JPH0222421A - Production of unidirectional type silicon steel sheet having superlow iron loss - Google Patents

Production of unidirectional type silicon steel sheet having superlow iron loss

Info

Publication number
JPH0222421A
JPH0222421A JP17078788A JP17078788A JPH0222421A JP H0222421 A JPH0222421 A JP H0222421A JP 17078788 A JP17078788 A JP 17078788A JP 17078788 A JP17078788 A JP 17078788A JP H0222421 A JPH0222421 A JP H0222421A
Authority
JP
Japan
Prior art keywords
silicon steel
annealing
iron loss
sheet
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17078788A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17078788A priority Critical patent/JPH0222421A/en
Publication of JPH0222421A publication Critical patent/JPH0222421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To attain stable superlow iron loss by subjecting a silicon steel sheet with a specific composition to decarburizing annealing, secondary recrystallization, and purification annealing, removing surface oxides, and then forming an extra thin high-tensile film of the oxide or nitride of a specific metal by a CVD method, etc. CONSTITUTION:A slab of a silicon steel which has a composition containing, by weight, 0.01-0.08% C, 2.0-4.0% St, 0.01-0.2% Mn, 0.001-0.007% S, 0.005-0.06% Al, and 0.001-0.010% N as essential components and having the balance Fe with inevitable impurities is heated to 1000-1250 deg.C and hot-rolled. The hot rolled plate is cold-rolled in an atmosphere capable of nitriding, while process-annealed between the cold rolling stages, so as to be formed into the final sheet thickness. The resulting sheet is subjected to decarburizing annealing in warm hydrogen, and a separation agent at annealing for inhibiting forsterite formation is applied to the above sheet, and then, secondary recrystallization and purification annealing are carried out. Then, oxides on the surface of this finish-annealed sheet are removed, and polishing treatment is applied. Subsequently, an extra thin high-tensile film of at least one kind selected from the nitrides and carbides of Ti, Zr, Hf, V, Nb, Ta, etc., is formed on the above sheet by means of CVD, ion plating, etc. By this method, an unidirectional type silicon steel sheet having superlow iron loss can be stably produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超低鉄損一方向性珪素鋼板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing an ultra-low iron loss unidirectional silicon steel plate.

一方向性けい素鋼板は、よ(知られているとおり製品の
2次再結晶粒を(110) (001) 、すなわちゴ
ス方位に、高度に集積させたもので、主として変圧器そ
の他の電気機器の鉄心として使用され、電気・磁気的特
性として製品の磁束密度(B、。値で代表される)が高
く、鉄損(WIT/S。値で代表される)の低いことが
要求される。
Unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) (001), or Goss orientation, and are mainly used in transformers and other electrical equipment. The product is used as an iron core, and the product is required to have high magnetic flux density (B, represented by the value) and low iron loss (WIT/S, represented by the value) as electrical and magnetic properties.

この一方向性けい素鋼板は複雑多岐にわたる工程を経て
製造されるが、今までにおびただしい発明・改善が加え
られ、今日では板厚0.30mmの製品の磁気特性が8
、。値で1.90T以上、1,7.。値は1.05W/
kg以下、また板厚0.23mmの製品の磁気特性がB
10値で1.89T以上、凱、7.。値は0.90W、
/kg以下の低鉄損一方向性けい素鋼板が製造されるよ
うになって来ている。
This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today a product with a thickness of 0.30 mm has magnetic properties of 8.
,. Value of 1.90T or more, 1,7. . The value is 1.05W/
The magnetic properties of products weighing less than 1 kg and having a plate thickness of 0.23 mm are B.
10 value 1.89T or more, Gai, 7. . The value is 0.90W,
Unidirectional silicon steel sheets with low iron loss of less than /kg are now being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバリユエーション」 (鉄損評価
)制度が普及している。
Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、特公昭5224499
号公報において、一方向性けい素鋼板の仕上げ焼鈍後の
鋼板表面を鏡面仕上げするか又はその鏡面仕上げ面上に
金属薄めっきやさらにその上に絶縁被膜を塗布焼付する
ことによる、超低鉄損一方向性けい素鋼板の製造方法が
提案されている。
(Prior art) Under these circumstances, recently, Japanese Patent Publication No. 5224499
In the publication, ultra-low iron loss is achieved by mirror-finishing the surface of a unidirectional silicon steel sheet after finish annealing, or applying thin metal plating on the mirror-finished surface or coating and baking an insulating film on top of it. A method for manufacturing unidirectional silicon steel sheets has been proposed.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアップになる割りに
鉄損低減への寄与が充分でない上と(に鏡面仕上げ後に
不可欠な絶縁被膜を塗布焼付した後の密着性に問題があ
るため、現在の製造工程において採用されるに至っては
いない。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective because it does not contribute enough to reducing iron loss despite the significant increase in cost. Due to problems with subsequent adhesion, it has not been adopted in current manufacturing processes.

また特公昭56−4150号公報においても鋼板表面を
鏡面仕上げした後、酸化物系セラミックス薄膜を蒸着す
る方法が提案されている。しかしながらこの方法は60
0℃以上の高温焼鈍を施すと鋼板とセラミック層とが剥
離するため、実際の製造工程では採用できない。
Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method
If high-temperature annealing is performed at a temperature of 0° C. or higher, the steel sheet and the ceramic layer will separate, so it cannot be used in actual manufacturing processes.

一方で最近、特開昭62−40315号公報には、従来
の珪素鋼板の製造方法のように、珪素鋼スラブを高温加
熱しインヒビターとして役立つ成分を−たん固溶させる
手順を経ることなく、最終焼鈍での二次再結晶の際に(
Si、、Al)Nを鋼板中に存在させこれをインヒビタ
ーに利用する方法が開示されているけれども安定した工
程で2次再結晶させることがまだ不可能であり、かつ十
分な低鉄損を得る製造方法とは云いがたい。
On the other hand, recently, Japanese Unexamined Patent Publication No. 62-40315 discloses that a silicon steel slab is heated to a high temperature and a component that serves as an inhibitor is dissolved in the final product without going through the process of heating a silicon steel slab to a solid solution, as in the conventional manufacturing method of silicon steel sheet. During secondary recrystallization during annealing (
Although a method has been disclosed in which Si, Al)N is present in a steel sheet and used as an inhibitor, it is still impossible to perform secondary recrystallization in a stable process and to obtain sufficiently low iron loss. It's hard to say what the manufacturing method is.

(発明が解決しようとする課題) 発明者らは、上記した鏡面仕上げによって目脂した鉄損
向上の実効をより有利に引き出すに当たり、特に今日の
省エネ材料開発の観点では上記のごときコストアップの
不利を凌駕する特性、なかでも、特性劣化を伴うことな
くして絶縁層の密着性、耐久性の問題を克服することが
肝要と考え、この基本認識に立脚し、仕上げ焼鈍済みの
方向性けい素鋼板の表面上の酸化物除去及び研磨処理後
における特別な鋼板表面処理を、特にインヒビターとし
て窒化物を利用する場合に適用することによって有利な
だけでなく安定な超低鉄損化を達成しようとするもので
ある。
(Problem to be Solved by the Invention) In order to take advantage of the improved iron loss effect achieved by the above-mentioned mirror finish, the inventors have found that, in particular, from the viewpoint of the development of energy-saving materials today, the above-mentioned disadvantages of increased costs can be avoided. We believe that it is important to overcome the problems of insulating layer adhesion and durability without deteriorating properties, and based on this basic understanding, we have developed finish-annealed grain-oriented silicon steel sheets. By applying a special steel plate surface treatment after removing oxides on the surface and polishing, especially when nitride is used as an inhibitor, we aim to achieve not only advantageous but also stable ultra-low iron loss. It is something.

(課題を解決するための手段) 発明者らは上記した従来の技術における欠点を除去し、
安定した製造工程で超低鉄損を達成すべく種々検討を加
えた結果、重量%を単に%であられすこととして、 C0.01〜0.08%、  Si  2.0〜4.0
  %、  Mn 0.01〜0.2  %、  S 
 0.001〜0.007  %、  A1 0.00
5〜0.06%、 N 0.001〜0.010%、残
部Feと不可避的不純物からなる珪素鋼スラブを100
0〜1250℃の温度で加熱後、熱間圧延を施して熱延
板とした後窒化能のある雰囲気中での中間焼鈍をはさん
で2過の冷間圧延を施して最終板厚とし、次いで湿水素
中で脱炭焼鈍した後、窒化能のある化合物を添加してフ
ォルステライト生成抑制焼鈍分離剤を塗布して、さらに
2次再結晶と純化焼鈍を施した後の仕上焼鈍板に、 その表面上の酸化物除去及び研磨処理後の綱板表面上で
CVD 、イオンプレテーイング又はイオンインプラン
テーションにより、 Tll Zr、 llf、  v、 Nb、 Ta、 
Cr、 Mo、 w、 Mn、 Co。
(Means for Solving the Problem) The inventors removed the drawbacks of the above-mentioned conventional technology, and
As a result of various studies in order to achieve ultra-low iron loss in a stable manufacturing process, we found that the weight percentage is simply %: C0.01-0.08%, Si 2.0-4.0
%, Mn 0.01-0.2%, S
0.001-0.007%, A1 0.00
5~0.06%, N 0.001~0.010%, balance Fe and unavoidable impurities.
After heating at a temperature of 0 to 1250°C, hot rolling is performed to obtain a hot rolled plate, and after intermediate annealing in an atmosphere with nitriding ability, cold rolling is performed for two passes to obtain the final plate thickness, Next, after decarburizing annealing in wet hydrogen, a compound with nitriding ability is added and an annealing separator for suppressing forsterite formation is applied, and the finished annealed plate is further subjected to secondary recrystallization and purification annealing. Tll Zr, llf, v, Nb, Ta,
Cr, Mo, w, Mn, Co.

Ni、 、Al+  B、 Siの窒化物及び/又は炭
化物のうちから選んだ少な(とも1種からなる極薄張力
被膜を被成すること からなる超低鉄損一方向性珪素鋼板の製造方法を確立し
たものであり、 またこの珪素鋼スラブは、」二記した成分のほかにSn
 0.005〜0.5%、  Cu 0.01〜1.0
%のうち1種又は2種、 又は/及びMo+ Sb、  Bのうち少な(とも1種
を合計で0.005〜0.5%を含有するときさらに好
適であることの知見を得て、この発明の完成に至ったも
のである。
A method for manufacturing an ultra-low iron loss unidirectional silicon steel sheet comprising coating an ultra-thin tensile coating consisting of a small amount (both of them) selected from nitrides and/or carbides of Ni, , Al + B, and Si. In addition to the above-mentioned components, this silicon steel slab also contains Sn.
0.005-0.5%, Cu 0.01-1.0
%, or/and Mo + a small amount of Sb, B (both of which are contained in a total of 0.005 to 0.5%). This led to the completion of the invention.

以下この発明の成功が導かれた具体的実験に従って説明
を進める。
The following will be explained in accordance with specific experiments that led to the success of this invention.

■ C0.053%、S43.35%、  Mn 0.
085%S 0.026%、  、Al 0.025%
、 N 0.0072%を含有する珪素鋼スラブ(通常
の一方向性珪素鋼素材成分)、 C0.055%、Si3.35%、  Mn 0.07
5%。
■ C0.053%, S43.35%, Mn 0.
085%S 0.026%, ,Al 0.025%
, silicon steel slab containing N 0.0072% (normal unidirectional silicon steel material composition), C 0.055%, Si 3.35%, Mn 0.07
5%.

S 0.003%、  、Al 0.026%、 N 
0.0066%、C0.054%、Si3.36%、 
 Mn 0.078%。
S 0.003%, Al 0.026%, N
0.0066%, C0.054%, Si3.36%,
Mn 0.078%.

S 0.003%、  At 0.027%、 N 0
.0069%。
S 0.003%, At 0.027%, N 0
.. 0069%.

Cu 0.1%、   Sn 0.05%、■ C0.
055%、Si3.34%、  Mn 0.077%S
 0.00wt%、  、Al 0.024%、 N 
0.0073%。
Cu 0.1%, Sn 0.05%, ■ C0.
055%, Si3.34%, Mn 0.077%S
0.00wt%, , Al 0.024%, N
0.0073%.

■ ■ Cu 0.1%、    Sn 0.05%、   M
o 0.021%、■ C0,052%、  Si 3
.36%、   Mn 0.079%。
■ ■ Cu 0.1%, Sn 0.05%, M
o 0.021%, ■ C0,052%, Si 3
.. 36%, Mn 0.079%.

S  0.00wt%、  Al  0.028%、 
 N  0.0071%。
S 0.00wt%, Al 0.028%,
N 0.0071%.

Cu 0.09%、  Sn  0.0wt%、   
Mo 0.015%。
Cu 0.09%, Sn 0.0wt%,
Mo 0.015%.

Sb 0.023% をそれぞれ含有し、残部実質的にFeより成る珪素鋼ス
ラブ(■〜■は本発明対象の素材成分の珪素鋼)を A  1380℃で5時間加熱と B  1100℃(通常のインヒビターを固溶させる加
熱温度ではなく、熱間圧延を行なうための加熱温度)で
2時間加熱と を施して熱延板とした。
Silicon steel slabs each containing 0.023% Sb and the remainder substantially Fe (■ to ■ are silicon steels with material components targeted by the present invention) were heated at A 1380°C for 5 hours and B 1100°C (normal A hot rolled sheet was obtained by heating for 2 hours at a heating temperature for hot rolling, not at a heating temperature that dissolves the inhibitor into solid solution.

その後1050℃で1分間の中間焼鈍をはさんで2回の
圧延を施し0.20mm厚の最終冷延板としたがこの中
間焼鈍の際には (a)  NH3(5%)+11□の窒化雰囲気(本発
明の条件)。
Thereafter, rolling was performed twice with intermediate annealing for 1 minute at 1050°C to obtain a final cold-rolled plate with a thickness of 0.20 mm. During this intermediate annealing, (a) NH3 (5%) + 11□ nitridation was performed. Atmosphere (conditions of the present invention).

Q))  NZ (50%)+11□(50%)の通常
雰囲気でそれぞれ処理した。その後840℃の湿水素中
で脱炭を兼ねる1次再結晶焼鈍を施した後、鋼板表面上
にフォルステライト生成反応を抑制する焼鈍分離剤Mg
O(30%) 、Al2O3(65%)、フェロ窒化マ
ンガン(5%)を塗布した。
Q)) Each was treated in a normal atmosphere of NZ (50%) + 11□ (50%). After that, after performing primary recrystallization annealing in wet hydrogen at 840°C, which also serves as decarburization, the annealing separator Mg, which suppresses the forsterite formation reaction, is applied on the steel plate surface.
O (30%), Al2O3 (65%), and ferromanganese nitride (5%) were applied.

その後850℃から10℃/hrで1150℃まで昇温
してGoss方位2次再結晶粒を発達させた後、120
0℃で8時間乾H2中で純化焼鈍を施した。
After that, the temperature was raised from 850°C to 1150°C at 10°C/hr to develop Goss-oriented secondary recrystallized grains.
Purification annealing was performed in dry H2 at 0°C for 8 hours.

その後鋼板表面上の酸化物を酸洗により除去し、電解研
磨により表面を鏡面状態Ra=0.08μm (中心線
平均粗さ)に仕上げた。その後イオンプレーティング法
(HCD法)により鋼板表面上にTiNの張力被膜を被
成した(このときの)ICD条件は加速電圧50V、加
速電流500Aで、被膜厚みは0.8μm)。
Thereafter, oxides on the surface of the steel plate were removed by pickling, and the surface was electrolytically polished to a mirror-like state Ra=0.08 μm (center line average roughness). Thereafter, a tension film of TiN was formed on the surface of the steel plate by an ion plating method (HCD method) (ICD conditions at this time were an acceleration voltage of 50 V, an acceleration current of 500 A, and a film thickness of 0.8 μm).

これらの処理を施した後の製品の磁気特性を表1にまと
めて示す。
Table 1 summarizes the magnetic properties of the products after these treatments.

表1から明らかなように■のような通常の一方向性珪素
鋼素材成分にあっては処理条件の如何によって特性に大
きな変化はあられれず、例えばBIGイ直が1.92〜
1.93T、讐1,7.。イ直は0.72〜0.77W
/kg程度である。
As is clear from Table 1, in the case of ordinary unidirectional silicon steel material compositions such as (■), the properties do not change significantly depending on the processing conditions.
1.93T, enemy 1,7. . Direct power is 0.72 to 0.77W
/kg.

これに対して本発明対象の珪素鋼素材成分■〜■では、
磁気特性が実験条件により極端に異り、磁気特性が最良
となる条件は加熱条件でBの低温加熱がまた、中間焼鈍
条件については(a)の窒化雰囲気での処理がそれぞれ
適合し、そのときの磁気特性はtl+o値が1.93〜
1.94Tであり、WI7150値は0.58〜0.5
9W/kgときわめて低い鉄損を示すことが注目される
On the other hand, in the silicon steel material components ■ to ■, which are the subject of the present invention,
The magnetic properties are extremely different depending on the experimental conditions, and the best conditions for the magnetic properties are heating conditions such as low-temperature heating of B, and for intermediate annealing conditions, treatment in a nitriding atmosphere (a) is suitable. The magnetic properties of the tl+o value are 1.93~
1.94T, WI7150 value is 0.58-0.5
It is noteworthy that the iron loss is extremely low at 9 W/kg.

(作 用) このように本発明に従う鋼スラブの素材成分を用いて、
低温加熱の下に、中間焼鈍の際窒化雰囲気で処理したと
きその後のTi被膜を被成したのちの磁気特性、特に鉄
…の急激な向上がもたらされている。
(Function) As described above, using the material components of the steel slab according to the present invention,
When treated in a nitriding atmosphere during intermediate annealing under low-temperature heating, a rapid improvement in magnetic properties, especially for iron, has been brought about after the subsequent Ti coating has been formed.

この理由は明白に解明されたわけではないが以下に示す
理由によると思われる。
Although the reason for this has not been clearly elucidated, it is thought to be due to the following reasons.

すなわち■のスラブ加熱を低くすることによって熱延仕
上げ温度を低くすることができるため鋼板表面近傍に発
生するGoss方位2次再結晶核発生頻度を高めること
が可能である。■このときの使用するインヒビターは従
来の高温加熱によりインヒビターを固溶させなければな
らない(、AlN+Mn5)ではなく、特開昭62−4
0315号公報に開示されている(Si、Al)Nであ
ると考えられるが、その際熱延中に生成されたGoss
核を2次再結晶処理工程にまで有効に継承させるには本
発明で開示したように中間焼鈍において窒化雰囲気にす
ることによって(Si、 Al)Nのインヒビター機能
を強化させることである。(このGoss核発生・継承
機構は次の発明者の解説、あるいは論文を参照:井ロ征
夫、鉄と鋼、 70 (1984)、 P、 2033
.井口征夫他9日本金属学会誌、 50 (1986)
、 P、 874. Y、 InokuLi et。
That is, by lowering the slab heating in (2), the hot rolling finishing temperature can be lowered, so it is possible to increase the frequency of Goss-oriented secondary recrystallization nuclei generated near the surface of the steel sheet. ■The inhibitor used at this time is not the conventional method in which the inhibitor must be made into a solid solution by high-temperature heating (AlN + Mn5), but the inhibitor used in JP-A-62-4
It is believed to be (Si, Al)N disclosed in Publication No. 0315, but Goss generated during hot rolling at that time
In order to effectively carry over the nuclei to the secondary recrystallization process, the inhibitor function of (Si, Al)N is strengthened by creating a nitriding atmosphere during intermediate annealing as disclosed in the present invention. (For the mechanism of Goss nuclear generation and inheritance, please refer to the following inventor's explanation or paper: Yukio Iro, Tetsu to Hagane, 70 (1984), P, 2033
.. Yukio Iguchi et al. 9 Journal of the Japan Institute of Metals, 50 (1986)
, P, 874. Y, InokuLi et.

al、、 Trans、 l5IJ、 27 (198
7)、 P、 139 、およびMet、 Trans
、、 16A (1985)、 P、 1613 )さ
らに■現行のフォルステライト被膜を生成させずに窒化
物、炭化物の張力薄膜を形成させることにより超低鉄損
を達成しうることはすでに本発明者らが開示した特開昭
62−1820号公報、昭62−1821号公報、昭6
2−1822号公報又は昭62−69502号公報等か
ら明らかで、これらを組合せる効果として有効に超低鉄
損を達成することができると考えられる。
al,, Trans, l5IJ, 27 (198
7), P, 139, and Met, Trans
, 16A (1985), P, 1613) In addition, the present inventors have already shown that ultra-low iron loss can be achieved by forming a tensile thin film of nitrides and carbides without forming the current forsterite film. JP-A-62-1820, 1982-1821, and 1982 disclosed by
This is clear from JP-A No. 2-1822 or JP-A No. 62-69502, and it is thought that ultra-low iron loss can be effectively achieved by combining these.

以上■〜■理由により超鉄損−・方向性珪素鋼板の製造
が可能となったが、次にこの発明に従う一方向性珪素鋼
板の製造工程について一般的な説明を含めてより詳しく
述べる。
The above-mentioned reasons (1) to (2) have made it possible to manufacture a grain-oriented silicon steel sheet with ultra-core loss.Next, the manufacturing process of a grain-oriented silicon steel sheet according to the present invention will be described in more detail, including a general explanation.

まずこの発明において素材の成分組成を前記の範囲に限
定した理由について説明する。
First, the reason why the component composition of the material is limited to the above range in this invention will be explained.

c  o、oi〜0.08% Cは熱延集合組織を改善するのに不可欠な元素であり、
Cが0.01%以下では集合組織制御が弱くなり大きな
バンド構造を形成して2次再結晶粒の発達を阻害する。
c o, oi ~ 0.08% C is an essential element for improving the hot rolling texture,
If C is less than 0.01%, texture control becomes weak and a large band structure is formed, inhibiting the development of secondary recrystallized grains.

またCが0.08%以上では熱延集合組織に悪影響を及
ぼすのと、脱炭の際長時間必要となるためCは0.01
〜0.08%の範囲に限定されるべきである。
Furthermore, if C exceeds 0.08%, it will have a negative effect on the hot rolling texture, and decarburization will take a long time, so C should be 0.01% or more.
It should be limited to a range of ~0.08%.

Si  2.0〜4.0% Siは、2.0%より少ないと電気抵抗が低く渦電流損
失増大に基づく鉄損値の増大を招き、一方4.0%より
多いと冷延の際にぜい性割れを生じ易くなるため、2.
0〜4.0%の範囲に限定した。
Si 2.0 to 4.0% When Si is less than 2.0%, the electrical resistance is low and the iron loss value increases due to increased eddy current loss. On the other hand, when it is more than 4.0%, it is difficult to 2. Because brittle cracks are more likely to occur.
It was limited to a range of 0 to 4.0%.

Mn  0.01〜0.2% Mnは、一方向性珪素鋼板において析出分散相としてM
nSあるいはMnSeを利用する場合にはインヒビター
形成元素として寄与するが、本発明ではインヒビターと
してMnSやMnSeを用いないのでMnの役割は加工
性の改善のみであり、そのために0.01〜0.2%の
範囲で添加することとした。
Mn 0.01-0.2% Mn is present as a precipitated dispersed phase in unidirectional silicon steel sheets.
When nS or MnSe is used, it contributes as an inhibitor-forming element, but in the present invention, since MnS or MnSe is not used as an inhibitor, the role of Mn is only to improve processability, and for that purpose, Mn is 0.01 to 0.2 It was decided to add in a range of %.

s  o、ooi〜0.007% Sは従来の一般的な一方向性珪素鋼素材成分中に0.0
15〜0.035%程度含有するが表1について示した
ところから少なくとも0.001%を必要とするが0.
007%を越えると所期した効果はもはやあられれない
のでSは0.001〜0.007%に限定される。
s o, ooi ~ 0.007% S is 0.0% in the conventional general unidirectional silicon steel material component.
It contains about 15 to 0.035%, but from what was shown in Table 1, at least 0.001% is required, but 0.
If S exceeds 0.007%, the desired effect can no longer be achieved, so S is limited to 0.001 to 0.007%.

sol  Al  0.005 〜0.06%Alは特
開昭62−40315号公報に開示されているように、
(Si、、Al)Nのインヒビターとして利用するため
重要な元素であり、効果的な1次粒成長を抑制するには
0.005〜0.06%の範囲で添加する必要がある。
sol Al 0.005 to 0.06% Al is as disclosed in Japanese Patent Application Laid-Open No. 62-40315,
(Si, Al) It is an important element because it is used as an inhibitor of N, and it needs to be added in a range of 0.005 to 0.06% to effectively suppress primary grain growth.

N  0.001〜0.01% Nは、(Si、、Al)Hのインヒビターの利用に用い
られる重要元素であり、前記^lとの兼合いから0.0
01〜0.01%の範囲で含有させることとした。
N 0.001-0.01% N is an important element used in the use of (Si, Al)H inhibitors, and in consideration of the above
The content was set to be in the range of 0.01 to 0.01%.

その他一般的にインヒビターとして利用されているCu
、 Snのうち1種又は2種で添加する場合、CuO量
は0.01〜1.0%、Snの量は0.005〜0.5
%が必要でCuは0.01%またSnは0.005%に
満たないとき そしてCuは1.0%、Snは0.5%を越えるとから
である。
Other Cu commonly used as inhibitors
, When adding one or two of Sn, the amount of CuO is 0.01 to 1.0%, and the amount of Sn is 0.005 to 0.5.
%, Cu is less than 0.01% and Sn is less than 0.005%, and Cu exceeds 1.0% and Sn exceeds 0.5%.

さらにこれらのほかMo、 Sb、  Bのうち少なく
とも1種を合計で0.005〜0.5%を珪素鋼素材中
に添加すると1次再結晶粒の粒成長を抑制する点で有利
であるが0.005%未満では抑制力を有効に働らかせ
る力が小さくまた0、5%を越えると冷間圧延の際の板
ワレと同時に脱脂の際に長時間を要し経済的でない故に
不可である。
Furthermore, in addition to these, it is advantageous to add a total of 0.005 to 0.5% of at least one of Mo, Sb, and B to the silicon steel material in terms of suppressing grain growth of primary recrystallized grains. If it is less than 0.005%, the force to effectively exert the suppressing force is small, and if it exceeds 0.5%, it will not be possible because it will cause plate cracking during cold rolling and require a long time for degreasing, making it uneconomical. be.

次にこの発明に従う一連の製造工程について具体的に説
明する。
Next, a series of manufacturing steps according to the present invention will be specifically explained.

まず素材を溶製するのに、LD転炉、電気炉、平炉その
他公知の製鋼炉を用い得るのは勿論、真空処理したり真
空溶解によることもできる。
First, to melt the material, it is possible to use an LD converter, an electric furnace, an open hearth or other known steelmaking furnaces, and it is also possible to perform vacuum treatment or vacuum melting.

次にこのように溶製された珪素鋼の溶鋼は、連続鋳造法
または造塊−分塊法によってスラブとされる。
Next, the molten silicon steel produced in this manner is made into a slab by a continuous casting method or an ingot-blowing method.

通常の一方向性珪素鋼はMnSあるいはMnSeの解離
固溶のため1350℃以上の高温に加熱されるが、この
発明ではインヒビターとして(Si、Al)Nを利用す
るのでその必要はなく 1100〜1250℃の温度で
加熱後公知の方法で熱間圧延に付される。
Ordinary unidirectional silicon steel is heated to a high temperature of 1350°C or higher to dissociate and dissolve MnS or MnSe, but in this invention, (Si, Al)N is used as an inhibitor, so there is no need to do so. After heating at a temperature of °C, it is subjected to hot rolling by a known method.

この熱間圧延のための加熱温度は1100℃に満たない
と、熱間ワレを起し、一方1250℃を越える高温で熱
延するときは、熱延板表面層のGoss方位集合組織の
優先形成をさせることが不可能となる。
If the heating temperature for hot rolling is less than 1100°C, hot cracking will occur, while if hot rolling is carried out at a high temperature exceeding 1250°C, Goss orientation texture will preferentially form in the surface layer of the hot rolled sheet. It becomes impossible to do so.

熱延板の厚みは後続の冷延工程の支配を受けるが通常1
.2〜3.0閣厚程度とすることは有利である。
The thickness of the hot rolled sheet is controlled by the subsequent cold rolling process, but is usually 1
.. It is advantageous to set the thickness to about 2 to 3.0.

次に熱延板は場合によって900〜1200″Cの高温
均一化焼鈍が施されるが、この焼鈍後急冷処理を施すこ
とが好ましい。
Next, the hot-rolled sheet is subjected to high-temperature uniform annealing at 900 to 1200''C depending on the case, but it is preferable to perform a rapid cooling treatment after this annealing.

その後鋼板は中間焼鈍をはさんで2回の冷間圧延が施さ
れる。このときの中間焼鈍温度は鋼板が回復・再結晶温
度範囲で800−1200″Cの温度範囲が好ましく、
またこのときの焼鈍雰囲気は本発明の必須条件で窒化雰
囲気としなければならない。
Thereafter, the steel plate is cold rolled twice with intermediate annealing in between. The intermediate annealing temperature at this time is preferably in the temperature range of 800-1200"C within the recovery/recrystallization temperature range of the steel plate,
Further, the annealing atmosphere at this time must be a nitriding atmosphere, which is an essential condition of the present invention.

この窒化雰囲気はNH,をH2あるいはN2雰囲気中に
1〜30%程度混合させるのが最適であるが、要は鋼板
表面からの浸窒を図ることによってインヒビター機能を
高かめるのが目的であって、その窒化手法は従来公知の
方法を使用しても良い。またこの2回の冷間圧延を施す
場合、最終の圧下率は5゜から85%の高圧下とするこ
とが望ましく、さらにこの成分系では100℃〜500
℃のパス間エージング処理を施すのが最適である。この
ときの最終冷延板厚は0.10〜0.35mm厚程度で
ある。
The optimal nitriding atmosphere is to mix 1 to 30% of NH into the H2 or N2 atmosphere, but the main purpose is to enhance the inhibitor function by nitriding from the surface of the steel plate. As the nitriding method, a conventionally known method may be used. In addition, when cold rolling is performed twice, it is desirable that the final rolling reduction is as high as 5° to 85%.
It is optimal to perform interpass aging treatment at ℃. The final cold-rolled sheet thickness at this time is approximately 0.10 to 0.35 mm.

最終冷延を終わり製品板厚に仕上げた鋼板は表面脱脂後
、750℃から850℃で1次再結晶焼鈍が施される。
After finishing the final cold rolling, the steel plate finished to the product thickness is surface degreased and then subjected to primary recrystallization annealing at 750°C to 850°C.

その後は通常ならば鋼板表面にMgOを主成分とする焼
鈍分離が塗布されるが、この発明では、−般的には仕上
げ焼鈍後の形成を不可欠としていたフォルステライトを
とくに形成させない方がその後の鋼板の鏡面処理を簡便
にするのに有効であるので、焼鈍分離剤としてA1zO
+ Zr0z+ Ti0z等を50%以上MgOに混入
して使用するのみならずさらにこの焼鈍分離剤中には特
公昭62−40315号公報に開示しであるように、2
次再結晶発達の初期段階で窒化処理することが有効なの
で、その際分離剤中に窒化能のある化合物、例えばMn
N等を添加することが必要である。
After that, normally, an annealing separation mainly composed of MgO is applied to the surface of the steel sheet, but in this invention, it is better not to form forsterite, which is generally required to be formed after finishing annealing. A1zO is used as an annealing separator because it is effective in simplifying the mirror finishing of steel plates.
Not only is 50% or more of + Zr0z + Ti0z etc. mixed into MgO, but also 2.
It is effective to carry out the nitriding treatment at the initial stage of the next recrystallization.
It is necessary to add N or the like.

その後2次再結晶焼鈍を行うが、この工程は(110)
 <001>方位の2次再結晶粒を充分発達させるため
に施されるもので、通常箱焼鈍によって直ちに1000
”C以上に昇温し、その温度に保持することによって行
われる。
After that, secondary recrystallization annealing is performed, but this step is (110)
This is done to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed to immediately
``This is done by raising the temperature above C and holding it at that temperature.

この場合(110) <OOb方位に、高度に揃った2
次再結晶粒組織を発達させるためには820℃から90
0 ’Cの低温で保定焼鈍する方が有利であり、そのほ
か例えば0.5〜15’C/hの昇温速度の除熱焼鈍で
もよい。
In this case (110) <2 highly aligned in the OOb direction
In order to develop the next recrystallized grain structure,
It is more advantageous to carry out holding annealing at a low temperature of 0'C, and in addition, heat removal annealing at a heating rate of 0.5 to 15'C/h may also be used.

2次再結晶焼鈍後の純化焼鈍は、軟水素中において11
00℃以上で1〜20時間にわたって焼鈍を行うことに
より、鋼板の純化を達成することが必要である。
Purification annealing after secondary recrystallization annealing is performed in soft hydrogen at 11
It is necessary to achieve purification of the steel plate by annealing at temperatures above 00°C for 1 to 20 hours.

この純化焼鈍後に鋼板表面の酸化物被膜を公知の酸洗な
どの化学的除去法や切削、研削などの機械的除去法又は
それらの組合わせによって除去する。
After this purification annealing, the oxide film on the surface of the steel sheet is removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and grinding, or a combination thereof.

この酸化物除去処理の後、化学研磨、電解研磨などの化
学的研磨や、ハフ研磨などの機械的研磨あるいはそれら
の組合わせなど従来の既知手法により鋼板表面を鏡面状
態つまり中心線平均粗さ0.4μm以下に仕上げる。
After this oxide removal treatment, the steel plate surface is polished to a mirror-like state, that is, the centerline average roughness is 0, by conventional known methods such as chemical polishing such as chemical polishing and electrolytic polishing, mechanical polishing such as Huff polishing, or a combination thereof. . Finish to 4μm or less.

その後鏡面仕上げ表面上に、CVD 、イオンプレーテ
ィング又はイオンインプランテーションにより、Ti、
 Zr、 Hf、  V、 Nb+ Tat Cr、 
Mot W+ Mn+Co、 Ni、 At、 Bおよ
びSiの窒化物及び/又は炭化物のうちから選んだ少な
くとも一種からなる極薄張力被膜を形成させるのである
After that, Ti,
Zr, Hf, V, Nb+ Tat Cr,
An ultra-thin tensile film made of at least one selected from Mot W+Mn+Co, Ni, At, B, and Si nitride and/or carbide is formed.

ここにかかる極薄張力被膜は0.1〜2μm程度の厚み
で形成させるのが効果的である。
It is effective to form this ultra-thin tension film with a thickness of about 0.1 to 2 μm.

そしてこのようにして生成した極薄張力被膜上に、りん
酸塩とコロイダルシリカを主成分とする絶縁被膜の塗布
処理を行うことは、100万KVAにも上る大容量トラ
ンスの使途においては当然に必要であり、この絶縁性焼
付層の形成の如きは、従来公知の手法をそのまま用いる
ことができる。
Applying an insulating film containing phosphate and colloidal silica as the main components to the ultra-thin tension film produced in this way is of course necessary for use in large-capacity transformers of up to 1 million KVA. This is necessary, and conventional methods such as the formation of this insulating baked layer can be used as they are.

(実施例) 実施■よ 表2に示す6種の成分系の珪素鋼スラブを1100℃で
加熱後熱延して1.6 m厚の熱延板とした。その後1
050″Cで1分間の中間焼鈍をはさんで2回の冷間圧
延を施して0.20mm厚の最終冷延板とした。
(Example) According to Example 1, a silicon steel slab having the six types of components shown in Table 2 was heated at 1100° C. and then hot rolled into a hot rolled plate having a thickness of 1.6 m. then 1
Cold rolling was performed twice with intermediate annealing for 1 minute at 050''C to obtain a final cold rolled sheet with a thickness of 0.20 mm.

なお中間焼鈍の際には5%NH,+50%H2+45%
N2の窒化雰囲気中で行なった。
In addition, during intermediate annealing, 5% NH, + 50% H2 + 45%
The test was carried out in a nitriding atmosphere of N2.

その後840℃の湿水素中で脱炭・1次再結晶焼鈍を行
なった後、鋼板表面上にMgO(30%)、 Ah03
(60%) 、 Zr0z (5%)、フェロ窒化マン
ガン(5%)を含有する焼鈍分離剤を塗布した後、85
0℃から1150℃まで8’C/brで昇温してGos
s方位2次再結晶粒を発達させた後、1200℃で10
時間乾H2中で純化焼鈍を行なった。
After that, after decarburization and primary recrystallization annealing in wet hydrogen at 840°C, MgO (30%) and Ah03 were deposited on the steel plate surface.
After applying an annealing separator containing (60%), Zr0z (5%), and ferromanganese nitride (5%), 85
Gos by increasing the temperature from 0℃ to 1150℃ at 8'C/br
After developing s-oriented secondary recrystallized grains, 10
Purification annealing was performed in time-dry H2.

その後鋼板表面上の酸化物を酸洗により除去した後、電
解研磨により中心線平均粗さRa=0.06amに鏡面
仕上げした。
Thereafter, oxides on the surface of the steel plate were removed by pickling, and then mirror-finished to a center line average roughness Ra of 0.06 am by electrolytic polishing.

その後HCD法(加速電圧45V、加速電流500 A
、真空度7 Xl0−’Torr)により鋼板表面上に
5iJ4の膜(膜厚1.0μm)を形成させた。そのと
きの製品の磁気特性を表2にまとめて示す。
After that, HCD method (acceleration voltage 45V, acceleration current 500A
A 5iJ4 film (thickness: 1.0 μm) was formed on the surface of the steel plate under a vacuum degree of 7 Xl0-'Torr). The magnetic properties of the products at that time are summarized in Table 2.

亥ll維側 C0.056%、  S13.36  %、  Mn 
0.076%、 8%、  、Al  0.033%、
  N  0.078%、  Cu 0.09%、  
M。
Fiber side C0.056%, S13.36%, Mn
0.076%, 8%, , Al 0.033%,
N 0.078%, Cu 0.09%,
M.

0.031%、及びSb 0.015%を含有し残部実
質的にFeより成る珪素鋼スラブを1150℃で加熱後
熱間圧延を施して1.8画厚の熱延板とした。その後1
100℃の中間焼鈍をはさんで(このときの焼鈍雰囲気
は3%NH,+55%H,+48%N2の窒化性混合ガ
ス)中にて0.20mm厚の最終冷延板とした。その後
850℃の湿水系中で脱炭・1次再結晶焼鈍を施した後
、MgO(3%)、^1zos (60%) 、 Zr
0z (3%) 、 Tie。
A silicon steel slab containing 0.031% of Sb and 0.015% of Sb with the remainder substantially made of Fe was heated at 1150° C. and then hot rolled to obtain a hot rolled sheet with a thickness of 1.8. then 1
After intermediate annealing at 100° C. (the annealing atmosphere at this time was a nitriding mixed gas of 3% NH, +55% H, +48% N2), a final cold-rolled sheet with a thickness of 0.20 mm was obtained. After that, after decarburization and primary recrystallization annealing in a wet water system at 850°C, MgO (3%), ^1zos (60%), Zr
0z (3%), Tie.

(2%)、フェロ窒化マンガン(5%)を含有する焼鈍
分離剤を塗布した。
(2%) and an annealing separator containing ferromanganese nitride (5%).

ついで850″Cから8℃/hの速度で1050℃まで
昇温しで2次再結晶させたのち、さらに軟水素中で12
00℃18時間の純化焼鈍を施した。
Next, the temperature was raised from 850″C to 1050°C at a rate of 8°C/h for secondary recrystallization, and then further recrystallized in soft hydrogen for 12
Purification annealing was performed at 00°C for 18 hours.

その後酸洗により鋼板表面上の酸化物を除去し、ついで
電解研磨により鋼板表面を鏡面状態に仕上ケタのち、C
VO(表3中無印)、イオンプレーティング(表3中の
O印)およびイオンインプランテーション(表3中のΔ
印)により種々の薄膜(約0.7〜0.8μ輪厚)を被
成した。しかるのちりん酸塩とコロイダルシリカとを主
成分とするコーティング処理液を塗布・焼付けて絶縁被
膜を形成させた。
After that, oxides on the surface of the steel plate are removed by pickling, and the surface of the steel plate is polished to a mirror finish by electrolytic polishing.
VO (no mark in Table 3), ion plating (O mark in Table 3) and ion implantation (Δ in Table 3)
Various thin films (approximately 0.7 to 0.8 μm thick) were deposited using the following methods. An insulating film was formed by applying and baking a coating treatment liquid containing phosphate and colloidal silica as main components.

得られた各製品の磁気特性について調べた結果を表3に
まとめて示す。
Table 3 summarizes the results of investigating the magnetic properties of each product obtained.

裏  3 なお、上記の各製品板は、800℃1120minのひ
ずみ取り焼鈍後においても特性劣化はみとめられない。
Back 3 In addition, in each of the above-mentioned product plates, no deterioration in characteristics was observed even after strain relief annealing at 800° C. for 1120 minutes.

(発明の効果) 上記のようにして、超低鉄損一方向性珪素鋼板の製造が
安定した工程で有利に可能となる。
(Effects of the Invention) As described above, it is advantageously possible to manufacture an ultra-low iron loss unidirectional silicon steel plate using a stable process.

Claims (1)

【特許請求の範囲】 1、C0.01〜0.08wt%、 Si2.0〜4.0wt%、 Mn0.01〜0.2wt%、 S0.001〜0.007wt%、 Al0.005〜0.06wt%、 N0.001〜0.010wt%、 残部Feと不可避的不純物からなる珪素鋼 スラブを1000〜1250℃の温度で加熱後、熱間圧
延を施して熱延板とした後窒化能のある雰囲気中での中
間焼鈍をはさんで2回の冷間圧延を施して最終板厚とし
、次いで湿水素中で脱炭焼鈍した後、窒化能のある化合
物を添加したフォルステライト生成抑制焼鈍分離剤を塗
布して、さらに2次再結晶と純化焼鈍を施した仕上焼鈍
板に、 その表面上の酸化物除去及び研磨処理後の 鋼板表面上でCVD、イオンプレーティング又はイオン
インプランテーションにより、 Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、
Mn、Co、Ni、Al、B、Siの窒化物及び/又は
炭化物のうちから選んだ少なくとも1種からなる極薄張
力被膜を被成すること を特徴とする、超低鉄損一方向性珪素鋼板の製造方法。 2、請求項1において、珪素鋼スラブが、 C0.01〜0.08wt%、 Si2.0〜4.0wt%、 Mn0.01〜0.2wt%、 S0.001〜0.007wt%、 Al0.005〜0.06wt%、 N0.001〜0.010wt%と Sn0.005〜0.5wt%、Cu0.01〜1.0
wt%のうちの1種又は2種と を含有し、残部Feと不可避不純物からなる組成を有す
るものとすること を特徴とする、超低鉄損一方向性珪素鋼板の製造方法。 3、請求項1において、珪素鋼スラブが、 C0.01〜0.08wt%、 Si2.0〜4.0wt%、 Mn0.01〜0.2wt%、 S0.001〜0.007wt%、 Al0.005〜0.06wt%。 N0.001〜0.010wt%と Mo、Sb及びBのうち少なくとも1種を合計で0.0
05〜0.5wt%と を含有し、残部Feと不可避不純物からなる組成を有す
るものとすること を特徴とする、超低鉄損一方向性珪素鋼板の製造方法。 4、請求項1において、 C0.01〜0.08wt%、 Si2.0〜4.0wt%、 Mn0.01〜0.2wt%、 S0.001〜0.007wt%、 Al0.005〜0.06wt%。 N0.001〜0.010wt%と Sn0.005〜0.5wt%、Cu0.01〜1.0
wt%のうちの1種又は2種並びに Mo、Sb及びBのうち少なくとも1種を合計で0.0
05〜0.5wt%と を含有し、残部Feと不可避不純物からなる組成を有す
るものとすること を特徴とする、超低鉄損一方向性珪素鋼板の製造方法。
[Claims] 1. C0.01-0.08wt%, Si2.0-4.0wt%, Mn0.01-0.2wt%, S0.001-0.007wt%, Al0.005-0. After heating a silicon steel slab consisting of 0.06wt%, N0.001~0.010wt%, balance Fe and unavoidable impurities at a temperature of 1000~1250°C, and hot rolling it into a hot rolled sheet, it has nitriding ability. An annealing separator for suppressing forsterite formation with the addition of a compound with nitriding ability after cold rolling twice in an atmosphere to obtain the final thickness, followed by decarburization annealing in wet hydrogen. Ti, Ti, Ti, etc. are applied to the finished annealed plate which has been coated with Ti, and further subjected to secondary recrystallization and purification annealing, and then CVD, ion plating or ion implantation is performed on the surface of the steel plate after removal of oxides on the surface and polishing treatment. Zr, Hf, V, Nb, Ta, Cr, Mo, W,
Ultra-low core loss unidirectional silicon coated with an ultra-thin tensile coating made of at least one selected from nitrides and/or carbides of Mn, Co, Ni, Al, B, and Si. Method of manufacturing steel plates. 2. In claim 1, the silicon steel slab contains: C0.01-0.08wt%, Si2.0-4.0wt%, Mn0.01-0.2wt%, S0.001-0.007wt%, Al0. 005~0.06wt%, N0.001~0.010wt%, Sn0.005~0.5wt%, Cu0.01~1.0
A method for producing an ultra-low iron loss unidirectional silicon steel sheet, characterized in that the composition contains one or two of the following wt%, and the remainder is Fe and unavoidable impurities. 3. In claim 1, the silicon steel slab contains: C0.01-0.08wt%, Si2.0-4.0wt%, Mn0.01-0.2wt%, S0.001-0.007wt%, Al0. 005-0.06wt%. N0.001 to 0.010 wt% and at least one of Mo, Sb and B in total 0.0
A method for producing an ultra-low iron loss unidirectional silicon steel sheet, characterized in that the composition contains 0.05 to 0.5 wt%, with the balance consisting of Fe and unavoidable impurities. 4. In claim 1, C0.01-0.08wt%, Si2.0-4.0wt%, Mn0.01-0.2wt%, S0.001-0.007wt%, Al0.005-0.06wt%. %. N0.001-0.010wt%, Sn0.005-0.5wt%, Cu0.01-1.0
One or two of wt% and at least one of Mo, Sb and B in total 0.0
A method for producing an ultra-low iron loss unidirectional silicon steel sheet, characterized in that the composition contains 0.05 to 0.5 wt%, with the balance consisting of Fe and unavoidable impurities.
JP17078788A 1988-07-11 1988-07-11 Production of unidirectional type silicon steel sheet having superlow iron loss Pending JPH0222421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17078788A JPH0222421A (en) 1988-07-11 1988-07-11 Production of unidirectional type silicon steel sheet having superlow iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17078788A JPH0222421A (en) 1988-07-11 1988-07-11 Production of unidirectional type silicon steel sheet having superlow iron loss

Publications (1)

Publication Number Publication Date
JPH0222421A true JPH0222421A (en) 1990-01-25

Family

ID=15911359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17078788A Pending JPH0222421A (en) 1988-07-11 1988-07-11 Production of unidirectional type silicon steel sheet having superlow iron loss

Country Status (1)

Country Link
JP (1) JPH0222421A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016462A1 (en) * 1990-04-13 1991-10-31 Nippon Steel Corporation Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
JPH05222489A (en) * 1992-02-06 1993-08-31 Nippon Steel Corp Grain oriented silicon steel sheet having superior workability, high magnetic flux density and super low core loss and its manufacture
EP3733903A4 (en) * 2017-12-26 2020-11-04 Posco Grain-oriented electrical steel sheet and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016462A1 (en) * 1990-04-13 1991-10-31 Nippon Steel Corporation Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
US5597424A (en) * 1990-04-13 1997-01-28 Nippon Steel Corporation Process for producing grain oriented electrical steel sheet having excellent magnetic properties
JPH05222489A (en) * 1992-02-06 1993-08-31 Nippon Steel Corp Grain oriented silicon steel sheet having superior workability, high magnetic flux density and super low core loss and its manufacture
EP3733903A4 (en) * 2017-12-26 2020-11-04 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
US11530462B2 (en) 2017-12-26 2022-12-20 Posco Holdings Inc. Grain-oriented electrical steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US5779819A (en) Grain oriented electrical steel having high volume resistivity
KR930001330B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
KR940008932B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JPS6335684B2 (en)
JPS6332849B2 (en)
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
JPH0222421A (en) Production of unidirectional type silicon steel sheet having superlow iron loss
KR950009760B1 (en) Method of manufacturing grain oriented silicon steel sheet
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
KR102319831B1 (en) Method of grain oriented electrical steel sheet
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS6148761B2 (en)
JPS6354767B2 (en)
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS6332850B2 (en)
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS6254846B2 (en)
JPH0374486B2 (en)
JPS62182222A (en) Production of grain oriented silicon steel sheet