JPS5850298B2 - Processing method for electrical steel sheets - Google Patents

Processing method for electrical steel sheets

Info

Publication number
JPS5850298B2
JPS5850298B2 JP700080A JP700080A JPS5850298B2 JP S5850298 B2 JPS5850298 B2 JP S5850298B2 JP 700080 A JP700080 A JP 700080A JP 700080 A JP700080 A JP 700080A JP S5850298 B2 JPS5850298 B2 JP S5850298B2
Authority
JP
Japan
Prior art keywords
treatment
laser beam
annealing
beam irradiation
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP700080A
Other languages
Japanese (ja)
Other versions
JPS56123325A (en
Inventor
徹 井内
重裕 山口
正 市山
洋三 菅
元治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP700080A priority Critical patent/JPS5850298B2/en
Priority to US06/227,379 priority patent/US4363677A/en
Priority to EP83100769A priority patent/EP0087587B1/en
Priority to DE8181100512T priority patent/DE3165139D1/en
Priority to DE8383100769T priority patent/DE3177027D1/en
Priority to EP81100512A priority patent/EP0033878B1/en
Publication of JPS56123325A publication Critical patent/JPS56123325A/en
Publication of JPS5850298B2 publication Critical patent/JPS5850298B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明はすぐれた磁気特性、絶縁特性を有する電磁鋼板
を安定して製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for stably manufacturing an electrical steel sheet having excellent magnetic properties and insulation properties.

電磁鋼板としては、モーター等の回転機に使用される無
方向性電磁鋼板あるいはトランス等lこ使用される方向
性電磁鋼板がある。
Examples of electromagnetic steel sheets include non-oriented electromagnetic steel sheets used in rotating machines such as motors, and grain-oriented electromagnetic steel sheets used in transformers and the like.

無方向性電磁鋼板は純鉄系または3.5%以下の珪素を
含有する珪素鋼板で、これはホットコイルを酸洗後、1
ないし2回の冷延と焼鈍をくり返して、磁化容易軸を圧
延方向に対してランダムとし、その後絶縁皮膜処理を施
して製造される。
Non-oriented electrical steel sheets are pure iron-based or silicon steel sheets containing 3.5% or less silicon, and after pickling hot coils,
It is manufactured by repeating cold rolling and annealing one or two times to make the axis of easy magnetization random with respect to the rolling direction, and then applying an insulation coating treatment.

一方、方向性電磁鋼板は一般に次の様にして製造される
On the other hand, grain-oriented electrical steel sheets are generally manufactured as follows.

すなわち2.5〜4.0%の珪素を含有し、インヒビタ
ーとしてのAlN 、 MnS 、 BN 、 Se
That is, it contains 2.5-4.0% silicon and contains AlN, MnS, BN, Se as inhibitors.
.

CuS、Sb等を形成する元素の1種又は2種以上を所
定量含有するホットコイルを酸洗し、1〜2回の冷間圧
延、焼鈍をくり返した後、2次再結晶により(110)
(001)の方位を有する結晶を選択的に成長させるた
めに、100′O〜1200℃で仕上げ焼鈍される。
A hot coil containing a predetermined amount of one or more of the elements forming CuS, Sb, etc. is pickled, cold rolled and annealed once or twice, and then subjected to secondary recrystallization (110).
In order to selectively grow crystals with (001) orientation, final annealing is performed at 100'O to 1200°C.

仕上げ焼鈍をコイルの状態づ行なうバッチ式の場合には
焼付を防止するために焼鈍分離剤としてマグネシャ、シ
リカ、アルミナ、酸化チタン、酸化カルシウム等の耐火
性酸化物が使用される。
In the case of a batch type in which final annealing is performed for each coil, refractory oxides such as magnesia, silica, alumina, titanium oxide, calcium oxide, etc. are used as annealing separators to prevent seizure.

この場合マグネシャを主成分とする焼鈍分離剤を用いる
と、焼付が防止されると同時に焼鈍時に鋼板表面のSi
O2とマグネシャが反応して2Mg0・5in2(フォ
ルステライト)を主成分とするグラス皮膜を形成する。
In this case, using an annealing separator containing magnesia as a main component will prevent seizure and at the same time prevent Si from forming on the surface of the steel sheet during annealing.
O2 and magnesia react to form a glass film whose main component is 2Mg0.5in2 (forsterite).

このグラス皮膜は絶縁皮膜下地として有効であるのみな
らず、鋼板に対し張力を与えて鉄損の向上、磁歪の減少
に効果があり、一般にはこのようなグラス皮膜を有する
方向性電磁鋼板の製造が主流である。
This glass coating is not only effective as a base for an insulating coating, but also improves core loss and reduces magnetostriction by applying tension to the steel sheet, and is generally used in the production of grain-oriented electrical steel sheets with such a glass coating. is the mainstream.

この様に仕上げ焼鈍により2次再結晶を起せしめ、グラ
ス皮膜を形成した電磁鋼板は、次に余剰のマグネシャを
除去した後、例えば特公昭27−1268号公報に示さ
れるようにリン酸マグネシウム系処理液や、特公昭53
−28375号公報に示されているようにコロイダルシ
リカ−リン酸アルミニウムークロム酸系処理液が塗布さ
れ、700〜900℃で皮膜の焼付と同時に鋼板の巻ぐ
せを取り除き、平坦にするためのフラットニングが実施
されている。
In this way, after secondary recrystallization is caused by finish annealing and a glass film is formed on the electrical steel sheet, the excess magnesia is removed, and then, as shown in Japanese Patent Publication No. 27-1268, for example, magnesium phosphate-based Processing liquid and
As shown in Publication No. 28375, a colloidal silica-aluminum phosphate-chromic acid treatment solution is applied, and the film is baked at 700 to 900°C, simultaneously removing curls and flattening the steel plate. training is being carried out.

この場合後者の特公昭53−28375号公報に示され
ているようなコロイダルシリカを含有する処理液を上記
焼付は温度で処理すると、皮膜がグラス化して冷却時に
鋼板に張力を与えることにより鉄損、磁歪等の特性向上
効果が太きいために有利である。
In this case, if a treatment solution containing colloidal silica, such as that shown in the latter Japanese Patent Publication No. 53-28375, is treated at the temperature mentioned above, the film becomes glassy and tension is applied to the steel plate during cooling, causing iron loss. This is advantageous because the effect of improving properties such as magnetostriction is large.

ところが、張力効果を大きくするためには塗布量を4〜
7 g / m”と多量に塗布する必要があるために、
絶縁特性はすぐれているが、占積率が劣り又、スリット
、切断等の加工時にエツジ部が剥離する等の加工性に問
題があった。
However, in order to increase the tension effect, the amount of application should be increased from 4 to 4.
Because it is necessary to apply a large amount of 7 g/m”,
Although the insulation properties are excellent, the space factor is poor, and there are problems with workability, such as peeling of the edges during processing such as slitting and cutting.

本発明は上記従来の提案における難点を伴なうことなく
、磁性(鉄損、磁歪)、絶縁特性、占積率、並びに加工
性共にすぐれた電磁鋼板を得るための処理方法を提供す
ることを目的とするものである。
The present invention aims to provide a processing method for obtaining an electrical steel sheet with excellent magnetism (iron loss, magnetostriction), insulation properties, space factor, and workability without having the drawbacks of the above-mentioned conventional proposals. This is the purpose.

本発明のかかる目的は、基本的にはレーザービームを使
用して仕上焼純情の電磁鋼板の表面にレーザービームの
照射処理を行なって鋼板表面に局部的にレーザー痕を形
成させること、その後に絶縁皮膜処理を行なうこと及び
同皮膜処理にさいしては、鋼板に付与されたレーザービ
ーム照射処理効果が消失しない低温温度領域で行なうこ
と、その組合せにより達成されるものである。
The purpose of the present invention is basically to irradiate the surface of a finish-hardened electrical steel sheet with a laser beam to form laser marks locally on the surface of the steel sheet, and then insulate the surface of the steel sheet. This is achieved by a combination of carrying out the coating treatment and carrying out the coating treatment in a low temperature range where the laser beam irradiation treatment effect imparted to the steel sheet does not disappear.

更に詳しく述べれば、レーザービーム照射処理は本発明
者等の検討結果によれば、鋼板表面にレーザー痕が生じ
る程度に行なうことが最良の結果をもたらすことができ
る。
More specifically, according to the study results of the present inventors, the best results can be obtained by carrying out the laser beam irradiation treatment to such an extent that laser marks are produced on the surface of the steel plate.

このレーザー痕は絶縁性および耐電圧性の観点からない
ことが望ましいが、本発明者らの検討によればレーザー
ビーム照射処理後に所定厚みの絶縁皮膜を施こせば、レ
ーザー痕による絶縁性、耐電圧性を低下させることなく
鉄損を向上させ得るものである。
It is desirable that these laser marks do not exist from the viewpoint of insulation and voltage resistance, but according to the study of the present inventors, if an insulating film of a predetermined thickness is applied after laser beam irradiation treatment, the insulation and voltage resistance caused by laser marks can be improved. Iron loss can be improved without reducing voltage properties.

ところで、絶縁皮膜処理は、前述の如く通常フラットニ
ング処理と同時に板温か700℃〜900℃で焼付処理
が行われる。
By the way, as mentioned above, the insulation coating treatment is usually performed at the same time as the flattening treatment and the baking treatment at a board temperature of 700° C. to 900° C.

一方本発明者らの実験結果によれば、レーザービーム照
射処理後、鋼板の温度が600℃を越えると、その効果
が消失してしまうことが判明した。
On the other hand, according to the experimental results of the present inventors, it was found that when the temperature of the steel plate exceeds 600° C. after laser beam irradiation treatment, the effect disappears.

この様な判明事実に基づき本発明では、レーザービーム
照射処理後行なう絶縁皮膜処理を、レーザービーム照射
処理効果が消失しない低温度領域、具体的には板温か6
00℃以下で焼付は処理を行うものである。
Based on these findings, in the present invention, the insulation film treatment performed after the laser beam irradiation treatment is performed in a low temperature range where the laser beam irradiation treatment effect does not disappear, specifically, at a plate temperature of 6.
Baking is a process performed at temperatures below 00°C.

尚、レーザービーム照射処理を絶縁皮膜処理後に行なう
ことも考えられるが、この場合には、レーザービーム照
射により皮膜が蒸発して地鉄面が露出し絶縁性、耐電圧
性の低下が激しい。
It is also possible to carry out the laser beam irradiation treatment after the insulation coating treatment, but in this case, the coating evaporates due to the laser beam irradiation, exposing the base metal surface, resulting in a severe drop in insulation properties and voltage resistance.

この点からもレーザービーム照射処理は絶縁皮膜処理前
に行なうものである。
Also from this point of view, the laser beam irradiation treatment is performed before the insulation coating treatment.

電磁鋼板の表面にレーザービームを適用すること自体は
特公昭54−23647号公報に記載されている。
The application of a laser beam to the surface of an electromagnetic steel sheet is described in Japanese Patent Publication No. 54-23647.

しかしながらこの特公昭54−23647号公報に記載
の方法は、仕上高温焼鈍工程の前において鋼板に適用し
て2次再結晶粒の成長を阻止するもので2次再結晶後に
レーザービーム照射処理する本発明とは、目的、構成、
作用効果共に全く異なるものである。
However, the method described in Japanese Patent Publication No. 54-23647 is applied to a steel plate to prevent the growth of secondary recrystallized grains before the final high-temperature annealing process, and the method described in Japanese Patent Publication No. 54-23647 prevents the growth of secondary recrystallized grains. An invention is a purpose, structure,
They are completely different in terms of action and effect.

第1図は高磁束密度一方向性電磁鋼板にレーザービーム
照射処理を行ない、その後絶縁皮膜処理を行った場合の
、絶縁皮膜処理温度と磁性(鉄損)との関係を示したも
のである。
FIG. 1 shows the relationship between insulation coating treatment temperature and magnetism (iron loss) when a high magnetic flux density unidirectional electrical steel sheet is subjected to laser beam irradiation treatment and then insulation coating treatment.

この場合の一方向性電磁鋼板の表面にはグラス皮膜を有
し、(1)フラットニング処理条件870℃X 70S
eC,in N2、(2)パルスレーザ−ビームのエネ
ルギー密度15 J /cwt、片面C方向点状照射、
点状痕跡の径0.1 rnN、点状痕跡列C方向中心間
隔0.5間、点状痕跡列り方向間隔10 rItrlL
、 (3)絶縁皮膜Al(H2PO+)s Crys
−:lDイダルシリカ系、塗布量3 fl / msな
る諸条件で実施した。
In this case, the surface of the unidirectional electrical steel sheet has a glass film, and (1) Flattening treatment conditions: 870°C x 70S
eC, in N2, (2) pulsed laser beam energy density 15 J/cwt, single-sided C direction point irradiation,
The diameter of the dotted traces is 0.1 rnN, the center spacing in the dotted trace row C direction is 0.5, and the spacing in the dotted trace row direction is 10 rItrlL.
, (3) Insulating film Al(H2PO+)s Crys
-: Conducted under the following conditions: 1D idal silica system, coating amount 3 fl/ms.

第1図の結果から判明する如く、フラットニング後の鉄
損(w17150 (W/ゆ))値は1.18であった
ものがレーザービーム照射処理を施こすことにより1.
00まで大巾に低下する。
As is clear from the results shown in Figure 1, the iron loss (w17150 (W/yu)) value after flattening was 1.18, but after laser beam irradiation treatment, it became 1.
It drops drastically to 00.

しかしながらその後に実施する絶縁皮膜処理時の温度(
板温)によって絶縁皮膜処理後の鉄損値は大きく変化し
、板温か600℃を越えるとその効果が極端に悪化する
ことが判る。
However, the temperature (
It can be seen that the iron loss value after insulation coating treatment changes greatly depending on the plate temperature), and that the effect deteriorates extremely when the plate temperature exceeds 600°C.

この様なことから絶縁皮膜処理時の温度は600℃以下
に限定した。
For this reason, the temperature during the insulation coating treatment was limited to 600°C or less.

その中で特に良好なのは板温か550℃以下で焼付は処
理を行なうことであり、これにより、絶縁皮膜処理後の
鉄損を、レーザービーム照射処理後と同等又はそれ以下
とすることが可能となる。
Among these, the best option is to perform the baking process at a board temperature of 550°C or less, which makes it possible to make the iron loss after insulation coating treatment equal to or lower than that after laser beam irradiation treatment. .

更に特筆に値することは絶縁皮膜処理を板温か500℃
以下で行なうことIこより、レーザービーム照射処理後
の鉄損よりも絶縁皮膜処理後の鉄損が向上することであ
る。
What is also worth mentioning is that the insulation film treatment is performed at a board temperature of 500℃.
As described below, the iron loss after the insulation coating treatment is improved more than the iron loss after the laser beam irradiation treatment.

この理由は今のところ明らかではなく全く予期し得なか
った効果である。
The reason for this is not clear at present, and this is a totally unexpected effect.

本発明の実施において用いるレーザービーム照射につい
ては何ら限定されるものではなく、例えば連続線状照射
、点状照射、破線状照射等いづれのものでもよい。
The laser beam irradiation used in carrying out the present invention is not limited in any way, and may be, for example, continuous linear irradiation, dotted irradiation, broken line irradiation, or the like.

また使用するレーザーは特に限定されず、連続、パルス
何れでもよい。
Further, the laser used is not particularly limited, and may be either continuous or pulsed.

又電磁鋼板に対する照射方向は、圧延方向(L)圧延方
向と直角方向(C)、その中間の各方向の一つ又は2つ
以上を組合せて実施することができる。
Further, the direction of irradiation on the electrical steel sheet can be one or a combination of the rolling direction (L), the direction perpendicular to the rolling direction (C), and the intermediate directions.

今、パルス状のレーザービームを用いる場合の一つの適
用例を示せば、エネルギー密度Pが0,01〜100O
J/iであるレーザービーム照射にする直径dが0.0
1〜1 rtmの痕跡列を、鋼板のC方向にほぼ平行に
痕跡の中心間距離、0.01〜2朋の間隔で有しかつ痕
跡列のL方向間隔をl〜30nル−ザーパルスの時間巾
を1 ns〜100m5とする。
Now, to show one application example when using a pulsed laser beam, the energy density P is 0.01 to 100O
The diameter d for laser beam irradiation which is J/i is 0.0
It has trace rows of 1 to 1 rtm approximately parallel to the C direction of the steel plate with a distance between the centers of the traces of 0.01 to 2 mm, and the distance of the trace rows in the L direction is 1 to 30 n for the time of the loser pulse. The width is set to 1 ns to 100 m5.

更に照射処理する而も片面、両面のいづれでもよい。Further, the irradiation treatment may be performed on either one side or both sides.

本発明方法に於ける1つの実施工程は、焼鈍分離剤を塗
布した電磁鋼コイルを仕上高温焼鈍後常法に従って余剰
の分離剤を除去し、しかるのち700〜900℃でフラ
ットニングを実施後、鋼板表面にレーザービーム照射処
理を施こし、その後板温600℃以下、好ましくは55
0℃以下更に好ましくは500℃以下の温度で絶縁皮膜
処理を行なう方法である。
One implementation step in the method of the present invention is to finish the electromagnetic steel coil coated with an annealing separating agent, annealing it at a high temperature, removing the excess separating agent according to a conventional method, and then flattening it at 700 to 900°C. The steel plate surface is subjected to laser beam irradiation treatment, and then the plate temperature is lower than 600℃, preferably 55℃.
This is a method of performing the insulation coating treatment at a temperature of 0°C or lower, more preferably 500°C or lower.

本発明によるレーザービーム照射処理された電磁鋼板は
鉄損の向上が著しい。
The electromagnetic steel sheet subjected to the laser beam irradiation treatment according to the present invention has a remarkable improvement in core loss.

、その結果特徴の第1点は、従来工業的に実施された絶
縁皮膜による張力効果が不要となり、コロイド状シリカ
を含有する高価な絶縁皮膜処理剤に代えて安価な処理剤
の使用が可能となる。
As a result, the first characteristic is that the tension effect of the insulation coating, which was conventionally implemented industrially, is no longer necessary, and an inexpensive treatment agent can be used in place of the expensive insulation coating treatment agent containing colloidal silica. Become.

又特別高抵抗が要求される以外は厚塗りが不必要で2〜
3g/mの薄塗りが可能となり、その結果、積層した場
合の占積率が向上すると共に、スリット、剪断時の皮膜
剥離もなくなって加工性も向上するものである。
Also, thick coating is unnecessary unless a particularly high resistance is required.
A thin coating of 3 g/m is possible, and as a result, the space factor when laminated is improved, and there is no peeling of the film during slitting or shearing, resulting in improved workability.

次に第2に、焼鈍により生成したグラス皮膜(フォルス
テライト)による張力効果も不要となり、従って焼鈍前
に塗布する焼鈍分離剤もマグネシャを主成分とするもの
に限定されることなく、グラス皮膜を形成しないAl2
O3系の分離剤の使用も可能となる。
Secondly, the tension effect caused by the glass film (forsterite) produced by annealing is no longer necessary, and therefore the annealing separation agent applied before annealing is not limited to one containing magnesia as its main component; Al2 not formed
It also becomes possible to use O3-based separation agents.

かくしてグラス皮膜が存在しないことによりより一層占
積率、加工性が向上するものである。
Thus, the absence of the glass film further improves the space factor and workability.

更に第3に、最終仕上焼鈍をバッチ式で行なう場合、従
来は2次再結晶を十分に行なわせた後、鉄損を向上させ
るべく更に長時間の純化処理のための焼鈍時間が必要で
あった。
Thirdly, when final finish annealing is performed in a batch manner, conventionally, after sufficient secondary recrystallization, an even longer annealing time is required for purification treatment in order to improve iron loss. Ta.

これに対して本発明によれば、仕上焼鈍済みの鋼板に対
するレーザービーム照射処理lこより鉄損の向上を計る
ことができるので仕上焼鈍では2次再結晶によりすぐれ
た磁束密度が得られればよく、従ってバッチ焼鈍時間の
短縮が可能となる。
On the other hand, according to the present invention, it is possible to improve the iron loss by laser beam irradiation treatment of the finish annealed steel plate, so it is sufficient that excellent magnetic flux density can be obtained by secondary recrystallization in the finish annealing. Therefore, it is possible to shorten the batch annealing time.

この結果、省エネルギー効果が大きくコスト低減に大き
く寄与できるものである。
As a result, the energy saving effect is large and it can greatly contribute to cost reduction.

グラス皮膜なしの電磁鋼板の製造法としては、上記のA
l2O3系分離剤を使用する外、グラス皮膜を酸洗によ
り除外する方法もあるが、このグラス皮膜除去後にレー
ザービーム照射処理を行なうことにより、鋼板面にはグ
ラス皮膜はもとより酸化膜も存在しないので、より一層
効果的である。
As a manufacturing method for electrical steel sheets without glass coating, the above A
In addition to using l2O3-based separation agents, there is also a method of removing the glass film by pickling, but by performing laser beam irradiation treatment after removing the glass film, there is not only a glass film but also an oxide film on the steel sheet surface. , is even more effective.

以上は主として最終仕上焼鈍がバッチ式コイル焼鈍の場
合について述べたが、近年、省エネルギ−のために仕上
焼鈍を連続焼鈍で行なう試みが既に提案されている(例
えば特公昭48−3923号公報)。
The above has mainly described the case where the final finish annealing is batch coil annealing, but in recent years, attempts to perform the final annealing by continuous annealing have already been proposed in order to save energy (for example, Japanese Patent Publication No. 48-3923). .

かかる工程では焼鈍分離剤が不必要なため、グラス皮膜
なしの電磁鋼板が得られるので、これに対して本発明方
法を実施することにより目的とする作用効果が得られる
ものである。
Since such a step does not require an annealing separator, an electrical steel sheet without a glass coating can be obtained, and the desired effect can be obtained by implementing the method of the present invention on the electrical steel sheet.

バッチ式コイル焼鈍、連続式焼鈍共にグラス皮膜なしの
場合、鋼板表面をブルーイング処理して薄い酸化膜を生
成することにより、レーザービームの吸収がよくなり効
率よくレーザービームの照射を行なうことができる。
If there is no glass film for both batch coil annealing and continuous annealing, the steel plate surface is blued to create a thin oxide film, which improves laser beam absorption and enables efficient laser beam irradiation. .

ブルーイング処理を行なう工程としては、バッチ式コイ
ル焼鈍の場合にはフラットニングラインの出側で、又連
続焼鈍の場合にはその出側で夫々実施できる。
The bluing process can be carried out on the outlet side of the flattening line in the case of batch coil annealing, or on the outlet side in the case of continuous annealing.

ブルーイング処理は通常600℃以上の温度で、空気中
で、又はN2或いはN2+N、、混合気中に水蒸気を吹
込んで実施することができる。
The bluing treatment can usually be carried out at a temperature of 600° C. or higher in air or by blowing steam into a mixture of N2 or N2+N.

尚、このブルーイング処理による酸化皮膜に代えて、他
のレーザービーム吸収剤を塗布することもできる。
Incidentally, instead of the oxide film formed by this bluing treatment, another laser beam absorbing agent may be applied.

例えばクロム酸系溶液の塗布又はCu等の薄メッキ等が
ある。
For example, coating with a chromic acid solution or thin plating with Cu or the like may be used.

レーザービーム照射処理後、板温600℃以下で絶縁皮
膜処理を行なう処理液としては、リン酸塩、クロム酸塩
の1種又は2種以上を含有する処理液を主成分とし、こ
れにコロイダルシリカ、コロイダルアルミナ、酸化チタ
ン、硼酸化合物の1種又は2種以上を添加したものがあ
る。
After laser beam irradiation treatment, the treatment liquid for insulating film treatment at a plate temperature of 600°C or less is mainly composed of a treatment liquid containing one or more of phosphates and chromates, and colloidal silica. , colloidal alumina, titanium oxide, and boric acid compounds.

その他にクロム酸塩の還元剤として、多価アルコール、
グリセリン等の有機化合物、加工性向上のため水溶性又
はエマルジョン樹脂、高抵抗、加工性向上のため1μ以
上の粒径を有する有機樹脂粉末の如き有機化合物の1種
又は2種以上を含有させることができる。
In addition, as a reducing agent for chromate, polyhydric alcohol,
Contain one or more organic compounds such as glycerin and other organic compounds, water-soluble or emulsion resins to improve processability, high resistance, and organic resin powders with a particle size of 1μ or more to improve processability. I can do it.

この対紫外線照射による絶縁皮膜形成法も採用可能であ
る。
This method of forming an insulating film by irradiating ultraviolet rays can also be adopted.

実施例 l Si2.9%、C0,003%、 Mn 0.080%
Example l Si2.9%, C0,003%, Mn 0.080%
.

Ai、031%を含有する一方向性電磁鋼板(0,30
%)を次の工程による製造した。
Unidirectional electrical steel sheet containing Ai, 0.31% (0.30
%) was produced by the following steps.

ホットコイルを1回の冷延−焼鈍後マグネシャを塗布乾
燥しコイルに巻取り、1159°Cで2次再結晶のため
の仕上焼鈍を行ない、その後余剰のマグネシャを除去し
、グラス皮膜を有する鋼帯を850℃X 70 Sec
でフラットニング処理した。
The hot coil is cold-rolled and annealed once, then coated with magnesia, dried, wound into a coil, finished annealed at 1159°C for secondary recrystallization, and then excess magnesia is removed to produce steel with a glass coating. Heat the band to 850℃ x 70 Sec
flattened.

かくして得られた一方向性電磁鋼帯から試料を採取して
次の処理を行って、緒特性の試験を実施した。
Samples were taken from the unidirectional electrical steel strip thus obtained, subjected to the following treatments, and tested for mechanical properties.

A処理:フラットニングのまま B処理:フラットニング後、レーザービーム照射処理 (1)レーザービーム照射条件: エネルギー密度:15J/i 点状痕跡径二〇、 1間 点状痕跡C方向中心間距離: 0.5 urn痕跡列り
方向間隔二10mm C処理:レーザービーム照射処理後、絶縁皮膜処理 (1)レーザービーム照射条件二B処理に同じ。
A treatment: Same as flattening B treatment: After flattening, laser beam irradiation treatment (1) Laser beam irradiation conditions: Energy density: 15 J/i Dotted trace diameter 20, 1 Distance between centers of dotted traces in C direction: 0.5 urn trace spacing in the direction of rows 2 10 mm C treatment: After laser beam irradiation treatment, insulation coating treatment (1) Laser beam irradiation conditions 2 Same as B treatment.

(2)絶縁皮膜処理 (a)処理液=20%コロイドシリカ 1oocc50
%リン酸アルミニウム 60CC CrO36& 硼酸 2g (b)焼付温度(板温):500℃、600℃。
(2) Insulating film treatment (a) Treatment liquid = 20% colloidal silica 1oocc50
% aluminum phosphate 60CC CrO36 & boric acid 2g (b) Baking temperature (plate temperature): 500°C, 600°C.

700°c、soooC (c)塗布量:3.Og/m″ E処理(従来法):実施例1のC処理で用いた処理液を
フラットニング処理前に塗布してフラットニングと同時
に焼付けしたもの。
700°c, soooC (c) Application amount: 3. Og/m'' E treatment (conventional method): The treatment liquid used in the C treatment of Example 1 was applied before the flattening treatment and baked at the same time as the flattening.

塗布量5、5 g / n。Application amount 5,5 g/n.

上記の如〈実施した結果を第1表に示す。The results of the above tests are shown in Table 1.

第1表から明らかな如く、フラットニング後レーザービ
ーム照射処理を行ない。
As is clear from Table 1, the laser beam irradiation treatment was performed after flattening.

600’C以下(板温)の温度で絶縁皮膜処理したもの
は、従来法による場合に比較して鉄損特性及び磁歪特性
が向上し、特に500℃の温度で焼付けしたものはB処
理のままよりも鉄損がすぐれている。
Products treated with insulation coating at temperatures below 600'C (plate temperature) have improved iron loss and magnetostriction properties compared to those treated with conventional methods, and in particular, products baked at temperatures of 500°C remain B-treated. Iron loss is better than that of

又、本発明方法によれば従来法に比べて絶縁皮膜の塗布
量が少くできる(本発明方法3J/rn’、従来法s、
5g/m)ために、密着性の向上及び占積率の向上が著
しい。
Furthermore, according to the method of the present invention, the amount of insulation film applied can be reduced compared to the conventional method (method of the present invention 3J/rn', conventional method s,
5 g/m), the improvement in adhesion and the space factor are remarkable.

実施例 2 Si3.2%、 CO,OO3%、Mn0.065%、
SO,020%、 A70.004%を含有する一方向
性電磁鋼板を、次の工程により製造した。
Example 2 Si3.2%, CO,OO3%, Mn0.065%,
A unidirectional electrical steel sheet containing SO, 020% and A70.004% was manufactured by the following process.

ホットコイルを2回冷延−2回焼鈍後、マグネシャを塗
布、乾燥し、コイルに巻取った。
After cold rolling twice and annealing twice, the hot coil was coated with magnesia, dried, and wound into a coil.

その後1180℃で仕上げ焼鈍を実施し2次再結晶を行
なわせた。
Thereafter, final annealing was performed at 1180°C to perform secondary recrystallization.

この仕上焼鈍済みのコイルを2分割し、一方は余剰マグ
ネシャを除去し、グラス皮膜を有する鋼板をN2雰囲気
中において870℃で80秒間フラットニング処理を行
った。
This final annealed coil was divided into two parts, excess magnesia was removed from one part, and the steel plate having the glass film was flattened at 870°C for 80 seconds in an N2 atmosphere.

又残りの半分は25%HC1(80℃液温)でグラス皮
膜を除去後、N2雰囲気中において870℃で80秒間
フラットニングを行なった。
The remaining half was subjected to flattening at 870°C for 80 seconds in a N2 atmosphere after removing the glass film with 25% HCl (liquid temperature: 80°C).

グラス皮膜がないため表面は完全にブルーイングしてい
た。
Since there was no glass film, the surface was completely blued.

この画処理した材料から試料を採取して、次の処理を行
って緒特性を実施した。
Samples were taken from this image-treated material, subjected to the following treatments, and characterized.

F処理ニゲラス皮膜付フラットニングのままG処理二F
処理後レーザービーム照射処理(1)レーザービーム照
射処理条件: エネルギー密度:13J/ff1 点状痕跡径: 0.15間 点状痕跡C方向中心間距離:0.5mm 痕跡列り方向間隔ニア65皿 H処理二F処理後絶縁皮膜処理 (1)絶縁皮膜処理条件 (a)処理液 CrO310g Mg0 3 gグリセリン
1g エマルジョンタイプアクリル樹脂 4g(b)焼付条
件:板温300℃ (c)塗布量:’;81/rrt ■処理:F処理後レーザービーム照射処理後絶縁皮膜処
理 (1)レーザービーム照射処理条件二G処理に同じ(2
)絶縁皮膜処理条件:H処理に同じ J処理ニゲラス皮膜なしブルーイング皮膜のままに処理
:■処理後絶縁皮膜処理 (1)絶縁皮膜処理条件:H処理に同じ L処理:J処理後レーザービーム照射処理後絶縁皮膜処
理 (1)L/−サービーム照射処理条件:G処理に同じ(
2)絶縁皮膜処理条件:H処理に同じ M処理:■処理後レーザービーム照射処理(1)レーザ
ービーム照射処理条件二〇処理に同じ。
G-treated 2nd F with flattening with F-treated Nigelas film
Laser beam irradiation treatment after treatment (1) Laser beam irradiation treatment conditions: Energy density: 13 J/ff1 Dot-like trace diameter: 0.15 Dot-like mark C direction center distance: 0.5 mm Trace array direction spacing near 65 dishes Insulating coating treatment after H treatment and F treatment (1) Insulating coating treatment conditions (a) Treatment liquid CrO310g Mg03g Glycerin
1g Emulsion type acrylic resin 4g (b) Baking conditions: Board temperature 300℃ (c) Coating amount: '; 81/rrt ■ Processing: F treatment, laser beam irradiation treatment, insulation film treatment (1) Laser beam irradiation treatment conditions 2 Same as G processing (2
) Insulating coating treatment conditions: Same as H treatment J treatment No Nigelas coating Treatment with bluing coating as is: ■ Insulation coating treatment after treatment (1) Insulation coating treatment conditions: Same as H treatment L treatment: Laser beam irradiation after J treatment Insulating film treatment after treatment (1) L/- Surbeam irradiation treatment conditions: Same as G treatment (
2) Insulating film treatment conditions: Same as H treatment M treatment: ■ Laser beam irradiation treatment after treatment (1) Laser beam irradiation treatment conditions Same as 20 treatment.

上記の如〈実施した結果を第2表に示す。The results of the above tests are shown in Table 2.

第2表から明らかな如く、■処理(グラス皮膜付き)及
びL処理(グラス皮膜なし、ブルーイング皮膜あり)共
にレーザービーム照射処理後絶縁皮膜処理(板温300
℃、zg/m)を行ったものは、レーザービーム照射処
理のまま(G処理)のものよりも鉄損は良好で、グラス
皮膜付きの上に絶縁皮膜処理を行ったもの(N処理)及
びブルーイング処理後絶縁皮膜処理を行ったもの(K処
理)に対しては勿論のこと、従来法(N処理)によるも
のに比較して鉄損特性の向上が著しく、又■処理、L処
理によるものは、N処理(従来法)に比較して絶縁皮膜
量が少なくできるので、皮膜の密着性、占積率共にM処
理に比べて極めて良好なものとなるものである。
As is clear from Table 2, both the ■ treatment (with glass film) and the L treatment (without glass film, with bluing film) were treated with insulation film after laser beam irradiation treatment (board temperature 300
℃, zg/m) had better iron loss than those treated with laser beam irradiation (G treatment), and those with glass coating and insulating coating treatment (N treatment) and Of course, the iron loss characteristics were significantly improved compared to those treated with an insulating film after bluing treatment (K treatment), as well as those treated with the conventional method (N treatment), and Since the amount of insulating film can be reduced compared to the N treatment (conventional method), both the adhesion and the space factor of the film are much better than the M treatment.

実施例 3 Si3.0%、酸可溶性A10.015%、80.00
2%を含有する2、3%厚の熱延板を104%厚に冷間
圧延し、820℃で5分間、中間焼鈍を行ない、0.3
0%の成品板厚に冷延し、850℃で3分間脱炭焼鈍を
行ない、その後乾水素中で1000℃×5分間連続焼鈍
を行ない、出側でレーザービーム照射処理してから絶縁
皮膜処理液311/mを板温500℃で焼付けた。
Example 3 Si 3.0%, acid soluble A 10.015%, 80.00
A hot-rolled sheet with a thickness of 2.3% containing 2% was cold rolled to a thickness of 104%, and intermediate annealing was performed at 820°C for 5 minutes.
Cold rolled to 0% finished plate thickness, decarburized annealed at 850°C for 3 minutes, then continuously annealed in dry hydrogen at 1000°C for 5 minutes, treated with laser beam irradiation on the exit side, and then treated with insulation coating. Liquid 311/m was baked at a plate temperature of 500°C.

かくしてW17150 1.40W/kg、B1゜1.
81Tの磁気特性、絶縁抵抗520Ω−d/枚、密着性
20gmφ、占積率99.0%の皮膜特性を有する電磁
鋼板が得られた。
Thus W17150 1.40W/kg, B1゜1.
An electromagnetic steel sheet was obtained which had a magnetic property of 81T, an insulation resistance of 520 Ω-d/sheet, an adhesion of 20 gmφ, and a film property of a space factor of 99.0%.

比較例として同一材料を用いて、同一条件でレーザービ
ーム照射を行ない以後の工程を中止したところ、得られ
た電磁鋼板の磁気特性はW171501.47W/ky
、 Blol、81 Tであった。
As a comparative example, when the same material was used and laser beam irradiation was performed under the same conditions and the subsequent steps were discontinued, the magnetic properties of the obtained electrical steel sheet were W171501.47W/ky
, Blol, 81T.

(1)レーザービーム照射処理条件: エネルギー密度 15 J /crA 点状痕跡径 0.1 rtw 痕跡C方向中心間距離 0.5順 痕跡列り方向間隔 10g雷 (2)絶縁皮膜処理液:実施例1のC処理に同じ。(1) Laser beam irradiation treatment conditions: Energy density 15 J/crA Point trace diameter 0.1 rtw Trace C direction center distance 0.5 order Interval in trace direction: 10g lightning (2) Insulating film treatment liquid: Same as C treatment in Example 1.

実施例 4 C0,046%、Si2.96%、 Mn 0.083
%。
Example 4 C0,046%, Si2.96%, Mn 0.083
%.

80.025%、 l’40.028%、NO,007
%。
80.025%, l'40.028%, NO,007
%.

残部鉄および不純物から成るスラブを公知の工程、すな
わち熱延→熱延板焼鈍→冷延(0,35%厚)→脱炭焼
鈍−+MgO塗付→仕上げ焼鈍→ヒートフラットニング
の順にしたがって仕上げ焼鈍ずみ鋼板を作り、鋼板表面
のグラスフィルムを弗酸で除去した後、化学研摩によっ
て鏡面にした。
Finish annealing the slab consisting of the remaining iron and impurities according to a known process, namely hot rolling → hot rolled plate annealing → cold rolling (0.35% thickness) → decarburization annealing - + MgO coating → finishing annealing → heat flattening. After the glass film on the surface of the steel plate was removed with hydrofluoric acid, it was made into a mirror surface by chemical polishing.

この鋼板上にレーザービーム照射処理を施こし、ついで
紫外線硬化型の絶縁皮膜を塗付し紫外線照射により皮膜
を硬化させた。
This steel plate was subjected to a laser beam irradiation treatment, and then an ultraviolet-curable insulating film was applied and the film was cured by ultraviolet irradiation.

レーザービーム照射処理条件: エネルギー密度 15J/i 点状痕跡径 o、15朋 点状痕跡C方向中心間距離 0.5 mm痕跡列り方向
間隔 5mm この様にして得られた一方向性電磁鋼板の磁性は次のと
おりである。
Laser beam irradiation treatment conditions: Energy density 15 J/i Dotted trace diameter o, 15 dotted marks C direction distance between centers 0.5 mm Trace array direction spacing 5 mm The unidirectional electrical steel sheet obtained in this way Magnetism is as follows.

実施例 5 Si3.0%、C0,003%、Mn0.075%。Example 5 Si3.0%, C0,003%, Mn0.075%.

AlO,03%を含有する一方向性電磁鋼板(0,30
關)を次の工程により製造した。
Unidirectional electrical steel sheet containing AlO, 03% (0,30
關) was manufactured by the following process.

ホットコイルを1回の冷延−焼鈍後マグネシャを塗布乾
燥しコイルに巻き取り、1150℃で2次再結晶のため
の仕上げ焼鈍を行ない、その後余剰のマグネシャを除去
し、グラス皮膜を有する銅帯を850℃X70secで
フラットニング処理した。
The hot coil is cold-rolled and annealed once, then coated with magnesia, dried, wound up into a coil, finished annealed at 1150°C for secondary recrystallization, and then excess magnesia is removed to form a copper strip with a glass coating. was flattened at 850°C for 70 seconds.

かくして得られた一方向性電磁鋼帯から試料を採取して
次の処理を行って緒特性の試験を実施した。
Samples were taken from the unidirectional electrical steel strip thus obtained, subjected to the following treatments, and tested for mechanical properties.

0処理:フラットニングのまま P処理:フラットニング後、連続レーザービーム照射処
理 ※(1)レーザ
ービーム照射条件 (i)パワー;2.0W (II)照射痕中;02朋 (iii)痕跡列り方向間隔;5− 4v)照射スピード: 2001nm /5ecR処理
:P処理後絶縁皮膜処理 (1)絶縁皮膜処理 ([)処理液;20%コロイダルシリカ 1oocc5
0%リン酸アルミニウム 60cc CrO36g 硼酸 2g (ii)焼付温度(板温); 500℃ (iii)塗布量: 3. O& / m上記の如〈実
施した結果を第4表に示す。
0 treatment: Same as flattening P treatment: After flattening, continuous laser beam irradiation treatment *(1) Laser beam irradiation conditions (i) Power: 2.0 W (II) Inside irradiation trace; 02 Homo (iii) Trace row Directional spacing; 5-4v) Irradiation speed: 2001 nm /5ecR treatment: Insulating film treatment after P treatment (1) Insulating film treatment ([) Treatment liquid; 20% colloidal silica 1oocc5
0% aluminum phosphate 60cc CrO36g Boric acid 2g (ii) Baking temperature (plate temperature); 500°C (iii) Coating amount: 3. O&/m was carried out as described above and the results are shown in Table 4.

以上本発明により、二次再結晶焼鈍済みの電磁鋼板に対
してレーザービームの照射処理を施こし、しかるのち板
温600℃以下、好ましくは550℃以下、更に好まし
くは500℃以下の温度領域で絶縁皮膜処理を施こすこ
とにより、特に鉄損値の大巾な向上が安定に得られるも
のである。
As described above, according to the present invention, an electrical steel sheet that has been subjected to secondary recrystallization annealing is subjected to a laser beam irradiation treatment, and then the plate temperature is set in a temperature range of 600°C or lower, preferably 550°C or lower, and more preferably 500°C or lower. By applying the insulation film treatment, it is possible to stably and significantly improve the core loss value.

しかもその結果としてグラス皮膜の省略、絶縁皮膜の薄
塗り等が可能となることにより磁歪の減少、絶縁皮膜の
密着性の向上並びに占積率の向上が計られ、更に工程短
縮も可能となり電磁鋼板の高級化、操業条件の緩和に大
きく寄与しつるものである。
Moreover, as a result, it becomes possible to omit the glass film and apply a thin insulation film, which reduces magnetostriction, improves the adhesion of the insulation film, and improves the space factor.It also makes it possible to shorten the process, making it possible to reduce the magnetostriction, and to apply thinner insulation films. This greatly contributes to the upgrading of the industry and the relaxation of operating conditions.

尚、上記説明は主として方向性電磁鋼板の場合について
行ったものであるが本発明は無方向性電磁鋼板に対して
実施しても同様な効果が達成され得ることは勿論である
It should be noted that although the above explanation has mainly been made regarding the case of grain-oriented electrical steel sheets, it goes without saying that the same effects can be achieved even when the present invention is applied to non-oriented electrical steel sheets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は絶縁皮膜処理温度と鉄損との関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between insulation film treatment temperature and iron loss.

Claims (1)

【特許請求の範囲】 1 仕上焼純情の電磁鋼板の表面にレーザービーム照射
処理してレーザー痕を生じさせ、しかるのち絶縁皮膜処
理を板温か600℃を越えない温度領域でおこなうこと
を特徴とする電磁鋼板の処理方法。 2 絶縁皮膜処理を板温が550°C以下で行なう特許
請求の範囲第1項記載の方法。 3 絶縁皮膜処理を板温か500℃以下で行なう特許請
求の範囲第1項記載の方法。 4 グラス皮膜が形成されていない電磁鋼板の表面にレ
ーザービーム照射処理を施こす特許請求の範囲第1項記
載の方法。 5 レーザービーム吸収皮膜を形成した電磁鋼板の表面
にレーザービーム照射処理を施こす特許請求の範囲第1
項記載の方法。 6 グラス皮膜形成成分を含有しない焼鈍分離剤を塗布
してコイルに巻取り、バッチ式コイル焼鈍法により仕上
焼鈍後、ヒートフラットニング処理した電磁鋼板の表面
にレーザービーム照射処理を施こす特許請求の範囲第4
項記載の方法。 7 連続焼鈍法により仕上焼鈍を施こした電磁鋼板の表
面にレーザービーム照射処理を施こす特許請求の範囲第
4項記載の方法。 8 バッチ式コイル焼鈍法により仕上焼鈍後ヒートフラ
ットニング処理の出側においてブルーイング処理した電
磁鋼板の表面に酸化皮膜を形成する特許請求の範囲第5
項記載の方法。 9 連続焼鈍による仕上焼鈍の出側でブルーイング処理
した電磁鋼板の表面に酸化皮膜を形成する特許請求の範
囲第5項記載の方法。 10 グラス皮膜形成成分を含有しない絶縁皮膜組成物
を使用する特許請求の範囲第1項記載の方法。
[Claims of Claims] 1. The surface of a finish-hardened electromagnetic steel sheet is subjected to a laser beam irradiation treatment to produce laser marks, and then an insulation coating treatment is performed at a temperature range not exceeding 600°C. Processing method for electrical steel sheets. 2. The method according to claim 1, wherein the insulation coating treatment is performed at a plate temperature of 550°C or less. 3. The method according to claim 1, wherein the insulation coating treatment is performed at a board temperature of 500°C or less. 4. The method according to claim 1, wherein a laser beam irradiation treatment is performed on the surface of an electromagnetic steel sheet on which a glass film is not formed. 5 Claim 1 in which a laser beam irradiation treatment is applied to the surface of an electromagnetic steel sheet on which a laser beam absorbing film is formed.
The method described in section. 6. A patent claim in which an annealing separator that does not contain a glass film-forming component is applied and wound into a coil, and after finishing annealing by a batch coil annealing method, a laser beam irradiation treatment is performed on the surface of the heat flattened electrical steel sheet. Range 4th
The method described in section. 7. The method according to claim 4, wherein a laser beam irradiation treatment is performed on the surface of an electrical steel sheet that has been finish annealed by a continuous annealing method. 8. Claim 5, in which an oxide film is formed on the surface of an electrical steel sheet subjected to bluing treatment on the exit side of heat flattening treatment after finish annealing by batch coil annealing method.
The method described in section. 9. The method according to claim 5, wherein an oxide film is formed on the surface of the electrical steel sheet which has been blued on the exit side of the finish annealing by continuous annealing. 10. The method according to claim 1, which uses an insulating film composition that does not contain a glass film-forming component.
JP700080A 1980-01-25 1980-01-25 Processing method for electrical steel sheets Expired JPS5850298B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP700080A JPS5850298B2 (en) 1980-01-25 1980-01-25 Processing method for electrical steel sheets
US06/227,379 US4363677A (en) 1980-01-25 1981-01-22 Method for treating an electromagnetic steel sheet and an electromagnetic steel sheet having marks of laser-beam irradiation on its surface
EP83100769A EP0087587B1 (en) 1980-01-25 1981-01-23 An electromagnetic steel sheet treated by laser-beam irradiation
DE8181100512T DE3165139D1 (en) 1980-01-25 1981-01-23 Method for treating an electromagnetic steel sheet by laser-beam irradiation
DE8383100769T DE3177027D1 (en) 1980-01-25 1981-01-23 An electromagnetic steel sheet treated by laser-beam irradiation
EP81100512A EP0033878B1 (en) 1980-01-25 1981-01-23 Method for treating an electromagnetic steel sheet by laser-beam irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP700080A JPS5850298B2 (en) 1980-01-25 1980-01-25 Processing method for electrical steel sheets

Publications (2)

Publication Number Publication Date
JPS56123325A JPS56123325A (en) 1981-09-28
JPS5850298B2 true JPS5850298B2 (en) 1983-11-09

Family

ID=11653822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP700080A Expired JPS5850298B2 (en) 1980-01-25 1980-01-25 Processing method for electrical steel sheets

Country Status (1)

Country Link
JP (1) JPS5850298B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923822A (en) * 1982-07-28 1984-02-07 Nippon Steel Corp Directional electrical steel sheet with superior magnetic characteristic and its manufacture
US4468551A (en) * 1982-07-30 1984-08-28 Armco Inc. Laser treatment of electrical steel and optical scanning assembly therefor
US4456812A (en) * 1982-07-30 1984-06-26 Armco Inc. Laser treatment of electrical steel
US4535218A (en) * 1982-10-20 1985-08-13 Westinghouse Electric Corp. Laser scribing apparatus and process for using
JP2694941B2 (en) * 1985-05-02 1997-12-24 新日本製鐵株式会社 Manufacturing method of low iron loss unidirectional electrical steel sheet
JP6007501B2 (en) 2012-02-08 2016-10-12 Jfeスチール株式会社 Oriented electrical steel sheet
KR101693516B1 (en) * 2014-12-24 2017-01-06 주식회사 포스코 Grain-orientied electrical steel sheet and method for manufacturing the smae
CN107208229B (en) 2015-02-13 2019-05-21 杰富意钢铁株式会社 Orientation electromagnetic steel plate and its manufacturing method
US20210395851A1 (en) * 2020-06-17 2021-12-23 Axalta Coating Systems Ip Co., Llc Coated grain oriented electrical steel plates, and methods of producing the same

Also Published As

Publication number Publication date
JPS56123325A (en) 1981-09-28

Similar Documents

Publication Publication Date Title
JPH0369968B2 (en)
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0230740A (en) High magnetic flux density grain oriented electrical steel sheet having drastically excellent iron loss and its manufacture
JPH032932B2 (en)
JPS5850298B2 (en) Processing method for electrical steel sheets
JP7569381B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JPS5836051B2 (en) Processing method for electrical steel sheets
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JPS61139679A (en) Production of grain oriented electrical steel sheet having low iron loss
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
US3932235A (en) Method of improving the core-loss characteristics of cube-on-edge oriented silicon-iron
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6227126B2 (en)
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JP3336142B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
US3586545A (en) Method of making thin-gauge oriented electrical steel sheet
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH01309922A (en) Production of grain-oriented magnetic steel sheet having low iron loss
JPS63186825A (en) Production of grain-orientated silicon steel plate having high magnetic flux density and low iron loss
JPH0372026A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and remarkably excellent in iron loss
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic