板の製造方法である。 この発明で、素材鋼板につき、塑性歪域のみら
れないものに限定したのは、前述したように、塑
性歪の導入による磁区の細分化方式では歪取り焼
鈍によつて特性の著しい劣化を招くからである。 以下この発明について具体的に説明する。 さてこの発明鋼板において、張力付与型の絶縁
コーテイング被膜中に区画形成する欠損領域の形
状および方位などが磁区の細分化に及ぼす影響に
ついて調べたところ、形状としては、第1図イに
示したような連続または非連続の線状形状がとく
に鉄損低減効果において有効であることが認めら
れた。ただし非連続の線状領域においては、点と
点との間隔が、0.5mm以上離れると効果は低減し
た。この点、破線のように線の一部が少しづつ抜
けていても鉄損低減効果は線状の場合とほぼ同様
であつた。 また絶縁コーテイング被膜の異張力領域の方向
については、第1図ロや第2図に示したように、
圧延の方向に対し60〜90゜の角度とした場合がと
くに有効であつた。 さらに連続または非連続の線状領域の幅につい
ては、第3図に示したように、0.015〜0.8mmの範
囲でとりわけ優れた効果が得られた。 なお異張力領域は、圧延方向を横切る向きに繰
返し形成するとが、鋼板全体の鉄損を下げる上で
有効で、たとえば第1図ハに示したような領域間
の間隔は、第4図に示した実験結果からも明らか
なように、0.5mm〜15mmの範囲とすることが望ま
しい。またかかる領域の形成は、鋼板の両面であ
つても、片面にのみであつても、その効果にほと
んど変わりはない。さらにこの発明において、線
状とは、厳密な意味での直線だけを指すものでは
なく、曲率の小さい曲線や波線などをも含むもの
である。 第5図に、張力付与型絶縁コーテイング被膜が
鋼板に異張力を及ぼす場合の有効な線状欠損領域
区画形成の一例を示す。 次にこの発明に係る方向性けい素鋼板の製造方
法について説明する。 この発明の素材は、公知の製鋼方法、例えば転
炉、電気炉などによつて製鋼し、さらに造塊−分
塊法または連続鋳造法などによつてスラブ(鋼
片)としたのち、熱間圧延によつて得られる熱延
コイルを用いる。 この熱延板は、Siを2.0〜4.0%程度含有する組
成である必要がある。というのは、Siが2.0%未
満では鉄損の劣化が大きく、また、4.0%を超え
ると、冷間加工性が劣化するからである。その他
の成分については方向性けい素鋼板の素材成分で
あれば、いずれも適用可能である。 次に冷間圧延により、最終目標板厚とされる
が、冷間圧延は、1回もしくは中間焼鈍を挾む2
回の冷間圧延により行なわれる。このとき必要に
応じて熱延板の均一化焼鈍や、冷間圧延に替わる
温間圧延を施すこともできる。 最終板厚とされた冷延板は、脱炭可能な程度の
酸化性雰囲気もしくはサブスケール形成可能な程
度の弱酸化性雰囲気中で1次再結晶焼鈍が施され
る。 ついで、鋼板表面にMgOを主成分とする焼鈍
分離剤を塗布したのち、2次再結晶焼鈍ついで高
温純化焼鈍と続く最終仕上焼鈍を行なうことによ
り、フオルステライト被膜が形成される。 しかるのち、かくして得られた均一なフオルス
テライト被膜そなえる方向性けい素鋼板の表面に
張力付与型の絶縁コーテイング被膜を被成するわ
けであるが、この発明では、絶縁コーテイング処
理液の塗布に先立つて、該コーテイング処理液に
対して撥液性を有しかつその後の焼付け工程にお
いて燃焼または揮散して消失する有機質被膜(以
下単に消失型被膜という)を連続または非連続の
線状に形成させておくことが肝要である。 ここにかかる撥液性の消失型被膜の形成剤とし
ては、アルキド、アクリル酸、エポキシ、フエノ
ール、メラニンおよびシリコンなどの樹脂ならび
にこれらを含有する塗料、さらには油性マジツク
インキなどがある。 ついでかような消失型被膜を付着させた鋼板の
表面に、張力付与型の絶縁コーテイング処理液を
塗布ついで焼付けて張力付与型絶縁コーテイング
被膜を被成するわけであるが、かかる焼付けに当
つては600〜1000℃の高温加熱が必要で、かくし
て欠損領域をそなえる張力付与型絶縁コーテイン
グ被膜が得られるのである。 すなわちこのような高温での焼付け処理を施す
ことによつて、予め被成しておいた消失型被膜は
蒸発または揮散して消失するので、焼付け処理後
の該コーテイング被膜には、線状欠損領域が形成
されることになるのである。 ここにかかる線状欠損領域は、前述したように
極く狭い領域にしかすぎないので、層間の絶縁性
の低下はほとんどなく、実際上問題になることは
ない。 絶縁コーテイング被膜の厚みは、耐錆性や占積
率を考慮して、0.5g/m2から10g/m2(片面に
つき)程度が好ましい。さらにこの発明の鋼板に
おいては、形状変化部分はコーテイング被膜部に
限られているため変化分は少く、従つて占積率を
低下させることはほとんどない。 なおかかる張力付与型の絶縁コーテイング被膜
としては、熱膨張係数が6×0-6/℃以下程度の
ものが好ましく、コーテイング液としては、りん
酸マグネシウムおよびりん酸アルミニウムの少な
くとも一種と、コロイド状シリカならびに無水ク
ロム酸およびクロム酸塩のうち少なくとも一種と
を主成分とする処理液が好適である。 (作 用) かかる手法によつて、鉄損特性が改善される理
由は、次のとおりと考えられる。 すなわち、張力付与型コーテイング被膜に線状
欠損領域を設けることにより鋼板表面には異張力
領域が生じるが、この異張力によつて鋼板表面に
弾性歪が導入され、その結果磁区が有効に細分化
されるためである。 鋼板の地鉄表層部に塑性歪領域やレーザー照射
痕のような高転位密度領域を存在させる従来法の
場合と異なり、人為的な塑性歪領域がみられない
ので、通常800℃前後で1分間から数時間にわた
つて施される歪取り焼鈍を施しても鉄損の劣化が
ないという特筆すべき利点がある。前者の場合は
地鉄表層部の塑性歪が、高温によつて消滅してい
くのが鉄損の劣化が生じるという最大欠点を有す
るが、この発明の場合は歪取り焼鈍の有無にかか
わらず良好な鉄損を示す。 (実施例) 実施例 1 Si:3.3%を含有し、表面に均一なフオルステ
ライト被膜を有する仕上げ焼鈍済みの方向性けい
素鋼板(板厚:0.23mm)の表面に、消失型被膜形
成剤としてワニスを、圧延方向と直角の向きに
幅:0.2mmで間隔:5mmの連続した直線状に繰返
し印刷したのち、300℃で乾燥させた。 ついで水100mlに、りん酸マグネシウム40g、
無水クロム酸3g、SiO2分15gを含むコロイド
状シリカ微粒子(50〜1000Å)0.8gを含有する
張力付与型の絶縁コーテイング液(被膜形成後の
熱膨張係数:4×10-61/℃)を、鋼板表面に均
一に塗布し、800℃で焼付けた。この焼付け処理
によつてワニスは消失し、絶縁コーテイング被膜
には直線状の欠損領域が形成された。 かくして得られた製品板、さらには800℃、3
時間の歪取り焼鈍後における鉄損特性について調
べた結果を、表1に示す。 なお表1には比較のため、鋼板全面に均一な絶
縁コーテイング被膜を被成した場合(比較例A)、
またかかる鋼板の表面に、レーザー光を0.4mm間
隔で点の列状に、圧延方向と角方向に向けて、列
と列との間隔:4mmの条件で照射した場合(比較
例B)の調査結果も合わせて示す。
(Industrial Application Field) Regarding grain-oriented silicon steel sheets with low iron loss and their manufacturing methods, the technical content described in this specification is to reduce the tensile strength formed over the coating on the surface of the silicon steel sheet, especially the forsterite coating. It is related to improving core loss by imparting non-uniformity to the applied insulating coating film and defining regions where different tensions act on the surface. Grain-oriented silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and are required to have excellent magnetization characteristics, especially low iron loss (represented by W17/50). For this purpose, firstly, it is necessary to align the <001> grain orientation of the secondary recrystallized grains in the steel sheet to a high degree in the rolling direction, and secondly, it is necessary to ensure that the impurities present in the final product steel are It is necessary to reduce precipitates as much as possible. Grain-oriented silicon steel sheets manufactured with such consideration have been improved over the years through many improvement efforts to date, and recently the sheet thickness has improved.
A 0.30mm product with a W17/50 value of 1.05W/Kg and low iron loss has been obtained. However, after the energy crisis a few years ago,
The trend for electrical equipment with lower power loss has become stronger, and raw steel sheets with even lower iron loss have been required as core materials for these devices. (Prior Art) By the way, methods for lowering the iron loss of grain-oriented silicon steel sheets include increasing the Si content, reducing the thickness of the product sheet, and making the secondary recrystallized grains thinner. Mainly metallurgical methods are generally known, such as reducing impurity content and aligning secondary recrystallized grains with (110)[001] orientation to a higher degree, but these methods are difficult to achieve in current production. We have reached the limit of our means,
Further improvement is extremely difficult, and even if some improvement is recognized, the effectiveness of iron loss improvement is small compared to the efforts made. Apart from these methods, as disclosed in Japanese Patent Publication No. 54-23647, a method has been proposed in which secondary recrystallization grains are made finer by forming a secondary recrystallization inhibiting region on the surface of the steel sheet. has been done. However, this method cannot be said to be practical because control of the secondary recrystallized grain size is not stable. In addition, Japanese Patent Publication No. 58-5968 discloses that micro-strain is introduced into the surface layer of the steel plate after secondary recrystallization using ballpoint pen-shaped balls, thereby making the width of the magnetic domain finer and reducing iron loss. The technology is also
Publication No. 57-2252 discloses that the width of the magnetic domain is made finer by irradiating the surface of the final product sheet with a laser beam at intervals of several mm approximately perpendicular to the rolling direction to introduce high dislocation density regions into the surface layer of the steel sheet. Techniques have been proposed to reduce iron loss. Further, JP-A-57-188810 proposes a similar technique of introducing micro-strain into the surface layer of a steel sheet by electrical discharge machining, thereby refining the magnetic domain width and reducing iron loss. (Problems to be Solved by the Invention) These three methods all introduce minute plastic strain into the surface layer of the steel sheet after secondary recrystallization to refine the magnetic domain width and reduce iron loss. Although it is uniformly practical and has an excellent iron loss reduction effect, heat treatment such as strain relief annealing after punching, shearing, and winding of steel plates, and baking treatment of coatings This has the disadvantage that the effect of introducing plastic strain is diminished. Note that if a minute plastic strain is introduced after the coating treatment, the insulating coating must be reapplied to maintain insulation, as disclosed in Japanese Patent Application Laid-open No. 57-192223, and the strain This results in a significant increase in the number of processes, including the application process and re-coating process, resulting in an increase in costs. This invention has a magnetic domain width refining means that is different from the above-mentioned prior art, and has no characteristic deterioration even after strain relief annealing at high temperature.
The object of the present invention is to provide a grain-oriented silicon steel sheet that can ensure the effectiveness of magnetic domain width refinement in a product. (Means for Solving the Problems) This invention is directed to a tensile strength coating formed on a normal forsterite coating constituting the surface coating of a grain-oriented silicon steel sheet for the purpose of improving magnetic properties and surface properties. This work is based on the new finding that by forming regions with different tension imparting effects in the applied coating film, the refinement of the magnetic domain width of the steel sheet is facilitated. First, I will explain the method of solving the problem. In the manufacturing process of grain-oriented silicon steel sheets, the steel sheets that have been cold-rolled to the final thickness are usually subjected to decarburization annealing to remove harmful carbon. Through such annealing, the steel sheet becomes a primary recrystallized grain size texture containing an inhibitor consisting of a finely dispersed second phase, but at the same time, the surface layer of the steel sheet has fine SiO 2 particles inside the base steel. This results in a dispersed subscale structure. After applying an annealing separator containing MgO as a main component to the surface of this decarburized/primary recrystallized plate, it is subjected to secondary recrystallization annealing, followed by high-temperature purification annealing at around 1200°C. Through this secondary recrystallization annealing, the crystal grains of the steel sheet become coarse grains with a (110) [001] orientation. Also, by high-temperature purification annealing, some of the inhibitors present inside the steel sheet, such as S, Se, and N, are removed to the outside of the steel sheet base steel. Furthermore, in this purification annealing, the MgO in the annealing separator applied to the surface of SiO 2 in the subscale of the steel plate surface layer reacts with the MgO in the annealing separator as shown in the following formula: 2MgO + SiO 2 →Mg 2 SiO 4 on the steel plate surface. A film made of polycrystalline forsterite (Mg 2 SiO 4 ) is formed.
At this time, excess MgO serves as an unreacted substance and serves to prevent fusion between the steel plates. After high-temperature purification annealing, the steel sheet is processed to remove unreacted annealing separator and to remove the top coat of insulation coating and coil set. At this time, as the insulating coating, a tension-applying coating is often applied for the purpose of improving magnetostrictive properties and iron loss. When this tension-applying coating is formed on the surface of a steel sheet, it exhibits a coefficient of thermal expansion smaller than that of silicon steel, and therefore can apply tension to the steel sheet. In other words, when the material that forms on the surface of the steel sheet in a stress-free state during high-temperature baking is cooled to room temperature, the amount of shrinkage differs between the steel sheet base and the coating film, depending on the difference in their thermal expansion coefficients. As a result, an elastic tension force acts on the surface of the steel plate, while an elastic compression force acts on the coating film. Therefore, performing the baking treatment at a high temperature is more advantageous in terms of tension imparting effect. The width of the magnetic domain of the steel sheet is subdivided to some extent by this tension-applied insulating coating film, but as a result of various studies, the inventors found that by dividing and forming defective regions in the tension-applying insulating coating film, , Furthermore, the width of the magnetic domain of the steel plate is subdivided,
They discovered that the iron loss of steel sheets could be further improved. This invention is derived from the above knowledge. That is, the present invention provides a grain-oriented silicon steel sheet with a forsterite coating and a tension-applying insulating coating, in which no plastic strain region is observed in the surface layer of the steel, the insulating coating being continuous or discontinuous. The present invention is a low core loss grain-oriented silicon steel sheet characterized by having a shape defect region and whose properties do not deteriorate due to strain relief annealing. In addition, this invention provides a hot-rolled plate obtained by hot-rolling a silicon-containing steel slab, which is cold-rolled once or twice with intermediate annealing to obtain the final plate thickness.
After decarburization and primary recrystallization annealing, the surface of the steel plate is
In a method for manufacturing grain-oriented silicon steel sheets, which consists of a series of steps of applying an annealing separator mainly composed of MgO, final annealing, and then applying a top insulating coating, the forsterite coating after final annealing is applied. When applying a tension-applying insulating coating film as a top insulating coating to the surface of a grain-oriented silicon steel sheet, prior to applying the coating treatment liquid, a coating solution that is liquid repellent to the coating treatment liquid is applied. In addition, an organic film that disappears by burning or volatilization in the subsequent baking process is formed in a continuous or discontinuous line, and then the coating treatment solution is applied and baked to form a tension-applied insulating coating film. This is a method for manufacturing a grain-oriented silicon steel sheet with low iron loss, which does not deteriorate in properties due to strain relief annealing, and is characterized by forming linear defect areas. In this invention, the material steel sheets are limited to those in which no plastic strain region is observed because, as mentioned above, the method of subdividing magnetic domains by introducing plastic strain leads to significant deterioration of properties due to strain relief annealing. It is. This invention will be specifically explained below. In the steel sheet of this invention, we investigated the influence of the shape and orientation of defective regions formed in the tension-applied insulating coating on the subdivision of magnetic domains, and found that the shape was as shown in Figure 1A. It was recognized that continuous or discontinuous linear shapes are particularly effective in reducing iron loss. However, in discontinuous linear regions, the effect decreased when the distance between points was 0.5 mm or more. In this respect, even if a portion of the line was gradually removed as in the case of a broken line, the effect of reducing iron loss was almost the same as in the case of a linear line. Regarding the direction of the different tension region of the insulating coating film, as shown in Figure 1B and Figure 2,
An angle of 60 to 90 degrees with respect to the direction of rolling was particularly effective. Furthermore, as for the width of the continuous or discontinuous linear region, as shown in FIG. 3, particularly excellent effects were obtained when the width was in the range of 0.015 to 0.8 mm. It should be noted that forming different tension regions repeatedly in a direction transverse to the rolling direction is effective in reducing the iron loss of the entire steel plate. As is clear from the experimental results, a range of 0.5 mm to 15 mm is desirable. Further, the effect is almost the same whether such regions are formed on both sides of the steel plate or only on one side. Furthermore, in this invention, linear does not mean only straight lines in the strict sense, but also includes curves with small curvature, wavy lines, and the like. FIG. 5 shows an example of effective linear defect region formation when the tension-applying insulating coating film applies different tension to the steel plate. Next, a method for manufacturing a grain-oriented silicon steel sheet according to the present invention will be explained. The material of this invention is manufactured by a known steel manufacturing method such as a converter or an electric furnace, and then made into a slab (steel billet) by an ingot-blowing method or a continuous casting method. A hot-rolled coil obtained by rolling is used. This hot rolled sheet needs to have a composition containing approximately 2.0 to 4.0% Si. This is because if Si is less than 2.0%, the iron loss will deteriorate significantly, and if it exceeds 4.0%, cold workability will deteriorate. As for the other components, any material components of grain-oriented silicon steel sheets can be used. Next, cold rolling is performed to achieve the final target thickness, but cold rolling is performed once or twice with intermediate annealing.
This is done by cold rolling twice. At this time, if necessary, uniform annealing of the hot rolled sheet or warm rolling instead of cold rolling may be performed. The cold-rolled sheet having the final thickness is subjected to primary recrystallization annealing in an oxidizing atmosphere that allows decarburization or a weakly oxidizing atmosphere that allows subscale formation. Next, after applying an annealing separator containing MgO as a main component to the surface of the steel sheet, secondary recrystallization annealing, high-temperature purification annealing, and final finishing annealing are performed to form a forsterite coating. Thereafter, a tension-applying insulating coating film is applied to the surface of the grain-oriented silicon steel sheet having the uniform forsterite coating obtained in this way. , an organic film (hereinafter simply referred to as an evanescent film) that is liquid repellent to the coating treatment solution and disappears by burning or volatilizing in the subsequent baking process is formed in a continuous or discontinuous line. That is essential. Examples of the liquid-repellent, fugitive coating forming agent include resins such as alkyd, acrylic acid, epoxy, phenol, melanin and silicone, paints containing these, and oil-based magic ink. Next, a tension-imparting insulating coating treatment liquid is applied to the surface of the steel plate to which such a fugitive film has been attached, and the tension-imparting insulating coating film is formed by baking. High-temperature heating of 600 to 1000°C is required, and thus a tensile insulating coating with defect areas is obtained. In other words, by performing baking treatment at such a high temperature, the fugitive coating that has been formed in advance evaporates or volatilizes and disappears, so that the coating film after baking treatment has linear defect areas. will be formed. Since this linear defect region is only a very narrow region as described above, there is almost no deterioration in the insulation between the layers, and there is no problem in practice. The thickness of the insulating coating film is preferably about 0.5 g/m 2 to 10 g/m 2 (per side) in consideration of rust resistance and space factor. Furthermore, in the steel sheet of the present invention, the shape-changing portion is limited to the coating film portion, so the amount of change is small, and therefore the space factor is hardly reduced. The tension-applying insulating coating preferably has a coefficient of thermal expansion of about 6 x 0 -6 /°C or less, and the coating liquid contains at least one of magnesium phosphate and aluminum phosphate, and colloidal silica. Also suitable is a treatment liquid containing at least one of chromic anhydride and chromate as a main component. (Function) The reason why the iron loss characteristics are improved by this method is considered to be as follows. In other words, by providing a linear defective region in the tension-applying coating, a region of different tension is created on the surface of the steel sheet, but this different tension introduces elastic strain to the surface of the steel sheet, and as a result, the magnetic domains are effectively subdivided. This is to be done. Unlike the conventional method in which plastic strain areas and high dislocation density areas such as laser irradiation marks are present in the surface layer of the steel plate, there are no artificial plastic strain areas, so it is usually heated to around 800℃ for 1 minute. It has the notable advantage that there is no deterioration in iron loss even after strain relief annealing is performed over several hours. In the former case, the biggest drawback is that the plastic strain in the surface layer of the steel base disappears at high temperatures, which leads to deterioration of iron loss, but in the case of this invention, the results are good regardless of the presence or absence of strain relief annealing. Indicates iron loss. (Example) Example 1 A fugitive film-forming agent was applied to the surface of a finish-annealed grain-oriented silicon steel sheet (thickness: 0.23 mm) containing 3.3% Si and having a uniform forsterite film on the surface. The varnish was repeatedly printed in a continuous straight line with a width of 0.2 mm and an interval of 5 mm in a direction perpendicular to the rolling direction, and then dried at 300°C. Next, add 40g of magnesium phosphate to 100ml of water.
Tension-applied insulating coating liquid containing 3 g of chromic anhydride and 0.8 g of colloidal silica particles (50 to 1000 Å) containing 15 g of SiO2 (coefficient of thermal expansion after film formation: 4 x 10 -6 1/℃) was applied uniformly onto the surface of the steel plate and baked at 800℃. As a result of this baking process, the varnish disappeared and a linear defect area was formed in the insulating coating. The product board thus obtained was further heated to 800℃, 3
Table 1 shows the results of investigating the iron loss characteristics after time stress relief annealing. For comparison, Table 1 shows the case where a uniform insulating coating was formed on the entire surface of the steel plate (Comparative Example A),
In addition, an investigation was conducted when the surface of such a steel plate was irradiated with laser light in a row of dots at 0.4 mm intervals, facing the rolling direction and the angular direction, with the interval between rows being 4 mm (Comparative Example B). The results are also shown.

【表】 同表より明らかなように、この発明に従い得ら
れた製品板は、鉄損特性が格段に改善され、しか
もその効果は歪取り焼鈍後においても劣化するこ
とはなかつた。 これに対し、鋼板全面に単に絶縁コーテイング
被膜を被成した比較例Aでは十分満足のいく鉄損
低減効果が得られず、またレーザー光を利用した
比較例Bでは、レーザー光照射ままでは良好な鉄
損値が得られたものの、歪取り焼鈍後に鉄損特性
の大幅な劣化をきたした。 実施例 2 Si:3.3%を含有し、表面に均一なフオルステ
ライト被膜を有する仕上焼鈍済みの方向性けい素
鋼板(板厚:0.30mm)の表面に、ワニスを、圧延
方向と直角の向きに幅:0.1mmで間隔:3mmの連
続した直線状に繰返し印刷し、150℃で乾燥させ
た。 ついで実施例1と同じコーテイング処理液を、
鋼板表面に均一に塗布してから、400℃で乾燥後、
800℃で焼付けた。この焼付け処理によつてワニ
スは焼失し、従つてワニス塗布部には張力付与型
コーテイング被膜は形成されず、線状欠損領域を
呈した。 かくして得られた製品板の絶縁コーテイング被
成処理前後、さらにはN2中にて800℃、5時間の
歪取り焼鈍を施した後の鉄損特性について調べた
結果を、表2に示す。 なお表2には比較のため、鋼板全面に均一な絶
縁コーテイング被膜を被成した場合(比較例C)、
またかかる鋼板の表面に、レーザー光を0.4mm間
隔で点の列状に、圧延方向と直角方向に向けて、
列と列との間隔:4mmの条件で照射した場合(比
較例D)の調査結果も合わせて示す。
[Table] As is clear from the table, the iron loss characteristics of the product sheets obtained according to the present invention were significantly improved, and this effect did not deteriorate even after strain relief annealing. On the other hand, Comparative Example A, in which an insulating coating was simply applied to the entire surface of the steel sheet, did not achieve a sufficiently satisfactory iron loss reduction effect, and Comparative Example B, in which laser light was used, did not achieve a satisfactory iron loss reduction effect with laser light irradiation. Although a good iron loss value was obtained, the iron loss characteristics significantly deteriorated after strain relief annealing. Example 2 Varnish was applied perpendicularly to the rolling direction on the surface of a finish-annealed grain-oriented silicon steel plate (thickness: 0.30 mm) containing 3.3% Si and having a uniform forsterite coating on the surface. It was repeatedly printed in a continuous straight line with a width of 0.1 mm and an interval of 3 mm, and dried at 150°C. Then, the same coating treatment solution as in Example 1 was applied.
After applying it evenly to the steel plate surface and drying it at 400℃,
Baked at 800℃. As a result of this baking process, the varnish was burned away, so that no tension-applying coating film was formed in the varnished area, and linear defect areas were formed. Table 2 shows the results of examining the iron loss characteristics of the thus obtained product sheets before and after the insulation coating treatment and after strain relief annealing at 800° C. for 5 hours in N 2 . For comparison, Table 2 shows the case where a uniform insulating coating film is formed on the entire surface of the steel plate (Comparative Example C),
In addition, a laser beam is directed in a row of dots at 0.4 mm intervals on the surface of the steel plate in a direction perpendicular to the rolling direction.
The investigation results obtained when irradiation was performed under the condition that the distance between rows was 4 mm (Comparative Example D) are also shown.

【表】 同表より明らかなように、この発明に従い得ら
れた製品板は、鉄損特性が格段に改善され、しか
もその効果は歪取り焼鈍後においても劣化するこ
とはなかつた。 これに対し、鋼板全面に単に絶縁コーテイング
被膜を被成した比較例Cでは十分満足のいく鉄損
低減効果が得られず、またレーザー光を利用した
比較例Dでは、レーザー光照射ままでは良好な鉄
損値が得られたものの、歪取り焼鈍後に鉄損特性
の大幅な劣化をきたした。 (発明の効果) かくしてこの発明によれば、歪取り焼鈍を施し
た場合であつても特性の劣化を生じることがない
低鉄損の方向性けい素鋼板を得ることができる。
[Table] As is clear from the table, the iron loss characteristics of the product sheets obtained according to the present invention were significantly improved, and this effect did not deteriorate even after strain relief annealing. On the other hand, Comparative Example C, in which an insulating coating was simply applied to the entire surface of the steel sheet, did not achieve a sufficiently satisfactory iron loss reduction effect, and Comparative Example D, in which laser light was used, did not achieve a satisfactory iron loss reduction effect with laser light irradiation. Although a good iron loss value was obtained, the iron loss characteristics significantly deteriorated after strain relief annealing. (Effects of the Invention) Thus, according to the present invention, it is possible to obtain a grain-oriented silicon steel sheet with low iron loss that does not cause deterioration of properties even when subjected to strain relief annealing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ,ロおよびハはそれぞれ、絶縁コーテ
イング被膜に区画形成した欠損領域の形状、圧延
方向に対する傾き具合および間隔の測定要領を示
した図、第2図は、線状の欠損領域と圧延方向と
のなす角度が、鉄損特性に及ぼす影響を示したグ
ラフ、第3図は、線状欠損領域の幅と鉄損値との
関係を示したグラフ、第4図は、線状欠損領域の
間隔と鉄損値との関係について示したグラフ、第
5図は、張力付与型絶縁コーテイング被膜が鋼板
に異張力を及ぼす場合の有効な欠損領域区画形成
例を示す図である。
Figure 1 A, B and C are diagrams showing the shape, inclination to the rolling direction, and interval measurement procedures of the defect area formed in the insulating coating, respectively. Figure 2 shows the linear defect area and the rolling A graph showing the influence of the angle with the direction on iron loss characteristics. Figure 3 is a graph showing the relationship between the width of the linear defect area and the iron loss value. Figure 4 is a graph showing the relationship between the width of the linear defect area and the iron loss value. FIG. 5 is a graph showing the relationship between the interval and iron loss value, and is a diagram showing an example of effective defect region formation when the tension-applying insulating coating film exerts a different tension on the steel plate.

Claims (1)

【特許請求の範囲】 1 地鉄表層部に塑性歪域がみられない、フオル
ステライト被膜および張力付与型絶縁コーテイン
グ被膜付きの方向性けい素鋼板であつて、該張力
付与型絶縁コーテイング被膜が、連続または非連
続の線状欠損領域を有することを特徴とする、歪
取り焼鈍による特性の劣化がない低鉄損方向性け
い素鋼板。 2 張力付与型絶縁コーテイング被膜の連続また
は非連続の線状欠損領域が、鋼板の圧延方向に対
して60゜〜90゜の角度をなし、しかも該線状欠損領
域の幅が0.015〜0.8mmでかつ各線状領域の間隔が
0.5〜15mmである特許請求の範囲第1項記載の低
鉄損方向性けい素鋼板。 3 含けい素鋼スラブを熱間圧延して得られた熱
延板に、1回または中間焼鈍を挟む2回の冷間圧
延を施して最終板厚としたのち、脱炭・1次再結
晶焼鈍を施し、ついで鋼板表面にMgOを主成分
とする焼鈍分離剤を塗布してから最終仕上げ焼鈍
を施し、しかるのち上塗り絶縁コーテイングを施
す一連の工程よりなる方向性けい素鋼板の製造方
法において、 最終仕上げ焼鈍を経たフオルステライト被膜付
きの方向性けい素鋼板の表面に、上塗り絶縁コー
テイングとして張力付与型の絶縁コーテイング被
膜を被成するに際し、 該コーテイング処理液の塗布に先立つて、該コ
ーテイング処理液に対して撥液性を有しかつその
後の焼付け工程において燃焼または揮散して消失
する有機質被膜を連続または非連続の線状に形成
させ、しかるのち該コーテイング処理液を塗布つ
いで焼付けることにより、張力付与型絶縁コーテ
イング被膜中に線状欠損領域を区画形成すること
を特徴とする、歪取り焼鈍による特性の劣化がな
い低鉄損方向性けい素鋼板の製造方法。
[Scope of Claims] 1. A grain-oriented silicon steel sheet with a forsterite coating and a tension-applying insulating coating film, in which no plastic strain region is observed in the surface layer of the base metal, the tension-applying insulating coating film comprising: A low iron loss grain-oriented silicon steel sheet characterized by having continuous or discontinuous linear defect areas, and whose properties do not deteriorate due to strain relief annealing. 2. The continuous or discontinuous linear defect area of the tension-applying insulating coating forms an angle of 60° to 90° with respect to the rolling direction of the steel plate, and the width of the linear defect area is 0.015 to 0.8 mm. and the interval between each linear region is
The low iron loss grain-oriented silicon steel sheet according to claim 1, which has a thickness of 0.5 to 15 mm. 3 A hot-rolled sheet obtained by hot rolling a silicon-containing steel slab is cold-rolled once or twice with intermediate annealing to achieve the final thickness, and then decarburized and primary recrystallized. In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of annealing, then applying an annealing separator containing MgO as a main component to the surface of the steel sheet, performing final annealing, and then applying a top insulating coating, When applying a tension-applying insulating coating as a top insulating coating to the surface of a grain-oriented silicon steel sheet with a forsterite coating that has undergone final finish annealing, the coating treatment solution is applied prior to application of the coating treatment solution. By forming a continuous or discontinuous linear organic film that has liquid repellency against the surface of the product and disappears by burning or volatilizing in the subsequent baking process, then applying the coating treatment liquid and then baking, A method for producing a grain-oriented silicon steel sheet with low core loss, which does not cause deterioration in properties due to strain relief annealing, the method comprising forming linear defect areas in a tension-applied insulating coating film.
JP8738785A 1985-04-25 1985-04-25 Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production Granted JPS61246375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8738785A JPS61246375A (en) 1985-04-25 1985-04-25 Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8738785A JPS61246375A (en) 1985-04-25 1985-04-25 Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production

Publications (2)

Publication Number Publication Date
JPS61246375A JPS61246375A (en) 1986-11-01
JPH0218391B2 true JPH0218391B2 (en) 1990-04-25

Family

ID=13913476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8738785A Granted JPS61246375A (en) 1985-04-25 1985-04-25 Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production

Country Status (1)

Country Link
JP (1) JPS61246375A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010321B2 (en) * 2019-03-19 2022-02-10 Jfeスチール株式会社 Directional electrical steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JPS61246375A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
KR100297046B1 (en) Very low iron loss oriented electrical steel sheet and its manufacturing method
EP0087587B1 (en) An electromagnetic steel sheet treated by laser-beam irradiation
WO1986002950A1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
KR100336661B1 (en) Very low iron loss grain oriented electrical steel sheet and method of producing the same
JPH0369968B2 (en)
US4655854A (en) Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
JPH11335738A (en) Production of high magnetic flux density-grain oriented silicon steel sheet extremely low in core loss
JPS6335684B2 (en)
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JPH0218391B2 (en)
JPH0218392B2 (en)
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JP4258202B2 (en) Oriented electrical steel sheet having no forsterite coating and method for producing the same
JP2003301272A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS6089545A (en) Grain-oriented silicon steel sheet causing small iron loss
JPH1017931A (en) Production of grain oriented silicon steel sheet
JPS6139395B2 (en)
JPH029111B2 (en)
JP2000129357A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
KR920004949B1 (en) Making process for the electic steel plate
JPS60262981A (en) Manufacture of grain-oriented silicon steel sheet with small iron loss
JPH0327629B2 (en)
JPH025821B2 (en)