JPH0372026A - Production of grain-oriented silicon steel sheet having high magnetic flux density and remarkably excellent in iron loss - Google Patents

Production of grain-oriented silicon steel sheet having high magnetic flux density and remarkably excellent in iron loss

Info

Publication number
JPH0372026A
JPH0372026A JP20701689A JP20701689A JPH0372026A JP H0372026 A JPH0372026 A JP H0372026A JP 20701689 A JP20701689 A JP 20701689A JP 20701689 A JP20701689 A JP 20701689A JP H0372026 A JPH0372026 A JP H0372026A
Authority
JP
Japan
Prior art keywords
annealing
iron loss
flux density
magnetic flux
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20701689A
Other languages
Japanese (ja)
Inventor
Shozaburo Nakajima
中島 正三郎
Kenzo Iwayama
岩山 健三
Isao Iwanaga
功 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20701689A priority Critical patent/JPH0372026A/en
Publication of JPH0372026A publication Critical patent/JPH0372026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce the silicon steel sheet remarkably excellent in iron loss by artificially applying magnetic domain controlling treatment, in a direction perpendicular to rolling direction, to the surface of a steel sheet containing specific amounts of Sn and Ni in combination and having a tension coating. CONSTITUTION:A strip having a composition consisting of, by weight, 0.065-0.120% C, 2.8-4.5% Si, 0.045-0.100% Mn, 0.015-0.060% S and/or Se, 0.0150-0.0400% acid-soluble Al, 0.0050-0.0100% N, 0.03-0.25% Sn, 0.35-2.0% Ni, 0.03-0.25% Cu and/or 0.005-0.035% Sb, and the balance Fe with inevitable impurities is formed by means of rapid solidification. Before or after the flattening annealing of the above strip, tension coating is performed, and then, after secondary recrystallization, magnetic domain controlling treatment is artificially applied to the surface of the steel sheet in a direction practically perpendicular to the rolling direction. By this method, the grain-oriented silicon steel sheet with high magnetic flux density in which magnetic flux density at 800A/m magnetizing force is regulated to >=1.88T and iron loss is remarkably improved can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼板の表面に磁区制御処理を施した、鉄損の
著しく優れた高磁束密度一方向性電磁鋼板及びその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a high magnetic flux density unidirectional electrical steel sheet with significantly superior core loss, in which the surface of the steel sheet is subjected to magnetic domain control treatment, and a method for manufacturing the same.

〔従来の技術〕 高磁束密度一方向性電磁鋼板の表面に、圧延方向とほぼ
直角の方向に、人為的に磁区制御処理を施すことにより
、鉄損を低減させる方法が知られている。即ち、特開昭
55−18566号公報、特開昭58−73724号公
報における、間隔をもってレーザービームを照射する方
法、特開昭61−96036号公報における、間隔をも
って侵入体を形成させる方法、特開昭61−11721
8号公報における、間隔をもって溝を形成させる方法、
特開昭61−117284号公報における、間隔をもっ
て、地鉄の一部を除去し、リン酸系張力付加被膜を施す
方法、特開昭61151511号公報における、間隔を
もってプラズマ炎を照射する方法等が開示されている。
[Prior Art] A method is known in which iron loss is reduced by artificially applying magnetic domain control treatment to the surface of a high magnetic flux density unidirectional electrical steel sheet in a direction substantially perpendicular to the rolling direction. That is, the method of irradiating laser beams at intervals in JP-A-55-18566 and JP-A-58-73724, the method of forming interstitial bodies at intervals in JP-A-61-96036; Kaisho 61-11721
A method of forming grooves at intervals, as disclosed in Publication No. 8;
JP-A No. 61-117284 discloses a method of removing a portion of the base steel at intervals and applying a phosphoric acid-based tension coating, and JP-A No. 61151511 discloses a method of irradiating plasma flame at intervals. Disclosed.

[発明が解決しようとする課題] 前述の人為的磁区制御技術の適用により、高磁束密度一
方向性電磁鋼板の鉄損をかなり向上させることが可能に
なり、これを用いたトランスの低鉄損化を通して、時代
の課題である省エネルギー化に貢献できた。
[Problem to be solved by the invention] By applying the above-mentioned artificial magnetic domain control technology, it has become possible to considerably improve the iron loss of high magnetic flux density unidirectional electrical steel sheets, and it is possible to significantly improve the iron loss of transformers using this. Through this, we were able to contribute to energy conservation, which is an issue of the times.

しかるに、その後、省エネルギー化に対する時代の要請
は、−段と強まり、トランス用素材である一方向性電磁
鋼板の一層の高性能化が必要になってきた。
However, since then, the demands of the times for energy conservation have become even stronger, and it has become necessary to further improve the performance of grain-oriented electrical steel sheets, which are materials for transformers.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴とするところは、特定量のSn、Niを複
合含有し、張力コーティングを有する高磁束密度一方向
性電磁鋼板の表面に圧延方向とほぼ直角の方向に、人為
的に磁区制御処理を施すことにより、著しく鉄損の優れ
た製品が得られるということである。
The feature of the present invention is that the surface of a high magnetic flux density unidirectional electrical steel sheet containing a specific amount of Sn and Ni in combination and having a tension coating is artificially subjected to magnetic domain control treatment in a direction substantially perpendicular to the rolling direction. By applying this, a product with significantly superior iron loss can be obtained.

上記において、製品に特定量のCuを含有する場合に、
鉄損が特に優れた製品が得られる。又、圧延面内におけ
る製品結晶粒の平均粒径が11〜50m/mの場合に、
鉄損が特に優れた製品が得られる。
In the above, when the product contains a specific amount of Cu,
A product with particularly excellent iron loss can be obtained. In addition, when the average grain size of the product crystal grains in the rolling plane is 11 to 50 m/m,
A product with particularly excellent iron loss can be obtained.

以下に本発明に至った経緯を実験結果に基づいて説明す
る。
The circumstances leading to the present invention will be explained below based on experimental results.

〔実験■〕[Experiment■]

C:  o、oso%、Si:3.25%、Mn  :
  0.075%、P : 0.0050%、S : 
0.025%、酸可溶性All二0.0250%、N 
: 0.0085%、Sn :無添加及びo、oi〜0
.34%、Ni :無添加及び0.05〜3.0%、残
部:実質的にFe、からなる1、4m/m厚の多数の薄
鋳片を急冷凝固法によりつくった。薄鋳片を1100℃
で120秒間焼鈍し、常温迄30℃/秒で冷却した。
C: o, oso%, Si: 3.25%, Mn:
0.075%, P: 0.0050%, S:
0.025%, acid soluble All2 0.0250%, N
: 0.0085%, Sn: No additive and o, oi~0
.. A large number of thin cast slabs each having a thickness of 1.4 m/m were produced by a rapid solidification method, consisting of 34% Ni, no additives, and 0.05 to 3.0%, the remainder substantially Fe. Thin slabs heated to 1100℃
The sample was annealed for 120 seconds and cooled to room temperature at a rate of 30°C/second.

次いで板厚0.170m/m迄冷延した。冷延の途中で
、200℃で5分間の保定を5回行った。次いで75%
)I! 、 25%N2、露点65℃の雰囲気中で、8
50℃で150秒間脱炭焼鈍を行った。次いで、マグネ
シャを主成分とする焼鈍分離剤を塗布し、85%11□
Then, it was cold rolled to a thickness of 0.170 m/m. During cold rolling, holding at 200° C. for 5 minutes was performed 5 times. Then 75%
)I! , 8 in an atmosphere of 25% N2 and a dew point of 65°C.
Decarburization annealing was performed at 50°C for 150 seconds. Next, an annealing separator containing magnesha as the main component is applied to reduce the temperature to 85% 11□
.

15%N2の雰囲気中で、20℃/時間の昇温速度で1
200℃まで加熱し、次いでH2雰囲気中で、1200
℃で20時間均熱した後冷却し、焼鈍分離剤を除去し、
張力コーティングを行った。次いで、鋼板の表面に、圧
延方向と直角の方向に、エネルギー密度2.OJ/d、
照射幅0.25m/m、照射間隔5m/mでパルスレー
ザ−を照射し、磁束密度B8(磁化力800A/mにお
ける磁束密度)と鉄損W15150を測定した。又、製
品板(コーティング、グラスを除く)の成分を分析した
。製品板のSn及びNi含有量とW15150の関係を
第1図に示す。
1 at a heating rate of 20°C/hour in an atmosphere of 15% N2.
heated to 200°C and then heated to 1200°C in an H2 atmosphere.
After soaking at ℃ for 20 hours, cooling and removing the annealing separator,
Tension coating was performed. Next, an energy density of 2. OJ/d,
A pulse laser was irradiated with an irradiation width of 0.25 m/m and an irradiation interval of 5 m/m, and the magnetic flux density B8 (magnetic flux density at a magnetizing force of 800 A/m) and iron loss W15150 were measured. In addition, the components of the product board (excluding coating and glass) were analyzed. Figure 1 shows the relationship between the Sn and Ni contents of the product board and W15150.

第1図において、横軸はSn含有量であり、縦軸はNi
含有量である。W15150を符号(◎、○。
In Figure 1, the horizontal axis is the Sn content, and the vertical axis is the Ni content.
content. W15150 is coded (◎, ○.

Δ、×)で示す。第1図において、直線ABCDで囲ま
れる領域、即ち、Sn  : 0.03〜0.25%で
、且つ、Ni:0.35〜2.0%の場合に、優れた鉄
損が得られることが明らかになった。又、直線abcd
で一囲まれる領域、即ち、Sn  : 0.05〜0.
20%で、且つ、Ni:0.50〜1.5%の場合に、
特に優れた鉄損が得られることが明らかになった。なお
、直線ABCDで囲まれる領域では、B8は、何れも1
.88T以上であった。
Indicated by Δ, ×). In Fig. 1, excellent iron loss can be obtained in the region surrounded by straight line ABCD, that is, in the case of Sn: 0.03 to 0.25% and Ni: 0.35 to 2.0%. has become clear. Also, straight line abcd
The area surrounded by Sn: 0.05 to 0.
20% and Ni: 0.50 to 1.5%,
It has become clear that particularly excellent iron loss can be obtained. In addition, in the area surrounded by straight line ABCD, B8 is 1
.. It was over 88T.

〔実験■〕[Experiment■]

C:  0.082%、Si:3.25%、Mn  :
  0.075%、P : 0.0050%、S : 
 0.025%、酸可溶性Ae:0.0245%、N 
: 0.0085%、Sn:0.13%、Ni :0.
8%、Cu :無添加及び0.01〜0.20%、残部
:実質的にFe、からなる1、 4 m / m厚の多
数の薄鋳片を急冷凝固法によりつくった。薄鋳片を11
20℃で90秒間焼鈍し、常温迄30″C/秒で冷却し
た。
C: 0.082%, Si: 3.25%, Mn:
0.075%, P: 0.0050%, S:
0.025%, acid soluble Ae: 0.0245%, N
: 0.0085%, Sn: 0.13%, Ni: 0.
A large number of thin cast slabs with a thickness of 1.4 m/m were produced by a rapid solidification method, containing 8% Cu, no additives, and 0.01 to 0.20%, the remainder substantially Fe. 11 thin slabs
It was annealed at 20° C. for 90 seconds and cooled to room temperature at 30″C/second.

次いで板厚0.170m/m迄冷延した。冷延の途中で
、250″Cで5分間の保定を4回行った。次いで75
%Hz 、 25%Nt、露点65℃の雰囲気中で、8
50℃で150秒間脱炭焼鈍を行った。次いで、マグネ
シャを主成分とする焼鈍分離剤を塗布し、85%Ih。
Then, it was cold rolled to a thickness of 0.170 m/m. During cold rolling, holding was carried out four times for 5 minutes at 250''C.
%Hz, 25%Nt, in an atmosphere with a dew point of 65°C, 8
Decarburization annealing was performed at 50°C for 150 seconds. Next, an annealing separator containing magnesia as a main component was applied to give 85% Ih.

15%N2の雰囲気中で、20℃/時間の昇温速度で1
200℃まで加熱し、次いでH2雰囲気中で、1200
℃で20時間均熱した後冷却し、焼鈍分離剤を除去し、
張力コーティングを行った。次いで、鋼板の表面に、圧
延方向と直角の方向に、エネルギー密度2.OJ/cd
、照射幅0.25m/m、照射間隔5m/mでパルスレ
ーザ−を照射し、磁束密度B8(磁化力800A/mに
おける磁束密度)と鉄損W15150を測定した。又、
製品板(コーティング、グラスを除く)の成分を分析し
た。Cu含有量と鉄損の関係を第2図に示す。
1 at a heating rate of 20°C/hour in an atmosphere of 15% N2.
heated to 200°C and then heated to 1200°C in an H2 atmosphere.
After soaking at ℃ for 20 hours, cooling and removing the annealing separator,
Tension coating was performed. Next, an energy density of 2. OJ/cd
A pulsed laser was irradiated with an irradiation width of 0.25 m/m and an irradiation interval of 5 m/m, and the magnetic flux density B8 (magnetic flux density at a magnetizing force of 800 A/m) and iron loss W15150 were measured. or,
The components of the product board (excluding coating and glass) were analyzed. Figure 2 shows the relationship between Cu content and iron loss.

第2図において、横軸はCu含有量であり、縦軸はCu
添加に伴うW15150の変化量である。
In Figure 2, the horizontal axis is the Cu content, and the vertical axis is the Cu content.
This is the amount of change in W15150 due to addition.

第2図から明らかなように、Cu  : 0.03〜0
.08%の範囲で鉄損の向上が認められる。なお、B8
は何れも1.88T以上であった。
As is clear from Figure 2, Cu: 0.03-0
.. An improvement in iron loss is recognized within the range of 0.08%. In addition, B8
were all 1.88T or more.

〔実験■〕 C: 0.080%、Si:3.23%、Mn  : 
 0.070%、P : 0.0030%、S :  
0.025%、酸可溶性A1:0.0240%、N :
 0.0085%、Sn:O,13%、Ni :0.7
%、残部:実質的にFe、からなる0、80〜2.80
m/m厚の多数の薄鋳片を急冷凝固法によりつくった。
[Experiment ■] C: 0.080%, Si: 3.23%, Mn:
0.070%, P: 0.0030%, S:
0.025%, acid soluble A1: 0.0240%, N:
0.0085%, Sn:O, 13%, Ni: 0.7
%, remainder: substantially consisting of Fe, 0.80 to 2.80
A large number of thin slabs with a thickness of m/m were produced by a rapid solidification method.

薄鋳片を1080〜1140℃で90秒間焼鈍し、常温
迄35℃/秒で冷却した。次いで板厚0.170m/m
迄冷延した。冷延の途中で、220℃で5分間の保定を
5回行った。次いで、75%11□、25%N2、露点
65℃の雰囲気中で、850℃で150秒間脱炭焼鈍を
行った。次いで、マグネシャを主成分とする焼鈍分離剤
を塗布し、曲率半径400m/mに巻きとった。次いで
、85%Hz 、 15%N2の雰囲気中で、20℃/
時間の昇温速度で1200℃まで加熱し、次いでHz雰
囲気中で、1200℃で20時間均熱した後冷却し、焼
鈍分離剤を除去し、張力コーティングを行い、平坦化焼
鈍を行った。次いで、鋼板の表面に、圧延方向と直角の
方向に、エネルギー密度2、OJ/cIi!、照射幅0
.25m/m、照射間隔5 ’m 7mでパルスレーザ
−を照射し、磁束密度B8(磁化力800A/mにおけ
る磁束密度)と鉄損W15150を測定した。次いで、
表面被膜を除去し、二次再結晶粒の圧延面内における粒
径を、圧延方向、圧延方向と45°方向及び圧延方向と
90’方向について線分法で測定し、平均粒径を求めた
(本発明にかかわる平均粒径はすべてこの方法による)
The thin slab was annealed at 1080 to 1140°C for 90 seconds and cooled to room temperature at a rate of 35°C/second. Then plate thickness 0.170m/m
Cold-rolled until During cold rolling, holding at 220° C. for 5 minutes was performed 5 times. Next, decarburization annealing was performed at 850°C for 150 seconds in an atmosphere of 75% 11□, 25% N2, and a dew point of 65°C. Next, an annealing separator containing magnesia as a main component was applied, and the material was wound to a radius of curvature of 400 m/m. Then, in an atmosphere of 85% Hz and 15% N2 at 20°C/
The sample was heated to 1200° C. at a temperature increase rate of 1 hour, then soaked at 1200° C. for 20 hours in an Hz atmosphere, cooled, the annealing separator was removed, tension coating was performed, and flattening annealing was performed. Next, an energy density of 2, OJ/cIi!, is applied to the surface of the steel plate in a direction perpendicular to the rolling direction. , irradiation width 0
.. A pulse laser was irradiated at 25 m/m with an irradiation interval of 5'm and 7 m, and the magnetic flux density B8 (magnetic flux density at a magnetizing force of 800 A/m) and iron loss W15150 were measured. Then,
The surface coating was removed, and the grain size of the secondary recrystallized grains in the rolling plane was measured by the line segment method in the rolling direction, 45° direction to the rolling direction, and 90' direction to the rolling direction, and the average grain size was determined. (All average particle diameters related to the present invention are determined by this method)
.

平均粒径と、B8及びW15150の関係を第3図に示
す。第3図において、横軸は平均粒径であり、縦軸はB
8及びW15150である。第3図から明らかなように
、平均結晶粒径11〜50m/mの場合に特に優れた鉄
損が得られた。
The relationship between the average particle diameter and B8 and W15150 is shown in FIG. In Figure 3, the horizontal axis is the average particle size, and the vertical axis is B
8 and W15150. As is clear from FIG. 3, especially excellent iron loss was obtained when the average grain size was 11 to 50 m/m.

以上、実験I〜実験■の結果から、Sn:0.03〜0
.25及びNi:0.35〜2.0%を含有し、望まし
くはCu:0.03〜0.08%を含有し、望ましくは
、圧延面内における二次再結晶粒の平均粒径が11〜5
0 m / mであり、張力コーティングを有し、二次
再結晶後の鋼板の表面に圧延方向とほぼ直角の方向に、
人為的に磁区制御処理が行った磁化力800A / m
における磁束密度が1.887以上の高磁束密度一方向
性電M1鋼板において、著しく優れた鉄損が得られるこ
とが明らかになった。
From the results of Experiments I to II, Sn: 0.03 to 0.
.. 25 and Ni: 0.35 to 2.0%, preferably Cu: 0.03 to 0.08%, and preferably the average grain size of secondary recrystallized grains in the rolling surface is 11%. ~5
0 m/m, with a tension coating, on the surface of the steel plate after secondary recrystallization in a direction almost perpendicular to the rolling direction,
Magnetizing force 800A/m artificially performed by magnetic domain control processing
It has become clear that a significantly superior iron loss can be obtained in a high magnetic flux density unidirectional electrical M1 steel sheet with a magnetic flux density of 1.887 or higher.

本発明者は、インヒビターとして、MnS、 MnSe
The present inventor used MnS, MnSe as an inhibitor.
.

CuxS+ Sb+ Al2Nのうちから選ばれた一種
又は二種以上を活用した一回冷延法及び二回冷延法につ
いても、実験I〜実験■と同様な実験を行い、同様な結
果を得た。
Experiments similar to those in Experiments I to II were also conducted for the one-time cold rolling method and the two-time cold rolling method using one or more selected from CuxS+Sb+Al2N, and similar results were obtained.

〔実験■〕[Experiment■]

C:  0.030〜0.150%、Si:3.25%
、Mn :0.070%、P : 0.0035%、S
 :  0.026%、酸可溶性A170.0245%
、N : 0.0086%、Sn:0.12%、Ni:
0.7%、残部:実質的にFe、からなる2、 3 m
 / m及び1.4 m / m厚の多数の薄鋳片を急
冷凝固法によりつくった。薄鋳片を1100’cで12
0秒間焼鈍し、常温迄35℃/秒で冷却した。次いで2
、3 m / m厚の板を0.285m/mに、1.4
m/m厚の板を0.170 m / mに冷延した。冷
延の途中で、230℃で5分間の保定を5回行った。次
いで、75%Hz、 25%N2、露点65℃の雰囲気
中で、850℃で150〜300秒間脱炭焼鈍を行った
。次いで、マグネシャを主成分とする焼鈍分離剤を塗布
し、85%N2 、15%N2の雰囲気中で、20℃/
時間の昇温速度で1200℃まで加熱し、次いでH2雰
囲気中で、1200℃で20時間均熱した後冷却し、焼
鈍分離剤を除去し、張力コーティングを行った0次いで
、鋼板の表面に、圧延方向と直角の方向に、エネルギー
密度2.OJ/d、照射幅0.25m/m、照射間隔5
m/mでパルスレーザ−を照射し、磁束密度B8(磁化
力800A/mにおける磁束密度)と鉄損W15150
 、 W17150を測定し、二次再結晶状況を調べた
。薄鋳片のC含有量と二次再結晶率及び鉄損の関係を第
4図及び第5図に示す。
C: 0.030-0.150%, Si: 3.25%
, Mn: 0.070%, P: 0.0035%, S
: 0.026%, acid soluble A170.0245%
, N: 0.0086%, Sn: 0.12%, Ni:
0.7%, balance: substantially Fe, 2.3 m
A large number of thin slabs with thicknesses of 1.4 m/m and 1.4 m/m were produced by rapid solidification. 12 thin slabs at 1100'c
It was annealed for 0 seconds and cooled to room temperature at 35° C./second. then 2
, 3 m/m thick plate to 0.285 m/m, 1.4
The m/m thick plate was cold rolled to 0.170 m/m. During cold rolling, holding at 230° C. for 5 minutes was performed 5 times. Next, decarburization annealing was performed at 850°C for 150 to 300 seconds in an atmosphere of 75% Hz, 25% N2, and a dew point of 65°C. Next, an annealing separator containing magnesia as a main component was applied, and the temperature was heated at 20°C/in an atmosphere of 85% N2 and 15% N2.
The surface of the steel plate was heated to 1200 °C at a temperature increase rate of 1 hour, then soaked at 1200 °C for 20 hours in an H2 atmosphere, cooled, the annealing separator was removed, and a tension coating was applied to the surface of the steel plate. In the direction perpendicular to the rolling direction, the energy density 2. OJ/d, irradiation width 0.25m/m, irradiation interval 5
Irradiated with pulsed laser at m/m, magnetic flux density B8 (magnetic flux density at magnetizing force 800 A/m) and iron loss W15150
, W17150 was measured to investigate the secondary recrystallization status. The relationship between the C content, secondary recrystallization rate, and iron loss of the thin slab is shown in FIGS. 4 and 5.

第4図は製品板厚0.285m/mの場合である。Figure 4 shows the case where the product board thickness is 0.285 m/m.

第4図において、横軸はC含有量であり、縦軸は二次再
結晶率及びW17150である。
In FIG. 4, the horizontal axis is the C content, and the vertical axis is the secondary recrystallization rate and W17150.

第5図は製品板厚0.170m/mの場合である。FIG. 5 shows the case where the product board thickness is 0.170 m/m.

第5図において、横軸はC含有量であり、縦軸は二次再
結晶率及びW15150である。
In FIG. 5, the horizontal axis is the C content, and the vertical axis is the secondary recrystallization rate and W15150.

第4図及び第5図に明らかなように、C: 0.065
〜0.120%の範囲で優れた鉄損が得られた。なお、
この範囲での88は何れも1.88 T以上であった。
As is clear from Figures 4 and 5, C: 0.065
Excellent iron loss was obtained in the range of ~0.120%. In addition,
All 88 in this range were 1.88 T or more.

〔実験V〕[Experiment V]

C: 0.082%、Si:3.25%、Mn  : 
0.072%、p : o、ooso%、S :  0
.025%、酸可溶性Al:0.0250%、N : 
0.0085%、Sn:0.13%、Ni :0.8%
、Sb :無添加及び0.001〜0.050%、残部
:実質的にFe、からなる1、 4 m / m厚の多
数の薄鋳片を急冷凝固法によりつくった。薄鋳片を11
00℃で120秒間焼鈍し、常温迄急冷した。次いで板
厚0.170m/m迄冷延した。冷延の途中で、250
℃で5分間の保定を5回行った。次いで、75%L、2
5%N2、露点65℃の雰囲気中で、850℃で150
秒間脱炭焼鈍を行った。次いで、マグネシャを主成分と
する焼鈍分離剤を塗布し、85%N2 、15%Ntの
雰囲気中で、20℃/時間の昇温速度で1200℃まで
加熱し、次いでHz雰囲気中で、1200℃で20時間
均熱した後冷却し、焼鈍分離剤を除去し、 張力コーティングを行った。次いで、鋼板の表面に、圧
延方向と直角の方向に、エネルギー密度2、OJ/et
a、照射幅0.25m/m、照射間隔5m/mでパルス
レーザ−を照射し、磁束密度B8(m花の800A/m
における磁束密度)と鉄損W15150を測定した。薄
鋳片のsb含有量と鉄損の関係を第6図に示す。
C: 0.082%, Si: 3.25%, Mn:
0.072%, p: o, ooso%, S: 0
.. 025%, acid soluble Al: 0.0250%, N:
0.0085%, Sn: 0.13%, Ni: 0.8%
, Sb: no additive and 0.001 to 0.050%, and the remainder: substantially Fe, and a large number of thin slabs with a thickness of 1.4 m/m were produced by a rapid solidification method. 11 thin slabs
It was annealed at 00°C for 120 seconds and rapidly cooled to room temperature. Then, it was cold rolled to a thickness of 0.170 m/m. During cold rolling, 250
Holding for 5 minutes at ℃ was carried out five times. Then 75%L, 2
150°C at 850°C in an atmosphere of 5% N2 and a dew point of 65°C.
Decarburization annealing was performed for seconds. Next, an annealing separator containing magnesia as a main component was applied and heated to 1200°C at a temperature increase rate of 20°C/hour in an atmosphere of 85% N2 and 15% Nt, and then heated to 1200°C in an Hz atmosphere. After soaking for 20 hours, it was cooled, the annealing separator was removed, and tension coating was applied. Next, an energy density of 2, OJ/et, is applied to the surface of the steel plate in a direction perpendicular to the rolling direction.
a, pulsed laser irradiation with an irradiation width of 0.25 m/m and an irradiation interval of 5 m/m, and a magnetic flux density of B8 (800 A/m of m flower)
The magnetic flux density) and iron loss W15150 were measured. Figure 6 shows the relationship between the sb content and iron loss of the thin slab.

第6図において、横軸はsb含有量であり、縦軸はsb
添加に伴うW15150の変化量である。
In Figure 6, the horizontal axis is the sb content, and the vertical axis is the sb content.
This is the amount of change in W15150 due to addition.

第6図から明らかなようにSb  :  0.005〜
0.035%の範囲で鉄損の向上が認められた。なお、
B8は何れも1.88T以上であった。
As is clear from Fig. 6, Sb: 0.005~
An improvement in iron loss was observed within a range of 0.035%. In addition,
B8 was all 1.88T or more.

以上、実験I〜実験Vの結果から、次のことが明らかに
なった。C:  0.065〜0.120%、Si :
2、8〜4.5%、Mn  : 0.045〜0.10
0%、S又はSeの何れか一方又は双方:  0.01
5〜0.060%、酸可溶性Aj! : 0.0150
〜0.0400%、N : 0.0050〜0.010
0%、Sn  : 0.03〜0.25%、Ni  :
 0.35〜2.0%、残部二Fe及び不可避的不純物
、を含有する急冷凝固による薄鋳片を最終冷延前に、1
030〜1200℃で焼鈍し、焼鈍後急冷する熱処理を
行い、圧下率83〜92%の最終冷延を行い、水素を含
む湿潤雰囲気中で脱炭焼鈍を行い、マグネシャを主成分
とする焼鈍分離剤を塗布し、コイル状に巻きとリ、高温
仕上焼鈍を行い、焼鈍分離剤を除去して、平坦化焼鈍を
行い、平坦化焼鈍の前又は後に張力コーティングを行い
、二次再結晶後、張力コーティング又は平坦化焼鈍の前
又は後に、鋼板表面に圧延方向とほぼ直角の方向に、人
為的に磁区制御処理を行うことにより、磁化力800A
/mにおける磁束密度が1.88T以上で、鉄損の著し
く優れた高磁束密度一方向性電磁鋼板が得られる。
From the results of Experiments I to V, the following became clear. C: 0.065-0.120%, Si:
2, 8-4.5%, Mn: 0.045-0.10
0%, S or Se or both: 0.01
5-0.060%, acid soluble Aj! : 0.0150
~0.0400%, N: 0.0050~0.010
0%, Sn: 0.03-0.25%, Ni:
Before the final cold rolling, a rapidly solidified thin slab containing 0.35 to 2.0%, the balance Fe and unavoidable impurities,
Annealing at 030 to 1200°C, heat treatment by rapid cooling after annealing, final cold rolling with a reduction rate of 83 to 92%, decarburization annealing in a humid atmosphere containing hydrogen, and annealing separation with magnesia as the main component. Coating agent, winding into a coil shape, high-temperature finish annealing, removing annealing separation agent, flattening annealing, tension coating before or after flattening annealing, and after secondary recrystallization, Before or after tension coating or flattening annealing, a magnetizing force of 800 A is achieved by artificially performing magnetic domain control treatment on the steel sheet surface in a direction approximately perpendicular to the rolling direction.
A high magnetic flux density unidirectional electrical steel sheet having a magnetic flux density of 1.88 T or more at /m and extremely excellent core loss can be obtained.

又、素材成分として、上記の外に、Cu:0.03〜0
.08%、Sb  :  0.005〜0.035%の
何れか一方又は双方を含有させることにより、更に、鉄
損が向上する。
In addition, as a material component, in addition to the above, Cu: 0.03 to 0
.. By containing one or both of Sb: 0.005% to 0.035%, the iron loss is further improved.

又、圧延面内における製品結晶粒の平均粒径を11〜5
0m/mに調製することにより、更に鉄損が向上する。
In addition, the average grain size of product crystal grains in the rolling surface is set to 11 to 5.
By adjusting it to 0 m/m, the iron loss is further improved.

次に、本発明における成分その他の条件について、先に
記述した以外の事項の限定理由について述べる。
Next, reasons for limitations other than those described above regarding components and other conditions in the present invention will be described.

薄鋳片の成分については、次の通りである。以下、%は
重量%である。St:2.8〜4.5%が望ましい。2
.8%未満では良好な鉄損が得られず、4.5%を超え
ると加工性が劣る。 Mn  :  0.045〜0.
100%が望ましい。0.045%未満又は0.100
%超では良好な鉄損が得られない、S又はSeの何れか
一方又は双方:  0.015〜0.060%が望まし
い。
The ingredients of the thin slab are as follows. Hereinafter, % is weight %. St: 2.8 to 4.5% is desirable. 2
.. If it is less than 8%, good iron loss cannot be obtained, and if it exceeds 4.5%, workability is poor. Mn: 0.045-0.
100% is desirable. Less than 0.045% or 0.100
If the content exceeds 0.015% to 0.060%, good iron loss cannot be obtained.

0.015%未満又は0.060%超では良好な鉄損が
得られない。酸可溶性Al : 0.0150〜0.0
400%が望ましい。0.0150%未満では良好な鉄
損が得られず、0.0400%を超えると二次再結晶が
不安定になる。
If it is less than 0.015% or more than 0.060%, good iron loss cannot be obtained. Acid soluble Al: 0.0150-0.0
400% is desirable. If it is less than 0.0150%, good core loss cannot be obtained, and if it exceeds 0.0400%, secondary recrystallization becomes unstable.

N : 0.0050〜0.0100%が望ましい。0
.0050%未満では二次再結晶が不安定であり、0.
0100%を超えるとブリスター疵が発生する。
N: Desirably 0.0050-0.0100%. 0
.. If it is less than 0.050%, secondary recrystallization is unstable;
If it exceeds 0.100%, blister defects will occur.

薄鋳片の厚みは0.2〜10m/mが好ましい。The thickness of the thin slab is preferably 0.2 to 10 m/m.

Q、 2m / m未満、あるいは10m/mを超える
と良好な磁気特性が得られない。
Q: If it is less than 2 m/m or more than 10 m/m, good magnetic properties cannot be obtained.

最終冷延前に、1030〜1200″Cで焼鈍し、焼鈍
後急冷することが望ましい。焼鈍温度が1030″C未
満では良好な鉄損が得られず、1200℃を超えると二
次再結晶が不安定になる。焼鈍後の急冷は、良好な製品
磁気特性を得るために必要である。
Before the final cold rolling, it is desirable to anneal at 1030 to 1200"C and rapidly cool after annealing. If the annealing temperature is less than 1030"C, good iron loss cannot be obtained, and if it exceeds 1200"C, secondary recrystallization will occur. Becomes unstable. Rapid cooling after annealing is necessary to obtain good product magnetic properties.

最終冷延の圧下率は83〜92%が望ましい。83%未
満又は92%超では良好な鉄損は得られない。最終冷延
の途中で、150〜300℃の間で30秒以上の保定を
行うことが好ましい。但し、圧延途中での温間保定を行
わなくても、本発明の効果は阻害されない。
The reduction ratio in the final cold rolling is preferably 83 to 92%. If it is less than 83% or more than 92%, good iron loss cannot be obtained. During the final cold rolling, it is preferable to maintain the temperature between 150 and 300°C for 30 seconds or more. However, the effects of the present invention are not impaired even if warm holding is not performed during rolling.

高温仕上焼鈍は鈍化のため高温且つ長時間の焼鈍が必要
であり、脱炭焼鈍後、焼鈍分離剤を塗布し、コイル状に
巻きとり、コイル状を竪穴状にして焼鈍することが望ま
しい、この場合、コイル内周部の曲率半径は250〜4
00m/m程度が好ましい、250m/m未満では、巻
きとり時の板の変形、二次再結晶後の、平坦化焼鈍時の
鉄損劣化等のおそれがあり、400m/mを超えると設
備費が高くなる。
High-temperature finish annealing requires high-temperature and long-term annealing for dulling, and after decarburization annealing, it is desirable to apply an annealing separator, wind it into a coil, and then annealing the coil in a pit shape. In this case, the radius of curvature of the inner circumference of the coil is 250 to 4
If it is less than 250m/m, there is a risk of deformation of the plate during winding, deterioration of iron loss during flattening annealing after secondary recrystallization, etc. If it exceeds 400m/m, equipment costs will increase. becomes higher.

平坦化焼鈍の前又は、後に張力コーティングを行うこと
が望ましい、張力コーティングを行わないと良好な鉄損
が得られない。
It is desirable to perform tension coating before or after flattening annealing; good core loss cannot be obtained without tension coating.

二次再結晶後、張力コーティング又は平坦化焼鈍の前又
は後に、鋼板の表面に、圧延方向とほぼ直角の方向に、
人為的に磁区制御処理を行うことが望ましい、Tl11
区制御処理を行わない場合、良好な鉄損が得られない、
なお、磁区制御処理の方法については、既に開示されて
いる公知の方法が適用可能である。公知の方法として、
例えば、特開昭55−18566号公報、特開昭58−
73724号公報における、間隔をもってレーザービー
ムを照射する方法、特開昭61−96036号公報にお
ける、間隔をもって侵入体を形成させる方法、特開昭6
1−117218号公報における、間隔をもって溝を形
成させる方法、特開昭61−117284号公報におけ
る、間隔をもって、地鉄の一部を除去し、リン酸系張力
付加被膜を施す方法、特開昭62−151511号公報
における、間隔をもってプラズマ炎を照射する方法等が
挙げられる。
After secondary recrystallization, before or after tension coating or flattening annealing, on the surface of the steel plate in a direction approximately perpendicular to the rolling direction.
It is desirable to perform magnetic domain control processing artificially, Tl11
If ward control treatment is not performed, good iron loss cannot be obtained.
Note that as for the method of magnetic domain control processing, known methods that have already been disclosed can be applied. As a known method,
For example, JP-A-55-18566, JP-A-58-
73724, a method of irradiating laser beams at intervals; a method of forming penetrating bodies at intervals, JP-A-61-96036;
1-117218, a method of forming grooves at intervals, and JP-A-61-117284, a method of removing a part of the base iron at intervals and applying a phosphoric acid-based tension coating, Examples include the method of irradiating plasma flame at intervals, as disclosed in Japanese Patent No. 62-151511.

圧延面内における製品結晶粒径の調製方法としては、材
料成分、各焼鈍条件、最終冷延条件、焼鈍分離剤の&I
l威等が考えられるが、何れの方法でも適用可能である
The method for preparing the product crystal grain size in the rolling plane includes material composition, each annealing condition, final cold rolling condition, &I of the annealing separator.
However, any method is applicable.

特定量のSn及びNiを含有し、張力コーティングを有
する高磁束密度一方向性電磁鋼板の表面に圧延方向とほ
ぼ直角の方向に磁区制御処理を施した場合に、著しく鉄
損が改善される理由については、未だ、はっきりした理
由はわかっていないが、Sn、Niの複合含有により、
地鉄そのものか、地鉄とグラスの間か、或いは、グラス
に変化が生じ、磁区制御処理後の鋼板の鉄損を最小とす
る作用を生せしめるものと考えられる。
Why iron loss is significantly improved when magnetic domain control treatment is applied to the surface of a high magnetic flux density unidirectional electrical steel sheet containing a specific amount of Sn and Ni and having a tension coating in a direction substantially perpendicular to the rolling direction. Although the clear reason for this is still unknown, due to the combined content of Sn and Ni,
It is thought that a change occurs in the base metal itself, between the base metal and the glass, or in the glass, resulting in an effect that minimizes the iron loss of the steel sheet after the magnetic domain control treatment.

圧延面内における製品結晶粒の平均粒径が11〜50m
/mの範囲で著しく優れた鉄損が得られる理由は次のよ
うに推定される。平均粒径が10m/m以下では、本発
明にかかわる磁区制御処理材の場合、細かい粒界が、鉄
損を最小とする磁区形成パターンに対し有害となってい
るものと考えられる。
The average grain size of product crystal grains in the rolling plane is 11 to 50 m.
The reason why a significantly superior iron loss is obtained in the range of /m is presumed as follows. When the average grain size is 10 m/m or less, fine grain boundaries are considered to be harmful to the magnetic domain formation pattern that minimizes core loss in the case of the magnetic domain control treated material according to the present invention.

鋼板を曲げた状態で高温仕上焼鈍する場合に、平均粒径
50m/m超で、鉄損が劣化するのは、高温仕上焼鈍後
の平坦化焼鈍による圧延面からのゴス方位のずれ等が関
与しているものと考えられる。
When a steel plate is subjected to high-temperature finish annealing in a bent state, the reason why iron loss deteriorates when the average grain size exceeds 50 m/m is due to the deviation of the Goss orientation from the rolled surface due to flattening annealing after high-temperature finish annealing. It is thought that this is the case.

以下に実施例を示す。Examples are shown below.

〔実施例〕〔Example〕

実施例I C: 0.050%、0.083%又は0.150%、
Si :3625%、Mn : 0.070%、P :
 0.0040%、S:無添加、0.015%又は0.
025%、Se :無添加、0.015%又は0.02
5%、酸可溶性1! : 0.0245%、N : 0
.0085%、Sn :無添加、0.01%、0.15
%又は0.30%、Ni :無添加、0.05%、0.
7%又は2.5%、Cu :無添加、0.06%又は0
.20. Sb  :無添加、0.020%又は0.0
50%、残部:Fe及び不可避的不純物、を含有する0
、90〜3.25m/m厚の薄鋳片を急冷凝固法により
つくった。
Example I C: 0.050%, 0.083% or 0.150%,
Si: 3625%, Mn: 0.070%, P:
0.0040%, S: no addition, 0.015% or 0.
025%, Se: no addition, 0.015% or 0.02
5%, acid soluble 1! : 0.0245%, N: 0
.. 0085%, Sn: no addition, 0.01%, 0.15
% or 0.30%, Ni: no addition, 0.05%, 0.
7% or 2.5%, Cu: no addition, 0.06% or 0
.. 20. Sb: No additive, 0.020% or 0.0
50%, balance: 0 containing Fe and unavoidable impurities
, thin slabs with a thickness of 90 to 3.25 m/m were produced by a rapid solidification method.

この薄鋳片を、下記に示す製造プロセスI、U又は■に
より、最終冷延迄処理した。
This thin slab was processed until the final cold rolling according to the manufacturing process I, U or (2) shown below.

製造プロセス■の場合、薄鋳片を1000〜1220″
Cの間の各種温度で90秒間焼鈍し、焼鈍後、常温迄を
35℃/秒で冷却し、次いで、最終冷延を行った。
In the case of manufacturing process ■, the thin slab is 1000~1220''
After annealing, the material was annealed at various temperatures between C and C for 90 seconds, cooled to room temperature at a rate of 35 C/sec, and then final cold rolled.

製造プロセス■の場合、薄鋳片を1000〜1220℃
の間の各種温度で90秒間焼鈍し、焼鈍後、常温迄を3
5℃/秒で冷却し、次いで、各種の中間厚み迄中間冷延
を行い、次いで、1000″Cで100秒間中間焼鈍し
、焼鈍後、常温迄を35℃/秒で冷却し、次いで、最終
冷延を行った。
In the case of manufacturing process ■, the thin slab is heated to 1000-1220℃.
Annealed for 90 seconds at various temperatures between
Cooled at 5°C/sec, then subjected to intermediate cold rolling to various intermediate thicknesses, then intermediately annealed at 1000''C for 100 seconds, cooled to room temperature after annealing at 35°C/sec, then final Cold rolling was performed.

製造プロセス■の場合、薄鋳片を1000″Cで100
秒間焼鈍し、焼鈍後、常温迄を35℃/秒で冷却し、次
いで、各種の中間厚み迄中間冷延を行い、次いで、10
00〜1220℃の間の各種温度で90秒間焼鈍し、焼
鈍後、常温迄を35℃/秒で冷却し、次いで、最終冷延
を行った。
In the case of manufacturing process ■, thin slabs are heated at 1000″C for 100
Annealed for seconds, cooled to room temperature at 35°C/second after annealing, then intermediate cold rolled to various intermediate thicknesses, then 10
It was annealed for 90 seconds at various temperatures between 00 and 1220°C, and after annealing, it was cooled to room temperature at a rate of 35°C/second, and then final cold rolling was performed.

最終冷延において、途中で、250″Cで5分間の温間
保定を5回行う方法と温間保定を行わない方法とで圧延
した。
During the final cold rolling, rolling was carried out by performing warm holding at 250''C for 5 minutes five times and by not performing warm holding.

最終冷延後、75%N2 、25%N2の湿潤雰囲気中
で、850℃で150〜300秒間、脱炭焼鈍を施し、
マグネシャを主とする焼鈍分離剤を塗布し、曲率半径4
00m/mでコイル状に巻き、高温仕上焼鈍を行った。
After the final cold rolling, decarburization annealing was performed at 850°C for 150 to 300 seconds in a humid atmosphere of 75% N2 and 25% N2,
Apply an annealing separator mainly composed of magnesia, and the radius of curvature is 4.
It was wound into a coil at a speed of 00 m/m and subjected to high-temperature finish annealing.

高温仕上焼鈍においては、昇温中雰囲気を85%Ih 
、 15%N2とし、昇温速度25℃/時間で、120
0″C迄昇温し、水素雰囲気中で、1200″Cで20
時間焼鈍した。その後、焼鈍分離剤を除去し、次に示す
、A、B、C,Dの4種の方法にょる磁区制御処理、張
力コーティング、焼鈍等を行った。
In high-temperature finish annealing, the atmosphere during temperature rise is 85% Ih.
, 15% N2, heating rate 25°C/hour, 120
The temperature was raised to 0"C, and the temperature was raised to 1200"C for 20 minutes in a hydrogen atmosphere.
Time annealed. Thereafter, the annealing separator was removed, and magnetic domain control treatment, tension coating, annealing, etc. were performed using the following four methods A, B, C, and D.

A法においては、鋼板の単位断面積当りの張力が1.0
 kg/mm” となるよう、張力コーティングを行い
、コーティングの焼付けを兼ねて、850″Cで30秒
間の平坦化焼鈍を施し、鋼板の表面に、圧延方向と直角
の方向に、エネルギー密度2. OJ /cf、。
In method A, the tension per unit cross-sectional area of the steel plate is 1.0
kg/mm", and flattening annealing was performed at 850"C for 30 seconds to bake the coating, and the surface of the steel plate was coated with an energy density of 2.5 kg/mm'' in the direction perpendicular to the rolling direction. OJ/cf.

照射幅0.25m/m、照射間隔5 m / mでパル
スレーザ−を照射した。
Pulse laser irradiation was performed with an irradiation width of 0.25 m/m and an irradiation interval of 5 m/m.

B法においては、A法で処理した後、sb金属粉を塗布
し、800″Cで2時間焼鈍した。
In Method B, after processing in Method A, sb metal powder was applied and annealed at 800''C for 2 hours.

C法においては、鋼板の表面に、圧延方向と直角の方向
に、エネルギー密度3. OJ /c1i1、照射幅0
、2 m / m、照射間隔5 m / mでパルスレ
ーザ−を照射し、フォルステライト層を部分的に除去し
、61%硝酸液中に20秒間浸漬し、鋼板の単位断面積
当りの張力が1. Okg/m”となるよう、張力コー
ティングを行い、コーティングの焼付けを兼ねて、85
0℃で30秒間の平坦化焼鈍を行った。
In method C, an energy density of 3. OJ /c1i1, irradiation width 0
, 2 m/m, irradiation interval 5 m/m, pulsed laser irradiation to partially remove the forsterite layer, and immersion in 61% nitric acid solution for 20 seconds to determine the tension per unit cross-sectional area of the steel plate. 1. Tension coating is performed to obtain 85 kg/m'', and the coating is baked.
Flattening annealing was performed at 0° C. for 30 seconds.

D法においては、歯車ピッチ8m/m、歯車先端曲率半
径lO100I、刃の傾きが、圧延方向に対して75°
である歯車型ロールにより、荷重180kg/flII
12で歪導入を行い、鋼板の単位断面積当りの張力が1
. Okg/mn+2となるよう、張力コーティングを
行い、コーティングの焼付けを兼ねて、850℃で30
秒間の平坦化焼鈍を行った。
In the D method, the gear pitch is 8 m/m, the gear tip curvature radius is 100 I, and the blade inclination is 75° with respect to the rolling direction.
With the gear type roll, the load is 180kg/flII.
Strain is introduced at step 12, and the tension per unit cross-sectional area of the steel plate is 1.
.. Tension coating was carried out to obtain Okg/mn+2, and the coating was baked at 850℃ for 30 minutes.
A flattening annealing was performed for seconds.

A法、B法、C法又はD法により処理した後、磁束密度
B8及び鉄損を測定し、しかる後、表面被膜を除去し、
酸洗し、二次再結晶粒の圧延面内における平均粒径を測
定した。薄鋳片の成分、薄鋳片の板厚、製造プロセス(
1、II又はIII)、薄鋳片焼鈍の温度、中間冷延後
の板厚、中間焼鈍の温度、最終冷延後の板厚、最終冷延
の圧下率、最終冷延途中での温間保定有無、張力コーテ
ィングの有無、製品結晶粒の平均粒径、磁区制御法(A
After processing by method A, method B, method C, or method D, measure the magnetic flux density B8 and iron loss, and then remove the surface coating,
After pickling, the average grain size of the secondary recrystallized grains in the rolling plane was measured. Components of thin slabs, thickness of thin slabs, manufacturing process (
1, II or III), temperature of thin slab annealing, plate thickness after intermediate cold rolling, temperature of intermediate annealing, plate thickness after final cold rolling, rolling reduction ratio of final cold rolling, warm temperature during final cold rolling Presence of retention, presence or absence of tension coating, average grain size of product crystal grains, magnetic domain control method (A
.

B、C又はD)、磁束密度B8、鉄損を第1表に示す。B, C or D), magnetic flux density B8, and iron loss are shown in Table 1.

第1表に明らかなように、本発明例の場合に著しく鉄損
の優れた高磁束密度一方向性電磁調板が得られた。
As is clear from Table 1, in the case of the example of the present invention, a high magnetic flux density unidirectional electromagnetic control plate with significantly excellent iron loss was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明により、鉄損の著しく低いトランスの鉄芯等の材
料の供給が可能となり、トランス等電気機器のエネルギ
ー損が大幅に節減でき、経済的効果は大きい。
The present invention makes it possible to supply materials such as iron cores for transformers with extremely low iron loss, and the energy loss of electrical equipment such as transformers can be significantly reduced, resulting in great economic effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、張力コーティングを有し、二次再結晶後、鋼
板の表面に磁区制御処理を行った一方向性電磁鋼板につ
いて、鋼板のSn及びNi含有量と鉄損の関係を示す図
である。 第2図は、鋼板に所定量のSn、Niを含有し、張力コ
ーティングを有し、二次再結晶後、鋼板の表面に磁区制
御処理を行った高磁束密度一方向性電磁鋼板について、
鋼板のCu含有量に伴う鉄損の変化を示す図である。 第3図は、所定量のSn及びNiを含有する材料を曲率
半径400m/mに曲げた状態で高温仕上焼鈍し、二次
再結晶後に平坦化焼鈍し、張力コーティングを有し、二
次再結晶後、鋼板の表面に磁区制御処理を行った一方向
性電磁鋼板について、製品結晶粒の平均粒径と磁束密度
及び鉄損の関係を示す図である。 第4図は、所定量のSn及びNiを含有し、張力コーテ
ィングを有し、二次再結晶後、鋼板の表面に磁区制御処
理を行った板厚0.285m/mの一方向性電磁鋼板に
ついて、薄鋳片の段階でのC含有量と製品の二次再結晶
率及び鉄損の関係を示す図である。 第5図は、所定量のSn及びNiを含有し、張力コーテ
ィングを有し、二次再結晶後、鋼板の表面に磁区制御処
理を行った板yI−0.170m/mの一方向性電磁鋼
板について、薄鋳片の段階でのC含有量と製品の二次再
結晶率及び鉄損の関係を示す図である。 第6図は、所定■のSn及びNiを含有し、張力コーテ
ィングを有し、二次再結晶後、鋼板の表面に磁区制御処
理を行った一方向性電磁鋼板について、薄鋳片の段階で
のsb含有量に伴う鉄損の変化を示す図である。 第 4 図 C含有量(%) 第 図 手 続 補 正 書 (自発) 平成2年3月ノg
Figure 1 is a diagram showing the relationship between the Sn and Ni contents of the steel sheet and iron loss for a grain-oriented electrical steel sheet that has a tension coating and has undergone magnetic domain control treatment on the surface of the steel sheet after secondary recrystallization. be. Figure 2 shows a high magnetic flux density unidirectional electrical steel sheet that contains a predetermined amount of Sn and Ni, has a tension coating, and has undergone magnetic domain control treatment on the surface of the steel sheet after secondary recrystallization.
It is a figure showing the change of iron loss accompanying Cu content of a steel plate. Figure 3 shows a material containing a predetermined amount of Sn and Ni, bent to a radius of curvature of 400 m/m, high-temperature finish annealing, secondary recrystallization, flattening annealing, tension coating, and secondary recrystallization. FIG. 2 is a diagram showing the relationship between the average grain size of product crystal grains, magnetic flux density, and iron loss for a grain-oriented electrical steel sheet whose surface has been subjected to magnetic domain control treatment after crystallization. Figure 4 shows a unidirectional electrical steel sheet with a thickness of 0.285 m/m that contains a predetermined amount of Sn and Ni, has a tension coating, and has undergone magnetic domain control treatment on the surface of the steel sheet after secondary recrystallization. FIG. 2 is a diagram showing the relationship between the C content at the stage of thin cast slab, secondary recrystallization rate, and iron loss of the product. Figure 5 shows a unidirectional electromagnetic plate yI-0.170 m/m containing a predetermined amount of Sn and Ni, having a tension coating, and having undergone magnetic domain control treatment on the surface of the steel plate after secondary recrystallization. It is a figure which shows the relationship between the C content at the stage of a thin cast slab, the secondary recrystallization rate of a product, and iron loss about a steel plate. Figure 6 shows a unidirectional electrical steel sheet containing a predetermined amount of Sn and Ni, having a tension coating, and having undergone magnetic domain control treatment on the surface of the steel sheet after secondary recrystallization, at the stage of thin slab. It is a figure which shows the change of iron loss accompanying sb content. Figure 4 C content (%) Figure procedural amendment (voluntary) March 1990 Nog

Claims (3)

【特許請求の範囲】[Claims] (1)重量%でC:0.065〜0.120%以下、S
i:2.8〜4.5%、Mn:0.045〜0.100
%、S又はSeの何れか一方又は双方:0.015〜0
.060%、酸可溶性Al:0.0150〜0.040
0%、N:0.0050〜0.0100%、Sn:0.
03〜0.25%、Ni:0.35〜2.0%、残部:
Fe及び不可避的不純物、を含有する急冷凝固による薄
鋳片を最終冷延前に、1030〜1200℃で焼鈍し、
焼鈍後急冷する熱処理を行い、圧下率83〜92%の最
終冷延を行い、水素を含む湿潤雰囲気中で脱炭焼鈍を行
い、マグネシヤを主成分とする焼鈍分離剤を塗布し、コ
イル状に巻きとり、高温仕上焼鈍を行い、焼鈍分離剤を
除去して、平坦化焼鈍を行い、平坦化焼鈍の前又は後に
張力コーティングを行い、二次再結晶後、張力コーティ
ング又は平坦化焼鈍の前又は後に、鋼板の表面に、圧延
方向とほぼ直角の方向に、人為的に磁区制御処理を行う
ことを特徴とする、磁化力800A/mにおける磁束密
度が1.88T以上で鉄損の著しく優れた高磁束密度一
方向性電磁鋼板の製造方法。
(1) C: 0.065 to 0.120% or less, S by weight%
i: 2.8-4.5%, Mn: 0.045-0.100
%, S or Se or both: 0.015 to 0
.. 060%, acid-soluble Al: 0.0150-0.040
0%, N: 0.0050-0.0100%, Sn: 0.
03-0.25%, Ni: 0.35-2.0%, balance:
A thin slab containing Fe and unavoidable impurities by rapid solidification is annealed at 1030 to 1200°C before final cold rolling,
After annealing, heat treatment is performed to rapidly cool the material, final cold rolling is performed at a rolling reduction of 83 to 92%, decarburization annealing is performed in a humid atmosphere containing hydrogen, an annealing separation agent containing magnesia as the main component is applied, and the material is shaped into a coil. Coiling, high-temperature finishing annealing, removing the annealing separator, flattening annealing, applying tension coating before or after flattening annealing, after secondary recrystallization, before or after tension coating or flattening annealing. Afterwards, a magnetic domain control treatment is artificially applied to the surface of the steel plate in a direction almost perpendicular to the rolling direction, and the magnetic flux density at a magnetizing force of 800 A/m is 1.88 T or more and the iron loss is significantly superior. A method for manufacturing high magnetic flux density unidirectional electrical steel sheets.
(2)重量%でC:0.065〜0.120%、Si:
2.8〜4.5%、Mn:0.045〜0.100%、
S又はSeの何れか一方又は双方:0.015〜0.0
60%、酸可溶性Al:0.0150〜0.0400%
、N:0.0050〜0.0100%、Sn:0.03
〜0.25%、Ni:0.35〜2.0%、及びCu:
0.03〜0.08%、Sb:0.005〜0.035
%の何れか一方又は双方、残部:Fe及び不可避的不純
物、を含有する急冷凝固による薄鋳片を最終冷延前に、
1030〜1200℃で焼鈍し、焼鈍後急冷する熱処理
を行い、圧下率83〜92%の最終冷延を行い、水素を
含む湿潤雰囲気中で脱炭焼鈍を行い、マグネシヤを主成
分とする焼鈍分離剤を塗布し、コイル状に巻きとり、高
温仕上焼鈍を行い、焼鈍分離剤を除去して、平坦化焼鈍
を行い、平坦化焼鈍の前又は後に張力コーティングを行
い、二次再結晶後、張力コーティング又は平坦化焼鈍の
前又は後に、鋼板表面に、圧延方向とほぼ直角の方向に
、人為的に磁区制御処理を行うことを特徴とする、磁化
力800A/mにおける磁束密度が1.88T以上で、
鉄損の著しく優れた高磁束密度一方向性電磁鋼板の製造
方法。
(2) C: 0.065-0.120%, Si: in weight%
2.8-4.5%, Mn: 0.045-0.100%,
Either or both of S or Se: 0.015 to 0.0
60%, acid-soluble Al: 0.0150-0.0400%
, N: 0.0050-0.0100%, Sn: 0.03
~0.25%, Ni: 0.35-2.0%, and Cu:
0.03-0.08%, Sb: 0.005-0.035
%, the balance: Fe and unavoidable impurities, before the final cold rolling,
Annealing at 1030 to 1200°C, heat treatment by rapid cooling after annealing, final cold rolling at a reduction rate of 83 to 92%, decarburization annealing in a humid atmosphere containing hydrogen, and annealing separation with magnesia as the main component. Coat the agent, wind it into a coil, perform high-temperature finishing annealing, remove the annealing separation agent, perform flattening annealing, apply tension coating before or after flattening annealing, and after secondary recrystallization, apply tension coating. A magnetic flux density of 1.88 T or more at a magnetizing force of 800 A/m, characterized by artificially performing magnetic domain control treatment on the steel plate surface in a direction substantially perpendicular to the rolling direction, before or after coating or flattening annealing. in,
A method for manufacturing a high magnetic flux density unidirectional electrical steel sheet with significantly superior iron loss.
(3)圧延面内における製品結晶粒の平均粒径を11〜
50m/mに調製することを特徴とする請求項1又は2
に記載の方法。
(3) The average grain size of product crystal grains in the rolling plane is 11~
Claim 1 or 2, characterized in that it is adjusted to 50 m/m.
The method described in.
JP20701689A 1989-08-11 1989-08-11 Production of grain-oriented silicon steel sheet having high magnetic flux density and remarkably excellent in iron loss Pending JPH0372026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20701689A JPH0372026A (en) 1989-08-11 1989-08-11 Production of grain-oriented silicon steel sheet having high magnetic flux density and remarkably excellent in iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20701689A JPH0372026A (en) 1989-08-11 1989-08-11 Production of grain-oriented silicon steel sheet having high magnetic flux density and remarkably excellent in iron loss

Publications (1)

Publication Number Publication Date
JPH0372026A true JPH0372026A (en) 1991-03-27

Family

ID=16532803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20701689A Pending JPH0372026A (en) 1989-08-11 1989-08-11 Production of grain-oriented silicon steel sheet having high magnetic flux density and remarkably excellent in iron loss

Country Status (1)

Country Link
JP (1) JPH0372026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177161A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method of producing grain-oriented electromagnetic steel sheet
WO2013094218A1 (en) * 2011-12-22 2013-06-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177161A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method of producing grain-oriented electromagnetic steel sheet
WO2013094218A1 (en) * 2011-12-22 2013-06-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same
JPWO2013094218A1 (en) * 2011-12-22 2015-04-27 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
US10020101B2 (en) 2011-12-22 2018-07-10 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
JP2013189712A (en) Method for producing grain-oriented flat rolled magnetic steel sheet and strip with high magnetic flux density
EP0334223A3 (en) Ultra-rapid heat treatment of grain oriented electrical steel
JPH05112827A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property and coating film pr0perty
JP5300210B2 (en) Method for producing grain-oriented electrical steel sheet
JP2008001983A (en) Method for producing grain-oriented magnetic steel sheet with high magnetic flux density
JPH0230740A (en) High magnetic flux density grain oriented electrical steel sheet having drastically excellent iron loss and its manufacture
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2620438B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPS62202024A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties
US4319936A (en) Process for production of oriented silicon steel
JP2023508029A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
US5288736A (en) Method for producing regular grain oriented electrical steel using a single stage cold reduction
JPH0567683B2 (en)
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JPH01208421A (en) Manufacture of unidirectional electrical sheet having high magnetic flux density and excellent iron loss
JPS60255926A (en) Manufacture of grain oriented electrical steel sheet low in iron loss
JPH0372027A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss
CA2033059C (en) Process for producing grain oriented silicon steel sheets having excellent magnetic properties
JPS5850298B2 (en) Processing method for electrical steel sheets
JPH0372026A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and remarkably excellent in iron loss
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JP3390109B2 (en) Low iron loss high magnetic flux density
JPH06287639A (en) Production of nonoriented silicon steel sheet excellent in all-around magnetic property