JPH10130727A - Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density - Google Patents

Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density

Info

Publication number
JPH10130727A
JPH10130727A JP8284944A JP28494496A JPH10130727A JP H10130727 A JPH10130727 A JP H10130727A JP 8284944 A JP8284944 A JP 8284944A JP 28494496 A JP28494496 A JP 28494496A JP H10130727 A JPH10130727 A JP H10130727A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
magnetic flux
flux density
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8284944A
Other languages
Japanese (ja)
Other versions
JP3489945B2 (en
Inventor
Nobunori Fujii
宣憲 藤井
Osamu Tanaka
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP28494496A priority Critical patent/JP3489945B2/en
Publication of JPH10130727A publication Critical patent/JPH10130727A/en
Application granted granted Critical
Publication of JP3489945B2 publication Critical patent/JP3489945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To increase the magnetic flux density of a steel sheet by coating the surface of a steel sheet with a separation agent for annealing added with specified components and executing secondary recrystallization finish annealing. SOLUTION: As for MgO used for a separation agent for annealing, for obtaining a uniform mirror finished face, the grain size is limited in such a manner that the ratio of the ones having <=10μm grain diameter is regulated to >=30%. Furthermore, its CAA value is prescribed to 50 to 300sec. Moreover, the content of hydrated water is prescribed to <=5%. Then, as for the added substance to MgO, one or more kinds among the chlorides, carbonates, nitrates, sulfates and sulfides are blended by 2 to 30 pts.wt. to 100 pts.wt. MgO. In this way, suitably thin primary coating is formed on the surface of the steel sheet in a stage prior to finish annealing, primary coating is decomposed by etching reaction of Fe in a coating layer in the poststage of temp. rising, and, by the subsequent high temp. annealing, the surface is subjected to thermal etching and is mirror-finished. Thus, this mirror finishin is combined with the conventional addition of Bi, its magnetic flux density can furthermore be increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主として変圧器その
他の電気機器等の鉄心として利用される方向性電磁鋼板
の製造方法に関するものである。特に、{110}<0
01>方位すなわちゴス方位を高度に発達させたBi添
加高磁束密度一方向性電磁鋼板の製造方法とその表面の
鏡面化手段、及び磁区細分化手段を効果的に導入するこ
とにより、鉄損特性の向上を工業的に低コストで達成す
る製造方法を開示するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet mainly used as an iron core of a transformer or other electric equipment. In particular, {110} <0
01> orientation, that is, a method for producing a Bi-added high magnetic flux density unidirectional magnetic steel sheet having a highly developed Goss orientation, and a method for effectively introducing a mirror-polishing means and a magnetic domain refining means on the surface thereof, thereby improving iron loss characteristics. It is intended to disclose a production method which achieves the improvement of the production at low cost industrially.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、軟磁性材料として
主にトランスその他の電気機器の鉄心材料に使用されて
いるもので、磁気特性としては励磁特性と鉄損特性が良
好でなくてはならない。この励磁特性を表す指標とし
て、通常は磁束密度B8 (磁場の強さ800A/mにお
ける磁束密度)が用いられ、鉄損特性を表す指標とし
て、W17/50 (50Hzで1.7Tまで磁化させたときの
単位重量あたりの鉄損)が用いられる。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as a soft magnetic material for core materials of transformers and other electric equipment, and must have good magnetic properties such as excitation properties and iron loss properties. No. Normally, magnetic flux density B 8 (magnetic flux density at a magnetic field strength of 800 A / m) is used as an index representing the excitation characteristics, and W 17/50 (magnetization up to 1.7 T at 50 Hz) is used as an index representing iron loss characteristics. (Iron loss per unit weight at the time of the application).

【0003】一方向性電磁鋼板は、Siを0.8〜4.
8%含有し、製造工程の最終段階の900℃以上の温度
での仕上焼鈍工程で二次再結晶を起こさせ、鋼板面に
{110}面、圧延方向に<001>軸をもったいわゆ
るゴス組織を発達させることによって得られる。そのな
かでも、磁束密度B8 が1.88T以上の優れた励磁特
性をもつものは高磁束密度一方向性電磁鋼板とよばれて
いる。高磁束密度電磁鋼板の代表的製造方法としては、
特公昭40−15644号公報、特公昭51−1346
9号公報等があげられる。現在世界的規模で生産されて
いる高磁束密度一方向性電磁鋼板は、上記2特許を基本
として生産されていると云える。しかし上記特許に基ず
く製品の磁束密度B8 は1.88Tから高々1.95T
程度であり、例えば3%Si鋼の飽和磁束密度2.03
Tの95%程度の値を示しているに過ぎない。そして、
近年省エネルギー、省資源への社会的要求は益々厳しく
なり、一方向性電磁鋼板の鉄損低減、磁化特性改善への
要求も熾烈になってきている。
[0003] The grain-oriented electrical steel sheet contains 0.8 to 4.
8%, secondary recrystallization occurs in the final annealing step at a temperature of 900 ° C. or higher in the final stage of the manufacturing process, so-called goss having a {110} plane on the steel sheet surface and a <001> axis in the rolling direction. Obtained by developing tissue. Among them, the magnetic flux density B 8 those with more excellent excitation characteristics 1.88T is called high flux density grain-oriented electrical steel sheet. As a typical manufacturing method of high magnetic flux density electromagnetic steel sheet,
JP-B-40-15644, JP-B-51-1346
No. 9 publication. It can be said that the high magnetic flux density unidirectional electrical steel sheet currently produced on a worldwide scale is produced based on the above two patents. However the magnetic flux density B 8 of the base Nuisance product in Patent at most from 1.88T 1.95 T
For example, the saturation magnetic flux density of 3% Si steel is 2.03.
It only shows a value of about 95% of T. And
In recent years, social demands for energy savings and resource savings have become increasingly severe, and demands for reduction of iron loss and improvement of magnetization properties of unidirectional magnetic steel sheets have also become fierce.

【0004】ところで、一般に磁束密度B8 が高くなる
とともに製品の結晶粒が大きくなる傾向があり、高磁束
密度電磁鋼板によりB8 を高くしても180°磁区巾が
大きくなるために渦電流損が増大し、冶金学的にはこれ
以上ので鉄損改善の期待が望まれない。この観点から技
術的な鉄損低減化の手法としてレーザー照射等を用いた
磁区制御技術が特公昭57−2252号公報、特公昭5
8−5968号公報、特開昭58−26405号公報等
により確立された。また、該方法による鉄損の低減はレ
ーザー照射によって導入された歪に起因するので、トラ
ンスに成形したのちに歪取り焼鈍を必要とする巻鉄心ト
ランス用としては使用することができないため、例えば
特公昭62−53579号公報、特公昭63−4480
4号公報、特公平04−48847号公報等において、
仕上焼鈍後に例えば歯車型ロールにより溝を導入すると
共に、加工歪を加え微細粒を形成させて磁区細分化する
方法が開示されている。しかし、歯車型ロール等の機械
加工によって鋼板表面に溝を形成する方法は、方向性電
磁鋼板の一次皮膜(グラス皮膜)と呼ばれる表面セラミ
ックス層を破砕する必要があるために歯車ロール等の摩
耗が大きく、製造コストに問題を生じる。
By the way, in general, there is a tendency that the magnetic flux density B 8 increases and the crystal grains of the product tend to increase. Even if B 8 is increased by a high magnetic flux density magnetic steel sheet, the magnetic domain width increases by 180 °, so that the eddy current loss increases. Therefore, the expectation of iron loss improvement is not desired because it is more than metallurgical. From this viewpoint, a magnetic domain control technique using laser irradiation or the like as a technique for reducing iron loss is disclosed in Japanese Patent Publication No. 57-2252 and Japanese Patent Publication No. Sho 5
8-5968, JP-A-58-26405 and the like. In addition, since the reduction of iron loss by this method is caused by strain introduced by laser irradiation, it cannot be used for a wound core transformer that requires strain relief annealing after forming into a transformer. JP-B-62-53579, JP-B-63-4480
No. 4, Japanese Patent Publication No. 04-48847, etc.
For example, a method is disclosed in which grooves are introduced by, for example, a gear-type roll after finish annealing, and processing strain is applied to form fine grains to refine magnetic domains. However, the method of forming grooves on the surface of a steel sheet by machining a gear-type roll, etc., requires grinding the surface ceramic layer called the primary film (glass film) of the grain-oriented electrical steel sheet. Large, causing a problem in manufacturing cost.

【0005】一方、これら磁区細分化処理を施した鋼板
の磁区の動きを詳細に観察すると、静的には細分化した
磁区のなかには動かない磁区も存在していることが分か
った。方向性電磁鋼板の鉄損値を更に低減させるために
は、上記方法による磁区細分化技術と合わせて磁区の動
きを阻害する要因を排除する技術(磁区の活性化技術)
を導入する必要がある。すなわち、磁区の動きを阻害す
る大きな要因である鋼板表面の一次被膜等を除去し表面
を鏡面化する方法が有効である。その手段として、仕上
焼鈍後に一次被膜を酸洗等により除去した後、化学研磨
或いは電解研磨を行い表面を鏡面化させる方法が、例え
ば特開昭64−83620号公報に開示されている。し
かしながら、化学研磨・電解研磨等の方法は、研究室レ
ベルでの少試料の材料を加工することは可能であるが、
工業的規模で行うには薬液の濃度管理、温度管理、公害
設備の付与等の点で大きな問題があり、更にこのような
工程を付加することにより製造コストが高くなってしま
うために、いまだ実用化されるに至っていない。
On the other hand, when the movement of the magnetic domains of the steel sheet subjected to the magnetic domain refining treatment was observed in detail, it was found that some of the statically subdivided magnetic domains did not move. In order to further reduce the iron loss value of grain-oriented electrical steel sheets, in addition to the magnetic domain refining technology according to the above method, a technology that eliminates factors that hinder the movement of magnetic domains (magnetic domain activation technology)
Need to be introduced. That is, it is effective to remove the primary coating or the like of the steel sheet surface, which is a major factor that hinders the movement of the magnetic domain, and to make the surface mirror-finished. For example, Japanese Patent Application Laid-Open No. 64-83620 discloses a method of removing the primary film by pickling or the like after finish annealing and then performing chemical polishing or electrolytic polishing to mirror-finish the surface. However, methods such as chemical polishing and electrolytic polishing can process small sample materials at the laboratory level,
On an industrial scale, there are major problems in terms of chemical solution concentration control, temperature control, and provision of pollution equipment, and the addition of such a step increases the manufacturing cost. Has not been converted.

【0006】これに対して本出願人は、工業的規模で安
価に鋼板表面を鏡面化する方法を開発した(例えば特開
平5−222489号公報、特開平5−299228号
公報、特開平5−320770号公報)。これらは、脱
炭焼鈍後の鋼板表面にLi,K,Na,Ba,Ca,M
g,Zn,Fe,Zr,Sn,Sr,Al等の塩化物、
炭酸塩、硝酸塩、硫酸塩、硫化物の中から選ばれる1種
または2種以上を2〜30重量部で添加した焼鈍分離剤
を塗布し二次再結晶仕上焼鈍を行うことにより二次再結
晶仕上焼鈍前段で鋼板表面に適度の薄い一次皮膜が形成
され二次再結晶に必要なインヒビターの変質を防止す
る。次いで一次皮膜の形成抑制と追加酸化が防止され、
昇温後段に皮膜層中のFeのエッチング反応により一次
皮膜を分解し、その後の高温焼鈍で表面をサーマルエッ
チングし表面化する方法である。すなわち、鋼板表面の
鏡面化と高磁束密度の二次再結晶形成を両立させるもの
である。これらの技術は、磁区細分化処理のために鋼板
表面に機械加工を加える際に歯車ロール等の磨耗が少な
いため、主に巻鉄心トランス用の磁区制御材製造の低コ
ストに適している。
On the other hand, the present applicant has developed a method for mirror-finishing the surface of a steel sheet on an industrial scale at low cost (for example, Japanese Patent Application Laid-Open Nos. 5-222489, 5-299228, 5-5-228). No. 320770). These are made of Li, K, Na, Ba, Ca, M on the steel sheet surface after decarburizing annealing.
chlorides such as g, Zn, Fe, Zr, Sn, Sr, and Al;
Secondary recrystallization by applying an annealing separator containing 2 to 30 parts by weight of one or more selected from carbonates, nitrates, sulfates, and sulfides and performing a secondary recrystallization finish annealing An appropriate thin primary film is formed on the surface of the steel sheet before the finish annealing to prevent the deterioration of the inhibitor necessary for the secondary recrystallization. Next, the formation of the primary film and the additional oxidation are prevented,
In this method, the primary film is decomposed by the etching reaction of Fe in the film layer after the temperature is raised, and the surface is thermally etched by high-temperature annealing to form the surface. In other words, both the mirror finishing of the steel sheet surface and the formation of secondary recrystallization with a high magnetic flux density are achieved. These techniques are suitable mainly for low cost of manufacturing a magnetic domain control material for a wound iron core transformer because abrasion of a gear roll or the like is small when machining is performed on a steel sheet surface for magnetic domain subdivision processing.

【0007】しかるに、これら磁区制御、鏡面化等の周
辺技術の成熟に伴い、高磁束密度電磁鋼板を用いた低鉄
損化が容易となるとともに、超低鉄損電磁鋼板を狙うに
は更なる高磁束密度を有する素材が必須条件として期待
されてきている。これに対して本発明者らは、一方向性
電磁鋼板の溶鋼中にBiを含有させることにより、工業
的手段により磁束密度を従来の高磁束密度一方向性電磁
鋼板レベルから超高磁束密度一方向性電磁鋼板レベルま
で高める方法を特開平6−8814号公報、特開平6−
88173号公報等で提案した。この方法により初めて
磁束密度B8 が1.96Tを越える超高磁束密度一方向
性電磁鋼板が工場規模で生産できるようになったが、従
来の一次皮膜を形成する条件のなかで工場実験を繰り返
した結果、コイルの全域に渡って安定に超高磁束密度を
得ることは困難であった。一般に一次皮膜形成条件が磁
気特性に大きな影響を及ぼすことは知られているが、B
i添加材の場合はその影響が顕著であることが想定され
た。そこで、このBi添加による超磁束密度化と一次皮
膜を形成しない鏡面化技術を効果的に組み合わせること
により、超磁束密度一方向性電磁鋼板を工場規模でより
安定的に製造し、さらに磁区制御技術を組み合わせるこ
とにより従来にない超低鉄損一方向電磁鋼板を製造する
ことが、本発明の狙いである。
However, with the maturation of peripheral technologies such as magnetic domain control and mirror finishing, it is easy to reduce iron loss using a high magnetic flux density electromagnetic steel sheet, and it is further necessary to aim for an ultra-low iron loss electromagnetic steel sheet. A material having a high magnetic flux density is expected as an essential condition. On the other hand, the present inventors have found that by including Bi in the molten steel of the grain-oriented electrical steel sheet, the magnetic flux density can be reduced by industrial means from the level of the conventional high magnetic flux density unidirectional magnetic steel sheet to the ultra-high magnetic flux density. JP-A-6-8814 and JP-A-6-8814 disclose a method for increasing the level of grain-oriented electrical steel sheets.
88173. While ultra-high magnetic flux density grain-oriented electrical steel sheet for the first time the magnetic flux density B 8 exceeds 1.96T by this method can now be produced at plant scale, repeated plant experiments within the conditional forming a conventional primary coating As a result, it was difficult to stably obtain an ultra-high magnetic flux density over the entire area of the coil. It is generally known that the conditions for forming the primary film greatly affect the magnetic properties.
In the case of the i additive, it was assumed that the effect was remarkable. Therefore, by effectively combining the super-flux density by adding Bi and the mirror finishing technology that does not form a primary film, a super-flux density unidirectional magnetic steel sheet can be more stably manufactured on a factory scale, and the magnetic domain control technology is further improved. It is an object of the present invention to produce a non-conventional ultra-low iron loss unidirectional electrical steel sheet by combining the above.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来のBi
添加技術と鏡面化技術とを有機的に組み合わせることに
より極めて磁束密度の高い超高磁束密度一方向性鏡面電
磁鋼板素材を工場的規模で安定に製造することを可能と
し、さらに磁区制御技術を組み合わせることにより極め
て鉄損の低い超低鉄損一鏡面方向性電磁鋼板を低コスト
で製造することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a conventional Bi
By organically combining the addition technology and the mirror surface technology, it is possible to stably manufacture ultra-high magnetic flux density unidirectional mirror-surface electromagnetic steel material with extremely high magnetic flux density on a factory scale, and further combine magnetic domain control technology Accordingly, it is an object of the present invention to produce an ultra-low iron loss-specular grain oriented electrical steel sheet having extremely low iron loss at a low cost.

【0009】[0009]

【課題を解決するための手段】本発明の特徴とする処
は、以下のとおりである。 (1)重量%で、C:0.02〜0.1%、Si:2.
0〜4.8%、酸可溶性Al:0.012〜0.050
%、N:0.0030〜0.0150%、Bi:0.0
005〜0.03%を基本成分とし、残部はFeおよび
不可避的不純物をからなる溶鋼を鋳造し、熱間圧延し、
65〜95%の最終強冷延を含む1回あるいは中間焼鈍
を介入する2回以上の冷間圧延により最終板厚とし、一
次再結晶を兼ねた脱炭焼鈍を施し、脱炭焼鈍から二次再
結晶仕上焼鈍の工程間で必要に応じて窒化処理を行い、
二次再結晶仕上焼鈍を行う工程からなる一方向性電磁鋼
板の製造方法において、鋼板表面に、MgO100重量
部に対し、Li,K,Na,Ba,Ca,Mg,Zn,
Fe,Zr,Sn,Sr,Al等の塩化物、炭酸塩、硝
酸塩、硫酸塩、硫化物の中から選ばれる1種または2種
以上を2〜30重量部で添加した焼鈍分離剤を塗布し、
二次再結晶仕上焼鈍することを特徴とする磁束密度の高
い鏡面一方向性電磁鋼板の製造方法。
The features of the present invention are as follows. (1) By weight%, C: 0.02 to 0.1%, Si: 2.
0 to 4.8%, acid-soluble Al: 0.012 to 0.050
%, N: 0.0030 to 0.0150%, Bi: 0.0
005-0.03% as a basic component, the remainder is cast molten steel comprising Fe and unavoidable impurities, hot-rolled,
The final sheet thickness is obtained by cold rolling one or more times including intermediate strong annealing of 65 to 95% and intermediate annealing is performed, decarburizing annealing combined with primary recrystallization is performed, and secondary from decarburizing annealing is performed. Nitriding treatment is performed as necessary between the steps of recrystallization finish annealing,
In the method for producing a grain-oriented electrical steel sheet comprising a step of performing a secondary recrystallization finish annealing, the steel sheet surface is coated with Li, K, Na, Ba, Ca, Mg, Zn, Zn, and 100 parts by weight of MgO.
Apply an annealing separator containing 2 to 30 parts by weight of one or more selected from chlorides, carbonates, nitrates, sulfates, and sulfides such as Fe, Zr, Sn, Sr, and Al. ,
A method for producing a mirror-oriented unidirectional electrical steel sheet having a high magnetic flux density, which is subjected to secondary recrystallization finish annealing.

【0010】(2)脱炭焼鈍における鋼板酸素目付量が
900ppm 以下で、且つ酸化膜中のFeO/SiO2
0.20以下であることを特徴とする(1)記載の磁束
密度の高い鏡面一方向性電磁鋼板の製造方法。 (3)焼鈍分離剤に使用するMgOの物性が、粒子径が
10μm以下のものを30%以上含み、クエン酸活性度
CAA値が50〜300秒(30℃測定)、水和水分が
5%以下であることを特徴とする(1)記載の磁束密度
の高い鏡面一方向性電磁鋼板の製造方法。
(2) A mirror surface having a high magnetic flux density according to (1), wherein an oxygen basis weight of the steel sheet in the decarburizing annealing is 900 ppm or less, and FeO / SiO 2 in the oxide film is 0.20 or less. Manufacturing method of unidirectional electrical steel sheet. (3) The physical properties of MgO used as an annealing separator include 30% or more of particles having a particle size of 10 μm or less, a citric acid activity CAA value of 50 to 300 seconds (measured at 30 ° C.), and a hydration moisture of 5%. (1) The method for producing a mirror-oriented unidirectional electromagnetic steel sheet having a high magnetic flux density according to (1).

【0011】(4)二次再結晶仕上焼鈍の条件として、
二次再結晶完了までの昇温時における雰囲気をN2 の比
率が30%以上のN2 +H2 雰囲気あることを特徴とす
る(1)記載の磁束密度の高い鏡面一方向性電磁鋼板の
製造方法。 (5)(1)記載の鋼板に局部的な歪みを導入すること
により、磁区細分化処理を施すことを特徴とする鉄損の
低い鏡面一方向性電磁鋼板の製造方法。
(4) The conditions for the secondary recrystallization finish annealing include:
(1) Manufacturing the mirror-oriented unidirectional electrical steel sheet having a high magnetic flux density according to (1), wherein the atmosphere at the time of raising the temperature until the completion of the secondary recrystallization is an N 2 + H 2 atmosphere in which the ratio of N 2 is 30% or more Method. (5) A method for producing a mirror-oriented unidirectional magnetic steel sheet having a low iron loss, which comprises subjecting the steel sheet according to (1) to local distortion to perform a magnetic domain refining treatment.

【0012】(6)(1)記載の鋼板にコーティング処
理による張力皮膜を形成した後、局部的な歪みを導入す
ることにより、磁区細分化処理を施すことを特徴とする
鉄損の低い鏡面一方向性電磁鋼板の製造方法。 (7)(1)記載の鋼板に圧延方向に対して直角もしく
は直角から45度の範囲内で間隔2〜10mmで幅10〜
300μm、深さ5〜50μmの範囲で連続的、不連続
または点状の溝あるいは局部的な溝を形成し、併せてコ
ーティング処理による張力皮膜を形成することにより磁
区細分化させることを特徴とする鉄損の低い鏡面一方向
性電磁鋼板の製造方法。
(6) After forming a tension film by coating on the steel sheet according to (1), a magnetic domain refining treatment is performed by introducing local distortion, whereby a mirror surface with low iron loss is characterized. Manufacturing method of grain-oriented electrical steel sheet. (7) The steel sheet according to (1) is perpendicular to the rolling direction or within a range of 45 degrees from the perpendicular to an interval of 2 to 10 mm and a width of 10 to 10 mm.
A continuous, discontinuous or point-like groove or a local groove is formed in a range of 300 μm and a depth of 5 to 50 μm, and the magnetic domain is subdivided by forming a tension film by a coating process. A method for manufacturing mirror-oriented unidirectional electrical steel sheets with low iron loss.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明者らは、特開平6−8814号公報、特開平6−
88173号公報等に示しているとおり、実験室での実
験により、窒化アルミニウムを主インヒビターとする一
方向性電磁鋼板用の素材に、Biを添加含有せしめるこ
とにより、現在市販されている高磁束密度電磁鋼板のB
8 =1.93T程度をはるかに超える1.95T以上、
2Tにおよぶ超高磁束密度一方向性電磁鋼板を得た。超
磁束密度を得る機構はまだ明らかではないが、Biは鋼
中の拡散定数が極めて小さいため、熱的に安定なインヒ
ビター強化元素として機能していると推定している。す
なわち、超高磁束密度を実現するためには一定量以上の
鋼中Bi含有量が必要である一方、二次再結晶の進行中
に適度にインヒビター強度を弱める必要があり、鋼中B
iを鋼板表面から徐々に気化させて除去する必要があ
る。これに関して、実験室規模の板状の小試験片の場合
は板間のガス通気性が良好であるため、二次再結晶仕上
焼鈍中にBiを除去することは容易である。しかし、工
場的規模で製造する場合、コイル状に巻いた鋼板を箱形
焼鈍炉で焼鈍することが前提となるので、特にコイル内
部においてはガスの通気性が悪いため、Bi蒸気が鋼板
間に滞在し鋼中Biの除去が困難となる。そのため超高
磁束密度が得られ難く、またBiが一次皮膜と地鉄の界
面で濃化しBiCl3 等を形成し一次皮膜が剥離される
ことも推定される。逆にコイル端部では比較的ガスの通
気性が良好なのでBi蒸気も濃化せず、超高磁束密度が
得られ易いと推定される。すなわち、工場的規模におけ
るコイルフォームでの焼鈍では、特にコイル中心部とエ
ッジにおけるガス通気性の制御が困難であり、コイル全
域で安定して超高磁束密度が得られにくい可能性があっ
た。そこで、本発明者らは、Bi添加による二次再結晶
仕上焼鈍中における板間のガス通気性の影響を定量的に
把握するため次の実験を行った。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present inventors have disclosed JP-A-6-8814 and JP-A-6-8814.
As disclosed in Japanese Patent No. 88173, etc., by conducting experiments in a laboratory, Bi is added to and contained in a material for a grain-oriented electrical steel sheet having aluminum nitride as a main inhibitor, so that a commercially available high magnetic flux density is obtained. B of electrical steel sheet
8 = 1.95T or more, far exceeding 1.93T,
An ultra-high magnetic flux density unidirectional magnetic steel sheet of 2T was obtained. Although the mechanism for obtaining the super magnetic flux density is not yet clear, it is presumed that Bi functions as a thermally stable inhibitor strengthening element because the diffusion constant in steel is extremely small. That is, while achieving a very high magnetic flux density requires a Bi content in the steel of a certain amount or more, it is necessary to moderately reduce the inhibitor strength during the progress of the secondary recrystallization.
It is necessary to gradually evaporate and remove i from the steel sheet surface. In this regard, it is easy to remove Bi during the secondary recrystallization finish annealing in the case of a laboratory-scale plate-shaped small test piece because the gas permeability between the plates is good. However, in the case of manufacturing on a factory scale, it is premised that the steel sheet wound in a coil shape is annealed in a box-type annealing furnace. In particular, since gas permeability is poor inside the coil, Bi vapor is generated between the steel sheets. It becomes difficult to remove Bi from the steel. Therefore, it is presumed that it is difficult to obtain an ultra-high magnetic flux density, and that Bi is concentrated at the interface between the primary film and the base iron to form BiCl 3 or the like, and the primary film is peeled off. Conversely, since the gas permeability is relatively good at the coil end, Bi vapor is not concentrated, and it is estimated that an ultra-high magnetic flux density is easily obtained. That is, in the case of annealing with a coil form on a factory scale, it is difficult to control gas permeability particularly at the center and the edge of the coil, and there is a possibility that an ultra-high magnetic flux density cannot be stably obtained over the entire coil. Therefore, the present inventors conducted the following experiment in order to quantitatively grasp the effect of gas permeability between the plates during the secondary recrystallization finishing annealing by adding Bi.

【0014】C:0.05%、Si:3.25%、M
n:0.10%、S:0.007%、P:0.025
%、酸可溶性Al:0.029%、N:0.007%、
Cr:0.12%を含有する珪素鋼を溶製し、Bi含有
量を0,0.007%、0.013%、0.025%と
し、それぞれ鋳片に分注鋳造後、1150℃に加熱し、
抽出後直ちに2.3mm板厚まで熱延し、熱延後水冷し5
50℃で保定した。その後熱延板を1120℃の温度で
30秒、引き続き900℃で90秒焼鈍し、750℃ま
で空冷後80℃の水中に焼き入れた。次いで酸洗し0.
23mmまで途中で250℃での時効処理を5回はさんで
冷延した。引き続き、窒素と水素の混合ガスにおいて酸
化度が0.40(PH2 O/PH2 )になるように導入
水蒸気を調整し、脱炭・一次再結晶焼鈍を行い、引き続
いてNH3 雰囲気でN含有量が200ppm になるよう窒
化焼鈍を行った。通常のMgOを主成分とする焼鈍分離
剤を塗布後、二次再結晶仕上焼鈍を行った。板間のガス
通気性の影響をみるため、100mm×500mmの鋼板を
約50枚積層した試料を鉄薄膜で梱包し炉内に挿入した
のち、N2 を50%としたN2 +H2 湿雰囲気ガスを導
入し、その流量を1,5,10,15Nm3 /分としなが
ら1200℃まで15℃/hrで中で昇温し、引き続い
て乾水素雰囲気中で1200℃で20時間の純化焼鈍を
行った。このときの焼鈍炉の炉内容積は0.06m3
あった。炉内導入ガス流量と得られた鋼板の酸素量およ
び磁束密度B8 との関係を図1に示す。鋼板の酸素量は
一義的には一次皮膜の生成量を示し、酸素量が低いもの
は一次皮膜の剥離または弱体化が観察された。
C: 0.05%, Si: 3.25%, M
n: 0.10%, S: 0.007%, P: 0.025
%, Acid-soluble Al: 0.029%, N: 0.007%,
Cr: Silicon steel containing 0.12% is melted, and the Bi content is set to 0, 0.007%, 0.013%, and 0.025%. Heating,
Immediately after extraction, hot-rolled to a thickness of 2.3 mm, and water-cooled after hot-rolling.
It was kept at 50 ° C. Thereafter, the hot rolled sheet was annealed at a temperature of 1120 ° C. for 30 seconds and subsequently at 900 ° C. for 90 seconds, air-cooled to 750 ° C., and quenched in 80 ° C. water. Then, pickling was carried out.
Cold rolling was performed five times with aging treatment at 250 ° C. halfway to 23 mm. Subsequently, the introduced steam was adjusted so that the degree of oxidation was 0.40 (PH 2 O / PH 2 ) in the mixed gas of nitrogen and hydrogen, decarburization and primary recrystallization annealing were performed, and subsequently N 2 was introduced in an NH 3 atmosphere. Nitriding annealing was performed so that the content became 200 ppm. After applying an ordinary annealing separator containing MgO as a main component, secondary recrystallization finish annealing was performed. In order to see the effect of gas permeability between the plates, a sample in which about 50 100 mm × 500 mm steel plates were stacked was packed in an iron thin film and inserted into the furnace, and then a N 2 + H 2 wet atmosphere with N 2 set to 50% was used. The gas was introduced, the temperature was raised to 1200 ° C. at 15 ° C./hr while the flow rate was set to 1, 5, 10, 15 Nm 3 / min, followed by purifying annealing at 1200 ° C. for 20 hours in a dry hydrogen atmosphere. went. At this time, the inner volume of the annealing furnace was 0.06 m 3 . FIG. 1 shows the relationship between the flow rate of the gas introduced into the furnace and the oxygen content and the magnetic flux density B 8 of the obtained steel sheet. The oxygen content of the steel sheet basically indicates the amount of the primary film formed, and when the oxygen content was low, peeling or weakening of the primary film was observed.

【0015】その結果、Biを添加した超高磁束密度一
方向性電磁鋼板は、従来の窒化アルミニウムを主インヒ
ビターとする高磁束密度一方向性電磁鋼板に比較して、
仕上げ焼鈍中のガスの通気性が悪い場合は磁束密度がば
らつき、安定して高磁束密度が得られ難いという上述の
仮定を示唆する結論が得られた。この工場生産上の問題
を解決するためには、例えば工場の焼鈍炉の導入ガス流
量を増加せしめればよいが、工場規模の箱形焼鈍設備の
炉内容積は通常約30m3 であり、単純に計算しても蒸
気の実験室焼鈍炉の導入ガス流量の500倍の導入ガス
が必要である。これは設備費を圧迫し、原単位等のコス
トの観点からも困難であるため、Bi添加により超高磁
束密度一方向性電磁鋼板を工業規模で安定して製造する
ためには、一次皮膜形成に頼らない鏡面化技術の適用が
有効である可能性を見出した。
As a result, the ultra-high magnetic flux density unidirectional magnetic steel sheet to which Bi is added is compared with the conventional high magnetic flux density unidirectional magnetic steel sheet using aluminum nitride as a main inhibitor.
When the gas permeability during the finish annealing is poor, the magnetic flux density fluctuates, and the conclusion suggesting the above-mentioned assumption that stable high magnetic flux density is difficult to obtain was obtained. In order to solve this problem in factory production, for example, the flow rate of gas introduced into the annealing furnace in the factory may be increased, but the furnace volume of a box-scale annealing facility on a factory scale is usually about 30 m 3 , Even if the calculation is performed as described above, an introduction gas of 500 times the introduction gas flow rate of the laboratory annealing furnace for steam is required. This puts pressure on equipment costs and is difficult from the viewpoint of cost per unit, etc. Therefore, in order to stably produce ultra-high magnetic flux density unidirectional magnetic steel sheets on an industrial scale by adding Bi, it is necessary to form a primary film. It is found that the application of mirroring technology that does not rely on the image is effective.

【0016】以下に本発明に至った実験結果について説
明する。本発明者らは、Bi添加技術に鏡面化技術を適
用した場合について、二次再結晶仕上焼鈍中の炉内導入
ガス流量が磁束密度B8 と鏡面状態におよぼす影響を定
量的に把握するため、次の実験を行った。すなわち、上
述の実験と同じ成分の素材を窒化焼鈍まで同一の工程条
件で処理を行ったのち、MgO100重量部に対しCa
Cl2 を10重量部を添加した焼鈍分離剤を塗布後、二
次再結晶仕上焼鈍を行った。そして上記の実験と同様
に、100mm×500mmの鋼板を約50枚積層した試料
を鉄薄膜で梱包し炉内に挿入し、N2 を50%としたN
2 +H2 湿雰囲気を炉内に導入し、その流量を1,5,
10,15Nm3 /分としながら1200℃まで15℃/
hrで昇温し、引き続いて水素雰囲気中で1200℃で2
0時間の純化焼鈍を行った。炉内導入ガス流量と得られ
た鋼板の酸素量および磁束密度B8 の関係を図2に示
す。鋼板の酸素量はすべて200ppm 以下であり、一次
皮膜が無い良好な鏡面状態を呈していた。
Hereinafter, the results of experiments which have led to the present invention will be described. The present inventors have, for the case of applying the mirror technique to Bi doping techniques, in order to quantitatively assess the effect of furnace Flow rate of introduced gas in the secondary recrystallization finish annealing on mirror surface state and the magnetic flux density B 8 The following experiment was performed. That is, after a material having the same components as in the above-described experiment was treated under the same process conditions until nitriding annealing, Ca was added to 100 parts by weight of MgO.
After applying an annealing separator containing 10 parts by weight of Cl 2 , secondary recrystallization finish annealing was performed. Then, in the same manner as in the above experiment, a sample in which about 50 100 mm × 500 mm steel plates were stacked was packed in an iron thin film, inserted into a furnace, and N 2 was set to 50%.
A 2 + H 2 humid atmosphere was introduced into the furnace, and the flow rate was set at 1, 5,
15 ° C / 1200 ° C with 10,15 Nm 3 / minute
hr, followed by 2 hours at 1200 ° C in a hydrogen atmosphere.
A zero-hour purification annealing was performed. Oxygen of the steel sheet obtained as furnace Flow rate of introduced gas and shows the relationship between the magnetic flux density B 8 in FIG. The oxygen content of the steel sheet was 200 ppm or less in all cases, and the steel sheet exhibited a good mirror surface without a primary film.

【0017】図2で明らかなように、鏡面化技術を適用
することにより、磁束密度は仕上げ焼鈍中のガス流量に
影響されず、Bi添加による磁束密度向上の効果が安定
して得られた。このように仕上げ焼鈍中のガス流量に影
響されないことは、コイル内位置におけるガス通気性の
バラツキに二次再結晶過程が影響されにくいことから、
工場規模のコイルフォームでの二次再結晶仕上焼鈍によ
る製造に有利であることを示している。また、図2でB
i添加量とともに鏡面化鋼板表面に微量に付着した酸素
が減少していることから、Bi添加は鏡面化を促進させ
る作用があることが期待される。
As apparent from FIG. 2, by applying the mirror finishing technique, the magnetic flux density was not affected by the gas flow rate during the finish annealing, and the effect of improving the magnetic flux density by adding Bi was stably obtained. As described above, being not affected by the gas flow rate during the finish annealing, the secondary recrystallization process is hardly affected by the variation in gas permeability at the position in the coil.
It shows that it is advantageous for production by secondary recrystallization finish annealing in a coil scale on a factory scale. Also, in FIG.
Since a small amount of oxygen attached to the surface of the mirror-finished steel sheet decreases along with the amount of i added, it is expected that the addition of Bi has an effect of promoting mirror finishing.

【0018】さらに本発明者らは、図2で得られた試料
を850℃の温度で2時間の歪み取り焼鈍を行ったの
ち、圧延方向と直角方向に5mm間隔でレーザー照射処理
を行い、磁区制御を試みた。得られた試料についての素
材(磁区制御前)に磁束密度B 8 と1.0kgf /mm2
張力下で測定した磁区制御後の鉄損W17/50 の関係を図
3に示す。
Further, the present inventors have prepared the sample obtained in FIG.
Was subjected to strain relief annealing at a temperature of 850 ° C. for 2 hours.
And laser irradiation at 5mm intervals in the direction perpendicular to the rolling direction
And tried to control the magnetic domain. The element of the obtained sample
Magnetic flux density B (before magnetic domain control) 8And 1.0kgf / mmTwoof
Iron loss W after domain control measured under tension17/50Diagram of the relationship
3 is shown.

【0019】図3から次のことが判る。まず、Bi添加
を行い0.007%から0.025%にBi含有量を調
整すれば、磁束密度B8 が1.96T以上の超高磁束密
度一方向性電磁鋼板が発現し、また磁区制御との組み合
わせで超低鉄損電磁鋼板が得られる。また、B8 とW
17/50 の関係を示す直線はBi添加とともに下がってお
り、Bi添加材の鉄損は磁束密度の向上から期待される
鉄損よりも更に改善されていることがわかる。これは、
図2で説明したように、Bi添加は鏡面化を促進させる
作用のためであると推定される。本発明は従来のBi添
加法とによる超高磁束密度一方向性電磁鋼板製造方法と
鏡面化技術による低鉄損一方向性電磁鋼板製造法の単な
る組み合わせでなく、前者の工業化における欠点と後者
の安定促進化を極めて効果的に解決する方法を提供する
ものである。
The following can be seen from FIG. First, by adjusting the Bi content of 0.007% or perform Bi added to 0.025%, the magnetic flux density B 8 is expressed more ultra-high magnetic flux density grain-oriented electrical steel sheet 1.96T, also the magnetic domain control In combination with the above, an ultra-low iron loss electromagnetic steel sheet can be obtained. Also, B 8 and W
The straight line indicating the 17/50 relationship decreases with the addition of Bi, indicating that the iron loss of the Bi-added material is further improved from the iron loss expected from the improvement in magnetic flux density. this is,
As described with reference to FIG. 2, Bi addition is presumed to be due to the effect of promoting mirror finishing. The present invention is not merely a combination of a conventional method of manufacturing a high magnetic flux density unidirectional magnetic steel sheet by a Bi addition method and a method of manufacturing a low iron loss unidirectional magnetic steel sheet by a mirror finishing technique, but also the drawbacks in the former industrialization and the latter. It is intended to provide a method for solving the enhancement of stability very effectively.

【0020】次に、本発明に必要な構成要素とその限定
理由について述べる。本発明において、素材が含有する
成分は、重量で、C:0.02〜0.1%、Si:2.
0〜4.8%、酸可溶性Al:0.012〜0.050
%、N:0.0030〜0.0150%,Bi:0.0
005〜0.03%、残部Fe及び不可避的不純物であ
り、これらを必須成分としてそれ以外は限定しない。
Next, the components necessary for the present invention and the reasons for limiting them will be described. In the present invention, the components contained in the material are, by weight, C: 0.02 to 0.1%, Si:
0 to 4.8%, acid-soluble Al: 0.012 to 0.050
%, N: 0.0030 to 0.0150%, Bi: 0.0
005 to 0.03%, the balance being Fe and unavoidable impurities, and these are essential components and the other components are not limited.

【0021】基本的な製造法としては、小松等による
(Al,Si)Nを主インヒビターとして用いる製造法
(例えば特公昭62−45285号公報)、または田口
・坂倉等によるAlNとMnSを主インヒビターとして
用いる製造法(例えば特公昭40−15644号公報)
を適用すれば良い。Cはγ域開放型元素であり、熱間圧
延から脱炭焼鈍の工程でα→γ変態、または固溶Cの存
在により二次再結晶に有利な集合組織を形成する重要な
元素である。Cが0.02%以下ではα→γ変態が生じ
ないので好ましくない。また、0.1%を超えると脱炭
焼鈍工程に負荷がかかり、コストアップとなるため好ま
しくない。
As a basic production method, a production method using (Al, Si) N as a main inhibitor by Komatsu or the like (for example, Japanese Patent Publication No. Sho 62-45285), or a main inhibitor using AlN and MnS by Taguchi / Sakakura or the like. (For example, Japanese Patent Publication No. 40-15644)
Should be applied. C is a γ-region open type element, and is an important element that forms a texture advantageous for secondary recrystallization due to the α → γ transformation or the presence of solid solution C in the steps from hot rolling to decarburizing annealing. If C is 0.02% or less, α → γ transformation does not occur, which is not preferable. On the other hand, if it exceeds 0.1%, a load is applied to the decarburization annealing step, which increases the cost, which is not preferable.

【0022】Siは電気抵抗を高め、鉄損を下げる上で
重要な元素である。含有量が4.8%を超えると、冷間
圧延時に材料が割れ易くなり、圧延不可能となる。一
方、2.0%未満では製品の渦電流損が増大するととも
に、仕上げ焼鈍時に、α→γ変態を生じ、結晶の方向性
が損なわれる。酸可溶性AlはNと結合してAlNを形
成し、高磁束密度一方向性電磁鋼板製造のための主イン
ヒビター構成元素である。0.012%未満では量的に
不足し、インヒビター強度が不足する。一方、0.05
0%を超えるとAlNが粗大化し、結果としてインヒビ
ター強度を低下させるので二次再結晶が起こらなくな
る。
Si is an important element for increasing electric resistance and reducing iron loss. If the content exceeds 4.8%, the material is easily cracked during cold rolling, and cannot be rolled. On the other hand, if it is less than 2.0%, eddy current loss of the product increases, and at the time of finish annealing, α → γ transformation occurs, and the directionality of the crystal is impaired. Acid-soluble Al combines with N to form AlN and is a main inhibitor constituent element for producing a high magnetic flux density unidirectional magnetic steel sheet. If it is less than 0.012%, the amount is insufficient, and the inhibitor strength is insufficient. On the other hand, 0.05
If it exceeds 0%, AlN becomes coarse, and as a result, the inhibitor strength is reduced, so that secondary recrystallization does not occur.

【0023】素材に含有するNはSi,Al等の窒化物
を形成し、低温スラブ加熱を前提とする場合は特に一次
再結晶のインヒビターとして影響する。N含有量は一次
再結晶粒径を制御する観点から工程の熱履歴や必要な一
次再結晶焼鈍温度から決定される。一方、高温スラブ加
熱により前段階でAlNを微細分散させる場合は二次再
結晶焼鈍の雰囲気条件等を考慮する必要がある。0.0
030%未満では脱窒のため溶製段階のコストアップと
なり、0.0150%超ではブリスターと呼ばれる欠陥
が発生するので0.0030〜0.0150%の範囲と
した。
N contained in the material forms nitrides such as Si and Al, and particularly when used for low-temperature slab heating, has an effect as an inhibitor of primary recrystallization. The N content is determined from the heat history of the process and the necessary primary recrystallization annealing temperature from the viewpoint of controlling the primary recrystallization particle size. On the other hand, in the case where AlN is finely dispersed in a previous stage by high-temperature slab heating, it is necessary to consider the atmosphere conditions of secondary recrystallization annealing and the like. 0.0
If it is less than 030%, the cost of the smelting step is increased due to denitrification, and if it exceeds 0.0150%, a defect called a blister is generated.

【0024】その他のインヒビター構成元素として、M
n,S,Se,V,N,B,Nb,Sn,Cu,Ti,
Zr,Ta,Mo,Sn等を複合して添加することがで
きる。Biは超高速密度を得るための必須元素であり、
添加含有量は、0.0005〜0.03%の範囲が有効
である。0.0005%未満では効果がわずかであり、
また0.03%超では磁束密度向上の効果が飽和すると
ともに熱延板の端部に割れが発生するので上限を0.0
3%に限定する。
As another inhibitor constituent element, M
n, S, Se, V, N, B, Nb, Sn, Cu, Ti,
Zr, Ta, Mo, Sn and the like can be added in combination. Bi is an essential element for obtaining an ultra-high-speed density,
The effective content of the additive is in the range of 0.0005 to 0.03%. Less than 0.0005% has little effect,
If it exceeds 0.03%, the effect of improving the magnetic flux density is saturated and cracks occur at the end of the hot-rolled sheet.
Limited to 3%.

【0025】次に、製造プロセス条件について説明す
る。上記のごとく成分を調整した超高磁束密度一方向性
電磁鋼板用素材は通常の如何なる溶解法、造塊法を用い
た場合でも本願発明の素材とすることが出来る。次いで
この電磁鋼板用素材は通常の熱間圧延により熱延コイル
に圧延される。小松等による(Al,Si)Nを主イン
ヒビターとして用いる製造法(例えば特公昭62−45
285号公報)では、熱間圧延時の温度確保の観点より
1100℃以上、またAlNの完全溶体化しない128
0℃以下の温度で加熱を行った後に熱間圧延を行う。ま
た、田口・坂倉等によるAlNとMnSを主インヒビタ
ーとして用いる製造法(例えば特公昭40−15644
号公報)では完全溶体化する1300℃以上の温度で加
熱した後に熱延を行えば良い。
Next, the manufacturing process conditions will be described. The material for an ultra-high magnetic flux density unidirectional electrical steel sheet whose components are adjusted as described above can be used as the material of the present invention regardless of any ordinary melting method or ingot making method. Next, the magnetic steel sheet material is rolled into a hot-rolled coil by ordinary hot rolling. Production method using (Al, Si) N as main inhibitor by Komatsu et al. (For example, JP-B-62-45)
No. 285), from the viewpoint of securing the temperature during hot rolling, the temperature is 1100 ° C. or higher, and AlN is not completely dissolved.
After performing heating at a temperature of 0 ° C. or lower, hot rolling is performed. A production method using AlN and MnS as main inhibitors by Taguchi and Sakakura (for example, Japanese Patent Publication No. 40-15644).
In Japanese Unexamined Patent Publication (Kokai) No. H11-260, hot rolling may be performed after heating at a temperature of 1300 ° C. or higher at which complete solution is formed.

【0026】引き続いて1ステージの冷間圧延または中
間焼鈍を含む複数ステージの冷間圧延によって最終板厚
とするが、磁束密度が高い一方向性電磁鋼板を得ること
から最終冷延の圧延率(1ステージの冷間圧延の場合は
その圧延率)は65〜95%の強圧下が好ましい。最終
圧延以外のステージの圧延率は特に規定しなくてもよ
い。また、AlNを強化するため、最終冷延前に焼鈍お
よび冷却を行ってもよい。焼鈍は750〜1200℃の
温度域で30秒〜30分間行われ、この焼鈍は製品の磁
気特性を高めるために有効である。望む製品の特性レベ
ルとコストを勘案して採否を決めるとよい。
Subsequently, the final sheet thickness is obtained by one-stage cold rolling or a plurality of stages of cold rolling including intermediate annealing. However, since a unidirectional magnetic steel sheet having a high magnetic flux density is obtained, the final cold rolling rate ( In the case of one-stage cold rolling, the rolling reduction is preferably from 65 to 95%. The rolling rates of stages other than the final rolling need not be particularly defined. Further, in order to strengthen AlN, annealing and cooling may be performed before final cold rolling. Annealing is performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 30 minutes, and this annealing is effective for enhancing the magnetic properties of the product. It is advisable to decide whether or not to take into account the desired product characteristic level and cost.

【0027】最終製品厚に圧延した冷延板は、一次再結
晶焼鈍と鋼中に含まれる炭素を除去する目的で湿潤な水
素または水素と窒素の混合雰囲気中で、750〜900
℃の温度範囲で30秒〜30分間脱炭焼鈍を行う。この
脱炭焼鈍は良好な一次皮膜を形成するための公知技術を
適用することができる。本発明における脱炭焼鈍は、鋼
板の酸素目付量が900ppm 以下、且つFeO/SiO
2 が0.20以下に限定される。ここでFeOはファイ
ヤライト(Fe2 SiO4 )中のFeOである。酸素目
付量が900ppm 超では、必然的に酸化膜層中のSiO
2 とFeO量が多くなり酸化膜の厚みも増すため、二次
再結晶仕上焼鈍中での一時皮膜分解反応を行うに際して
不利となる。すなわち表面直下にSiO2 が残留し、完
全に鏡面的な表面状態が得られないばかりでなく、磁性
劣化の原因となる。さらに、過剰のSiO2 の形成は二
次再結晶開始以前に鋼中の(Al,Si)Nインヒビタ
ーの分解を促進するため、超高磁束密度が得られにくく
なるという問題がある。しかし極端に酸化量を抑制しよ
うとすると、脱炭時間が長くなるという問題があり生産
性を阻害する。好ましい範囲は400〜700ppm であ
る。また、酸化量中のFeO/SiO2 は0.20を超
えると二次再結晶仕上焼鈍前半での一次皮膜形成反応が
極端に増加し、一次皮膜形成量が増大するため、後の一
次皮膜分解段階で十分に反応が進行しない。FeO/S
iO2 ≦0.20であればMgOへの添加物等の効果に
よって二次再結晶仕上焼鈍でほぼ完全に一次皮膜が分解
される。一方、脱炭焼鈍温度は主に最適な一次再結晶粒
径を得る観点から決定される。
The cold rolled sheet rolled to the final product thickness is subjected to primary recrystallization annealing and 750 to 900 in wet hydrogen or a mixed atmosphere of hydrogen and nitrogen for the purpose of removing carbon contained in steel.
Decarburization annealing is performed in a temperature range of 30C for 30 seconds to 30 minutes. For this decarburization annealing, a known technique for forming a good primary film can be applied. In the decarburization annealing in the present invention, the oxygen basis weight of the steel sheet is 900 ppm or less, and FeO / SiO
2 is limited to 0.20 or less. Here, FeO is FeO in firelite (Fe 2 SiO 4 ). If the basis weight of oxygen exceeds 900 ppm, SiO 2 in the oxide film layer is inevitably contained.
2 and the amount of FeO increases and the thickness of the oxide film also increases, which is disadvantageous when performing a temporary film decomposition reaction during the secondary recrystallization finish annealing. That is, SiO 2 remains immediately below the surface, and not only a completely mirror-like surface state cannot be obtained, but also magnetic deterioration. Furthermore, since the formation of excessive SiO 2 promotes the decomposition of the (Al, Si) N inhibitor in the steel before the start of the secondary recrystallization, there is a problem that it becomes difficult to obtain an ultra-high magnetic flux density. However, if the amount of oxidation is extremely suppressed, there is a problem that the decarburization time is prolonged and productivity is impaired. The preferred range is 400-700 ppm. If the amount of FeO / SiO 2 in the oxidized amount exceeds 0.20, the primary film forming reaction in the first half of the secondary recrystallization finish annealing increases extremely, and the amount of the primary film formed increases. The reaction does not proceed sufficiently at the stage. FeO / S
If iO 2 ≦ 0.20, the primary film is almost completely decomposed by the secondary recrystallization finish annealing due to the effects of additives and the like to MgO. On the other hand, the decarburization annealing temperature is determined mainly from the viewpoint of obtaining an optimum primary recrystallized grain size.

【0028】この脱炭焼鈍板の(Al,Si)Nインヒ
ビターを強化する必要がある場合、または(Al,S
i)Nを主インヒビターとして用いる製造法(例えば特
公昭62−45285号公報)においては、脱炭焼鈍か
ら二次再結晶仕上焼鈍の工程間で窒化処理を施す。この
窒化処理の方法は特に限定するものではなく、アンモニ
ア等の窒化能のある雰囲気ガス中で行う方法等がある。
量的には0.005%以上、望ましくは全窒素量として
鋼中のAl当量以上窒化すれば良い。
When it is necessary to strengthen the (Al, Si) N inhibitor of the decarburized annealed sheet, or (Al, S
i) In a production method using N as a main inhibitor (for example, Japanese Patent Publication No. 62-45285), a nitriding treatment is performed between the steps of decarburizing annealing and secondary recrystallization finishing annealing. The method of the nitriding treatment is not particularly limited, and there is a method of performing the nitriding treatment in an atmosphere gas having a nitriding ability such as ammonia.
Nitrogen may be nitrided in an amount of 0.005% or more, desirably the equivalent of Al in steel as a total nitrogen amount.

【0029】次に焼鈍分離剤に使用するMgOは粒子
径、CAA値、水和水分等が制限される。本発明の技術
では、鏡面化は二次再結晶仕上焼鈍の昇温前段で形成し
た適度の一次皮膜を昇温時後段で化学反応により分解除
去することにより行われる。すなわち二次再結晶仕上焼
鈍前段の二次再結晶開始までのインヒビターの安定化の
ためには、この時期における適度な量の一次皮膜による
追加酸化、窒化等の抑制効果を利用する必要があり、磁
気特性の優れた鏡面製品を得るために常用である。この
ためには、焼鈍分離剤のベースとなるMgO自体が適度
の反応性を有していることが重要である。すなわちMg
Oの反応性が極端に悪いと、二次再結晶仕上焼鈍前段の
一次皮膜形成反応が進行せず、皮膜による雰囲気シール
効果が得られない。このような場合は、二次再結晶が生
じても極端に結晶方位が悪くなったり、追加酸化により
鋼板表面直下に残留SiO2 、Al2 3 或いはこれら
のスピネルが生じて鉄損の劣化をもたらす。このため、
MgOの粒径は10μm以下のものが30%以上である
ように制限される。これが30%未満では極端に反応性
が悪くなって前期効果を発揮できない。またMgOのC
AA値は50〜300秒に規定する。この値が50秒未
満では工業的に使用する細に極端に水和の進行が速くな
って、水和水分の制御が困難になり、300秒を超える
とMgO粒子の反応性が極端に低下して、二次再結晶仕
上焼鈍前段での一次被舞う形成が生じなくなる。またM
gOの水和水分は5%以下に制限される。これが5%を
超えると鋼板間の露点が高くなって、昇温時前段で追加
酸化を生じ均一な鏡面状態を得ることが困難になり、極
端な場合にはインヒビターにまで影響を与えて二次再結
晶不良が生じる。
Next, the particle size, CAA value, hydration moisture and the like of MgO used for the annealing separator are limited. In the technique of the present invention, mirror finishing is performed by decomposing and removing a moderate primary film formed before the temperature rise in the secondary recrystallization finish annealing by a chemical reaction after the temperature rise. That is, in order to stabilize the inhibitor until the start of the secondary recrystallization in the pre-annealing stage of the secondary recrystallization, it is necessary to use the effect of suppressing the additional oxidation and nitridation by a moderate amount of the primary film at this time, It is commonly used to obtain mirror products with excellent magnetic properties. For this purpose, it is important that MgO itself, which is the base of the annealing separator, has an appropriate reactivity. That is, Mg
If the reactivity of O is extremely poor, the primary film forming reaction before the secondary recrystallization finish annealing does not proceed, and the atmosphere sealing effect by the film cannot be obtained. In such a case, even if secondary recrystallization occurs, the crystal orientation becomes extremely poor, or additional oxidation causes residual SiO 2 , Al 2 O 3 or their spinels to be generated immediately below the steel sheet surface, thereby deteriorating iron loss. Bring. For this reason,
The particle size of MgO is limited so that those having a particle size of 10 μm or less are 30% or more. If it is less than 30%, the reactivity becomes extremely poor, and the effect of the first period cannot be exhibited. MgO C
The AA value is defined as 50 to 300 seconds. If this value is less than 50 seconds, the progress of hydration becomes extremely short in industrial use, and it becomes difficult to control the hydrated water. If it exceeds 300 seconds, the reactivity of MgO particles is extremely reduced. As a result, the formation of the primary swelling before the secondary recrystallization finishing annealing does not occur. Also M
The hydration moisture of gO is limited to 5% or less. If it exceeds 5%, the dew point between the steel sheets will increase, and additional oxidation will occur in the first stage of the temperature rise, making it difficult to obtain a uniform mirror surface condition. Recrystallization failure occurs.

【0030】焼鈍分離剤MgOへの添加物としては、L
i,K,Na,Ba,Ca,Mg,Zn,Fe,Zr,
Sn,Sr,Al等の塩化物、炭酸塩、硝酸塩、硫酸
塩、硫化物の中から選ばれる1種または2種以上がMg
O100重量部に対して2〜30重量部配合される。こ
れらの化合物の添加により、まず二次再結晶仕上焼鈍の
昇温前段で鋼板表面に適度の薄い一次皮膜が形成され、
次いで一次皮膜の形成抑制と追加酸化が防止され、昇温
後段に皮膜層中のFeのエッチング反応により一次皮膜
が分解され、その後の高温焼鈍で表面をサーマルエッチ
ングし表面化する。これらの化合物の添加量が2重量部
未満では前段で形成した一次皮膜の分解反応が十分に進
行せず、一次皮膜が残存するためこのましくない。一方
30重量部を超えると添加剤中の成分元素が鋼板中に拡
散進入して粒界エッチングを起こしたり、インヒビター
に影響を与えたり、後の純化処理に影響を与えるため好
ましくない。最も好ましい範囲は5〜15重量部であ
る。
As an additive to the annealing separator MgO, L
i, K, Na, Ba, Ca, Mg, Zn, Fe, Zr,
One or more selected from chlorides, carbonates, nitrates, sulfates, and sulfides such as Sn, Sr, and Al are Mg.
2 to 30 parts by weight are blended with respect to 100 parts by weight of O. By the addition of these compounds, a moderately thin primary film is formed on the steel sheet surface before the temperature rise of the secondary recrystallization finish annealing,
Next, formation of the primary film is suppressed and additional oxidation is prevented, and the primary film is decomposed by the etching reaction of Fe in the film layer after the temperature is raised, and the surface is thermally etched by high-temperature annealing to form a surface. When the addition amount of these compounds is less than 2 parts by weight, the decomposition reaction of the primary film formed in the former stage does not sufficiently proceed, and the primary film remains, which is not preferable. On the other hand, when the amount exceeds 30 parts by weight, the component elements in the additive diffuse into the steel sheet to cause grain boundary etching, affect an inhibitor, and affect a subsequent purification treatment. The most preferred range is from 5 to 15 parts by weight.

【0031】二次再結晶仕上焼鈍条件は、本発明のよう
に焼鈍過程で一次皮膜の適度な形成と分解を行う場合は
重要である。通常、二次再結晶仕上焼鈍における雰囲気
ガスはN2 ,H2 或いはこれらの混合ガスが用いられる
が、表面の酸化制御の観点からはN2 +H2 が有利であ
る。本発明の場合、一次皮膜の分解反応の過程でインヒ
ビターの強度を制御するため、昇温中の雰囲気ガスとし
て少なくともN2 30%以上のN2 ,H2 及び他の不活
性ガスからなる雰囲気が用いられる。N2 分圧が30%
未満では、鏡面化の過程で(Al,Si)Nの弱体化が
起こらず、超高磁束密度材が安定して得られる。特にN
2 20%以下の場合は磁気特性の劣化をもたらす。しか
し、N2 100%のような場合は、MgOの物性値によ
っては鋼板間の酸化度が上昇し酸化のため鋼板の表面に
むらが生じることがある。好ましくはN2 30〜90%
の範囲である。N2 30%以上のガス使用にあたって昇
温全体をこの雰囲気中で焼鈍しても良いが、MgOの条
件等によっては追加酸化が生じることがあり、(Al,
Si)Nの安定化に最も効果的な温度である700℃以
降に切り替えるのが好ましい。二次再結晶仕上焼鈍にお
ける均熱温度は1180〜1200℃とするのが有利で
ある。本発明においては二次再結晶仕上焼鈍の均熱に達
した時点で一次皮膜の分解が完了しており、純化焼鈍中
に熱的なエッチングによって鋼板表面の鏡面化が得られ
る。均熱温度が1180℃未満ではこの効果が弱く、ま
た、純化に対して不利となる。一方1250℃を超える
とコイル形状が悪化したり、エッジ部分の焼き付きが発
生することがある。また、特開平2−258929号公
報に開示される様に一定の温度で保持したり昇温速度を
制御する手段により二次再結晶を所定の温度域で行うこ
とは磁束密度を上げるうえで有効である。
The conditions for the secondary recrystallization finishing annealing are important when the primary film is appropriately formed and decomposed during the annealing process as in the present invention. Usually, N 2 , H 2, or a mixed gas thereof is used as the atmosphere gas in the secondary recrystallization finishing annealing, but N 2 + H 2 is advantageous from the viewpoint of controlling the oxidation of the surface. For the present invention, for controlling the strength of the inhibitor during the course of the decomposition reaction of the primary coating, an atmosphere composed of at least N 2 30% or more N 2, H 2 and other inert gas as the atmosphere gas NoboriAtsushichu Used. N 2 partial pressure of 30%
If it is less than 5, the weakening of (Al, Si) N does not occur in the process of mirror finishing, and an ultra-high magnetic flux density material can be stably obtained. Especially N
For 2 to 20% results in a deterioration of the magnetic properties. However, in the case of N 2 100%, the degree of oxidation between the steel sheets increases depending on the physical properties of MgO, and the surface of the steel sheet may become uneven due to oxidation. Preferably N 2 30~90%
Range. When using a gas of N 2 30% or more, the entire temperature rise may be annealed in this atmosphere. However, depending on the conditions of MgO, additional oxidation may occur, and (Al,
It is preferable to switch the temperature to 700 ° C. or higher, which is the most effective temperature for stabilizing Si) N. It is advantageous to set the soaking temperature in the secondary recrystallization finishing annealing to 1180 to 1200 ° C. In the present invention, the decomposition of the primary film has been completed when the soaking of the secondary recrystallization finish annealing is reached, and the surface of the steel sheet can be mirror-finished by thermal etching during the purification annealing. If the soaking temperature is less than 1180 ° C., this effect is weak and disadvantageous to purification. On the other hand, when the temperature exceeds 1250 ° C., the coil shape may be deteriorated, or burn-in of the edge portion may occur. As disclosed in JP-A-2-258929, performing secondary recrystallization in a predetermined temperature range by maintaining the temperature at a constant value or controlling the rate of temperature rise is effective in increasing the magnetic flux density. It is.

【0032】一方、図2でBi添加量とともに鏡面化鋼
板表面に微量に付着した酸素が減少しているように、B
i添加は鏡面化を促進させる作用があることが期待され
る。この原因についてはまだ明らかではないが、製鋼段
階で添加した鋼中のBiが鋼板表面から気化されるとき
に、一次皮膜の剥離やその後のサーマルエッチングに対
し有利に作用しているものと推定している。また、鋼中
に微細に析出したBiは補足的にインヒビターの熱的安
定化をもたらすため、本鏡面化技術のような(Al,S
i)Nの不安定化に懸念がある場合には、二次再結晶発
現に有利な作用をもたらすと推定される。一方、Biの
超磁束密度化効果をコイルフォームの工場製造において
安定して引き出すためには、従来の一次皮膜を形成させ
る技術では限界があり、鏡面化技術が最も適している。
さらに、Bi添加技術は超磁束密度化に伴い結晶粒径が
粗大化するため磁区細分化処理が前提となり、特に機械
的に局部溝を形成する方法を用いる場合は金型のコスト
の観点から鏡面材が適切である。すなわち、本発明は従
来のBi添加法による超高磁束密度化と鏡面化、磁区細
分化技術による低鉄損化を極めて効果的に組み合わせた
ものである。
On the other hand, as shown in FIG. 2, the amount of oxygen added to the surface of the mirror-finished steel sheet in a small amount decreases with the addition amount of Bi.
It is expected that i-addition will have the effect of promoting mirror finishing. Although the cause is not clear yet, it is presumed that when Bi in the steel added at the steelmaking stage is vaporized from the steel sheet surface, it has an advantageous effect on the peeling of the primary film and the subsequent thermal etching. ing. In addition, Bi finely precipitated in the steel complementarily brings about thermal stabilization of the inhibitor.
i) If there is a concern about instability of N, it is presumed that this has an advantageous effect on the appearance of secondary recrystallization. On the other hand, in order to stably bring out the effect of increasing the super magnetic flux density of Bi in factory production of a coil form, there is a limit in a technique for forming a primary coating, and a mirror finishing technique is most suitable.
Furthermore, the Bi addition technology presupposes magnetic domain refinement because the crystal grain size becomes coarse with the increase in super magnetic flux density. In particular, when a method of mechanically forming a local groove is used, a mirror surface is required from the viewpoint of mold cost. The material is appropriate. That is, the present invention is an extremely effective combination of the ultra-high magnetic flux density by the conventional Bi addition method, the mirror finishing, and the low iron loss by the magnetic domain segmentation technology.

【0033】二次再結晶仕上焼鈍後引き続き余分の焼鈍
分離剤を除去後、コイル巻きぐせ等を矯正するための連
続張力焼鈍を行い、同時に絶縁皮膜コーティングを塗
布、焼き付けする。このとき必要に応じて、該鋼板にレ
ーザー照射、機械的溝形成、張力被膜コーティング等の
磁区細分化処理を施す。本発明はBi添加により超高磁
束密度化を行うと同時に二次再結晶粒径を大きくするも
のであるため、鉄損特性を改善する意味から磁区細分化
処理は有効である。磁区細分化の方法は特に限定する必
要はない。
After the secondary recrystallization finish annealing, the excess annealing separating agent is continuously removed, and continuous tension annealing for correcting coil winding and the like is performed, and at the same time, an insulating coating is applied and baked. At this time, if necessary, the steel sheet is subjected to magnetic domain refining treatment such as laser irradiation, mechanical groove formation, and tension film coating. Since the present invention increases the secondary recrystallized grain size at the same time as increasing the magnetic flux density by adding Bi, the magnetic domain refining treatment is effective from the viewpoint of improving iron loss characteristics. There is no particular limitation on the method of magnetic domain subdivision.

【0034】局部的な歪みを導入することで磁区細分化
を行う場合、例えば特公昭57−2252号公報等に記
載されるレーザー光照射を行う方法や、特開昭62−1
51511号公報、特公平6−45824号公報等に記
載されるプラズマ炎照射を行う方法等を用いれば良い。
局部的な溝を形成することで磁区細分化を行う場合、歯
車ロール法(例えば特公平4−48847号公報)や金
型プレス法(例えば特公平6−63037号公報)等の
機械的な塑性加工による方法、フォトエッチング法(例
えば特公平5−69284号公報)やレジストインキエ
ッチング法(特公平2−46673号公報、特公平3−
69968号公報)等の化学エッチングや電解エッチン
グを用いる方法などを採用すればよい。鋼板に形成する
溝は圧延方向に対して直角もしくは直角から45度の範
囲内でその間隔は2〜10mmが鉄損低下の観点から好ま
しい。溝の形状は連続的、不連続または点状のいずれで
も良い。溝の幅、及び深さはそれぞれ10〜300μ
m、5〜50μmの範囲が鉄損低下の観点から好まし
い。溝の幅を狭くすると曲率半径の小さな曲げ加工を施
す際に折れの起点となりやすい。また溝の幅を広くする
と磁束密度が低下してしまう。溝の深さも同様にあまり
深くすると磁束密度が低下してしまう。また、このよう
な局部的な溝を形成する工程は、冷延以降の工程であれ
ばいずれの工程でも良い。
In the case of performing magnetic domain subdivision by introducing local distortion, for example, a method of irradiating a laser beam described in Japanese Patent Publication No. 57-2252 or the like,
A method for performing plasma flame irradiation described in Japanese Patent No. 51511 and Japanese Patent Publication No. 6-45824 may be used.
In the case of performing magnetic domain subdivision by forming local grooves, mechanical plasticity such as a gear roll method (for example, Japanese Patent Publication No. 4-48847) and a die pressing method (for example, Japanese Patent Publication No. 6-63037). Processing method, photo etching method (for example, Japanese Patent Publication No. 5-69284) and resist ink etching method (for example, Japanese Patent Publication No. 2-46673, Japanese Patent Publication
No. 69968), a method using chemical etching or electrolytic etching, or the like may be employed. The groove formed in the steel plate is perpendicular to the rolling direction or within a range of 45 degrees from the perpendicular, and the interval is preferably 2 to 10 mm from the viewpoint of reducing iron loss. The shape of the groove may be continuous, discontinuous or point-like. The width and depth of the groove are each 10 to 300μ
m, the range of 5 to 50 μm is preferred from the viewpoint of reducing iron loss. When the width of the groove is reduced, the groove tends to be a starting point when bending with a small radius of curvature. In addition, if the width of the groove is increased, the magnetic flux density decreases. Similarly, if the depth of the groove is too large, the magnetic flux density will decrease. Further, the step of forming such a local groove may be any step after the cold rolling.

【0035】張力コーティングとしては、例えば特開昭
48−39338号公報によるコロイド状シリカとリン
酸アルミニウムを主体とするコーティング液、特開昭5
0−79442号公報によるコロイド状シリカとリン酸
マグネシウムを主体とするコーティング液、または特開
平4−222849号公報によるアルミナ・ゾルとホウ
酸を主成分とするコーティング液を焼き付ける方法等を
採用すればよい。
Examples of the tension coating include a coating solution mainly composed of colloidal silica and aluminum phosphate disclosed in JP-A-48-39338;
A method of baking a coating solution mainly containing colloidal silica and magnesium phosphate according to JP-A-79442 or a coating solution mainly comprising alumina sol and boric acid according to JP-A-4-22849 is adopted. Good.

【0036】[0036]

【実施例】【Example】

(実施例1)重量%で、C:0.05%、Si:3.3
%、Mn:0.1%、S:0.01%、酸可溶性Al:
0.03%、N:0.008%、を基本成分とし、
(A:Bi添加)Bi:0.01%と(B:従来法)B
i:0%の2水準の珪素鋼を溶製し、それぞれ鋳片に分
注鋳造後、1200℃に加熱し、抽出後直ちに2.3mm
板厚まで熱間圧延した。その後、酸洗し0.23mmまで
冷延した。この冷延板を窒素と水素の混合ガス中におい
て酸化度0.4で840℃の温度で100秒焼鈍し一次
再結晶させた。次いでアンモニア雰囲気中で焼鈍するこ
とにより、窒素量を0.02%に増加して、インヒビタ
ーの強化を行った。
(Example 1) By weight%, C: 0.05%, Si: 3.3
%, Mn: 0.1%, S: 0.01%, acid-soluble Al:
0.03%, N: 0.008% as a basic component,
(A: Bi added) Bi: 0.01% and (B: conventional method) B
i: Two levels of 0% silicon steel were melted, each was cast into a slab, heated to 1200 ° C., and immediately extracted to 2.3 mm.
It was hot rolled to the sheet thickness. Thereafter, it was pickled and cold rolled to 0.23 mm. This cold-rolled sheet was annealed in a mixed gas of nitrogen and hydrogen at a temperature of 840 ° C. with an oxidation degree of 0.4 for 100 seconds to perform primary recrystallization. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.02% to strengthen the inhibitor.

【0037】これらの鋼板をその後、(C:鏡面化)M
gO+K2 S(7重量部)、及び(D:従来法)MgO
の水スラリーを塗布した後鋼板を積層し、低いガス流量
のもとでN分圧40%で二次再結晶仕上焼鈍を施した。
これらの試料に歯車ロールで圧延方向と直角方向から1
0度の方向で、幅50μm、深さ15μmの溝を形成し
た後、コロイド状シリカとリン酸塩を主成分とするコー
ティング液を塗布して850℃で2分間焼き付けた。こ
れらの試料の磁気特性を測定した後、更に800℃で4
時間の歪取り焼鈍を行った。得られた製品の磁気特性を
表1に示す。
These steel sheets were then subjected to (C: mirror finishing) M
gO + K 2 S (7 parts by weight) and (D: conventional method) MgO
After applying the water slurry, the steel sheets were laminated, and subjected to secondary recrystallization finish annealing at a partial pressure of N of 40% under a low gas flow rate.
These samples were placed on a gear roll in a direction perpendicular to the rolling direction.
After forming a groove having a width of 50 μm and a depth of 15 μm in the direction of 0 °, a coating liquid containing colloidal silica and phosphate as main components was applied and baked at 850 ° C. for 2 minutes. After the magnetic properties of these samples were measured,
Time annealing was performed. Table 1 shows the magnetic properties of the obtained products.

【0038】[0038]

【表1】 [Table 1]

【0039】(実施例2)重量%で、Si:3.3%、
Mn:0.1%、C:0.05%、S:0.007%、
酸可溶性Al:0.03%、N:0.008%、Sn:
0.05%を基本成分とし、(A:Bi添加)Bi:
0.01%と(B:従来法)Bi:0%の2水準の珪素
鋼を溶製し、それぞれ鋳片に分注鋳造後、1200℃に
加熱し、抽出後直ちに2.3mm板厚まで熱間圧延した。
酸洗し、1.4mmまで冷延した冷延板を1120℃の温
度で30秒900℃で90秒焼鈍し、750℃まで空冷
後80℃の水中に急冷し後、最終板厚0.15mmに冷延
した。この冷延板を窒素と水素の混合ガス中において酸
化度0.5で830℃の温度で70秒焼鈍し一次再結晶
させた。次いでアンモニア雰囲気中で焼鈍することによ
り、窒素量を0.025%に増加して、インヒビターの
強化を行った。
(Example 2) Si: 3.3% by weight
Mn: 0.1%, C: 0.05%, S: 0.007%,
Acid-soluble Al: 0.03%, N: 0.008%, Sn:
0.05% as a basic component, (A: Bi added) Bi:
Melting two levels of silicon steel of 0.01% and (B: conventional method) Bi: 0%, dispensing and casting each to a slab, heating to 1200 ° C., and immediately after extraction to 2.3 mm sheet thickness. Hot rolled.
The cold-rolled sheet which was pickled and cold rolled to 1.4 mm was annealed at a temperature of 1120 ° C. for 30 seconds at 900 ° C. for 90 seconds, air-cooled to 750 ° C., quenched into 80 ° C. water, and finally finished to a thickness of 0.15 mm Cold rolled. This cold rolled sheet was annealed in a mixed gas of nitrogen and hydrogen at a temperature of 830 ° C. with an oxidation degree of 0.5 for 70 seconds to perform primary recrystallization. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.025% to strengthen the inhibitor.

【0040】これらの鋼板をその後、(C:鏡面化)M
gO+SnCl2 (10重量部)、及び(D:従来法)
MgOの水スラリーを塗布した後鋼板を積層し、低いガ
ス流量のもとでN2 の50%分圧で二次再結晶仕上焼鈍
を施した。これら仕上焼鈍後の試料に圧延方向と直角方
向に、幅30μm、深さ10μmの溝をフォトエッチン
グ法で形成した後、アルミナ・ゾルとホウ酸を主成分と
するコーティング液を塗布して870℃で2分間焼き付
けた。これらの試料の磁気特性を測定した後、更に80
0℃で4時間の歪取り焼鈍を行った。得られた製品の磁
気特性を表2に示す。
These steel sheets were then subjected to (C: mirror finishing) M
gO + SnCl 2 (10 parts by weight), and (D: conventional method)
After applying the MgO water slurry, the steel sheets were laminated and subjected to secondary recrystallization finish annealing at a 50% partial pressure of N 2 under a low gas flow rate. A groove having a width of 30 μm and a depth of 10 μm is formed on the sample after the finish annealing in a direction perpendicular to the rolling direction by a photoetching method, and then a coating solution containing alumina sol and boric acid as main components is applied at 870 ° C. For 2 minutes. After measuring the magnetic properties of these samples, an additional 80
The strain relief annealing was performed at 0 ° C. for 4 hours. Table 2 shows the magnetic properties of the obtained products.

【0041】[0041]

【表2】 [Table 2]

【0042】(実施例3)重量%で、Si:3.3%、
Mn:0.07%、C:0.07%、Se:0.025
%、酸可溶性Al:0.028%、N:0.008%、
Sb:0.1%を基本成分とし、(A:Bi添加)B
i:0.01%と(B:従来法)Bi:0%の2水準の
珪素鋼を溶製し、それぞれ鋳片に分注鋳造後、1350
℃に加熱し、抽出後直ちに2.3mm板厚まで熱間圧延
し、直ちに室温まで水冷した。この熱延板を1100℃
で2分間焼鈍した後酸洗し、最終板厚0.27mmまで途
中で250℃での時効処理を5回挟んで冷延した。この
冷延板を窒素と水素の混合ガス中において酸化度0.6
で850℃の温度で120秒焼鈍し一次再結晶させた。
Example 3 Si: 3.3% by weight
Mn: 0.07%, C: 0.07%, Se: 0.025
%, Acid-soluble Al: 0.028%, N: 0.008%,
Sb: 0.1% as a basic component, (A: Bi added) B
i: 0.01% and (B: conventional method) Bi-level silicon steels of 2% were melted, each of which was dispensed and cast into a slab, and then 1350
C., hot-rolled to a thickness of 2.3 mm immediately after extraction, and immediately cooled with water to room temperature. 1100 ° C
And then pickled, and cold rolled with aging treatment at 250 ° C. five times on the way to a final sheet thickness of 0.27 mm. This cold rolled sheet is oxidized in a mixed gas of nitrogen and hydrogen to a degree of oxidation of 0.6.
At 850 ° C. for 120 seconds for primary recrystallization.

【0043】これらの鋼板をその後、(C:鏡面化)M
gO+K2 CO3 (15重量部)及び(D:従来法)M
gOの水スラリーを塗布した後、鋼板を積層し厚み方向
に20kg/mm2 で加圧した後、低いガス流量のもとでN
2 の75%分圧で二次再結晶仕上焼鈍を施した。これら
の試料に、コロイド状シリカとリン酸塩を主成分とする
コーティング液を塗布して850℃で2分間焼き付け
た。その後、鋼板表面に圧延方向と直角方向に5mm間隔
でレーザー照射を行った。得られた製品の磁気特性を表
3に示す。
These steel sheets were then subjected to (C: mirror finishing) M
gO + K 2 CO 3 (15 parts by weight) and (D: conventional method) M
After applying a water slurry of gO, a steel plate is laminated and pressurized at 20 kg / mm 2 in the thickness direction.
A second recrystallization finish annealing was performed at 75% partial pressure of 2. A coating solution containing colloidal silica and phosphate as main components was applied to these samples and baked at 850 ° C. for 2 minutes. Thereafter, the surface of the steel sheet was irradiated with laser at intervals of 5 mm in a direction perpendicular to the rolling direction. Table 3 shows the magnetic properties of the obtained products.

【0044】[0044]

【表3】 [Table 3]

【0045】(実施例4)重量%で、C:0.05%、
Si:3.25%、Mn:0.10%、S:0.007
%、P:0.025%、酸可溶性Al:0.029%、
N:0.007%、Bi:0.007%、Cr:0.1
2%を含有する珪素鋼を溶製し、スラブに鋳造後、11
50℃に加熱し、抽出後直ちに2.3mm板厚まで熱延
し、熱延後水冷し550℃で巻き取った。その後熱延板
を1120℃の温度で30秒900℃で90秒焼鈍し、
750℃まで空冷後80℃の水中に急冷した。次いで酸
洗後、0.23mmまで5パスの圧延を行い、途中200
℃以上で5分以上の時効処理を行った。引き続き脱炭・
一次再結晶焼鈍を窒素と、水素の混合ガス中において酸
化度0.5の雰囲気とし、850℃の温度で100秒行
い、引き続いてNH3 雰囲気でN含有量が200ppm に
なるよう窒化焼鈍を行った。MgOを主成分とする焼鈍
分離剤にMgO100重量部に対しCaCl2 を5重量
部添加した水スラリーを鋼板表面に塗布後して巻いた5
Tのコイルを、ボックスタイプの焼鈍炉で二次再結晶仕
上焼鈍を行った。炉内に窒素分圧を50%とした水素混
合ガスを流しながら1200℃まで15℃/hrで昇温
し、引き続いて水素を流しながら1200℃で75時間
の純化焼鈍を行った。その後、コイルを連続焼鈍ライン
で展開しながら、圧延方向からと直角方向から10度傾
いた、幅50μm、深さ11μmの溝を形成した歯型の
金型をプレスで溝を形成した後、コロイド状シリカとリ
ン酸塩を主成分とするコーティング液を塗布して860
℃で2分間焼き付けた。得られたコイルの5箇所でサン
プリングし、測定した800℃で2時間焼鈍後のエプス
タイン値は、磁区制御前の磁束密度B8 で平均1.96
T、鉄損W17/50で0.69W/kgであった。
Example 4 C: 0.05% by weight
Si: 3.25%, Mn: 0.10%, S: 0.007
%, P: 0.025%, acid-soluble Al: 0.029%,
N: 0.007%, Bi: 0.007%, Cr: 0.1
After smelting silicon steel containing 2% and casting it into a slab, 11
It was heated to 50 ° C., immediately after the extraction, hot-rolled to a thickness of 2.3 mm, water-cooled after hot rolling, and wound at 550 ° C. Thereafter, the hot rolled sheet was annealed at a temperature of 1120 ° C. for 30 seconds and 900 ° C. for 90 seconds,
After air cooling to 750 ° C, it was quenched into 80 ° C water. Next, after pickling, rolling was performed for 5 passes to 0.23 mm, and 200
Aging treatment was performed at a temperature of not less than 5 ° C. for not less than 5 minutes. Continue decarburization
Primary recrystallization annealing is performed in a mixed gas of nitrogen and hydrogen in an atmosphere having an oxidation degree of 0.5, at a temperature of 850 ° C. for 100 seconds, and subsequently, in a NH 3 atmosphere, nitriding annealing is performed so that the N content becomes 200 ppm. Was. A water slurry obtained by adding 5 parts by weight of CaCl 2 to 100 parts by weight of MgO to an annealing separator containing MgO as a main component was applied to the surface of the steel sheet and wound.
The coil of T was subjected to secondary recrystallization finish annealing in a box type annealing furnace. The temperature was raised to 1200 ° C. at a rate of 15 ° C./hr while flowing a hydrogen mixed gas with a nitrogen partial pressure of 50% into the furnace, followed by a purification annealing at 1200 ° C. for 75 hours while flowing hydrogen. Then, while developing the coil in a continuous annealing line, a groove of a tooth mold having a width of 50 μm and a depth of 11 μm, which is inclined by 10 degrees from the direction perpendicular to the rolling direction, is formed by pressing, and then the colloid is formed. 860 by applying a coating liquid containing silica and phosphate as main components.
Bake at 2 ° C. for 2 minutes. The Epstein value after annealing at 800 ° C. for 2 hours, which was sampled and measured at five points of the obtained coil, was 1.96 on average with the magnetic flux density B 8 before the magnetic domain control.
T and the iron loss W 17/50 were 0.69 W / kg.

【0046】[0046]

【発明の効果】本発明は、従来のBi添加法とによる超
高磁束密度化にLi,K,Na,Ba,Ca,Mg,Z
n,Fe,Zr,Sn,Sr,Al等の塩化物、炭酸
塩、硝酸塩、硫酸塩、硫化物の中から選ばれる1種また
は2種以上がMgO100重量部に対して2〜30重量
部配合されるMgOスラリーを塗布する鏡面化技術を極
めて効果的に組み合わせることにより、工業生産におい
て極めて安定的に安価な超磁束密度低一方向性電磁鋼板
が得られるとともに、磁区細分化処理後の鉄損特性も極
めて優れており、工業的に非常に価値が高いものと云え
る。
According to the present invention, Li, K, Na, Ba, Ca, Mg, Z
One or more selected from chlorides, carbonates, nitrates, sulfates, and sulfides such as n, Fe, Zr, Sn, Sr, and Al are blended in an amount of 2 to 30 parts by weight based on 100 parts by weight of MgO. By combining the mirror finishing technology of applying the MgO slurry to be applied very effectively, inexpensive super magnetic flux density low unidirectional electrical steel sheets can be obtained extremely stably in industrial production, and the iron loss after the magnetic domain refining treatment is obtained. The characteristics are also extremely excellent, and it can be said that it is very valuable industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一次皮膜形成法(従来のマグネシア焼鈍分離
剤)における、各Bi含有量での仕上げ焼鈍中のガス導
入量と磁束密度B8 および鋼板の酸素量の関係を示す図
で、〔A〕は各Bi含有量での仕上げ焼鈍中のガス導入
量と磁束密度B8 の関係を示す図で、〔B〕は各Bi含
有量での仕上げ焼鈍中のガス導入量と鋼板の酸素量の関
係を示す図。
[1] Primary film forming method in the (conventional magnesia annealing separator), a diagram showing a relationship between amount of oxygen gas introduction amount and the magnetic flux density B 8 and the steel sheet during finish annealing at each Bi content [A ] is a diagram showing the relationship between the gas introduction amount and the magnetic flux density B 8 in finish annealing at the Bi content, [B] of the amount of oxygen gas introduction amount and the steel sheet during finish annealing at each Bi content The figure which shows a relationship.

【図2】鏡面化法(塩化カルシウムを含有するマグネシ
ア焼鈍分離剤)における、各Bi含有量での仕上げ焼鈍
中のガス導入量と磁束密度B8 および鋼板の酸素量の関
係を示す図で、〔A〕は各Bi含有量での仕上げ焼鈍中
のガス導入量と磁束密度B8 の関係を示す図で、〔B〕
は各Bi含有量での仕上げ焼鈍中のガス導入量と鋼板の
酸素量の関係を示す図。
FIG. 2 is a diagram showing a relationship between a gas introduction amount, a magnetic flux density B 8 and an oxygen amount of a steel sheet during finish annealing at each Bi content in a mirror polishing method (magnesia annealing separator containing calcium chloride). [A] is a diagram showing the relationship between the amount of gas introduced during finish annealing and the magnetic flux density B 8 at each Bi content, [B]
The figure which shows the relationship between the gas introduction amount during the finish annealing in each Bi content, and the oxygen amount of a steel plate.

【図3】図2で得られた試料をレーザー照射により磁区
細分化処理を行ったときの素材の磁束密度(磁区細分化
前)B8 と磁区細分化後の鉄損W17/50 の関係を示す
図。
FIG. 3 shows the relationship between the magnetic flux density (before magnetic domain refining) B 8 and the iron loss W 17/50 after the magnetic domain refining when the sample obtained in FIG. 2 is subjected to magnetic domain refining treatment by laser irradiation. FIG.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.02〜0.1%、 Si:2.0〜4.8%、 酸可溶性Al:0.012〜0.050%、 N:0.0030〜0.0150%、 Bi:0.0005〜0.03%を基本成分とし、残部
はFeおよび不可避的不純物をからなる溶鋼を鋳造し、
熱間圧延し、65〜95%の最終強冷延を含む1回ある
いは中間焼鈍を介入する2回以上の冷間圧延により最終
板厚とし、一次再結晶を兼ねた脱炭焼鈍を施し、脱炭焼
鈍から二次再結晶仕上焼鈍の工程間で必要に応じて窒化
処理を行い、二次再結晶仕上焼鈍を行う工程からなる一
方向性電磁鋼板の製造方法において、鋼板表面に、Mg
O100重量部に対し、Li,K,Na,Ba,Ca,
Mg,Zn,Fe,Zr,Sn,Sr,Al等の塩化
物、炭酸塩、硝酸塩、硫酸塩、硫化物の中から選ばれる
1種または2種以上を2〜30重量部で添加した焼鈍分
離剤を塗布し、二次再結晶仕上焼鈍することを特徴とす
る磁束密度の高い鏡面一方向性電磁鋼板の製造方法。
C .: 0.02 to 0.1% by weight, Si: 2.0 to 4.8%, acid-soluble Al: 0.012 to 0.050%, N: 0.0030% by weight. 0.0150%, Bi: 0.0005 to 0.03% as a basic component, and the balance is cast molten steel including Fe and unavoidable impurities.
After hot rolling, the final sheet thickness is obtained by cold rolling one or more times, including final strong cold rolling of 65 to 95%, or intermediate annealing, and decarburizing annealing combined with primary recrystallization is performed. In a method for producing a unidirectional electrical steel sheet, which comprises performing a nitriding treatment as needed between the steps of charcoal annealing and secondary recrystallization finish annealing, and performing a secondary recrystallization finish annealing, wherein the surface of the steel sheet contains Mg.
O, 100 parts by weight, Li, K, Na, Ba, Ca,
Annealing separation in which one or more selected from chlorides, carbonates, nitrates, sulfates, and sulfides such as Mg, Zn, Fe, Zr, Sn, Sr, and Al are added at 2 to 30 parts by weight. A method for producing a mirror-oriented unidirectional electrical steel sheet having a high magnetic flux density, characterized by applying a refining agent and performing a secondary recrystallization finish annealing.
【請求項2】 脱炭焼鈍における鋼板酸素目付量が90
0ppm 以下で、且つ酸化膜中のFeO/SiO2 が0.
20以下であることを特徴とする請求項1記載の磁束密
度の高い鏡面一方向性電磁鋼板の製造方法。
2. A steel sheet having an oxygen basis weight of 90 in decarburizing annealing.
0 ppm or less and FeO / SiO 2 in the oxide film is 0.1 ppm or less.
2. The method for producing a mirror-oriented unidirectional electrical steel sheet having a high magnetic flux density according to claim 1, wherein the number is 20 or less.
【請求項3】 焼鈍分離剤に使用するMgOの物性が、
粒子径が10μm以下のものを30%以上含み、クエン
酸活性度CAA値が50〜300秒(30℃測定)、水
和水分が5%以下であることを特徴とする請求項1記載
の磁束密度の高い鏡面一方向性電磁鋼板の製造方法。
3. The physical properties of MgO used for the annealing separator are as follows:
2. The magnetic flux according to claim 1, wherein a particle having a particle diameter of 10 [mu] m or less contains 30% or more, a citric acid activity CAA value is 50 to 300 seconds (measured at 30 [deg.] C.), and a hydration moisture is 5% or less. Manufacturing method of high density mirror-oriented unidirectional electrical steel sheet.
【請求項4】 二次再結晶仕上焼鈍の条件として、二次
再結晶完了までの昇温時における雰囲気をN2 の比率が
30%以上のN2 +H2 雰囲気であることを特徴とする
請求項1記載の磁束密度の高い鏡面一方向性電磁鋼板の
製造方法。
As wherein conditions of the secondary recrystallization finish annealing, wherein, wherein the atmosphere at the time of heating up the secondary recrystallization completion ratio of N 2 is N 2 + H 2 atmosphere at 30% or more Item 1. A method for producing a mirror-oriented unidirectional electrical steel sheet having a high magnetic flux density according to Item 1.
【請求項5】 請求項1記載の鋼板に局部的な歪みを導
入することにより、磁区細分化処理を施すことを特徴と
する鉄損の低い鏡面一方向性電磁鋼板の製造方法。
5. A method for producing a mirror-oriented unidirectional magnetic steel sheet having a low iron loss, wherein a magnetic domain refinement treatment is performed by introducing local strain into the steel sheet according to claim 1.
【請求項6】 請求項1記載の鋼板にコーティング処理
による張力皮膜を形成した後、局部的な歪みを導入する
ことにより、磁区細分化処理を施すことを特徴とする鉄
損の低い鏡面一方向性電磁鋼板の製造方法。
6. A mirror surface unidirectional with low iron loss, characterized in that after forming a tension film by a coating process on the steel sheet according to claim 1, a magnetic domain refinement process is performed by introducing local strain. Manufacturing method of conductive electrical steel sheet.
【請求項7】 請求項1記載の鋼板に圧延方向に対して
直角もしくは直角から45度の範囲内で間隔2〜10mm
で幅10〜300μm、深さ5〜50μmの範囲で連続
的、不連続または点状の溝あるいは局部的な溝を形成
し、併せてコーティング処理による張力皮膜を形成する
ことにより磁区細分化させることを特徴とする鉄損の低
い鏡面一方向性電磁鋼板の製造方法。
7. The steel sheet according to claim 1, which is at right angles to the rolling direction or at an interval of 2 to 10 mm within a range of 45 degrees from the right angle.
Forming a continuous, discontinuous or point-like groove or a local groove in the range of 10 to 300 μm in width and 5 to 50 μm in depth, and forming a tension film by a coating process to further subdivide the magnetic domains. A method for producing a mirror-oriented unidirectional magnetic steel sheet having a low iron loss, characterized by comprising:
JP28494496A 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet Expired - Lifetime JP3489945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28494496A JP3489945B2 (en) 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28494496A JP3489945B2 (en) 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH10130727A true JPH10130727A (en) 1998-05-19
JP3489945B2 JP3489945B2 (en) 2004-01-26

Family

ID=17685096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28494496A Expired - Lifetime JP3489945B2 (en) 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3489945B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027196A (en) * 2001-07-16 2003-01-29 Nippon Steel Corp Method of manufacturing ultra-high mangnetic flux density grain-oriented silicon steel sheet having high magnetic flerd iron loss and excellent film characteristic
WO2003008654A1 (en) * 2001-07-16 2003-01-30 Nippon Steel Corporation Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
JP2003096520A (en) * 2001-09-21 2003-04-03 Nippon Steel Corp Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
KR100368235B1 (en) * 1998-12-18 2003-04-21 주식회사 포스코 Manufacturing method of oriented electrical steel sheet
JP2003183790A (en) * 2002-11-01 2003-07-03 Nippon Steel Corp Grain-oriented magnetic steel sheet with ultra-high magnetic flux density having low core loss in high magnetic field and superior film characteristics
WO2020149346A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149351A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149327A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
CN114395663A (en) * 2021-12-31 2022-04-26 重庆望变电气(集团)股份有限公司 Annealing separant, preparation method of annealing separant suspension and preparation method of underlayer-free low-temperature high-magnetic-induction oriented silicon steel
CN114854960A (en) * 2022-03-30 2022-08-05 武汉钢铁有限公司 Annealing separant for reducing surface defects of oriented silicon steel and using method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368235B1 (en) * 1998-12-18 2003-04-21 주식회사 포스코 Manufacturing method of oriented electrical steel sheet
JP2003027196A (en) * 2001-07-16 2003-01-29 Nippon Steel Corp Method of manufacturing ultra-high mangnetic flux density grain-oriented silicon steel sheet having high magnetic flerd iron loss and excellent film characteristic
WO2003008654A1 (en) * 2001-07-16 2003-01-30 Nippon Steel Corporation Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
CN1321215C (en) * 2001-07-16 2007-06-13 新日本制铁株式会社 Ultra-high magnetic fiux density unidirectional electrical steel sheet excellent in high magnetic field iron loss and coating characteristic and production method thereof
US7399369B2 (en) 2001-07-16 2008-07-15 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
US7981223B2 (en) 2001-07-16 2011-07-19 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
JP2003096520A (en) * 2001-09-21 2003-04-03 Nippon Steel Corp Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
JP2003183790A (en) * 2002-11-01 2003-07-03 Nippon Steel Corp Grain-oriented magnetic steel sheet with ultra-high magnetic flux density having low core loss in high magnetic field and superior film characteristics
CN113302317A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
EP3913090A4 (en) * 2019-01-16 2022-09-28 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
WO2020149327A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
CN113302318A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
WO2020149346A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
JPWO2020149327A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JPWO2020149346A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JPWO2020149351A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
RU2767356C1 (en) * 2019-01-16 2022-03-17 Ниппон Стил Корпорейшн Method for producing a sheet of electrotechnical steel with oriented grain structure
CN113302318B (en) * 2019-01-16 2024-01-09 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet
RU2771130C1 (en) * 2019-01-16 2022-04-26 Ниппон Стил Корпорейшн Method for producing electrical steel sheet with oriented grain structure
RU2771315C1 (en) * 2019-01-16 2022-04-29 Ниппон Стил Корпорейшн Method for producing electrical steel sheet with oriented grain structure
CN113302317B (en) * 2019-01-16 2024-01-09 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet
WO2020149351A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
EP3913096A4 (en) * 2019-01-16 2022-09-28 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
CN114395663A (en) * 2021-12-31 2022-04-26 重庆望变电气(集团)股份有限公司 Annealing separant, preparation method of annealing separant suspension and preparation method of underlayer-free low-temperature high-magnetic-induction oriented silicon steel
CN114854960B (en) * 2022-03-30 2023-09-05 武汉钢铁有限公司 Annealing isolating agent for reducing surface defects of oriented silicon steel and use method thereof
CN114854960A (en) * 2022-03-30 2022-08-05 武汉钢铁有限公司 Annealing separant for reducing surface defects of oriented silicon steel and using method thereof

Also Published As

Publication number Publication date
JP3489945B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
JPH05112827A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property and coating film pr0perty
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3496067B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP3489945B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JPH07122096B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JP2003003213A (en) Method for producing specular grain-oriented silicon steel having high magnetic flux density
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2706039B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS633008B2 (en)
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JPH0730396B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic and film properties
JP2674916B2 (en) Method for manufacturing mirror-finished high magnetic flux density grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term