JPS6332849B2 - - Google Patents

Info

Publication number
JPS6332849B2
JPS6332849B2 JP4539586A JP4539586A JPS6332849B2 JP S6332849 B2 JPS6332849 B2 JP S6332849B2 JP 4539586 A JP4539586 A JP 4539586A JP 4539586 A JP4539586 A JP 4539586A JP S6332849 B2 JPS6332849 B2 JP S6332849B2
Authority
JP
Japan
Prior art keywords
annealing
ultra
mirror
final
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4539586A
Other languages
Japanese (ja)
Other versions
JPS621821A (en
Inventor
Masao Iguchi
Toshihiko Funabashi
Isao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of JPS621821A publication Critical patent/JPS621821A/en
Publication of JPS6332849B2 publication Critical patent/JPS6332849B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 一方向性珪素鋼板の電気・磁気的特性の改善、
なかでも、鉄損の低減に係わる極限的な要請を満
たそうとする近年来の目覚ましい開発努力は、逐
次その実を挙げつつあるが、その実施に伴う重大
な弊害として、一方向性珪素鋼板の使用に当たつ
ての加工、組立てを経たのちいわゆるひずみ取り
焼鈍がほどこされた場合に、特性劣化の随伴を不
可避に生じて、使途についての制限を受ける不利
が指摘される。 この明細書では、ひずみ取り焼鈍のような高温
の熱履歴を経ると否とに拘わらず、上記要請を有
利に充足し得る新たな方途を拓くことについての
開発研究の成果に関連して以下に述べる。 さて一方向性珪素鋼板は、よく知られていると
おり製品の2次再結晶粒を(110)〔001〕、すなわ
ちゴス方位に、高度に集積させたもので、主とし
て変圧器その他の電気機器の鉄心として使用され
電気・磁気的特性として製品の磁束密度(B10
で代表される)が高く、鉄損(W17/50値で代表さ
れる)の低いことが要求される。 この一方向性珪素鋼板は複雑多岐にわたる工程
を経て製造されるが、今までにおびただしい発
明・改善が加えられ、今日では板厚0.30mmの製品
の磁気特性がB101.90T以上、W17/501.05W/Kg以
下、また板厚0.23mmの製品の磁気特性がB101.89T
以上、W17/500.90W/Kg以下の超低鉄損一方向性
珪素鋼板が製造されるようになつて来ている。 特に最近では省エネの見地から電力損失の低減
を至上とする要請が著しく強まり、欧米では損失
の少ない変圧器を作る場合に鉄損の減少分を金額
に換算して変圧器価格に上積みする「ロス・エバ
リユエーシヨン」(鉄損評価)制度が普吸してい
る。 (従来の技術) このような状況下において最近、一方向性珪素
鋼板の仕上焼鈍後の鋼板表面に圧延方向にほぼ直
角方向でのレーザー照射により局部微少ひずみを
導入して磁区を細分化し、もつて鉄損を低下させ
ることが提案された(特公昭57−2252号、特公昭
57−53419号、特公昭58−26405号及び特公昭58−
26406号公報参照)。 この磁区細分化技術はひずみ取り焼鈍を施さな
い、積鉄心向けトランス材料として効果的である
が、ひずみ取り焼鈍を施す、主として巻鉄心トラ
ンス材料にあつては、トーザー照射によつて折角
に導入された局部微少ひずみが焼鈍処理により開
放されて磁区幅が広くなるため、レーザー照射効
果が失われるという欠点がある。 一方これより先に特公昭52−24499号公報にお
いては、一方向性珪素鋼板の仕上げ焼鈍後の鋼板
表面を鏡面仕上げするか又はその鏡面仕上げ面上
に金属薄めつきやさらにその上に絶縁被膜を塗布
焼付けすることによる、超低鉄損一方向性珪素鋼
板の製造方法が提案されている。 しかしながらこの鏡面仕上げによる鉄損向上手
法は、工程的に採用するには、著しいコストアツ
プになる割りに鉄損低減への寄与が充分でない
上、とくに鏡面仕上後に不可欠な絶縁被膜を塗布
焼付し、さらに600℃以上の高温で長時間の歪取
り焼鈍を経る間に鋼板との密着性に問題があるた
め、現在の製造工程において採用されるに至つて
はいない。 また特公昭56−4150号公報においても鋼板表面
に鏡面仕上げした後、酸化物系セラミツクス薄膜
を蒸着する方法が提案されている。しかしながら
この方法も600℃以上の高温焼鈍を施すと鋼板と
セラミツクス層とがはく離するため、実際の製造
工程では採用できない。 (発明が解決しようとする問題点) 発明者らは上記した鏡面仕上による鉄損向上の
実効をより効果的に引き出すこと、とくに今日の
省エネ材料開発の観点では上記したごときコスト
アツプの不利を凌駕する特性、なかでも高温処理
でも特性劣化を伴うことなくして絶縁層の密着
性、耐久性の問題を克服することこそが肝要と考
え、この基本認識に立脚して、鏡面仕上後の鋼板
処理方法に根本的な再検討を加えてこの発明に到
達した。 (問題点を解決するための手段) 上記検討の結果、 C:0.01〜0.06wt%、 Si:2.5〜4.0wt%、 Mn:0.01〜0.2wt%、 Mo:0.003〜0.1wt%、 Sb:0.005〜0.2wt%、 S及びSeのうちいずれか1種又は2種合計
で0.005〜0.05wt% を含み、残部実質的にFeからなる組成、 C:0.01〜0.08wt%、 Si:2.0〜4.0wt%、 Mn:0.01〜0.2wt%、 solAl:0.005〜0.06wt%、 S:0.005〜0.05wt%、 N:0.001〜0.01wt%、 Sn:0.01〜0.5wt%、 Cu:0.01〜0.3wt% を含み、残部実質的にFeからなる組成、 C:0.01〜0.06wt%、 Si:2.0〜4.0wt%、 Mn:0.01〜0.2wt%、 S:0.005〜0.05wt%、 B:0.0003〜0.004wt%、 N:0.001〜0.01wt% を含み、残部実質的にFeからなる組成、 C:0.01〜0.08wt%、 Si:2.0〜4.0wt%、 Mn:0.01〜0.2wt%、 solAl:0.005〜0.06wt%、 S:0.005〜0.05wt%、 N:0.001〜0.01wt% を含み、残部実質的にFeからなる組成 の珪素鋼スラブを熱間圧延して得られた熱延板
に、1回又は中間焼鈍をはさむ2回の冷間圧延を
施して、最終板厚としたのち脱炭・1次再結晶焼
鈍を施し、 ついで鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布してから最終仕上焼鈍を施してフオル
ステライト質下地被膜を一たん形成した後、この
フオルステライト質下地被膜を除去し、ついで該
表面を研磨により中心線平均粗さ0.4μm以下の鏡
面状態とし、 その後、該鏡面仕上表面上にCVD法によつて Ti、Nb、Si、V、Cr、Al、Mn、B、Ni、
Co、Mo、W、Zr、Hf及びTaの窒化物及び/又
は炭化物のうちから選んだ1種以上4種以下より
成る0.005〜5μmの極薄の張力被膜を形成させる
こと(第1〜4発明)またはさらにその上に絶縁
コーテイング被膜を被成すること(第5〜8発
明)により磁気特性の熱安定性に優れる超低鉄損
一方向性珪素鋼板の製造を可能ならしめたもので
ある。 上記各発明の成功が導かれた具体的な実験に従
つて説明を進める。 C0.046重量%(以下単に%で示す)、Si3.46%、
Mn0.072%、Se0.024%、Sb0.025%、Mo0.025%
を含有し、残部実質的にFeからなる珪素鋼連鋳
スラブを1350℃で3時間加熱後熱間圧延して2.0
mm厚の熱延板とした。 その後900℃で3分間の均一化焼鈍後、950℃で
3分間の中間焼鈍を挟んで2回の冷間圧延を施し
て0.23mm厚の最終冷延板とした。 その後820℃の湿水素雰囲気中で脱炭・1次再
結晶焼鈍を施した後、鋼板表面にMgOを主成分
とする焼鈍分離剤を塗布し、ついで850℃で50時
間2次再結晶焼鈍を施した後、1200℃で7時間乾
水素中での純化焼鈍を施した。 その後まず80℃のHCl液中で酸洗して鋼板表面
のフオルステライト質下地被膜を除去した。 次に3%HFとH2O2の溶液中で化学研磨して鋼
板表面を中心線平均粗さ0.1μmの鏡面に仕上げ
た。 その後第1図に示したプラズマCVD装置を使
用した研磨して表面に膜厚1.5μmでTiNのCVD
処理を行つた。 図において1はめつき質、2は定流量反応ガス
供給管、3は鏡面仕上した試料、4は加熱ヒー
タ、5は電極である。このプラズマCVD装置の
特徴は、イオン化させた後の分子を解離させて鏡
面仕上した試料上に表面反応により付着させるこ
とを基本とし、このCVD処理後、りん酸塩とコ
ロイダルシリカとを主成分とするコーテイング液
でコーテイング処理(絶縁性塗布焼付層の成形)
を行つた。 これに対する比較のために従来の公知技術に従
い1μmの銅めつき処理を同様の研磨表面に施し
た後、やはりりん酸塩とコロイダルシリカとを主
成分とするコーテイング液でコーテイング処理を
行つた。 このときの製品の磁気特性及び密着性の実験結
果をまとめて表1に示す。
(Industrial application field) Improvement of electrical and magnetic properties of unidirectional silicon steel sheets,
In particular, the remarkable development efforts made in recent years to meet the extreme requirements of reducing iron loss are gradually bearing fruit, but one serious problem associated with their implementation is the use of grain-oriented silicon steel sheets. It has been pointed out that when so-called strain-relief annealing is applied after initial processing and assembly, deterioration of properties inevitably occurs, resulting in restrictions on usage. In this specification, the following is related to the results of research and development to open up a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) [001], or Goss, orientation, and are mainly used in transformers and other electrical equipment. Used as an iron core, the product is required to have high electrical and magnetic characteristics such as high magnetic flux density (represented by the B 10 value) and low iron loss (represented by the W 17/50 value). This unidirectional silicon steel plate is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today products with a thickness of 0.30mm have magnetic properties of B 10 1.90T or more, W 17/ 50 1.05W/Kg or less, and the magnetic properties of products with a plate thickness of 0.23mm are B 10 1.89T
As described above, ultra-low core loss unidirectional silicon steel sheets with a W 17/50 of 0.90 W/Kg or less are being manufactured. In particular, recently there has been a marked increase in the demand for reducing power loss as a top priority from the standpoint of energy conservation.・The "evaluation" (iron loss evaluation) system is becoming popular. (Prior art) Under these circumstances, recently, a method has been developed in which micro-strain is introduced into the surface of a unidirectional silicon steel plate after final annealing by laser irradiation in a direction approximately perpendicular to the rolling direction to subdivide the magnetic domains. It was proposed to reduce iron loss by
No. 57-53419, Special Publication No. 58-26405 and Special Publication No. 58-
(See Publication No. 26406). This magnetic domain refining technology is effective for transformer materials for laminated cores that are not subjected to strain relief annealing, but for transformer materials for rolled cores that are subjected to strain relief annealing, it is difficult to introduce it by tozer irradiation. The disadvantage is that the laser irradiation effect is lost because the local microstrain is released by the annealing treatment and the magnetic domain width becomes wider. On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel plate after finish annealing was mirror-finished, or the mirror-finished surface was coated with metal thinning or an insulating coating was applied thereon. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet by coating and baking has been proposed. However, this method of improving iron loss through mirror finishing cannot be adopted from a process standpoint, as it does not make a sufficient contribution to reducing iron loss at the cost of a significant increase in cost. It has not been adopted in current manufacturing processes because it has problems with adhesion to the steel plate during long strain relief annealing at high temperatures of 600°C or higher. Japanese Patent Publication No. 56-4150 also proposes a method in which a thin film of oxide ceramics is deposited on the surface of a steel plate after mirror finishing. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600°C or higher. (Problems to be Solved by the Invention) The inventors have sought to more effectively bring out the effect of improving iron loss due to the mirror finish described above, and in particular, from the viewpoint of today's development of energy-saving materials, it is an object of the present invention to outweigh the disadvantage of increased costs as described above. We believe that it is important to overcome the problems of adhesion and durability of the insulating layer without deteriorating the properties, especially during high-temperature treatment, and based on this basic understanding, we have developed a method for processing steel sheets after mirror finishing. This invention was arrived at after a fundamental reexamination. (Means for solving the problem) As a result of the above study, C: 0.01-0.06wt%, Si: 2.5-4.0wt%, Mn: 0.01-0.2wt%, Mo: 0.003-0.1wt%, Sb: 0.005 ~0.2wt%, a total of 0.005 to 0.05wt% of any one or both of S and Se, with the remainder essentially consisting of Fe, C: 0.01 to 0.08wt%, Si: 2.0 to 4.0wt %, Mn: 0.01~0.2wt%, solAl: 0.005~0.06wt%, S: 0.005~0.05wt%, N: 0.001~0.01wt%, Sn: 0.01~0.5wt%, Cu: 0.01~0.3wt% Contains, the remainder substantially consists of Fe, C: 0.01-0.06wt%, Si: 2.0-4.0wt%, Mn: 0.01-0.2wt%, S: 0.005-0.05wt%, B: 0.0003-0.004wt% , N: 0.001 to 0.01wt%, the balance substantially consisting of Fe, C: 0.01 to 0.08wt%, Si: 2.0 to 4.0wt%, Mn: 0.01 to 0.2wt%, solAl: 0.005 to 0.06wt %, S: 0.005 to 0.05 wt%, N: 0.001 to 0.01 wt%, and the remainder substantially consists of Fe. The steel plate is cold rolled twice with annealing to obtain the final thickness, then subjected to decarburization and primary recrystallization annealing.Then, an annealing separator mainly composed of MgO is applied to the surface of the steel plate before final finishing. After a forsterite base film is formed by annealing, the forsterite base film is removed, and then the surface is polished to a mirror finish with a center line average roughness of 0.4 μm or less, and then the mirror finish is applied. Ti, Nb, Si, V, Cr, Al, Mn, B, Ni,
Forming an ultra-thin tension coating of 0.005 to 5 μm consisting of one or more and four or less selected from Co, Mo, W, Zr, Hf, and Ta nitrides and/or carbides (first to fourth inventions) ) or by further forming an insulating coating film thereon (fifth to eighth inventions), it is possible to manufacture an ultra-low core loss unidirectional silicon steel sheet with excellent thermal stability of magnetic properties. The explanation will proceed according to specific experiments that led to the success of each of the above inventions. C0.046% by weight (hereinafter simply indicated as %), Si3.46%,
Mn0.072%, Se0.024%, Sb0.025%, Mo0.025%
A continuously cast silicon steel slab containing 2.0
It was made into a hot-rolled plate with a thickness of mm. Thereafter, after homogenization annealing at 900°C for 3 minutes, cold rolling was performed twice with intermediate annealing at 950°C for 3 minutes, to obtain a final cold-rolled plate with a thickness of 0.23 mm. After that, after decarburization and primary recrystallization annealing in a wet hydrogen atmosphere at 820℃, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and then secondary recrystallization annealing is performed at 850℃ for 50 hours. After this, purification annealing was performed in dry hydrogen at 1200°C for 7 hours. Thereafter, the forsterite base film on the surface of the steel plate was removed by pickling in HCl solution at 80°C. Next, chemical polishing was performed in a solution of 3% HF and H 2 O 2 to finish the steel plate surface to a mirror surface with a center line average roughness of 0.1 μm. After that, the surface was polished using the plasma CVD equipment shown in Figure 1, and TiN CVD was applied to the surface with a film thickness of 1.5 μm.
I processed it. In the figure, 1 is a plating material, 2 is a constant flow reaction gas supply pipe, 3 is a mirror-finished sample, 4 is a heater, and 5 is an electrode. The feature of this plasma CVD device is that after ionization, molecules are dissociated and attached to a mirror-finished sample through a surface reaction. Coating treatment with coating liquid (molding of insulating coating and baking layer)
I went there. For comparison, a similar polished surface was plated with copper to a thickness of 1 .mu.m in accordance with a conventionally known technique, and then coated with a coating liquid containing phosphate and colloidal silica as main components. The experimental results of the magnetic properties and adhesion of the products at this time are summarized in Table 1.

【表】【table】

【表】 ** 密着性が良好 ○
密着性が不良 ×
表1から明らかなように、現在工程的に製造さ
れている、仕上げ焼鈍中、鋼板表面上に形成され
るフオルステライト質下地被膜の上に、コーテイ
ング処理を加えた通常処理製品(a)の磁気特性は
B10が1.901T、W17/50が0.88W/Kg程度であつて
絶縁被膜の密着性は一応良好であるのに対し、仕
上焼鈍後にフオルステライト質被膜を酸洗で除去
し、ついで表面を化学研磨して鏡面仕上し、この
研磨処理表面に銅めつきを経て、コーテイング処
理した製品(b)の磁気特性はB10が1.909T、W17/50
が0.74W/Kg程度にやや改善される反面、密着性
が悪い。 ところがこの発明に従い、仕上焼鈍後フオルス
テライト質被膜を除去し、表面を化学研磨して鏡
面仕上した上でとくにCVD処理を経て同様なコ
ーテイング処理をした製品(c)の磁気特性はB10
1.918T、W17/50が0.67W/Kgときわだつた特性改
善のみならず、張力被膜はもちろん絶縁性塗布焼
付層の密着性もきわめて良好であつた。 (作用) 上述の磁気特性と密着性の向上は、CVD法に
より上掲の実験では鋼板表面上に生成させた
TiNが鋼板との密着性を高めると同時にTiNの
熱膨脹係数5.1×10-6(1/℃)が鋼板13.5×10-6
(1/℃)にくらべて小さいため、鋼板表面には
弾性張力が面上に働いて従来比類のない超低鉄損
が実現される。 ここにTiNのほか、Nb、Si、V、Cr、Al、
Mn、B、Ni、Co、Mo、W、Zr、Hf及びTaの
窒化物及び/又は炭化物についても、上掲した
TiNとほぼ同等の機能を呈する同効物質である。 この方法では組成的な微小ひずみの働きを利用
するわけではないので、熱安定性に何らの問題も
なく、ひずみ取り焼鈍の如き高温の熱履歴の下に
電気・磁気的特性に影響されることはない。 ここに仕上表面の中心線平均粗さはRa≦0.4μm
の鏡面状態とすることが必要でRa>0.4μmのとき
表面が粗いため充分な鉄損低減が期待できない。 次に張力被膜の膜厚は、0.005〜5μmの範囲で
適合し、0.005μmに満たないときは、必要な張力
付与に寄与し得ない一方、5μmをこえると、コ
ストアツプになるとともに占積率および密着性に
おいて不利が生じる。 次に一方向性珪素鋼板の製造工程について一般
的な説明を含めてより詳しく述べる。 まずこの発明において対象とする一方向性珪素
鋼板用素材の成分組成を限定する理由を以下に述
べる。 Cは、熱延あるいは冷延時に微細で均一な組織
制御に重要な役割りを果す元素であるが、0.08%
を超えて多くなると2次再結晶焼鈍前の脱炭焼鈍
時に長時間を要し生産性を低下させると共に、脱
炭も不充分となつて磁気特性の劣化を生じ、一方
0.01%未満では熱延集合組織制御が困難となつて
大きな伸長粒が形成されるため磁気特性が劣化す
るので、0.01〜0.08%の範囲に限定した。又、イ
ンヒビターとしてAlNとMnSとを同時に利用し
ない成分系においては加熱温度を低くすることが
可能であるため、Cを0.06%以下にすることが可
能である。 Siは2.0%よりすくないと電気抵抗が低く渦流
損失増大に基づく鉄損値が大きくなり、一方4.0
%より多いと冷延の際に脆性割れを生じ易いため
Siは2.0〜4.0%の範囲内にする必要がある。なお、
S及び/又はSe−Mo−Sb系及びS及び/又はSe
−Sb系においては鉄損をより良く改善するため、
Siの下限を2.5%とした。 Mnは、{110}<001>方位の2次再結晶粒の生
成を左右するインヒビターすなわち分散析出相と
してのMnSあるいはMnSeの析出に不可欠な元素
である。Mn量が0.01%未満では、1次再結晶粒
成長を抑制するためのMnSあるいはMnSeの絶対
量が不足し不完全2次再結晶を起こす。一方Mn
量が0.2%を超えると、スラブ加熱時において
MnSあるいはMnSeの解離固溶が困難となり、ま
た仮に解離固溶がおこなわれたとしても、熱間圧
延時に析出する分散析出相が粗大化し易く、イン
ヒビターとしての最適なサイズ分布が損なわれて
磁気特性が劣化する。これらの理由から、Mnは
0.01〜0.2%の範囲に限定した。 Sb及びMoはいずれも、後述のS、Seと併存す
ることにより2次再結晶時の1次粒の成長を抑制
し{110}<001>方位の2次再結晶粒の成長を促
進させ、これにより製品の磁気特性をより一層向
上させる役割を果たす。したがつてこの発明の方
法に使用さるけい素鋼素材としては、後述のS及
び/又はSeのほか、SbさらにはMoを含有するも
のを用いるものとする。ただしSbが0.2%を超え
ると冷間加工性を劣化させるとともに、磁束密度
が低下し始めて磁気特性の劣化を招き、またMo
が0.1%を超えると熱間加工性及び冷間加工性が
劣化するだけでなく鉄損特性が劣化する。一方
Sbが0.005%、又Moが0.003%に満たないと、そ
れらの添加効果に乏しいのでSbの含有量は0.005
〜0.2%、又Moの含有量は0.003〜0.1%の範囲に
規制する必要がある。 S、Seは、2次再結晶時において1次粒の成
長を抑制するインヒビターとしてのMnS、MnSe
の形成に必要な元素であり、少なくともいずれか
1種が含有されていれば良いが、その含有量が単
独添加又は複合添加いずれの場合においても0.05
%を超えると熱間及び冷間加工性が劣化するの
で、含有量の上限は0.05%とし、一方含有量が
0.005%未満ではMnS、MnSeの絶対量が不足し、
インヒビターとしての機能が得られないので、含
有量の下限は0.005%とした。 Alは、鋼中に含まれるNと結合してAlNの微
細析出物を形成し、強力なインヒビターとして作
用する。とくに冷延圧下率70〜95%の強冷延法に
よつて2次再結晶を発達させるためにはsolAlと
して0.005〜0.06%の範囲で含有させる必要があ
る。というのはAlが0.005%未満ではインヒビタ
ーとしてのAlN微細析出物の析出粒が不足し、
{110}<001>方位の2次再結晶粒の発達が不充分
となり、一方0.06%を超えるとかえつて{110}<
001>方位の2次再結晶粒の発達が悪くなるから
である。 NはAlNあるいはBNをインヒビターとして利
用する際の不可欠の元素であり、Nが0.001%よ
りも少ないとAlNあるいはBNによるインヒビタ
ー効果が弱く、一方添加量が0.01%を超えるとブ
リスターと呼ばれる表面欠陥が多発し、製品歩留
りが低下するのでNは0.001〜0.01%の範囲に規
制する必要がある。 Bは、鋼中に含まれるNと結合してBNの微細
析出物を形成し、強力なインヒビターとして作用
する。Bが0.0003%未満ではインヒビターとして
BN微細析出物の析出量が不足し、一方0.004を超
えると{110}<001>方位の2次再結晶粒の発達
が悪くなるため、Bは0.0003〜0.004%の範囲に
限定すべきである。 Snは2次再結晶粒の微細化に役立つもので0.01
%未満では効果が弱く、一方0.5%を超えるとCu
との複合添加であることもあつて圧延性および酸
洗性が劣化する。 Cuは被膜の形成にとつて好ましいもので0.01%
未満では被膜改善に効果が少なく、一方0.3%を
超えると磁気特性の面から好ましくない。 次に熱延板は800〜1100℃の均一化焼鈍を経て
1回の冷間圧延で最終板厚とする1回冷延法か又
は、通常850℃から1050℃の中間焼鈍をはさんで
さらに冷延する2回冷延法にて、後者の場合最初
の圧下率は50%から80%程度、最終の圧下率は50
%から85%程度で0.15mmから0.35mm厚の最終冷延
板厚とする。 最終冷延を終わり製品板厚に仕上げた鋼板は、
表面脱脂後750℃から850℃の湿水素中で脱炭・1
次再結晶焼鈍処理を施す。 その後鋼板表面に通常はMgOを主成分とする
焼鈍分離剤を塗布する。 その後2次再結晶焼鈍を行うが、この工程は
{110}<001>方位の2次再結晶粒を充分発達させ
るために施されるもので、通常箱焼鈍によつて直
ちに1000℃以上に昇温し、その温度に保持するこ
とによつて行われる。 この場合{110}<001>方位に、高度に揃つた
2次再結晶粒組織を発達させるためには820℃か
ら900℃の低温で保定焼鈍する方が有利であり、
そのほか例えば0.5〜15℃/hの昇温速度の徐熱
焼鈍でもよい。 2次再結晶焼鈍後の純化焼鈍は、乾水素中で
1100℃以上で1〜20時間焼鈍を行つて鋼板表面に
フオルステライト質被膜を形成するとともに鋼板
の純化を達成することが必要である。 この純化焼鈍後に鋼板表面のフオルステライト
質被膜を公知の酸洗などの化学除去法や切削、研
削などの機械的除去法又はそれらの組合せにより
除去する。 この除去処理の後化学研磨、電解研磨等の化学
的研摩やバフ研摩等の機械的研摩あるいはそれら
の組合せなど従来の手法により鋼板表面を鏡面状
態つまり中心線平均粗さ0.4μm以下に仕上げる。 その後CVDの手法により、張力被膜の混合相
を介して鏡面状態の仕上表面上に、強固に被着さ
れる。このCVD法は化学反応を生じさせるパラ
メータとか、方法の如何によつて(a)低温CVD、
高温CVD、(b)低圧CVD、常圧CVD、(c)プラズマ
CVD、(d)レーザーCVD、(e)光CVDに分類される
がこれらいずれの方法を用いてもよいが地鉄と薄
膜とを混合相を介して強固に被着させる上ではプ
ラズマCVD、レーザーCVD、光CVDなどが特に
有利である。 このCVD法により鋼板表面上に生成される極
薄の張力被膜はTiN、TiC、Si3N4、SiC、NbN、
NbC、CoN、CoC、NiC、NiN、BN、MoC、
MoN、WC、WN、ZrC、ZrN、HfC、HfNなど
のうちから選んだ1種以上4種以下からなるもの
が適当である。なおこの極薄被膜を構成する化合
物の組合わせは如何ような組合せでも、また何種
でもこの発明の効果は何ら影響されないが処理上
の複雑さやコスト上から4種以下に限定した。 さらにこれらの極薄の張力被膜上にりん酸塩と
コロイダルシリカとを主成分とする絶縁被膜の塗
布焼付を行う。この絶縁被膜形成方法は従来公知
の手法を用いてもよい。 上記のように処理された珪素鋼板は、平たん化
熱処理を行うことができる。 (実施例) 実施例 1 C:0.048%、Si:3.36%、Mn:0.066%、
Mo:0.025%、Se:0.022%、Sb:0.025%を含有
し、残部実質的にFeからなる熱延板を、900℃で
3分間の均一化焼鈍後、950℃の中間焼鈍をはさ
んで2回の冷間圧延を行つて0.23mm厚の最終冷延
板とした。 その後820℃の湿水素中で脱炭焼鈍後鋼板表面
にMgOを主成分とする焼鈍分離剤を塗布した後
850℃で50時間の2次再結晶焼鈍し、1200℃で8
時間乾水素中で純化焼鈍を行なつた。 その後酸洗によりフオルステライト質被膜を除
去後、3%HFとH2O2液中で化学研磨して鏡面仕
上げした。 その後第1図の装置を用いてCVD法により膜
厚0.5μmのTiN張力被膜を形成させた。 次にりん酸塩とコロイダルシリカとを主成分と
する絶縁性塗布焼付層を形成し、その後800℃で
2時間のひずみ取り焼鈍を行つた。 そのときの製品の磁気特性及び密着性は次のと
おりであつた。 磁気特性 B10=1.90T、W17/50=0.70W/Kg 密着性 曲げ直径30mmで180゜曲げてもはく離は
なく密着性が良好であつた。 実施例 2 C:0.065%、Si:3.38%、Mn:0.080%、Al:
0.028%、S:0.030%、N:0.0068%を含有し、
残部実質的にFeからなる熱延板を、1150℃で3
分間の均一化焼鈍後急冷処理を行い、その後300
℃の温間圧延を施して0.23mm厚の最終冷延板とし
た。 その後850℃の湿水素中で脱炭焼鈍後、表面に
MgOを主成とする焼鈍分離剤を塗布した後850℃
から1150℃まで8℃/hrで昇温して2次再結晶さ
せた後、1200℃で8時間乾水素中で純化焼鈍を行
つた。 その後酸洗によりフオルステライト質被膜を除
去し、ついで3%HFとH2O2液中で化学研磨して
鏡面仕上げした。 その後CVD法により膜厚2.5μmにてSi3N4極薄
の張力被膜を形成させ、一部の試料についてはさ
らにりん酸塩とコロイダルシリカとを主成分とす
る絶縁性塗布焼付層を形成させた後、800℃で2
時間のひずみ取り焼鈍を行つた。 そのときの製品の磁気特性及び密着性は次のと
おりであつた。 Γ絶縁被膜無しの場合 磁気特性 B10=1.95T、W17/50=0.69w/Kg 密着性 曲げ直径25mmで180゜曲げてもはく離は
なく密着性が良好であつた。 Γ絶縁被膜有りの場合 磁気特性 B10=1.95T、W17/50=0.66W/Kg 密着性 曲げ直径30mmで180゜曲げてもはく離は
なく密着性が良好であつた。 実施例 3 C:0.045%、Si:3.44%、Mn:0.068%、
Mo:0.026%、Se:0.023%、Sb:0.025%を含有
し、残部実質的にFeからなる熱延板を、900℃で
3分間の均一化焼鈍後、950℃の中間焼鈍をはさ
んで2回の冷間圧延を行つて0.20mm厚の最終冷延
板とした。 その後800℃の湿水素中で脱炭焼鈍後、鋼板表
面にMgOを主成分とする焼鈍分離剤を塗布した
後850℃で50時間の2次再結晶焼鈍し、1180℃で
10時間乾水素中で純化焼鈍を行つた。 その後酸洗により鋼板表面のフオルステライト
質被膜を除去後、3%HFとH2O2液中で化学研磨
して鏡面に仕上げた。 その後第1図の装置を用いたCVD法により膜
厚0.60μmにてTiCの極薄の張力被膜を形成させ
た。 そのときの製品の磁気特性及び密着性は次のと
おりであつた。 磁気特性 B10=1.91T、W17/50=0.69W/Kg 密着性 曲げ直径30mmで180゜曲げてもはく離は
なく密着性が良好であつた。 実施例 4 C:0.042%、Si:3.43、Mn:0.062%、Mo:
0.025%、Se:0.021%、Sb:0.025%を含有し、
残部実質的にFeからなる熱延板を900℃で3分間
の均一化焼鈍後、950℃の中間焼鈍をはさんで2
回の冷間圧延を行つて0.23mm厚の最終冷延板とし
た。 その後820℃の湿水素中で脱炭を兼ねた1次再
結晶焼鈍後鋼板表面にMgOを主成分とする焼鈍
分離剤を塗布した後850℃で50時間の2次再結晶
焼鈍し、1180℃で10時間乾水素中で鈍化焼鈍を行
つた。 その後酸洗により鋼板表面のフオルステライト
質被膜を除去後電解研磨により中心線平均粗さ
0.05μmの鏡面状態に仕上げた。 その後CVD装置を用いて鋼板表面上に種々の
窒化物、炭化物の薄膜(1.0〜1.5μm厚)形成さ
せた後、りん酸塩とコロイダルシリカを主成分と
する絶縁被膜を塗布焼付後800℃で3時間の歪み
取り焼鈍を行つた。そのときの製品の磁気特性を
表2に示す。
[Table] ** Good adhesion ○
Poor adhesion ×
As is clear from Table 1, the magnetism of the conventionally processed product (a), which is currently manufactured in a process, and in which a coating treatment is applied on the forsterite base film formed on the surface of the steel sheet during final annealing. The characteristics are
B 10 is 1.901T, W 17/50 is about 0.88W/Kg, and the adhesion of the insulating coating is good. However, after final annealing, the forsterite coating was removed by pickling, and then the surface was The magnetic properties of the product (b), which is chemically polished to a mirror finish, copper plated, and coated, have B 10 of 1.909T and W 17/50 .
Although it is slightly improved to about 0.74W/Kg, the adhesion is poor. However, according to the present invention, after final annealing, the forsterite coating was removed, the surface was chemically polished to a mirror finish, and then a similar coating was applied through CVD treatment.The magnetic properties of the product (c) were as follows :
1.918T, W 17/50 was 0.67W/Kg, which was not only a remarkable improvement in properties, but also extremely good adhesion of not only the tension coating but also the insulating coated and baked layer. (Effect) The above-mentioned improvement in magnetic properties and adhesion was achieved by the CVD method, which was produced on the surface of the steel plate in the above experiment.
TiN improves adhesion to the steel plate, and at the same time, the coefficient of thermal expansion of TiN is 5.1×10 -6 (1/℃), which is 13.5×10 -6 to the steel plate.
(1/°C), elastic tension acts on the surface of the steel sheet, achieving ultra-low iron loss unparalleled in the past. In addition to TiN, Nb, Si, V, Cr, Al,
The nitrides and/or carbides of Mn, B, Ni, Co, Mo, W, Zr, Hf and Ta are also listed above.
It is an effective substance that exhibits almost the same function as TiN. Since this method does not utilize the action of compositional microstrain, there is no problem with thermal stability, and electrical and magnetic properties are not affected by high-temperature thermal history such as strain relief annealing. There isn't. Here, the center line average roughness of the finished surface is R a ≦0.4μm
When R a >0.4 μm, the surface is rough and sufficient iron loss reduction cannot be expected. Next, the thickness of the tension coating is suitable in the range of 0.005 to 5 μm; if it is less than 0.005 μm, it will not be able to contribute to providing the necessary tension, while if it exceeds 5 μm, the cost will increase and the space factor will decrease. A disadvantage occurs in adhesion. Next, the manufacturing process of the unidirectional silicon steel sheet will be described in more detail, including a general explanation. First, the reason for limiting the composition of the material for unidirectional silicon steel sheet, which is the object of this invention, will be described below. C is an element that plays an important role in controlling fine and uniform microstructure during hot rolling or cold rolling, but at 0.08%
If the amount is more than
If it is less than 0.01%, it becomes difficult to control the hot rolling texture and large elongated grains are formed, resulting in deterioration of magnetic properties, so the content was limited to a range of 0.01 to 0.08%. Furthermore, in a component system that does not use AlN and MnS as inhibitors at the same time, the heating temperature can be lowered, so it is possible to reduce the C content to 0.06% or less. If Si is less than 2.0%, the electrical resistance will be low and the iron loss value will increase due to increased eddy current loss;
%, brittle cracks are likely to occur during cold rolling.
Si needs to be within the range of 2.0 to 4.0%. In addition,
S and/or Se-Mo-Sb system and S and/or Se
-In order to better improve iron loss in the Sb system,
The lower limit of Si was set at 2.5%. Mn is an inhibitor that controls the formation of secondary recrystallized grains with {110}<001> orientation, that is, an element essential for the precipitation of MnS or MnSe as a dispersed precipitation phase. If the amount of Mn is less than 0.01%, the absolute amount of MnS or MnSe to suppress primary recrystallized grain growth is insufficient, causing incomplete secondary recrystallization. On the other hand, Mn
If the amount exceeds 0.2%, when heating the slab
It becomes difficult to dissociate solid solution of MnS or MnSe, and even if dissociated solid solution occurs, the dispersed precipitate phase that precipitates during hot rolling tends to become coarse, and the optimal size distribution as an inhibitor is impaired, resulting in magnetic properties. deteriorates. For these reasons, Mn
It was limited to the range of 0.01-0.2%. Both Sb and Mo suppress the growth of primary grains during secondary recrystallization by coexisting with S and Se, which will be described later, and promote the growth of secondary recrystallized grains in the {110}<001> orientation. This serves to further improve the magnetic properties of the product. Therefore, the silicon steel material used in the method of the present invention should contain Sb and Mo in addition to S and/or Se, which will be described later. However, if Sb exceeds 0.2%, cold workability deteriorates, magnetic flux density begins to decrease, leading to deterioration of magnetic properties, and Mo
If it exceeds 0.1%, not only hot workability and cold workability deteriorate, but also iron loss characteristics deteriorate. on the other hand
If Sb is less than 0.005% and Mo is less than 0.003%, the effect of these additions will be poor, so the Sb content should be 0.005%.
~0.2%, and the Mo content must be regulated within the range of 0.003~0.1%. S and Se are MnS and MnSe as inhibitors that suppress the growth of primary grains during secondary recrystallization.
It is an element necessary for the formation of
%, hot and cold workability deteriorates, so the upper limit of the content is 0.05%, while the content
If it is less than 0.005%, the absolute amount of MnS and MnSe is insufficient,
Since it cannot function as an inhibitor, the lower limit of the content was set at 0.005%. Al combines with N contained in steel to form fine AlN precipitates and acts as a strong inhibitor. In particular, in order to develop secondary recrystallization by a strong cold rolling method with a cold rolling reduction of 70 to 95%, it is necessary to contain solAl in a range of 0.005 to 0.06%. This is because if the Al content is less than 0.005%, there will be insufficient precipitated grains of AlN fine precipitates as an inhibitor.
The development of secondary recrystallized grains with {110}<001> orientation becomes insufficient, and on the other hand, if it exceeds 0.06%, the {110}<
This is because the development of secondary recrystallized grains in the 001> orientation becomes poor. N is an essential element when using AlN or BN as an inhibitor. If the amount of N is less than 0.001%, the inhibitor effect of AlN or BN will be weak, while if the amount added exceeds 0.01%, surface defects called blisters will occur. Since this occurs frequently and the product yield decreases, N needs to be regulated within the range of 0.001 to 0.01%. B combines with N contained in steel to form fine BN precipitates and acts as a strong inhibitor. When B is less than 0.0003%, it acts as an inhibitor.
B should be limited to a range of 0.0003 to 0.004% because the amount of BN fine precipitates will be insufficient, and if it exceeds 0.004, the development of secondary recrystallized grains with {110}<001> orientation will deteriorate. . Sn is useful for refining secondary recrystallized grains and is 0.01
Below 0.5%, the effect is weak, while above 0.5%, Cu
Because it is added in combination with the above, rolling properties and pickling properties deteriorate. Cu is preferred for film formation and is 0.01%
If it is less than 0.3%, it will have little effect on improving the coating, while if it exceeds 0.3%, it is unfavorable from the viewpoint of magnetic properties. Next, the hot-rolled sheet is either uniformly annealed at 800-1100℃ and then cold-rolled once to reach the final thickness, or it is usually subjected to intermediate annealing at 850-1050℃ and further processed. In the two-step cold rolling method, in the latter case, the initial rolling reduction is about 50% to 80%, and the final rolling reduction is 50%.
The final cold-rolled plate thickness is 0.15mm to 0.35mm at a rate of 85% to 85%. After the final cold rolling, the steel plate is finished to the product thickness.
After surface degreasing, decarburize in wet hydrogen at 750℃ to 850℃・1
Perform the next recrystallization annealing treatment. After that, an annealing separator, usually consisting mainly of MgO, is applied to the surface of the steel plate. After that, secondary recrystallization annealing is performed, but this step is carried out to sufficiently develop secondary recrystallized grains with {110}<001> orientation, and is usually box annealed to immediately raise the temperature to 1000℃ or higher. This is done by heating and holding at that temperature. In this case, in order to develop a highly aligned secondary recrystallized grain structure in the {110}<001> orientation, it is advantageous to perform retention annealing at a low temperature of 820°C to 900°C.
In addition, slow heat annealing at a heating rate of 0.5 to 15° C./h may also be used. Purification annealing after secondary recrystallization annealing is performed in dry hydrogen.
It is necessary to perform annealing at 1100° C. or higher for 1 to 20 hours to form a forsterite film on the surface of the steel sheet and to purify the steel sheet. After this purification annealing, the forsterite coating on the surface of the steel sheet is removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and grinding, or a combination thereof. After this removal treatment, the surface of the steel plate is finished to a mirror-like state, that is, to a center line average roughness of 0.4 μm or less, by a conventional method such as chemical polishing such as chemical polishing or electrolytic polishing, mechanical polishing such as buffing, or a combination thereof. It is then firmly adhered to the mirror-finished surface via the mixed phase of the tension coating using CVD techniques. This CVD method depends on the parameters that cause the chemical reaction and the method used (a) low-temperature CVD,
High temperature CVD, (b) low pressure CVD, atmospheric pressure CVD, (c) plasma
It is classified into CVD, (d) laser CVD, and (e) optical CVD, and any of these methods can be used, but plasma CVD, laser CVD, and CVD, optical CVD, etc. are particularly advantageous. The ultra-thin tensile coating produced on the steel plate surface by this CVD method is made of TiN, TiC, Si 3 N 4 , SiC, NbN,
NbC, CoN, CoC, NiC, NiN, BN, MoC,
Suitable materials include one or more and four or less selected from MoN, WC, WN, ZrC, ZrN, HfC, HfN, etc. Although the effects of the present invention are not affected in any way by any combination of compounds constituting this ultra-thin film, the number is limited to four or less in view of processing complexity and cost. Furthermore, an insulating film containing phosphate and colloidal silica as main components is applied and baked onto these ultra-thin tension films. A conventionally known method may be used for forming this insulating film. The silicon steel plate treated as described above can be subjected to flattening heat treatment. (Example) Example 1 C: 0.048%, Si: 3.36%, Mn: 0.066%,
A hot-rolled plate containing Mo: 0.025%, Se: 0.022%, Sb: 0.025%, with the remainder substantially consisting of Fe, was uniformly annealed at 900°C for 3 minutes and then intermediately annealed at 950°C. Cold rolling was performed twice to obtain a final cold rolled sheet with a thickness of 0.23 mm. After that, after decarburization annealing in wet hydrogen at 820℃, an annealing separator mainly composed of MgO is applied to the steel plate surface.
Secondary recrystallization annealing at 850℃ for 50 hours, 8 hours at 1200℃
Purification annealing was performed in dry hydrogen for hours. Thereafter, the forsterite coating was removed by pickling, and then chemically polished in 3% HF and H 2 O to give a mirror finish. Thereafter, a TiN tension film with a thickness of 0.5 μm was formed by CVD using the apparatus shown in FIG. Next, an insulating coated and baked layer containing phosphate and colloidal silica as main components was formed, and then strain relief annealing was performed at 800°C for 2 hours. The magnetic properties and adhesion of the product at that time were as follows. Magnetic properties B 10 = 1.90T, W 17/50 = 0.70W/Kg Adhesion Even when bent 180° with a bending diameter of 30 mm, there was no peeling and the adhesion was good. Example 2 C: 0.065%, Si: 3.38%, Mn: 0.080%, Al:
Contains 0.028%, S: 0.030%, N: 0.0068%,
A hot-rolled sheet, the remainder of which is essentially Fe, is heated at 1150°C for 3
After uniform annealing for 30 minutes, rapid cooling treatment is performed, and then 300 minutes
A final cold-rolled sheet with a thickness of 0.23 mm was obtained by warm rolling at ℃. After decarburization annealing in wet hydrogen at 850℃, the surface
850℃ after applying an annealing separator mainly composed of MgO
After secondary recrystallization by raising the temperature from 1150°C to 1150°C at a rate of 8°C/hr, purification annealing was performed in dry hydrogen at 1200°C for 8 hours. Thereafter, the forsterite coating was removed by pickling, and then chemically polished in 3% HF and H 2 O to give a mirror finish. After that, an ultra-thin tension film of Si 3 N 4 was formed with a film thickness of 2.5 μm using the CVD method, and for some samples, an insulating coated and baked layer containing phosphate and colloidal silica as the main components was further formed. After that, heat at 800℃ for 2
Time strain relief annealing was performed. The magnetic properties and adhesion of the product at that time were as follows. Without Γ insulating film Magnetic properties B 10 = 1.95T, W 17/50 = 0.69w/Kg Adhesion Even when bent 180° with a bending diameter of 25 mm, there was no peeling and the adhesion was good. With Γ insulation film Magnetic properties B 10 = 1.95T, W 17/50 = 0.66W/Kg Adhesion Even when bent 180° with a bending diameter of 30 mm, there was no peeling and the adhesion was good. Example 3 C: 0.045%, Si: 3.44%, Mn: 0.068%,
A hot-rolled plate containing Mo: 0.026%, Se: 0.023%, Sb: 0.025%, with the remainder substantially consisting of Fe, was uniformly annealed at 900°C for 3 minutes and then intermediately annealed at 950°C. Cold rolling was performed twice to obtain a final cold rolled sheet with a thickness of 0.20 mm. After that, after decarburization annealing in wet hydrogen at 800℃, an annealing separator containing MgO as the main component was applied to the surface of the steel sheet, followed by secondary recrystallization annealing at 850℃ for 50 hours, and then at 1180℃.
Purification annealing was performed in dry hydrogen for 10 hours. Thereafter, the forsterite film on the surface of the steel plate was removed by pickling, and then chemically polished in a 3% HF and H 2 O solution to give a mirror finish. Thereafter, an extremely thin tension film of TiC was formed with a film thickness of 0.60 μm by CVD using the apparatus shown in FIG. The magnetic properties and adhesion of the product at that time were as follows. Magnetic properties B 10 = 1.91T, W 17/50 = 0.69W/Kg Adhesion Even when bent 180° with a bending diameter of 30 mm, there was no peeling and the adhesion was good. Example 4 C: 0.042%, Si: 3.43, Mn: 0.062%, Mo:
Contains 0.025%, Se: 0.021%, Sb: 0.025%,
After uniform annealing of the hot-rolled sheet, the remainder of which is essentially Fe, at 900°C for 3 minutes, intermediate annealing at 950°C is performed for 2 minutes.
Cold rolling was performed twice to obtain a final cold rolled sheet with a thickness of 0.23 mm. After that, after primary recrystallization annealing that also served as decarburization in wet hydrogen at 820°C, an annealing separator mainly composed of MgO was applied to the surface of the steel sheet, followed by secondary recrystallization annealing at 850°C for 50 hours, followed by 1180°C. Annealing was performed in dry hydrogen for 10 hours. After that, the forsterite film on the steel plate surface is removed by pickling, and the center line average roughness is improved by electrolytic polishing.
Finished with a mirror finish of 0.05μm. After that, a thin film (1.0 to 1.5 μm thick) of various nitrides and carbides was formed on the surface of the steel plate using a CVD device, and then an insulating film mainly composed of phosphate and colloidal silica was applied and baked at 800℃. Strain relief annealing was performed for 3 hours. Table 2 shows the magnetic properties of the product at that time.

【表】【table】

【表】 実施例 5 C:0.052%、Si:3.29%、Mn:0.072%、Al:
0.030%、S:0.020%、N:0.0073%、Sn:0.05
%、Cu:0.1%を含有し、残部実質的にFeからな
る熱延板を1180℃で2分間の均一化焼鈍後、急冷
処理を行い、その後350℃の温間圧延を施して
0.23mm厚の最終冷延板とした。 その後840℃の湿水素中で脱炭を兼ねた1次再
結晶焼鈍後、鋼板表面にMgOを主成分とする焼
鈍分離剤を塗布した後850℃で1150℃まで10℃/
hrで昇温して2次再結晶させた後、1200℃で10時
間乾水素中で鈍化焼鈍を行つた。 その後酸洗によりフオルステライト質被膜を除
去し、ついで3%HFとH2O2液中で鏡面仕上げし
た。 その後CVD法により膜厚3.2μmのTiNの張力
被膜を形成させ、一部の試料についてはさらにり
ん酸塩とコロイダルシリカを主成分とする絶縁性
塗布焼付層を形成させた後、800℃で3時間のひ
ずみ取り焼鈍を行つた。 そのときの製品の磁気特性及び密着性は次のと
おりであつた。 Γ絶縁被膜無しの場合 磁気特性 B10=1.95T、W17/50=0.71w/Kg 密着性 曲げ直径20mmで180゜曲げてもはく離は
なく密着性が良好であつた。 Γ絶縁被膜有りの場合 磁気特性 B10=1.95T、W17/50=0.68W/Kg 密着性 曲げ直径30mmで180゜曲げてもはく離は
なく密着性が良好であつた。 実施例 6 (A) C:0.039%、Si:3.36%、Mn:0.072%、
S:0.026%、Sb:0.020%、Mo:0.013%、 (B) C:0.043%、Si:3.20%、Mn:0.052%、
S:0.031%、B:0.0028%、N:0.0078% を含有し残部実質的にFeからなる一方向性珪素
鋼の熱延板を用いた。 (A)、(B)の熱延板は900℃で3分間の均一化焼鈍
後、950℃の中間焼鈍をはさんで2回の冷間圧延
を施して0.20mm厚の最終冷延板とした。 その後(A)の冷延板は脱脂後820℃、(B)の冷延板
は脱脂後840℃の湿水素中で脱炭を兼ねる1次再
結晶焼鈍を施した後、MgOを成分とする焼鈍分
離剤を鋼板表面上に塗布した後、(A)の鋼板は850
℃で50時間の2次再結晶焼鈍、(B)の鋼板は850℃
から1050℃まで8℃/hrで昇温してGoss方位2
次再結晶粒を発達させた後、1180℃の乾H2中で
10時間の鈍化焼鈍を行つた。 その後強酸洗により鋼板表面上の酸化物を除去
した後、電解研磨を行つて鋼板表面を鏡面状態に
仕上げた。 その後CVD法によつて、鋼板表面上に表3に
示す2〜4種の窒化物、炭化物および窒化物と炭
化物の極薄張力被膜(約1μm厚)を被成させた
後、りん酸塩とコロイダルシリカを主成分とする
絶縁被膜の焼付処理を行い、また一部は極薄張力
被膜のままでN2中で800℃で2時間の歪み取り焼
鈍を行つた。 そのときの製品の磁気特性を表3に示す。
[Table] Example 5 C: 0.052%, Si: 3.29%, Mn: 0.072%, Al:
0.030%, S: 0.020%, N: 0.0073%, Sn: 0.05
%, Cu: 0.1%, and the remainder substantially consists of Fe. After uniform annealing at 1180℃ for 2 minutes, a hot-rolled plate was subjected to rapid cooling treatment, and then warm rolled at 350℃.
A final cold-rolled sheet with a thickness of 0.23 mm was obtained. After that, after primary recrystallization annealing in wet hydrogen at 840℃, which also serves as decarburization, the surface of the steel plate is coated with an annealing separator mainly composed of MgO, and then heated to 850℃ until 1150℃.
After secondary recrystallization by raising the temperature to hr, annealing was performed in dry hydrogen at 1200°C for 10 hours. Thereafter, the forsterite coating was removed by pickling, and then mirror-finished in a solution of 3% HF and H 2 O. After that, a 3.2 μm thick TiN tension film was formed using the CVD method, and for some samples, an insulating coated and baked layer containing phosphate and colloidal silica as main components was formed, and then heated at 800°C for 30 minutes. Time strain relief annealing was performed. The magnetic properties and adhesion of the product at that time were as follows. Without Γ insulating film Magnetic properties B 10 = 1.95T, W 17/50 = 0.71w/Kg Adhesion Even when bent 180° with a bending diameter of 20 mm, there was no peeling and the adhesion was good. With Γ insulation film Magnetic properties B 10 = 1.95T, W 17/50 = 0.68W/Kg Adhesion Even when bent 180° with a bending diameter of 30 mm, there was no peeling and the adhesion was good. Example 6 (A) C: 0.039%, Si: 3.36%, Mn: 0.072%,
S: 0.026%, Sb: 0.020%, Mo: 0.013%, (B) C: 0.043%, Si: 3.20%, Mn: 0.052%,
A hot-rolled sheet of unidirectional silicon steel containing 0.031% S, 0.0028% B, and 0.0078% N, with the remainder substantially consisting of Fe was used. The hot-rolled sheets of (A) and (B) were uniformly annealed at 900℃ for 3 minutes, then cold-rolled twice with an intermediate annealing at 950℃, resulting in a final cold-rolled sheet with a thickness of 0.20mm. did. After that, the cold-rolled sheet in (A) is degreased at 820℃, and the cold-rolled sheet in (B) is degreased and then subjected to primary recrystallization annealing in wet hydrogen at 840℃, which also serves as decarburization. After applying the annealing separator on the steel plate surface, the steel plate in (A) has 850
Secondary recrystallization annealing at ℃ for 50 hours, (B) steel plate at 850℃
Goss direction 2 by increasing the temperature from 8℃/hr to 1050℃
After developing the recrystallized grains, in dry H2 at 1180℃
A 10-hour blunt annealing was performed. Thereafter, oxides on the surface of the steel plate were removed by strong pickling, and then electropolishing was performed to finish the surface of the steel plate to a mirror finish. Thereafter, an ultra-thin tension film (about 1 μm thick) of 2 to 4 kinds of nitrides, carbides, and nitrides and carbides shown in Table 3 was formed on the surface of the steel plate by CVD method, and then phosphate and An insulating film containing colloidal silica as a main component was baked, and some parts were subjected to strain relief annealing at 800°C for 2 hours in N2 with the ultra-thin tension film intact. Table 3 shows the magnetic properties of the product at that time.

【表】 (発明の効果) 第1〜4発明により、ひずみ取り焼鈍が施され
る使途でも有利に適合する超低鉄損の一方向性珪
素鋼板の適切な製造方法が確立され、また第5〜
8発明により、絶縁性の増強がさらに加わる。
[Table] (Effects of the Invention) According to the first to fourth inventions, an appropriate manufacturing method for ultra-low iron loss unidirectional silicon steel sheets that is advantageously suitable for applications where strain relief annealing is applied has been established; ~
8 invention further adds insulation enhancement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプラズマCVD装置の模式図である。 FIG. 1 is a schematic diagram of a plasma CVD apparatus.

Claims (1)

【特許請求の範囲】 1 C:0.01〜0.06wt%、 Si:2.5〜4.0wt%、 Mn:0.01〜0.2wt%、 Mo:0.003〜0.1wt%、 Sb:0.005〜0.2wt%、 S及びSeのうちいずれか1種又は2種合計で
0.005〜0.05wt%を含み、残部実質的にFeからな
る珪素鋼スラブを熱間圧延して得られた熱延板
に、1回又は中間焼鈍をはさむ2回の冷間圧延を
施して、最終板厚としたのち脱炭・1次再結晶焼
鈍を施し、 ついで鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布してから最終仕上焼鈍を施してフオル
ステライト質下地被膜を一たん形成した後、この
フオルステライト質下地被膜を除去し、ついで該
表面を研磨により中心線平均粗さ0.4μm以下の鏡
面状態とし、 その後、該鏡面仕上表面上にCVD法によつて Ti、Nb、Si、V、Cr、Al、Mn、B、Ni、
Co、Mo、W、Zr、Hf及びTaの窒化物及び/又
は炭化物のうちから選んだ1種以上4種以下より
成る0.005〜5μmの極薄の張力被膜を形成する ことを特徴とするひずみ取り焼鈍を施しても特性
劣化のない超低鉄損一方向性珪素鋼板の製造方
法。 2 C:0.01〜0.08wt%、 Si:2.0〜4.0wt%、 Mn:0.01〜0.2wt%、 solAl:0.005〜0.06wt%、 S:0.005〜0.05wt%、 N:0.001〜0.01wt%、 Sn:0.01〜0.5wt%、 Cu:0.01〜0.3wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して、最終板厚
としたのち脱炭・1次再結晶焼鈍を施し、 ついで鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布してから最終仕上焼鈍を施してフオル
ステライト質下地被膜を一たん形成した後、この
フオルステライト質下地被膜を除去し、ついで該
表面を研磨により中心線平均粗さ0.4μm以下の鏡
面状態とし、 その後、該鏡面仕上表面上にCVD法によつて Ti、Nb、Si、V、Cr、Al、Mn、B、Ni、
Co、Mo、W、Zr、Hf及びTaの窒化物及び/又
は炭化物のうちから選んだ1種以上4種以下より
成る0.005〜5μmの極薄の張力被膜を形成する ことを特徴とするひずみ取り焼鈍を施しても特性
劣化のない超低鉄損一方向性珪素鋼板の製造方
法。 3 C:0.01〜0.06wt%、 Si:2.0〜4.0wt%、 Mn:0.01〜0.2wt%、 S:0.005〜0.05wt%、 B:0.0003〜0.004wt%、 N:0.001〜0.01wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して、最終板厚
としたのち脱炭・1次再結晶焼鈍を施し、 ついで鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布してから最終仕上焼鈍を施してフオル
ステライト質下地被膜を一たん形成した後、この
フオルステライト質下地被膜を除去し、ついで該
表面を研磨により中心線平均粗さ0.4μm以下の鏡
面状態とし、 その後、該鏡面仕上表面上にCVD法によつて Ti、Nb、Si、V、Cr、Al、Mn、B、Ni、
Co、Mo、W、Zr、Hf及びTaの窒化物及び/又
は炭化物のうちから選んだ1種以上4種以下より
成る0.005〜5μmの極薄の張力被膜を形成する ことを特徴とするひずみ取り焼鈍を施しても特性
劣化のない超低鉄損一方向性珪素鋼板の製造方
法。 4 C:0.01〜0.08wt%、 Si:2.0〜4.0wt%、 Mn:0.01〜0.2wt%、 solAl:0.005〜0.06wt%、 S:0.005〜0.05wt%、 N:0.001〜0.01wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して、最終板厚
としたのち脱炭・1次再結晶焼鈍を施し、 ついで鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布してから最終仕上焼鈍を施してフオル
ステライト質下地被膜を一たん形成した後、この
フオルステライト質下地被膜を除去し、ついで該
表面を研磨により中心線平均粗さ0.4μm以下の鏡
面状態とし、 その後、該鏡面仕上表面上にCVD法によつて Ti、Nb、Si、V、Cr、Al、Mn、B、Ni、
Co、Mo、W、Zr、Hf及びTaの窒化物及び/又
は炭化物のうちから選んだ1種以上4種以下より
成る0.005〜5μmの極薄の張力被膜を形成する ことを特徴とするひずみ取り焼鈍を施しても特性
劣化のない超低鉄損一方向性珪素鋼板の製造方
法。 5 C:0.01〜0.06wt%、 Si:2.5〜4.0wt%、 Mn:0.01〜0.2wt%、 Mo:0.003〜0.1wt%、 Sb:0.005〜0.2wt%、 S及びSeのうちいずれか1種又は2種合計で
0.005〜0.05wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して、最終板厚
としたのち脱炭・1次再結晶焼鈍を施し ついで鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布してから最終仕上焼鈍を施してフオル
ステライト質下地被膜を一たん形成した後、この
フオルステライト質下地被膜を除去し、ついで該
表面を研磨により中心線平均粗さ0.4μm以下の鏡
面状態とし、 その後、該鏡面仕上表面上にCVD法によつて Ti、Nb、Si、V、Cr、Al、Mn、B、Ni、
Co、Mo、W、Zr、Hf及びTaの窒化物及び/又
は炭化物、のうちから選んだ1種以上4種以下よ
り成る0.005〜5μmの極薄の張力被膜を形成し、 さらに該張力被膜上に絶縁性塗布焼付層を重ね
て被着する ことを特徴とするひずみ取り焼鈍を施しても特性
劣化のない超低鉄損一方向性珪素鋼板の製造方
法。 6 C:0.01〜0.08wt%、 Si:2.0〜4.0wt%、 Mn:0.01〜0.2wt%、 solAl:0.005〜0.06wt%、 S:0.005〜0.05wt%、 N:0.001〜0.01wt%、 Sn:0.01〜0.5wt%、 Cu:0.01〜0.3wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して、最終板厚
としたのち脱炭・1次再結晶焼鈍を施し ついで鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布してから最終仕上焼鈍を施してフオル
ステライト質下地被膜を一たん形成した後、この
フオルステライト質下地被膜を除去し、ついで該
表面を研磨により中心線平均粗さ0.4μm以下の鏡
面状態とし、 その後、該鏡面仕上表面上にCVD法によつて Ti、Nb、Si、V、Cr、Al、Mn、B、Ni、
Co、Mo、W、Zr、Hf及びTaの窒化物及び/又
は炭化物、のうちから選んだ1種以上4種以下よ
り成る0.005〜5μmの極薄の張力被膜を形成し、 さらに該張力被膜上に絶縁性塗布焼付層を重ね
て被着する ことを特徴とするひずみ取り焼鈍を施しても特性
劣化のない超低鉄損一方向性珪素鋼板の製造方
法。 7 C:0.01〜0.06wt%、 Si:2.0〜4.0wt%、 Mn:0.01〜0.2wt%、 S:0.005〜0.05wt%、 B:0.0003〜0.004wt%、 N:0.001〜0.01wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して、最終板厚
としたのち脱炭・1次再結晶焼鈍を施し ついで鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布してから最終仕上焼鈍を施してフオル
ステライト質下地被膜を一たん形成した後、この
フオルステライト質下地被膜を除去し、ついで該
表面を研磨により中心線平均粗さ0.4μm以下の鏡
面状態とし、 その後、該鏡面仕上表面上にCVD法によつて Ti、Nb、Si、V、Cr、Al、Mn、B、Ni、
Co、Mo、W、Zr、Hf及びTaの窒化物及び/又
は炭化物、のうちから選んだ1種以上4種以下よ
り成る0.005〜5μmの極薄の張力被膜を形成し、 さらに該張力被膜上に絶縁性塗布焼付層を重ね
て被着する ことを特徴とするひずみ取り焼鈍を施しても特性
劣化のない超低鉄損一方向性珪素鋼板の製造方
法。 8 C:0.01〜0.08wt%、 Si:2.0〜4.0wt%、 Mn:0.01〜0.2wt%、 solAl:0.005〜0.06wt%、 S:0.005〜0.05wt%、 N:0.001〜0.01wt% を含み、残部実質的にFeからなる珪素鋼スラブ
を熱間圧延して得られた熱延板に、1回又は中間
焼鈍をはさむ2回の冷間圧延を施して、最終板厚
としたのち脱炭・1次再結晶焼鈍を施し ついで鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布してから最終仕上焼鈍を施してフオル
ステライト質下地被膜を一たん形成した後、この
フオルステライト質下地被膜を除去し、ついで該
表面を研磨により中心線平均粗さ0.4μm以下の鏡
面状態とし、 その後、該鏡面仕上表面上にCVD法によつて Ti、Nb、Si、V、Cr、Al、Mn、B、Ni、
Co、Mo、W、Zr、Hf及びTaの窒化物及び/又
は炭化物、のうちから選んだ1種以上4種以下よ
り成る0.005〜5μmの極薄の張力被膜を形成し、 さらに該張力被膜上に絶縁性塗布焼付層を重ね
て被着する ことを特徴とするひずみ取り焼鈍を施しても特性
劣化のない超低鉄損一方向性珪素鋼板の製造方
法。
[Claims] 1 C: 0.01-0.06wt%, Si: 2.5-4.0wt%, Mn: 0.01-0.2wt%, Mo: 0.003-0.1wt%, Sb: 0.005-0.2wt%, S and Se Any one or two types in total
A hot-rolled sheet obtained by hot rolling a silicon steel slab containing 0.005 to 0.05wt% with the remainder substantially consisting of Fe is cold-rolled once or twice with intermediate annealing in between to form a final sheet. After reducing the thickness of the steel sheet, decarburization and primary recrystallization annealing were performed, and then an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, followed by final annealing to form a forsterite base film. After that, this forsterite base film is removed, and the surface is polished to a mirror-like state with a center line average roughness of 0.4 μm or less, and then Ti, Nb, Si, V, Cr, Al, Mn, B, Ni,
Strain relief characterized by forming an ultra-thin tensile film of 0.005 to 5 μm consisting of one or more and four or less selected from Co, Mo, W, Zr, Hf, and Ta nitrides and/or carbides. A method for producing ultra-low iron loss unidirectional silicon steel sheets that do not deteriorate in properties even after annealing. 2 C: 0.01-0.08wt%, Si: 2.0-4.0wt%, Mn: 0.01-0.2wt%, solAl: 0.005-0.06wt%, S: 0.005-0.05wt%, N: 0.001-0.01wt%, Sn : 0.01 to 0.5 wt%, Cu: 0.01 to 0.3 wt%, and the remainder is essentially Fe. After cold rolling to achieve the final plate thickness, decarburization and primary recrystallization annealing are performed, and then an annealing separator containing MgO as the main component is applied to the steel plate surface, and final finish annealing is performed to form a fixed steel sheet. After a territe base film is formed, the forsterite base film is removed, and the surface is polished to a mirror-like state with a center line average roughness of 0.4 μm or less, and then CVD is applied to the mirror-finished surface. By Ti, Nb, Si, V, Cr, Al, Mn, B, Ni,
Strain relief characterized by forming an ultra-thin tensile film of 0.005 to 5 μm consisting of one or more and four or less selected from Co, Mo, W, Zr, Hf, and Ta nitrides and/or carbides. A method for producing ultra-low iron loss unidirectional silicon steel sheets that do not deteriorate in properties even after annealing. 3 Contains C: 0.01-0.06wt%, Si: 2.0-4.0wt%, Mn: 0.01-0.2wt%, S: 0.005-0.05wt%, B: 0.0003-0.004wt%, N: 0.001-0.01wt%. A hot-rolled plate obtained by hot rolling a silicon steel slab with the balance substantially composed of Fe is subjected to cold rolling once or twice with intermediate annealing to achieve the final plate thickness, and then decarburized. - Perform primary recrystallization annealing, then apply an annealing separator mainly composed of MgO to the surface of the steel sheet, and perform final annealing to form a forsterite base film. After removing the coating, the surface is polished to a mirror-like state with a center line average roughness of 0.4 μm or less, and then Ti, Nb, Si, V, Cr, Al, Mn are deposited on the mirror-finished surface by CVD. ,B,Ni,
Strain relief characterized by forming an ultra-thin tensile film of 0.005 to 5 μm consisting of one or more and four or less selected from Co, Mo, W, Zr, Hf, and Ta nitrides and/or carbides. A method for producing ultra-low iron loss unidirectional silicon steel sheets that do not deteriorate in properties even after annealing. 4 Contains C: 0.01-0.08wt%, Si: 2.0-4.0wt%, Mn: 0.01-0.2wt%, solAl: 0.005-0.06wt%, S: 0.005-0.05wt%, N: 0.001-0.01wt% A hot-rolled plate obtained by hot rolling a silicon steel slab with the balance substantially composed of Fe is subjected to cold rolling once or twice with intermediate annealing to achieve the final plate thickness, and then decarburized. - Perform primary recrystallization annealing, then apply an annealing separator mainly composed of MgO to the surface of the steel sheet, and perform final annealing to form a forsterite base film. After removing the coating, the surface is polished to a mirror-like state with a center line average roughness of 0.4 μm or less, and then Ti, Nb, Si, V, Cr, Al, Mn are deposited on the mirror-finished surface by CVD. ,B,Ni,
Strain relief characterized by forming an ultra-thin tensile film of 0.005 to 5 μm consisting of one or more and four or less selected from Co, Mo, W, Zr, Hf, and Ta nitrides and/or carbides. A method for producing ultra-low iron loss unidirectional silicon steel sheets that do not deteriorate in properties even after annealing. 5 C: 0.01-0.06wt%, Si: 2.5-4.0wt%, Mn: 0.01-0.2wt%, Mo: 0.003-0.1wt%, Sb: 0.005-0.2wt%, any one of S and Se Or the total of 2 types
A hot-rolled sheet obtained by hot rolling a silicon steel slab containing 0.005 to 0.05 wt% with the remainder substantially consisting of Fe is cold rolled once or twice with intermediate annealing in between to form a final After making the steel sheet thick, it is decarburized and subjected to primary recrystallization annealing. Then, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and final finish annealing is performed to form a forsterite base film. This forsterite base film is removed, and the surface is polished to a mirror-like state with a center line average roughness of 0.4 μm or less, and then Ti, Nb, Si, and V are deposited on the mirror-finished surface by CVD. , Cr, Al, Mn, B, Ni,
An ultra-thin tension film of 0.005 to 5 μm is formed from one to four selected from Co, Mo, W, Zr, Hf, and Ta nitrides and/or carbides, and further on the tension film. A method for producing an ultra-low iron loss unidirectional silicon steel sheet that does not deteriorate in characteristics even when subjected to strain relief annealing, which is characterized in that an insulating baked-on layer is deposited on top of the steel sheet. 6 C: 0.01-0.08wt%, Si: 2.0-4.0wt%, Mn: 0.01-0.2wt%, solAl: 0.005-0.06wt%, S: 0.005-0.05wt%, N: 0.001-0.01wt%, Sn : 0.01 to 0.5 wt%, Cu: 0.01 to 0.3 wt%, and the remainder is essentially Fe. After cold rolling to obtain the final plate thickness, decarburization and primary recrystallization annealing are performed. Next, an annealing separator containing MgO as a main component is applied to the steel plate surface, and final finish annealing is performed to form forsterite. After the forsterite base film is once formed, the forsterite base film is removed, and the surface is polished to a mirror-like state with a center line average roughness of 0.4 μm or less, and then CVD is applied to the mirror-finished surface. Therefore, Ti, Nb, Si, V, Cr, Al, Mn, B, Ni,
An ultra-thin tension film of 0.005 to 5 μm is formed from one to four selected from Co, Mo, W, Zr, Hf, and Ta nitrides and/or carbides, and further on the tension film. A method for producing an ultra-low iron loss unidirectional silicon steel sheet that does not deteriorate in characteristics even when subjected to strain relief annealing, which is characterized in that an insulating baked-on layer is deposited on top of the steel sheet. 7 Contains C: 0.01-0.06wt%, Si: 2.0-4.0wt%, Mn: 0.01-0.2wt%, S: 0.005-0.05wt%, B: 0.0003-0.004wt%, N: 0.001-0.01wt% A hot-rolled plate obtained by hot rolling a silicon steel slab with the balance substantially composed of Fe is subjected to cold rolling once or twice with intermediate annealing to achieve the final plate thickness, and then decarburized.・Perform primary recrystallization annealing, then apply an annealing separator mainly composed of MgO to the steel plate surface, and perform final annealing to form a forsterite base coat. is removed, and then the surface is polished to a mirror-like state with a center line average roughness of 0.4 μm or less, and then Ti, Nb, Si, V, Cr, Al, Mn, B, Ni,
An ultra-thin tension film of 0.005 to 5 μm is formed from one to four selected from Co, Mo, W, Zr, Hf, and Ta nitrides and/or carbides, and further on the tension film. A method for producing an ultra-low iron loss unidirectional silicon steel sheet that does not deteriorate in characteristics even when subjected to strain relief annealing, which is characterized in that an insulating baked-on layer is deposited on top of the steel sheet. 8 Contains C: 0.01-0.08wt%, Si: 2.0-4.0wt%, Mn: 0.01-0.2wt%, solAl: 0.005-0.06wt%, S: 0.005-0.05wt%, N: 0.001-0.01wt% A hot-rolled plate obtained by hot rolling a silicon steel slab with the balance substantially composed of Fe is subjected to cold rolling once or twice with intermediate annealing to achieve the final plate thickness, and then decarburized.・Perform primary recrystallization annealing, then apply an annealing separator mainly composed of MgO to the steel plate surface, and perform final annealing to form a forsterite base coat. is removed, and then the surface is polished to a mirror-like state with a center line average roughness of 0.4 μm or less, and then Ti, Nb, Si, V, Cr, Al, Mn, B, Ni,
An ultra-thin tension film of 0.005 to 5 μm is formed from one to four selected from Co, Mo, W, Zr, Hf, and Ta nitrides and/or carbides, and further on the tension film. A method for producing an ultra-low iron loss unidirectional silicon steel sheet that does not deteriorate in characteristics even when subjected to strain relief annealing, which is characterized in that an insulating baked-on layer is deposited on top of the steel sheet.
JP4539586A 1985-03-05 1986-03-04 Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing Granted JPS621821A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-42984 1985-03-05
JP4298485 1985-03-05

Publications (2)

Publication Number Publication Date
JPS621821A JPS621821A (en) 1987-01-07
JPS6332849B2 true JPS6332849B2 (en) 1988-07-01

Family

ID=12651298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4539586A Granted JPS621821A (en) 1985-03-05 1986-03-04 Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing

Country Status (1)

Country Link
JP (1) JPS621821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260350A (en) * 1988-04-12 1989-10-17 Hitachi Electron Eng Co Ltd Suction table for green sheet inspection device
JPH01166640U (en) * 1988-05-13 1989-11-22
WO1993001329A1 (en) * 1991-07-10 1993-01-21 Nippon Steel Corporation Unidirectional silicon steel sheet having excellent film properties

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663035B2 (en) * 1987-08-01 1994-08-17 川崎製鉄株式会社 Method for producing grain-oriented electrical steel sheet with extremely low iron loss
DE69022830T2 (en) * 1989-07-19 1996-03-14 Kawasaki Steel Co METHOD FOR PRODUCING STEEL SHEETS FOR ENAMEL WITH IMPROVED ENAMEL LIABILITY.
KR20190078059A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Method for manufacturing a grain oriented electrical steel sheet having low core loss
KR102218446B1 (en) 2017-12-26 2021-02-22 주식회사 포스코 Method for manufacutring a grain oriented electrical steel sheet having low core loss
CN113215374B (en) * 2021-05-07 2022-07-12 包头市威丰稀土电磁材料股份有限公司 Non-bottom-layer oriented silicon steel and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260350A (en) * 1988-04-12 1989-10-17 Hitachi Electron Eng Co Ltd Suction table for green sheet inspection device
JPH01166640U (en) * 1988-05-13 1989-11-22
WO1993001329A1 (en) * 1991-07-10 1993-01-21 Nippon Steel Corporation Unidirectional silicon steel sheet having excellent film properties

Also Published As

Publication number Publication date
JPS621821A (en) 1987-01-07

Similar Documents

Publication Publication Date Title
JPS6332849B2 (en)
JPS6335684B2 (en)
JPS61201732A (en) Manufacture of grain oriented silicon steel sheet having thermal stability and ultralow iron loss
JPS6354767B2 (en)
JPS6332850B2 (en)
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JPH11243005A (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacture thereof
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH0222421A (en) Production of unidirectional type silicon steel sheet having superlow iron loss
JPH075973B2 (en) Manufacturing method of ultra-low iron loss unidirectional silicon steel sheet
JPS62182222A (en) Production of grain oriented silicon steel sheet
JPH0577749B2 (en)
JPS6335685B2 (en)
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2000129357A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JPH0337845B2 (en)
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPH0413426B2 (en)
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
JPH0374488B2 (en)
JPH0693335A (en) Production of ultraflow core loss grain oriented silicon steel sheet
JPH0374486B2 (en)
JPS6335686B2 (en)
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet