JP2694941B2 - Manufacturing method of low iron loss unidirectional electrical steel sheet - Google Patents

Manufacturing method of low iron loss unidirectional electrical steel sheet

Info

Publication number
JP2694941B2
JP2694941B2 JP60093814A JP9381485A JP2694941B2 JP 2694941 B2 JP2694941 B2 JP 2694941B2 JP 60093814 A JP60093814 A JP 60093814A JP 9381485 A JP9381485 A JP 9381485A JP 2694941 B2 JP2694941 B2 JP 2694941B2
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
electrical steel
iron
unidirectional electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60093814A
Other languages
Japanese (ja)
Other versions
JPS61253380A (en
Inventor
尚 小林
政男 籔本
忠生 野沢
喜久司 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60093814A priority Critical patent/JP2694941B2/en
Publication of JPS61253380A publication Critical patent/JPS61253380A/en
Application granted granted Critical
Publication of JP2694941B2 publication Critical patent/JP2694941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は低鉄損一方向性電磁鋼板の製造に関するも
のであり、さらに詳しく述べるならば、歪み取り焼鈍を
行なっても磁気特性が劣化しない、低鉄損一方向性電磁
鋼板の製造方法に関するものである。 〔従来の技術〕 一方向性電磁鋼板の製造法においてはエネルギー節約
の観点から鉄損を低減することが重要である。鉄損を低
減する方法としてはレーザー照射により磁区を細分化す
る方法が既に特開昭58−26405号公報に開示されている
が、該方法による鉄損の低減はレーザー照射により導入
された歪みに起因している。したがって歪取り焼鈍を必
要としない積鉄心トランス用として使用出来るが、歪取
り焼鈍を必要とする巻き鉄心トランス用としては上記磁
区細分化法は効果がない。また特開昭56−130454号公報
において、歪みを導入した鋼板を二次再結晶焼鈍する
際、この焼鈍によって生ずる微再結晶粒群を利用して鉄
損低減を図る方法が開示されている。該方法は、鉄損値
の低減を鋼板表面に生ずる微細再結晶粒を利用して達成
されるため、歪取り焼鈍により鉄損値が劣化することは
ないが、工業化する上で難しい問題を含んでいる。 〔発明が解決しようとする問題点〕 この発明は、工業化が容易であるために各種鉄心用一
方向性電磁鋼板の鉄損値低減に適用できるとともに歪取
り焼鈍を施して鉄損低減効果が損われない方法を提供
し、上記二つの問題点を同時に解決することができる低
鉄損一方向性電磁鋼板の製造方法を提供するものであ
る。 〔問題点を解決するための手段〕 本発明はかかる従来技術の問題点を、仕上焼鈍済の一
方向性電磁鋼板又は仕上焼鈍後、絶縁皮膜処理を施した
一方向性電磁鋼板の地鉄の一部を除去し、次いで該除去
部に張力付加効果のない防食処理を施したことを特徴と
する低鉄損一方向性電磁鋼板の製造方法により解決しよ
うとするもので、磁気特性を高水準に維持しつつ歪取り
焼鈍後の磁性劣化を低減しようとするものである。 以下、本発明に係る低鉄損一方向性電磁鋼板の製造方
法を詳細に説明する。 先ず常法により、si4%以下を含む珪素鋼スラブを加
熱し、中間板厚で熱間圧延し、得られた熱延板を酸洗
し、必要に応じて熱延板の熱処理を行なう。次いで同じ
く常法により中間焼鈍をはさむ2回の冷間圧延又は1回
の冷間圧延を行なって最終板厚にし、得られた冷延板を
脱炭焼鈍する。その後焼鈍分離剤を塗布し、さらに二次
再結晶焼鈍を施して通常の一方向性電磁鋼板を製造す
る。以上の工程は通常の方法で行なわれる。このように
して得られた二次再結晶組織を有する鋼板又は該鋼板に
絶縁皮膜を塗布し、焼付けた鋼板の地鉄の一部を除去す
る。 この地鉄の除去方法としては、レーザー照射、放電あ
るいは強酸(例えば弗酸)のような手段で先ず鋼板の絶
縁皮膜の一部を剥離した後、塩酸、硝酸などの酸で鋼板
地鉄を溶解除去する手段がある。無論電解酸洗のような
手段でもよい。又、レーザー照射を酸素雰囲気下で行な
うことにより表面皮膜と地鉄を蒸発させてもよい。 本発明はレーザー照射による鉄損値低減法と磁区細分
化による鉄損低域という点では同じであるが、歪取り焼
鈍を行なっても磁区細分化の効果が残っている点が異な
っている。したがって地鉄除去部に形成される溝又は近
似形状を有する凹部の形は圧延方向(<011>方位)に
対して直角方向が好ましいが例えば圧延方向に45゜の方
向をもったものでもよい。あまり傾きを大きくすると鉄
損低減に対して不利になるので好ましくない。また、圧
延方向に対する溝等の間隔は特公昭58−26406号公報に
開示されている如く2.5〜10mmが最も好ましい。この理
由はこの範囲で鉄損値が最も低減するからである。溝等
は平面的には線で形成されていても点状で形成されてい
てもどちらでもよいが点で形成されている場合は点と点
との間隔が0.7mm以下が好ましい。間隔がこの範囲であ
れば鉄損低減に大きな効果があり、間隔が広くなる程磁
束密度をあまり低下させることなく鉄損の低減を図るこ
とができるがこれより大きくなると鉄損値低減に対して
効果は小さくなる。このように仕上焼鈍済の鋼板又はリ
ン酸系などの張力付与絶縁皮膜処理した鋼板の地鉄の一
部を除去すると該鋼板の鉄損を低減することが出来る
が、その理由は明確ではない。本発明法により局部的に
皮膜および下地地鉄を除去した後、残存するグラス皮膜
あるいは/およびリン酸系などの張力付与皮膜が地鉄除
去部まわりに歪み場を形成することと、除去部が磁気的
形状効果をもつこととの相乗効果により、地鉄除去部周
辺に90゜磁区が形成され、これが磁区細分化の芽として
効いていると考えられる。本発明法により製造した電磁
鋼板はユーザーにおいて歪み取り焼鈍を行なっても鉄損
値が歪み取り焼鈍前と変らない。したがって、本発明法
により製造された一方向性電磁鋼板は巻鉄心トランス用
のみならず、積鉄トランス用としても使用することが出
来る。 以下、図面を参照として本発明が一つの特徴とする地
鉄除去部についてさらに説明する。 第1図は板厚0.23mmの仕上焼鈍にリン酸系張力付与皮
膜をつけた鋼板に幅0.05〜1mm、深さ0.005〜0.1mmの範
囲の種々の溝を圧延方向に5mm間隔で形成した試料のW17
/50の鉄損値(圧延方向での)を調べたものであるが溝
幅0.05〜0.4mm、溝の深さ0.01〜0.06mmで良好な鉄損値
が得られる。溝幅があまり狭いと工業的に製造すること
が困難であり、あまり広くなると鉄損値低域効果がみら
れない。溝の深さがあまり浅いと鉄損値低域の効果がな
く、あまり深くなると磁束密度(B)が低下すること又
折り曲げ加工で折れやすくなる等で好ましくない。高磁
束密度でかつ低鉄損値を得るための好ましい溝の幅およ
び溝の深さはそれぞれ0.05〜0.4mm、0.015〜0.05mmであ
りこの範囲では0.84W/kg≦W17/50<0.86W/kgおよびB10
=1.90〜1.92Tが得られる。該図は800℃×2時間歪み取
り焼鈍後のものであるが、歪み取り焼鈍前でも同様な値
が得られる。すなわち、該図中の溝幅および深さの範囲
内では歪み取り焼鈍による鉄損値劣化がない一方向性電
磁鋼板が得られる。 続いて、本発明の他の特徴である防食処理について説
明する。上述の地鉄除去部には錆が発生し易いので防食
処理をする必要がある。防食処理としては、地鉄除去部
への張力効果のない絶縁性皮膜溶液、有機物、塗膜溶液
の被覆処理等が考えられるが耐熱性まで考慮すると電磁
鋼板の皮膜に用いる無機物を含み、絶縁皮膜処理を板表
面に全面塗りするのが最も簡便で安価である。歪み取り
焼鈍を行わないで使用するのであれば全有機系の塗膜で
も使用出来るのは無論である。 〔実施例〕 実施例1 冷間圧延により0.23mm厚まで仕上げられ、一方向性電
磁鋼板として仕上焼鈍された鋼板を耐酸性樹脂で一部が
露出するようにコーティングした。露出部は圧延方向を
直角に6mm間隔をもった0.3mm巾の線で形成された。該露
出部を有する鋼板試料として弗酸中に浸漬して部分的に
露出されたグラスを取除いたのち、露出された地鉄部を
15%の塩酸(室温)中で15秒間電解酸洗(電流密度10A/
dm2)ち、約25μm深さの溝とした。その後、有機溶剤
中で耐酸性樹脂を取除き、75%H3PO4100部、水酸化マグ
ネシューム23部、水100部の組成の処理液を2g/m2ゴムロ
ールにて全面塗布後、800℃×100秒焼付けた。 本発明鋼に係る上記試料を歪み取り焼鈍しその前後の
圧延方向の鉄損値を測定した。仕上焼鈍ままの鋼板を比
較材として歪取焼鈍後の鉄損値(圧延方向)を測定し
た。それぞれの鉄損値を第1表に示す。本発明鋼は従来
法にくらべて鉄損値が低減しているのがわかる。 また、塩水噴霧試験(JIS Z2371)を2時間行った結
果で各試料の腐食状態で調べた。比較材である、弗酸で
グラス皮膜除去後電解酸洗にて地鉄を除去したままの試
料は該除去部から著しくさびが発生したのに対して、上
記防食皮膜処理をしたものはさび発生が皆無であった。
歪取焼鈍後層間抵抗(JIS C2550)も65Ω−cm2/枚と大
きな値であり、防食皮膜は十分な層間絶縁を有すること
が分かった。 実施例2 冷間圧延により0.23mm厚まで仕上げられ、一方向性電
磁鋼板として仕上焼鈍された鋼板にリン酸系張力皮膜を
付与した。該鋼板の膜表面をYAGレーザーにより約5mJの
パルス強度で直径0.2mm、0.5mmの間隔で圧延方向に対し
て直角に点線状に剥離した。圧延方向での点線と点線と
の間隔は6mmとした。剥離後地鉄部を15%塩酸(室温)
中で15秒間電解酸洗(電流密度10A/dm2)し約25μm深
さの溝を形成した。その後張力付与のない絶縁皮膜処理
を行なった。処理剤の組成は75%H3PO4100部、無水クロ
ム酸7部、水酸化マグネシューム18部、水100部であ
る。該処理液2g/m2をゴムロールにて全面塗布後830℃×
90秒焼付けた。本発明鋼の歪み取り焼鈍(800℃×2時
間)前後および仕上焼鈍リン酸系張力付与皮膜焼付けま
まの比較材の圧延方向での鉄損値を第2表に示す。本発
明鋼は従来法にくらべて鉄損値が低減しているのがわか
る。 また、実施例1と同様の塩水噴霧試験によりさびの発
生を調べた結果、比較材であるレーザーにより皮膜を局
部的に除去したもの著しくさび発生したのに対して前述
のような絶縁皮膜をしたものはほとんどさびの発生が認
められなかった。歪取り焼鈍後の層間抵抗も70Ω−cm2/
枚と大きな値を示した。 実施例3 冷間圧延により0.23mmまで仕上げられ、一方向性電磁
鋼板として仕上焼鈍された鋼板にリン酸系張力皮膜を付
与した。鋼板皮膜表面を約10mJのパルス強度、0.3mmの
ビーム径のYAGレーザービームを0.3mmの間隔で照射しな
がらノズルよりレーザービーム照射部に酸素ガスを吹き
つけ照射部の溶融部分の蒸発を促進させた。照射ビーム
は圧延方向に直角に照射した。圧延方向への溝の間隔は
6mmである。酸素ガスの吹付けにより、溶融部分の蒸発
とともに地鉄除去部の深さ15μmの溝が形成された。こ
のあと溝の部分に張力付与のない絶縁皮膜処理を行なっ
た。この絶縁皮膜の処理液の組成が75%H3PO4100部、無
水クロム酸3部、メタケイ酸カルシューム3部、水酸化
マグネシューム20部、水100部であった。処理液2g/m2
ゴムロールで塗布後850℃×90秒焼付けた。本発明の歪
取り焼鈍前後および仕上焼鈍リン酸系張力付与皮膜焼付
けままの比較材の圧延方向での鉄損値を第3表に示す。
本発明鋼は従来法にくらべて鉄損値が低減しているのが
わかる。 また、実施例1と同様の塩水噴霧試験後のさびの発生
を調べた結果比較材であるレーザーにより皮膜下地を局
部的に除去したものは著しく赤さびが発生したのに対し
て絶縁皮膜処理したものはさびの発生は皆無であった。
また層間抵抗も100Ω−cm2/枚と大きな値であった。 〔発明の効果〕 本発明によれば、歪取り焼鈍を行っても鉄損値が劣化
しない磁区制御が可能であるため、すぐれた巻鉄心用材
料が提供される。さらに、本発明鋼は低い鉄損値を有す
ることから歪取焼鈍をしない積鉄心トランス用材として
も使用することが出来る。この際防食処理による高い絶
縁抵抗が積鉄心に要求される層間絶縁性を十分に満足す
る。本発明鋼はまた製造コストが安価であるという点で
本発明の工業的な意味は極めて大きい。
TECHNICAL FIELD The present invention relates to the production of a low iron loss grain-oriented electrical steel sheet. More specifically, even if strain relief annealing is performed, magnetic characteristics do not deteriorate. The present invention relates to a method for manufacturing a low iron loss unidirectional electrical steel sheet. [Prior Art] In the method of manufacturing a grain-oriented electrical steel sheet, it is important to reduce iron loss from the viewpoint of energy saving. As a method of reducing iron loss, a method of subdividing magnetic domains by laser irradiation has already been disclosed in JP-A-58-26405, but the reduction of iron loss by the method is due to the strain introduced by laser irradiation. It is due. Therefore, it can be used for a laminated core transformer that does not require strain relief annealing, but the magnetic domain subdivision method is not effective for a wound core transformer that requires strain relief annealing. Further, Japanese Patent Application Laid-Open No. 56-130454 discloses a method for reducing iron loss by utilizing a group of fine recrystallized grains generated by the secondary recrystallization annealing of a steel sheet having a strain introduced therein. Since the method achieves the reduction of the iron loss value by utilizing the fine recrystallized grains generated on the surface of the steel sheet, the iron loss value is not deteriorated by the strain relief annealing, but it involves a difficult problem in industrialization. I'm out. [Problems to be Solved by the Invention] This invention can be applied to reduction of the iron loss value of unidirectional electrical steel sheets for various iron cores because it is easy to industrialize, and at the same time, the iron loss reduction effect is lost by performing strain relief annealing (EN) A method of manufacturing a low iron loss unidirectional electrical steel sheet which can solve the above two problems at the same time. [Means for Solving the Problems] The present invention addresses the problems of the prior art by applying a finish-annealed grain-oriented electrical steel sheet or a finish-annealed unidirectional grain-oriented electrical steel sheet to a base steel. It is intended to solve the problem by a method for producing a low iron loss grain-oriented electrical steel sheet, which is characterized by removing a part and then subjecting the removed portion to anticorrosion treatment that does not have a tension applying effect. It is intended to reduce the magnetic deterioration after the strain relief annealing while maintaining the above value. Hereinafter, a method for manufacturing a low iron loss unidirectional electrical steel sheet according to the present invention will be described in detail. First, a silicon steel slab containing 4% or less of si is heated by an ordinary method, hot-rolled at an intermediate plate thickness, the obtained hot-rolled sheet is pickled, and if necessary, heat treatment of the hot-rolled sheet is performed. Then, by the same manner as above, cold rolling is performed twice with intermediate annealing or cold rolling is performed once to obtain the final thickness, and the obtained cold rolled sheet is decarburized and annealed. After that, an annealing separator is applied, and secondary recrystallization annealing is performed to manufacture a normal unidirectional electrical steel sheet. The above steps are performed by a usual method. The steel sheet having the secondary recrystallized structure thus obtained or an insulating film is applied to the steel sheet, and a part of the base metal of the baked steel sheet is removed. As a method for removing the base steel, first peel off a part of the insulating film of the steel plate by means such as laser irradiation, discharge or strong acid (for example, hydrofluoric acid), and then dissolve the base steel plate with acid such as hydrochloric acid or nitric acid. There is a way to remove it. Of course, a means such as electrolytic pickling may be used. Alternatively, the surface coating and base iron may be evaporated by performing laser irradiation in an oxygen atmosphere. The present invention is the same in the method of reducing the iron loss value by laser irradiation and in the low iron loss region by subdividing the magnetic domain, but differs in that the effect of subdividing the magnetic domain remains even if strain relief annealing is performed. Therefore, the shape of the groove or the concave portion having the approximate shape formed in the base metal removing portion is preferably a direction perpendicular to the rolling direction (<011> orientation), but may have a direction of 45 ° in the rolling direction, for example. If the inclination is too large, it is disadvantageous for reducing the iron loss, which is not preferable. Further, the interval of grooves and the like in the rolling direction is most preferably 2.5 to 10 mm as disclosed in Japanese Patent Publication No. 58-26406. The reason is that the iron loss value is most reduced in this range. The groove or the like may be formed as a line or a dot shape in a plan view, but when it is formed as a dot, the distance between the dots is preferably 0.7 mm or less. If the interval is in this range, it has a great effect on reducing the iron loss, and as the interval becomes wider, the iron loss can be reduced without lowering the magnetic flux density so much. The effect becomes smaller. Thus, by removing a part of the base iron of the steel sheet that has been subjected to finish annealing or the steel sheet that has been subjected to the tension imparting insulating coating such as phosphoric acid series, the iron loss of the steel sheet can be reduced, but the reason is not clear. After locally removing the film and the base metal by the method of the present invention, the remaining glass film and / or the tension-imparting film such as a phosphoric acid system forms a strain field around the metal removal part, and A synergistic effect with the magnetic shape effect forms a 90 ° magnetic domain around the ground iron removal part, which is considered to act as a bud for magnetic domain refinement. The magnetic steel sheet manufactured by the method of the present invention has the same iron loss value as that before the strain relief annealing even when the strain relief annealing is performed by the user. Therefore, the unidirectional electrical steel sheet manufactured by the method of the present invention can be used not only for the wound core transformer but also for the laminated iron transformer. Hereinafter, with reference to the drawings, the ground iron removing unit, which is one of the features of the present invention, will be further described. Fig. 1 is a sample in which various grooves with a width of 0.05 to 1 mm and a depth of 0.005 to 0.1 mm are formed at intervals of 5 mm in the rolling direction on a steel plate with a thickness of 0.23 mm and a phosphoric acid tension applying film applied to finish annealing. W17
An iron loss value of / 50 (in the rolling direction) was investigated, but a good iron loss value was obtained with a groove width of 0.05 to 0.4 mm and a groove depth of 0.01 to 0.06 mm. If the groove width is too narrow, it will be difficult to manufacture industrially, and if it is too wide, the iron loss value low range effect will not be seen. If the depth of the groove is too shallow, there is no effect of the low iron loss value region, and if it is too deep, the magnetic flux density (B) is lowered, and bending is likely to occur, which is not preferable. The preferred groove width and groove depth for obtaining a high magnetic flux density and low iron loss value are 0.05 to 0.4 mm and 0.015 to 0.05 mm, respectively, and in this range 0.84 W / kg ≤ W17 / 50 <0.86 W / kg and B 10
= 1.90 to 1.92T is obtained. The figure is after strain relief annealing at 800 ° C. for 2 hours, but similar values can be obtained before strain relief annealing. That is, within the range of the groove width and the depth in the figure, a grain-oriented electrical steel sheet is obtained in which the iron loss value does not deteriorate due to strain relief annealing. Next, the anticorrosion treatment which is another feature of the present invention will be described. Corrosion is apt to occur in the above-mentioned base metal removing portion, so it is necessary to perform anticorrosion treatment. As an anticorrosion treatment, an insulating film solution that does not have a tension effect on the ground iron removal part, an organic substance, a coating process of a coating film solution, etc. can be considered, but if heat resistance is also considered, the inorganic film used for the film of the electromagnetic steel sheet is It is the simplest and cheapest to apply the treatment to the entire surface of the plate. It goes without saying that if it is used without strain relief annealing, it can be used as an all-organic coating film. [Example] Example 1 A steel sheet finished by cold rolling to a thickness of 0.23 mm and finish-annealed as a grain-oriented electrical steel sheet was coated with an acid resistant resin so that a part of the steel sheet was exposed. The exposed part was formed by lines of 0.3 mm width with 6 mm intervals perpendicular to the rolling direction. As a steel plate sample having the exposed part, the glass part that was partially exposed was removed by immersing it in hydrofluoric acid, and then the exposed base metal part was removed.
Electrolytic pickling in 15% hydrochloric acid (room temperature) for 15 seconds (current density 10A /
dm 2 ) Then, a groove having a depth of about 25 μm was formed. After that, remove the acid-resistant resin in an organic solvent, apply 75% H 3 PO 4 100 parts, magnesium hydroxide 23 parts, water 100 parts treatment solution over the entire surface with a 2 g / m 2 rubber roll, and then at 800 ° C. Bake for 100 seconds. The above-mentioned sample according to the steel of the present invention was subjected to strain relief annealing and the iron loss values in the rolling direction before and after the annealing were measured. The iron loss value (rolling direction) after strain relief annealing was measured using the steel sheet as finished annealing as a comparative material. Table 1 shows each iron loss value. It can be seen that the steel of the present invention has a lower iron loss value than the conventional method. The salt spray test (JIS Z2371) was conducted for 2 hours, and the corrosion state of each sample was examined. As a comparative material, the sample in which the ground iron was removed by electrolytic pickling after removing the glass film with hydrofluoric acid generated rust significantly from the removed part, whereas the sample treated with the above anticorrosion film produced rust. There was nothing.
The interlaminar resistance (JIS C2550) after strain relief annealing was a large value of 65 Ω-cm 2 / sheet, and it was found that the anticorrosive film had sufficient interlaminar insulation. Example 2 A phosphoric acid-based tension film was applied to a steel sheet finished by cold rolling to a thickness of 0.23 mm and finish-annealed as a grain-oriented electrical steel sheet. The film surface of the steel sheet was peeled off with a YAG laser at a pulse intensity of about 5 mJ at a distance of 0.2 mm and a distance of 0.5 mm in a dotted line at right angles to the rolling direction. The distance between the dotted lines in the rolling direction was 6 mm. After peeling off, the base metal part is 15% hydrochloric acid (room temperature)
Electrolytic pickling (current density: 10 A / dm 2 ) was performed for 15 seconds to form a groove having a depth of about 25 μm. After that, an insulating film treatment without applying tension was performed. The composition of the treating agent is 75% H 3 PO 4 100 parts, chromic anhydride 7 parts, hydroxide magnesium 18 parts, and water 100 parts. 830 ℃ × after applying the treatment liquid 2g / m 2 on the entire surface with a rubber roll
I baked it for 90 seconds. Table 2 shows the iron loss values in the rolling direction of the comparative steel before and after strain relief annealing (800 ° C. × 2 hours) and finish annealing of the phosphate-based tension-applying coating of the steel of the present invention. It can be seen that the steel of the present invention has a lower iron loss value than the conventional method. In addition, as a result of examining the generation of rust by the same salt spray test as in Example 1, it was found that the rust was remarkably generated when the film was locally removed by the laser as the comparative material, whereas the above-mentioned insulating film was formed. Almost no rust was observed in the objects. Interlayer resistance after strain relief annealing is 70Ω-cm 2 /
It showed a large value. Example 3 A phosphoric acid-based tension film was applied to a steel sheet finished by cold rolling to 0.23 mm and finish-annealed as a grain-oriented electrical steel sheet. While irradiating the surface of the steel sheet with a pulse intensity of about 10 mJ and a YAG laser beam with a beam diameter of 0.3 mm at intervals of 0.3 mm, oxygen gas is blown from the nozzle to the laser beam irradiation part to accelerate evaporation of the molten part of the irradiation part. It was The irradiation beam was applied at right angles to the rolling direction. The groove spacing in the rolling direction is
6 mm. By blowing the oxygen gas, a groove having a depth of 15 μm was formed in the base iron removing portion as the molten portion was evaporated. Thereafter, the groove portion was subjected to an insulating film treatment without applying tension. The composition of the treatment liquid for this insulating coating was 75% H 3 PO 4 100 parts, chromic anhydride 3 parts, metasilicate calcium sushi 3 parts, hydroxide magnesium 20 parts, and water 100 parts. The treatment liquid (2 g / m 2) was applied on a rubber roll and then baked at 850 ° C. for 90 seconds. Table 3 shows the iron loss values in the rolling direction of the comparative material before and after the strain relief annealing of the present invention and the finish annealing of the phosphate-based tension-imparting coating.
It can be seen that the steel of the present invention has a lower iron loss value than the conventional method. Further, as a result of investigating the generation of rust after the salt spray test similar to that of Example 1, the comparative material, in which the base of the coating was locally removed by the laser, remarkably generated red rust, but the one subjected to the insulation coating There was no rust.
The interlayer resistance was also a large value of 100 Ω-cm 2 / sheet. [Advantages of the Invention] According to the present invention, it is possible to control the magnetic domain in which the iron loss value does not deteriorate even if strain relief annealing is performed, and therefore an excellent wound core material is provided. Furthermore, since the steel of the present invention has a low iron loss value, it can be used as a material for a laminated core transformer that is not subjected to strain relief annealing. At this time, the high insulation resistance due to the anticorrosion treatment sufficiently satisfies the interlayer insulation required for the laminated core. The steel of the present invention is also very industrially significant in that it is inexpensive to manufacture.

【図面の簡単な説明】 第1図は鋼板地鉄に形成された溝の幅および深さと磁気
特性との関係を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between the width and depth of grooves formed in a steel plate base metal and the magnetic characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 広瀬 喜久司 姫路市広畑区富士町1番地 新日本製鐵 株式会社広畑製鐵所内 (56)参考文献 特開 昭56−123325(JP,A) 特開 昭57−152423(JP,A) 特開 昭57−192222(JP,A) 特開 昭57−192223(JP,A) 特開 昭60−39123(JP,A) 特公 昭62−54873(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kikushi Hirose               No. 1 Fujimachi, Hirohata-ku, Himeji City Nippon Steel               Hirohata Works Ltd.                (56) References JP-A-56-123325 (JP, A)                 JP-A-57-152423 (JP, A)                 JP-A-57-192222 (JP, A)                 JP-A-57-192223 (JP, A)                 JP-A-60-39123 (JP, A)                 Japanese Patent Publication Sho 62-54873 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 1.仕上焼鈍済の一方向性電磁鋼板又は仕上焼鈍後、絶
縁皮膜処理を施した一方向性電磁鋼板の地鉄の一部を除
去したのち該除去部に、張力付加効果のない防食処理を
したことを特徴とする低鉄損一方向性電磁鋼板の製造方
法。 2.鋼板表面皮膜の一部を剥離した後、酸洗することに
より鋼板地鉄の一部を除去する特許請求の範囲第1項記
載の方法。 3.鋼板表面を、光学的手段と酸素等ガス雰囲気との組
合せにより鋼板地鉄の一部を除去する特許請求の範囲第
1項記載の方法。 4.地鉄除去部が線状又は点状で鋼板表面に形成されて
いる特許請求の範囲第1項記載の方法。 5.線状地鉄除去部又は点状の地鉄除去部が0.7mm以下
の間隔で連続して形成される点線状地鉄除去部が相互間
で2.5〜10mmの間隔を有し、該地鉄除去部の個々の幅が
0.05〜0.5mmであり、かつ深さが0.005〜0.06mmである特
許請求の範囲第4項記載の方法。
(57) [Claims] After removing a part of the base iron of the finish-annealed unidirectional electrical steel sheet or the finish-annealed unidirectional electrical steel sheet, the removed portion was subjected to anticorrosion treatment without a tension-adding effect. And a method for producing a low iron loss unidirectional electrical steel sheet. 2. The method according to claim 1, wherein a part of the steel plate base iron is removed by pickling after removing a part of the steel plate surface film. 3. The method according to claim 1, wherein a part of the steel plate base iron is removed from the surface of the steel plate by a combination of an optical means and an atmosphere of gas such as oxygen. 4. The method according to claim 1, wherein the base metal removing portion is formed on the surface of the steel sheet in a linear or dot shape. 5. The linear ground iron removing portion or the dot-like ground iron removing portion is continuously formed at an interval of 0.7 mm or less. The individual width of the part
The method according to claim 4, wherein the depth is 0.05 to 0.5 mm and the depth is 0.005 to 0.06 mm.
JP60093814A 1985-05-02 1985-05-02 Manufacturing method of low iron loss unidirectional electrical steel sheet Expired - Fee Related JP2694941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093814A JP2694941B2 (en) 1985-05-02 1985-05-02 Manufacturing method of low iron loss unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093814A JP2694941B2 (en) 1985-05-02 1985-05-02 Manufacturing method of low iron loss unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPS61253380A JPS61253380A (en) 1986-11-11
JP2694941B2 true JP2694941B2 (en) 1997-12-24

Family

ID=14092863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093814A Expired - Fee Related JP2694941B2 (en) 1985-05-02 1985-05-02 Manufacturing method of low iron loss unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP2694941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087332A (en) * 2010-10-15 2012-05-10 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN171546B (en) * 1988-03-25 1992-11-14 Armco Advanced Materials
BR112012032714B1 (en) 2010-06-25 2022-05-24 Nippon Steel Corporation Method for producing electric steel sheet with grain oriented
JP5884165B2 (en) * 2011-12-28 2016-03-15 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP6638599B2 (en) * 2016-09-01 2020-01-29 日本製鉄株式会社 Wound iron core and method of manufacturing the wound iron core

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850298B2 (en) * 1980-01-25 1983-11-09 新日本製鐵株式会社 Processing method for electrical steel sheets
JPS5836053B2 (en) * 1981-05-19 1983-08-06 新日本製鐵株式会社 Processing method for electrical steel sheets
JPS5836052B2 (en) * 1981-05-19 1983-08-06 新日本製鐵株式会社 Processing method for electrical steel sheets
JPS5836051B2 (en) * 1982-03-09 1983-08-06 新日本製鐵株式会社 Processing method for electrical steel sheets
JPS6039123A (en) * 1983-08-10 1985-02-28 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having low iron loss
JPS6254873A (en) * 1985-09-03 1987-03-10 Sanyo Electric Co Ltd Fixed-head type digital magnetic reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087332A (en) * 2010-10-15 2012-05-10 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JPS61253380A (en) 1986-11-11

Similar Documents

Publication Publication Date Title
EP0033878B1 (en) Method for treating an electromagnetic steel sheet by laser-beam irradiation
KR910002866B1 (en) Grain-oriented electrical steel sheet having stable magnetic proporties resistant to stress relief annealing and method and apparatus for producing the same
US4863531A (en) Method for producing a grain-oriented electrical steel sheet having a low watt loss
JPS6254873B2 (en)
JP2671076B2 (en) Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet
JP2694941B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
US4190468A (en) Process for coating an electrical steel sheet with an anti-sticking layer
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JP4015875B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JP2942074B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JP7538126B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH01198430A (en) Production of grain oriented electrical steel sheet having extremely good iron loss characteristics and film adhesiveness
JPH06299244A (en) Manufacture of silicon steel sheet having excellent magnetic characteristic
JPS61210125A (en) Manufacture of grain-oriented silicon steel sheet having extremely superior magnetic property
JPH029111B2 (en)
JP2752682B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH04214819A (en) Manufacture of low core loss grain-oriented silicon steel sheet free from deterioration in magnetic property even if stress relieving annealing is executed and continuous manufacturing equipment train for low core loss grain-oriented silicon steel sheet
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JPH07331332A (en) Production of grain oriented silicon steel sheet reduced in iron loss
JPH0615695B2 (en) Method for producing unidirectional electrical steel sheet with excellent iron loss
JP3669086B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JPH01252726A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss
JPH01191743A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss excellent in adhesive strength of film
JPH032212B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees