JPH01198430A - Production of grain oriented electrical steel sheet having extremely good iron loss characteristics and film adhesiveness - Google Patents

Production of grain oriented electrical steel sheet having extremely good iron loss characteristics and film adhesiveness

Info

Publication number
JPH01198430A
JPH01198430A JP2186588A JP2186588A JPH01198430A JP H01198430 A JPH01198430 A JP H01198430A JP 2186588 A JP2186588 A JP 2186588A JP 2186588 A JP2186588 A JP 2186588A JP H01198430 A JPH01198430 A JP H01198430A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
oriented electrical
electrical steel
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2186588A
Other languages
Japanese (ja)
Inventor
Osamu Tanaka
収 田中
Takashi Kobayashi
尚 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2186588A priority Critical patent/JPH01198430A/en
Publication of JPH01198430A publication Critical patent/JPH01198430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To improve the iron loss characteristic and film adhesiveness of a grain oriented electrical steel sheet formed with an insulating film by imparting specific fine linear flaws to the surface of the steel sheet prior to or after decarburization annealing and specifying the heating up and atmosphere gas of final finish annealing in production of said steel sheet. CONSTITUTION:The cold-rolled grain oriented electrical steel sheet having the final sheet thickness is subjected to the decarburization annealing and an SiO2 scale layer is formed on the surface. An annealing and separating agent of an MgO system is coated thereon and thereafter, the steel sheet is subjected to the final finish annealing by which the insulating film is formed thereon. The fine linear flaws of <=5mm interval, <=1mm width and 0.3-5 depth in Ra value are imparted to the surface of the steel sheet prior to or after the decarburization annealing within 30 deg. with the direction perpendicular to the rolling direction thereof in the process for producing the above- mentioned grain oriented electrical steel sheet. The holding time of >=1 hour is provided at 700-950 deg.C heating process in the final finish annealing and further the PH2O/PH2 of the atmosphere gas is maintained at 0.01-0.2 during this time.

Description

【発明の詳細な説明】 本発明は極めて鉄損が優れ、被膜密着性の優れた方向性
電磁鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet with extremely excellent iron loss and excellent film adhesion.

〔従来の技術〕[Conventional technology]

方向性電磁鋼板はSiを4%以下、通常3%程度を含有
するけい素鋼素材を溶解し、連続鋳造または造塊後、分
塊圧延によってスラブとし、熱間圧延後1回または中間
焼鈍を挾む2回の冷間圧延によって最終板厚とする0次
いで、脱炭焼鈍及び高温箱焼鈍を施すことによって製造
されるものである。また、その結晶集合組織は圧延方向
に特に磁化容易軸が揃ったゴス組織と称される(110
)(001)方位を有する組織であって、各種の配電用
の鉄心材料として広く使用されている。
Grain-oriented electrical steel sheets are produced by melting a silicon steel material containing Si of 4% or less, usually about 3%, continuous casting or ingot forming, forming a slab by blooming rolling, and then hot rolling and then one-time or intermediate annealing. The final plate thickness is achieved by two intervening cold rollings, followed by decarburization annealing and high-temperature box annealing. In addition, the crystal texture is called a Goss texture in which the axis of easy magnetization is aligned in the rolling direction (110
) (001) orientation, and is widely used as an iron core material for various power distribution applications.

この様な方向性電磁鋼板を変圧器等の鉄心材料に使用す
る際には薄鋼板として積層して使用するのが一般的であ
り、磁気特性として鉄損特性及び励磁特性が優れること
、又被膜特性として渦電流損を減らすために鋼板表面に
高い電気絶縁性の被膜を均一に形成することが要求され
る。
When such grain-oriented electrical steel sheets are used as core materials for transformers, they are generally laminated as thin steel sheets. As a characteristic, it is required to uniformly form a highly electrically insulating film on the surface of the steel sheet in order to reduce eddy current loss.

この他に、鉄心加工工程に於けるスリットまたは切断加
工、巻き加工、プレス加工、焼鈍加工、レーシング加工
等に於ける被膜の脱落及び剥離を避けるために、密着性
の良いグラス被膜を有することが要求される。
In addition, in order to prevent the coating from falling off or peeling during slitting or cutting, winding, pressing, annealing, lacing, etc. in the core processing process, it is necessary to have a glass coating with good adhesion. required.

ところで、これらの方向性電磁鋼板の特性の中で特に鉄
損特性は重要であり、これらの減少について種々の提案
がなされてきた。
By the way, among the properties of these grain-oriented electrical steel sheets, the iron loss properties are particularly important, and various proposals have been made for reducing these properties.

例えば、鉄損改善のためにはSt含有量の増加や二次再
結晶粒の方位の向上及び二次再結晶粒を小さくする等の
手段がある。また、もう1つの方法としては板厚を薄く
する方法がある。
For example, in order to improve iron loss, there are measures such as increasing the St content, improving the orientation of secondary recrystallized grains, and reducing the size of secondary recrystallized grains. Another method is to reduce the plate thickness.

近年では製品板の2次再結晶粒の磁区細分化により鉄損
を改善する方法があり、特公昭57−2252号公報で
は最終製品板表面に圧延方向にほぼ直角にレーザービー
ムを数11間隔に照射し、鋼板表面に高転位密度領域を
導入することにより磁区幅を細分化し、鉄損を低下する
技術が提案されている。
In recent years, there has been a method to improve iron loss by refining the magnetic domains of secondary recrystallized grains in product sheets, and Japanese Patent Publication No. 57-2252 discloses a method in which a laser beam is applied to the surface of a final product sheet at intervals of several eleven at approximately perpendicular to the rolling direction. A technology has been proposed to subdivide the magnetic domain width and reduce core loss by introducing high dislocation density regions on the surface of the steel sheet through irradiation.

また特開昭61−139680号公報では、本発明者ら
によって最終製品板の表面の表面被膜の一部をレーザー
照射等により除去し、可侵入体金属をメツキし、その後
の熱処理により鋼板中に侵入体を展成し、磁区細分化す
るもので、この方法によればその後の熱処理によりその
効果を失わず、むしろ向上すると言うものである。
Furthermore, in JP-A-61-139680, the inventors removed a part of the surface coating on the surface of the final product plate by laser irradiation, plated the penetrable metal, and then heat-treated the steel plate. This method expands the interstitial body and subdivides the magnetic domains. According to this method, the effect is not lost by subsequent heat treatment, but rather is improved.

また、特開昭61−246376号公報では方向性けい
素鋼板の表面被膜を構成する通常のフォルステライト被
膜の上に磁気特性や表面被膜改善の目的で被成される張
力付与型コーティングにおいて、張力付与効果の異なる
領域を区画形成することにより、鋼板の磁区細分化が助
長されるとの提案がなされている。
In addition, Japanese Patent Application Laid-open No. 61-246376 describes a tension-applying coating that is applied on a normal forsterite coating that constitutes the surface coating of a grain-oriented silicon steel sheet for the purpose of improving magnetic properties and surface coating. It has been proposed that magnetic domain refinement of a steel sheet is facilitated by forming regions with different imparting effects.

特開昭60−103183号公報には歪み取り焼鈍によ
り特性が劣化しない方向性電磁鋼板の製造方法として、
局所的にフォルステライトとは組成の異なるグラス被膜
からなる領域を存在させることが製品の磁区細分化に有
利であること、そしてかような異質のグラス被膜領域の
存在下に張力付与型の絶縁コーティングを被成すると両
者の複合作用によって効果が一層助長されると言うもの
である。
JP-A-60-103183 discloses a method for producing grain-oriented electrical steel sheets whose properties do not deteriorate due to strain relief annealing.
The presence of a region consisting of a glass film with a composition different from that of forsterite locally is advantageous for refining the magnetic domain of the product, and the tension-applying insulating coating is created in the presence of such a heterogeneous glass film region. The effect is further enhanced by the combined action of the two.

この発明においては異質のグラス被膜領域の幅は0.0
5〜2. O*m程度、間隔は1.0〜3.0鶴が効果
が大きいとしている。
In this invention, the width of the heterogeneous glass coating region is 0.0
5-2. It is said that a spacing of about 0*m and an interval of 1.0 to 3.0 is most effective.

これらはいずれも磁区細分化効果により鉄損特性を改善
するものであり、それなりの効果は得られるであろう。
All of these improve iron loss characteristics through the effect of magnetic domain refining, and some effects will likely be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前述のような鉄損改善のための種々開示され
ている技術は、焼鈍によりその効果を失ったり、被膜の
一部を失うため絶縁コーティング刻の塗布焼き付けを要
求される。また、被膜絶縁特性の問題に加えて、製造コ
ストの問題、また、特開昭61−246376号公報や
特開昭60−103183号公報のように工業的な実現
が非常に難しい問題があり、未だ十分とはいえない。
By the way, the various techniques disclosed for improving core loss as described above lose their effectiveness or lose part of the coating due to annealing, and therefore require application and baking of an insulating coating. In addition to the problem of film insulation properties, there are also problems of manufacturing cost, and problems that are extremely difficult to realize industrially, as in JP-A-61-246376 and JP-A-60-103183. It's still not enough.

本発明は前記問題点を解決すべく、極めて鉄損が優れ、
被膜密着性の優れた方向性電磁鋼板を得ることを目的と
してなされたものである。
In order to solve the above problems, the present invention has extremely excellent iron loss,
This was done for the purpose of obtaining a grain-oriented electrical steel sheet with excellent film adhesion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは脱炭焼鈍工程または最終仕上げ焼鈍工程で
微細に鋼板地鉄中に酸化膜及び/またはガラス質被膜を
形成すると、磁区細分化効果の大きい優れた被膜層を形
成し、鉄損特性及び被膜密着性が著しく優れた方向性電
磁鋼板が得られることを見出だした。
The present inventors have found that when a fine oxide film and/or glassy film is formed in the steel sheet base iron during the decarburization annealing process or the final finish annealing process, an excellent film layer with a large magnetic domain refining effect is formed, resulting in iron loss. It has been found that a grain-oriented electrical steel sheet with extremely excellent properties and film adhesion can be obtained.

本発明はかかる鋼板を工業的に製造する方法を提供する
ものであり、その要旨とするところは次のようなもので
ある。
The present invention provides a method for industrially manufacturing such a steel plate, and the gist thereof is as follows.

その1つは、けい素鋼スラブを熱延し、焼鈍を挾んで1
回または2回以上の冷延により最終板厚とした冷延板に
、脱炭焼鈍の前または後に鋼板表面に線状または破線状
に微細な線状疵を鋼板のほぼ全面的に付与し、後の脱炭
工程及び/または最終仕上げ焼鈍工程で酸化膜及び/ま
たはガラス質被膜を疵部に沿って鋼板中に発達させるも
のであり、もう1つは、脱炭焼鈍の前または後で微細な
線状疵を付与後、疵部に酸化剤または酸化促進剤を塗布
し、脱炭焼鈍工程及び/又は最終仕上げ焼鈍工程の熱処
理中に酸化膜及び/又はガラス質被膜を微細線状疵に沿
って発達させることを特徴とする、極めて鉄損が低く、
被膜密着性の優れた方向性電磁鋼板の製造方法にある。
One is to hot-roll a silicon steel slab and sandwich it through annealing.
A cold-rolled sheet that has been cold-rolled once or twice or more to have a final thickness is given fine linear or broken line-like flaws almost entirely on the steel sheet surface before or after decarburization annealing, One is to develop an oxide film and/or a glassy film into the steel sheet along the flaws in the subsequent decarburization process and/or final annealing process. After forming fine linear flaws, an oxidizing agent or oxidation promoter is applied to the flaws, and the oxide film and/or glassy coating is turned into fine linear flaws during the heat treatment of the decarburization annealing process and/or the final annealing process. It has extremely low iron loss and is characterized by being developed along the
The present invention provides a method for producing grain-oriented electrical steel sheets with excellent film adhesion.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者らは第1図および第2図に示すように圧延方向
に対し直角方向から30°以内に脱炭焼鈍又は仕上焼鈍
過程で線状又は破線状に鋼板中に発達させた酸化層及び
/又はガラス質被膜を有する方向性電磁鋼板はその微細
に発達した被膜層の作用による磁区細分化効果により、
鉄損が極めて低く、グラス被膜の密着性が優れることを
見出した。本発明はかかる鋼板を工業的に製造する方法
を提供するものであり、か\る鋼板は次の様にして製造
される。
As shown in FIGS. 1 and 2, the present inventors discovered that an oxidized layer and a broken line developed in a steel sheet within 30 degrees perpendicular to the rolling direction during the decarburization annealing or finish annealing process, as shown in FIGS. /Or grain-oriented electrical steel sheets with a glassy coating have a magnetic domain refining effect due to the action of the finely developed coating layer.
It was discovered that the iron loss was extremely low and the adhesion of the glass coating was excellent. The present invention provides a method for industrially manufacturing such a steel plate, and the steel plate is manufactured as follows.

第1図に示すように最終板厚に冷延された鋼板1の脱炭
焼鈍の前又は後に圧延方向Rと直角方向に対し、30°
以内に微細な線状疵2をコイル幅方向Wに亘って付与す
る。2の付与方法としては、ブラシロール、高圧水、グ
ラインダー、サンドペーパー、ショット、レーザー、酸
洗後の機械的、熱的、化学的な手段によって、直線状ま
たは破線状の疵を鋼板のほぼ全面的に付与する。
As shown in FIG. 1, before or after decarburization annealing of the steel plate 1 cold-rolled to the final thickness, the angle is 30° with respect to the direction perpendicular to the rolling direction R.
A fine linear flaw 2 is provided within the width direction W of the coil. 2 is applied by brush roll, high-pressure water, grinder, sandpaper, shot, laser, mechanical, thermal, or chemical means after pickling to remove straight or broken line scratches on almost the entire surface of the steel plate. to be given.

この微細な線状疵の付与条件としては、間隔Il!5N
以内、幅a:1m以下、深さがRa値で0.3〜5趨で
ある。
The conditions for creating this fine linear flaw are the interval Il! 5N
Width a: 1 m or less, depth is Ra value 0.3 to 5.

この様に微細に線状疵を付与された鋼板は、必要に応じ
て酸類、アルカリ類又はこれらの塩類が塗布される。
The steel plate having such fine linear flaws is coated with acids, alkalis, or salts thereof, if necessary.

この際の塗布剤としては、Na 、 K 、 Li 、
 Ca 、 Mg。
The coating agent at this time includes Na, K, Li,
Ca, Mg.

Ba、等の水酸化物、硫酸、硝酸、リン酸、塩酸、フッ
酸、ホウ酸、及び各種金属からなる硫酸塩、硝酸塩、リ
ン酸塩、塩化物、フン化物及びホウ化物の1種又は2種
以上が塗布される。
One or two of hydroxides such as Ba, sulfuric acid, nitric acid, phosphoric acid, hydrochloric acid, hydrofluoric acid, boric acid, and sulfates, nitrates, phosphates, chlorides, fluorides, and borides made of various metals. Seeds or more are applied.

次いで、脱炭焼鈍の後、最終仕上焼鈍を行う。Next, after decarburization annealing, final finish annealing is performed.

本発明では、この最終仕上焼鈍において、第2図に示す
ように脱炭焼鈍前又は後に鋼板のほぼ全面にわたって、
微細に付与された線状疵部分2より、局所的に微細な線
状の酸化層及び又はガラス質被膜3を表面より鋼板地鉄
中心部に向って発達させるのが特徴である。この過程に
おいては疵部分に必要に応じて塗布された酸類、アルカ
リ類、あるいは塩類と仕上焼鈍に於ける熱サイクル及び
雰囲気条件を特定することにより、効果的に酸化層及び
ガラス質被膜層を成長させることができる。
In the present invention, in this final annealing, as shown in FIG. 2, over almost the entire surface of the steel plate before or after decarburization annealing,
The feature is that a fine linear oxidation layer and/or glassy coating 3 is locally developed from the surface toward the center of the steel sheet base from the finely applied linear flaws 2. In this process, an oxide layer and a glassy coating layer can be effectively grown by specifying the heat cycle and atmospheric conditions for the final annealing and the acids, alkalis, or salts applied to the flawed area as necessary. can be done.

この結果、脱炭焼鈍の前又は後で鋼板表面に付与される
線状疵2の深さはRa値で0.3〜5趨と浅い疵である
にもかかわらず、最終仕上焼鈍後の鋼板で発達している
酸化層等3の深さは5〜40umにまで達するものであ
る。また、この被膜形成過程に於いては、鋼板表面の疵
部分はガラス質被膜が発達し、覆いつくされるため、表
面が通常工程で製品と同様な表面状態が得られるのが、
本発明に於ける製品の特徴である。
As a result, although the depth of the linear flaws 2 formed on the steel sheet surface before or after decarburization annealing is as shallow as 0.3 to 5 in terms of Ra value, the steel sheet after final finish annealing is The depth of the oxidized layer etc. 3 that has developed reaches 5 to 40 um. In addition, during this film formation process, a glassy film develops and completely covers the flawed areas on the surface of the steel sheet.
These are the characteristics of the product according to the present invention.

本発明によって、極めて優れた鉄損と優れた密着性は次
の様な理由によるものと考えられる。−本発明では、2
次再結晶終了後に表面疵部よりw4仮地鉄中に発達する
微細な酸化層或いはガラス質被膜層の深さは前述の如く
5〜40湖の深さに達する。鉄損向上の1つの理由とし
ては、この微細に発達した線状被膜層により磁極が生じ
磁区細分化効果が生じるものと考えられる。もう1つは
微細に発達した線状酸化層及びグラス被膜層による鋼板
地鉄との熱膨張率の違いから、最終焼鈍の冷却過程で生
じる、鋼板地鉄への微少な局所応力の作用による磁区細
分化効果によるものと考えられる。
It is believed that the extremely excellent core loss and excellent adhesion achieved by the present invention are due to the following reasons. - In the present invention, 2
After the completion of the next recrystallization, the depth of the fine oxide layer or glassy coating layer that develops in the W4 preliminary iron from the surface flaws reaches a depth of 5 to 40 degrees, as described above. One of the reasons for the improvement in iron loss is thought to be that magnetic poles are generated by this finely developed linear coating layer, resulting in a magnetic domain refining effect. The other is due to the difference in thermal expansion coefficient between the finely developed linear oxide layer and glass coating layer, and the magnetic domain due to the action of minute local stress on the steel sheet steel during the cooling process of final annealing. This is thought to be due to the segmentation effect.

被膜密着性を改善するのは微細に且つ深く発達した被膜
層の効果によるもので、絶縁被膜処理後の曲げ剥離試験
では、この線状被膜層の強固な構造による効果により著
しい改善が見られる。
The improvement in coating adhesion is due to the effect of a finely and deeply developed coating layer, and in the bending peel test after insulation coating treatment, a remarkable improvement is seen due to the effect of the strong structure of this linear coating layer.

本発明のもう1つの利点は他の磁区制御技術の様に磁束
密度の低下が非常に少ない点である。このため、低磁場
から高磁場まで広範囲の磁場で鉄損改善がはかられるた
め実用的には、全ての需要家の満足を得られる。
Another advantage of the present invention is that there is very little reduction in magnetic flux density as with other domain control techniques. Therefore, iron loss can be improved in a wide range of magnetic fields from low magnetic fields to high magnetic fields, so that practically all customers can be satisfied.

次に、本発明の限定理由に就いて述べる。Next, the reasons for the limitations of the present invention will be described.

本発明では、脱炭焼純の前又は後で鋼板表面に微細に付
与された線状疵にそって鋼板中に酸化層又はガラス質被
膜を発達させるものであり、表面に付与される疵の状態
と庇部に付与される酸、アルカリ、塩類等の塗布剤及び
最終仕上焼鈍の条件が重要な要件となる。
In the present invention, an oxidized layer or a glassy film is developed in the steel sheet along the fine linear flaws formed on the surface of the steel sheet before or after decarburization and sintering, and the condition of the flaws formed on the surface Important requirements include coating agents such as acids, alkalis, and salts applied to the eaves and final annealing conditions.

まず鋼板に付与される疵は直線状或いは破線状の線状で
あればよく、出来るだけ直線状につながっているのが望
ましい、また線状疵の付与される方向は圧延方向に直交
する方向に対し30°以内である。これは、最終的にこ
の庇部を起点にして、発達した酸化層或いはガラス質被
膜による磁区細分化効果を得るためで、上記角度がこれ
以上ずれると被膜密着性の改善効果が得られても、鉄損
改善効果が弱くなるためである。疵の深さはRa値で0
.3〜54の範囲である。0.3 tsより小さいと焼
鈍時における庇部からの被膜層の発達が不充分で、深さ
が得られないため、鉄損の改善効果が弱い、5μ以上に
なると逆に焼鈍中の被膜層の成長が深くなりすぎて磁束
密度の低下が生じるため、高磁場での鉄損或いは励磁特
性に悪影響を与える。
First, the flaws applied to the steel plate may be linear or broken lines, preferably connected in a straight line as much as possible, and the direction in which the linear flaws are applied is perpendicular to the rolling direction. It is within 30°. This is to ultimately obtain the magnetic domain refining effect by the developed oxide layer or glassy coating starting from this eave part, and if the above angle deviates further than this, even if the effect of improving coating adhesion is obtained. This is because the iron loss improvement effect becomes weaker. The depth of the flaw is 0 in terms of Ra value.
.. It ranges from 3 to 54. If it is smaller than 0.3 ts, the film layer from the eaves will not develop sufficiently during annealing, and the depth will not be obtained, so the iron loss improvement effect will be weak. The growth becomes too deep, resulting in a decrease in magnetic flux density, which adversely affects core loss or excitation characteristics in high magnetic fields.

最も好ましい疵の深さは、Ra値で1〜3−である。The most preferable flaw depth is an Ra value of 1 to 3-3.

また疵の間隔は5mm以内である。線状疵の深さ、巾、
庇部への塗布剤の種類、量にもよるが、本発明の方法で
は非常に微細に線状に発達する被膜層の効果を期待して
いるため、間隔はむしろ狭い方が良い結果が得られる。
Further, the distance between the flaws is within 5 mm. Depth and width of linear flaws
Although it depends on the type and amount of coating agent applied to the eaves, in the method of the present invention, the effect of a coating layer that develops in very fine lines is expected, so the narrower the spacing, the better the results. It will be done.

好ましい範囲は50〜1000−である。底幅はlfi
以下である。1sIA以上では深すぎる場合と同様に被
膜物質の体積増加による磁束密度の低下が生じるため好
ましくない。また、膨大な実験結果によっても底幅の小
さい方が良い結果が得られた。特に鉄損及び被膜密着性
改善の良い結果の得られる範囲は20〜200趨である
The preferred range is 50-1000. Bottom width is lfi
It is as follows. A depth of 1 sIA or more is not preferable because the magnetic flux density decreases due to an increase in the volume of the coating material, similar to when the depth is too deep. Moreover, a large number of experimental results have shown that the smaller the base width, the better the results. In particular, the range in which good results in improving iron loss and film adhesion can be obtained is in the range of 20 to 200.

庇部に塗布されるアルカリ、酸類、あるいはこれらの塩
類としては、焼鈍中に化合物が庇部をエツチングして、
庇部からの酸化層及びガラス質被膜の発達を促進するか
、エツチングによって庇部の凹みの成長を助けるような
作用のあるものであれば良い。実験によればNa、 K
 、Li 、Ca、Mg、Bas等のアルカリ、アルカ
リ土類金属の水酸化物、硝で効果が得られた。
The alkalis, acids, or salts of these applied to the eaves may cause the compounds to etch the eaves during annealing.
Any material may be used as long as it promotes the development of the oxide layer and glassy film from the eaves, or helps the growth of recesses in the eaves by etching. According to experiments, Na, K
, hydroxides of alkali and alkaline earth metals such as Li, Ca, Mg, and Bas, and nitrate were effective.

これらのアルカリ、酸、塩類の塗布量としては、付与さ
れた線状疵の状態(深さ、幅、間隔等)によって異なる
が、前記物質を庇部の面積当り、0、2〜30 g/r
d程度塗布すれば効果的である。
The amount of these alkalis, acids, and salts to be applied varies depending on the condition of the linear scratches (depth, width, spacing, etc.), but the amount of the substance applied is 0.2 to 30 g/per area of the eaves. r
It is effective if you apply about d.

これらの塗布剤の塗布方法としては、スラリー状として
鋼板の庇部にプリント、刷毛、スプレー等による塗布、
何れでも良い。
The methods of applying these coating agents include printing, brushing, spraying, etc. on the eaves of the steel plate as a slurry.
Either is fine.

次に最終仕上焼鈍の条件としては、本発明では昇温時の
加熱サイクルと雰囲気ガスのP HtO/ P Hzが
重要である。加熱サイクルは昇温過程700〜950℃
で1時間以上の保持時間を設けるか、或いは10℃/h
r以下の昇温率による加熱が必要である。これは被膜形
成過程における反応として、Singの表面への濃化反
応がこの時期に急激に生じることを利用するためであり
、700〜950℃で1時間以上の保持時間を設けるか
、或いは15℃/hr以下の昇温率で加熱すムことによ
り、庇部より微細に発達するガラス質被膜の成長に顕著
な効果が見られる。
Next, as conditions for final annealing, the heating cycle during temperature rise and the P HtO/P Hz of the atmospheric gas are important in the present invention. The heating cycle is a heating process of 700-950℃
Provide a holding time of 1 hour or more, or hold at 10℃/h.
Heating is required at a temperature increase rate of r or less. This is to take advantage of the fact that a concentration reaction of Sing on the surface occurs rapidly at this time as a reaction in the film formation process, and it is necessary to provide a holding time of 1 hour or more at 700 to 950°C, or to hold the Sing at 15°C. By heating at a temperature increase rate of /hr or less, a remarkable effect is seen on the growth of a glassy film that develops finely from the eaves.

この間における雰囲気ガスとしてはP HtO/ P 
H!を0.01〜0.2とする事が重要である。これは
、雰囲気ガスの水分によるSi0g濃化領域での酸化層
、ガラス質被膜の成長をより効果的にするためである。
During this period, the atmospheric gas is P HtO/P
H! It is important to set 0.01 to 0.2. This is to make the growth of the oxide layer and the glassy film in the SiOg concentration region more effective due to the moisture in the atmospheric gas.

0.01以下では水分の供給が不充分で効果が得られな
い。逆に0.2以上では、被膜層の発達は認められるが
、水分量が多すぎて、酸化過度となり、ガラス賞被膜全
体にガスマーク、ピンホール状の欠陥が発生し易くなる
If it is less than 0.01, the water supply will be insufficient and no effect will be obtained. On the other hand, if it is 0.2 or more, the development of the coating layer is observed, but the moisture content is too large, resulting in excessive oxidation, and gas marks and pinhole-like defects are likely to occur throughout the glass coating.

〔実施例〕〔Example〕

実施例1゜ 重量%でC; 0.078 、Si ; 3.30、M
n ; 0.055、A g HO,032、N ; 
0.0082、S ;0.025 、残部不可避の不純
物とFeよりなる方向性珪素鋼板用素材を公知の方法で
熱延−熱延板焼鈍−冷延により最終板厚0.225tm
とした0次いでこの鋼板の脱炭焼鈍前及び後にレーザー
照射により第1表に示すような条件で線状疵を付与した
。次いで850℃×3分間湿潤雰囲気中で脱炭焼鈍を行
った。この後焼鈍分離剤としてMgO100重量部、T
i1t 5重量部、ホウ酸ナトリウム0.5部よりなる
焼鈍分離剤を塗布し、第1表に示す加熱サイクル、雰囲
気サイクルで最終仕上焼鈍を行った。磁気特性、被膜特
性の調査結果を第2表に示す。
Example 1 C: 0.078, Si: 3.30, M in weight%
n; 0.055, A g HO, 032, N;
0.0082, S; 0.025, the remainder being unavoidable impurities and a grain-oriented silicon steel sheet material consisting of Fe was hot-rolled, hot-rolled sheet annealed, and cold-rolled to a final thickness of 0.225 t by a known method.
The steel sheet was then subjected to laser irradiation to form linear flaws under the conditions shown in Table 1 before and after decarburization annealing. Next, decarburization annealing was performed at 850° C. for 3 minutes in a humid atmosphere. After this, as an annealing separator, 100 parts by weight of MgO, T
An annealing separator consisting of 5 parts by weight of i1t and 0.5 parts of sodium borate was applied, and final finish annealing was performed using the heating cycle and atmosphere cycle shown in Table 1. Table 2 shows the investigation results of magnetic properties and film properties.

以下余白 第1表 第2表 実施例2゜ 実施例1と同様にして調整した最終板厚0.22511
の冷延板にブラシロールによって第3表に示すような条
件で圧延方向と直角方向に線状疵を付与した。次いで同
表に示すような化合物を疵部面積l耐当り1gの割合で
塗布後850℃×3分湿潤雰囲気中で脱炭焼鈍を行った
後、MgO100重量部;Ti(h5重量部;ホウ酸ナ
トリウム0.5重量部からなる焼鈍分離剤を塗布後、同
表に示すような加熱サイクルで1200℃X20hrの
最終仕上焼鈍を行った。
Margins below Table 1 Table 2 Example 2゜Final plate thickness adjusted in the same manner as Example 1 0.22511
Linear flaws were applied to the cold-rolled sheets using a brush roll in a direction perpendicular to the rolling direction under the conditions shown in Table 3. Next, the compound shown in the same table was applied at a rate of 1 g per 1 flaw area, and decarburization annealing was performed at 850°C for 3 minutes in a humid atmosphere. After applying an annealing separator containing 0.5 parts by weight of sodium, final annealing was performed at 1200° C. for 20 hours using the heating cycle shown in the same table.

このときの磁気特性及び被膜特性を第4表に示す。The magnetic properties and film properties at this time are shown in Table 4.

以下余白 第3表 第4表 以上の実施例によれば、本発明は比較例に比し′ミ1磁
気特性の内BS(T)はほり同等であるがw+tzs。
According to the examples shown in Table 3 and Table 4 in the margins below, the present invention is compared to the comparative example in terms of BS(T) of the magnetic properties, but w+tzs.

(W / kg )は大巾に下り、又被膜密着性も良好
であることが判明した。
(W/kg) was found to be quite low, and the film adhesion was also found to be good.

〔発明の効果〕〔Effect of the invention〕

本発明は上述した如く、磁気特性の内、特に鉄損特性が
極めて優れ、また、被膜密着性も優れているので、方向
性電磁鋼板の製造方法において、その工業的効果は大き
い。
As described above, the present invention has extremely excellent magnetic properties, particularly iron loss properties, and excellent film adhesion, so it has great industrial effects in the method of manufacturing grain-oriented electrical steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷延鋼板表面に微細線状疵を付与した状態を示
す斜視図、 第2図は各工程における微細線状疵の状態を示す断面概
略図である。
FIG. 1 is a perspective view showing a state in which fine linear flaws are provided on the surface of a cold rolled steel sheet, and FIG. 2 is a schematic cross-sectional view showing the state of fine linear flaws in each process.

Claims (3)

【特許請求の範囲】[Claims] (1)最終板厚を有する冷延方向性電磁鋼素材に脱炭焼
鈍を施して、表面にSiO_2を主成分とするスケール
層を形成し、前記スケール上にMgOを主成分とする焼
鈍分離剤を塗布した後、最終仕上焼鈍を施して絶縁被膜
を形成する方向性電磁鋼板の製造方法において、脱炭焼
鈍の前または後の鋼板表面に圧延方向と直角方向に対し
30°以内に、間隔5mm以内、巾1mm以下、深さが
Ra値で0.3〜5μmの微細な線状疵を付与すること
、最終仕上焼鈍における昇温過程700〜950℃で1
時間以上の保持時間を設けること、更にこの間の雰囲気
ガスのPH_2O/PH_2Oを0.01〜0.2とす
ることを特徴とする著しく鉄損が低く、密着性の優れた
方向性電磁鋼板の製造方法。
(1) A cold-rolled grain-oriented electrical steel material having a final plate thickness is subjected to decarburization annealing to form a scale layer mainly composed of SiO_2 on the surface, and an annealing separator mainly composed of MgO is applied on the scale. In a method for producing a grain-oriented electrical steel sheet in which an insulating film is formed by applying final finish annealing after coating, the surface of the steel sheet is coated with 5 mm at intervals of 5 mm within 30° to the direction perpendicular to the rolling direction before or after decarburization annealing. 1 mm or less in width, with a depth of 0.3 to 5 μm in Ra value, and at a heating temperature of 700 to 950°C during final annealing.
Production of a grain-oriented electrical steel sheet with extremely low core loss and excellent adhesion, characterized by providing a holding time of more than 100 hrs, and further setting the PH_2O/PH_2O of the atmospheric gas during this time to 0.01 to 0.2. Method.
(2)最終板厚を有する冷延方向性電磁鋼素材に脱炭焼
鈍を施して、表面にSiO_2を主成分とするスケール
層を形成し、前記スケール上にMgOを主成分とする焼
鈍分離剤を塗布した後、最終仕上焼鈍を施して絶縁被膜
を形成する方向性電磁鋼板の製造方法において、脱炭焼
鈍の前または後の鋼板表面に圧延方向と直角方向に対し
30°以内に、間隔5mm以内、巾1mm以下、深さが
Ra値で0.3〜5μmの微細な線状疵を付与すること
、最終仕上焼鈍における昇温過程において、700〜9
50℃の区間の昇温率を10℃/hr以下とすること、
更にこの間の雰囲気ガスのPH_2O/PH_2を0.
01〜0.2とすることを特徴とする著しく鉄損が低く
、密着性の優れた方向性電磁鋼板の製造方法。
(2) A cold-rolled grain-oriented electrical steel material having a final plate thickness is subjected to decarburization annealing to form a scale layer mainly composed of SiO_2 on the surface, and an annealing separator mainly composed of MgO is applied on the scale. In a method for producing a grain-oriented electrical steel sheet in which an insulating film is formed by applying final finish annealing after coating, the surface of the steel sheet is coated with 5 mm at intervals of 5 mm within 30° to the direction perpendicular to the rolling direction before or after decarburization annealing. 700 to 9 in the temperature rising process during final annealing.
The temperature increase rate in the 50°C section shall be 10°C/hr or less,
Furthermore, during this period, the PH_2O/PH_2 of the atmospheric gas was set to 0.
01 to 0.2. A method for producing a grain-oriented electrical steel sheet with extremely low core loss and excellent adhesion.
(3)脱炭焼鈍前または後の鋼板表面の線状疵部に酸類
、アルカリ類、あるいはこれらの塩類等の1種又は2種
以上を疵部に処理することを特徴とする、請求項(1)
又は(2)記載の著しく鉄損が低く、密着性の優れた方
向性電磁鋼板の製造方法。
(3) Claim (1) characterized in that the linear flaws on the surface of the steel sheet are treated with one or more of acids, alkalis, or salts thereof before or after decarburization annealing. 1)
Or the method for producing a grain-oriented electrical steel sheet with extremely low iron loss and excellent adhesion as described in (2).
JP2186588A 1988-02-03 1988-02-03 Production of grain oriented electrical steel sheet having extremely good iron loss characteristics and film adhesiveness Pending JPH01198430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2186588A JPH01198430A (en) 1988-02-03 1988-02-03 Production of grain oriented electrical steel sheet having extremely good iron loss characteristics and film adhesiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2186588A JPH01198430A (en) 1988-02-03 1988-02-03 Production of grain oriented electrical steel sheet having extremely good iron loss characteristics and film adhesiveness

Publications (1)

Publication Number Publication Date
JPH01198430A true JPH01198430A (en) 1989-08-10

Family

ID=12067020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2186588A Pending JPH01198430A (en) 1988-02-03 1988-02-03 Production of grain oriented electrical steel sheet having extremely good iron loss characteristics and film adhesiveness

Country Status (1)

Country Link
JP (1) JPH01198430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508647A (en) * 2014-12-24 2018-03-29 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
EP3395963A4 (en) * 2015-12-24 2018-12-12 Posco Grain-oriented electrical steel sheet and method for manufacturing same
US12123065B2 (en) 2015-12-24 2024-10-22 Posco Co., Ltd Grain-oriented electrical steel sheet and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508647A (en) * 2014-12-24 2018-03-29 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
US11180819B2 (en) 2014-12-24 2021-11-23 Posco Grain-oriented electrical steel plate and production method therefor
EP3395963A4 (en) * 2015-12-24 2018-12-12 Posco Grain-oriented electrical steel sheet and method for manufacturing same
US12123065B2 (en) 2015-12-24 2024-10-22 Posco Co., Ltd Grain-oriented electrical steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH0369968B2 (en)
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
US4897131A (en) Grain-oriented electrical steel sheet having improved glass film properties and low watt loss
JPS6319575B2 (en)
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS6332849B2 (en)
JPH01198430A (en) Production of grain oriented electrical steel sheet having extremely good iron loss characteristics and film adhesiveness
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JPH1161261A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH067527B2 (en) Ultra-low iron loss grain-oriented silicon steel sheet and method for producing the same
JPH029111B2 (en)
JPH0327633B2 (en)
JPH025821B2 (en)
JPH0332889B2 (en)
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
JPH0327629B2 (en)
JPH0615695B2 (en) Method for producing unidirectional electrical steel sheet with excellent iron loss
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPH01198429A (en) Production of grain oriented electrical steel sheet having extremely good iron loss characteristic and film adhesiveness
JPH01191743A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss excellent in adhesive strength of film