JP3061491B2 - Method for producing unidirectional electrical steel sheet with excellent magnetic properties - Google Patents

Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Info

Publication number
JP3061491B2
JP3061491B2 JP4328251A JP32825192A JP3061491B2 JP 3061491 B2 JP3061491 B2 JP 3061491B2 JP 4328251 A JP4328251 A JP 4328251A JP 32825192 A JP32825192 A JP 32825192A JP 3061491 B2 JP3061491 B2 JP 3061491B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
temperature
hot
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4328251A
Other languages
Japanese (ja)
Other versions
JPH06173019A (en
Inventor
康成 吉冨
收 田中
穂高 本間
浩昭 増井
希瑞 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4328251A priority Critical patent/JP3061491B2/en
Publication of JPH06173019A publication Critical patent/JPH06173019A/en
Application granted granted Critical
Publication of JP3061491B2 publication Critical patent/JP3061491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はグラス被膜(フォルステ
ライト系被膜)を殆ど有しない厚手一方向性電磁鋼板の
製造方法に関わり、切断性、打抜性が優れると共に磁気
特性が良好な方向性電磁鋼板の安価な製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick unidirectional electrical steel sheet having almost no glass coating (forsterite coating), and has excellent cutting properties and punching properties and good magnetic properties. The present invention relates to an inexpensive method for manufacturing an electromagnetic steel sheet.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、磁場の強さ800A
/mにおける磁束密度B8 が通常使用される。又、鉄損
特性を表す数値としては、周波数50Hzで1.7テスラ
ー(T)まで磁化した時の1kg当りの鉄損W17/50 を使
用している。磁束密度は、鉄損特性の最大支配因子であ
り、一般的にいって磁束密度が高いほど鉄損特性が良好
になる。なお、一般的に磁束密度を高くすると二次再結
晶粒が大きくなり、鉄損特性が不良となる場合がある。
これに対しては、磁区制御により、二次再結晶粒の粒径
に拘らず、鉄損特性を改善することができる。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as an iron core material for transformers and other electric equipment, and is required to have excellent magnetic properties such as excitation properties and iron loss properties. Numerical values representing the excitation characteristics include a magnetic field strength of 800 A
/ Flux density B 8 in m are usually used. As a numerical value representing the iron loss characteristic, the iron loss W 17/50 per kg when magnetized at a frequency of 50 Hz to 1.7 Tesla (T) is used. The magnetic flux density is the largest controlling factor of the iron loss characteristics. Generally, the higher the magnetic flux density, the better the iron loss characteristics. In general, when the magnetic flux density is increased, the secondary recrystallized grains become large, and the iron loss characteristics may become poor.
In contrast, by controlling the magnetic domain, the iron loss characteristics can be improved regardless of the particle size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸をもったいわゆるゴス組織を発達さ
せることにより製造されている。良好な磁気特性を得る
ためには、磁化容易軸である〈001〉軸を圧延方向に
高度に揃えることが必要である。
[0003] This grain-oriented electrical steel sheet is produced by causing secondary recrystallization in the final finish annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and a <001> axis in the rolling direction. Have been. In order to obtain good magnetic properties, the <001> axis, which is the axis of easy magnetization, needs to be highly aligned in the rolling direction.

【0004】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに田口悟等による特公昭4
0−15644号公報及び今中拓一等による特公昭51
−13469号公報記載の方法がある。前者においては
MnS及びAlNを、後者ではMnS,MnSe,Sb
等を主なインヒビターとして用いている。
[0004] As a typical production technique of such a high magnetic flux density unidirectional magnetic steel sheet, Satoru Taguchi et al.
No. 0-15644 and Japanese Patent Publication No. 51 by Takuichi Imanaka
There is a method described in JP-A-13469. In the former, MnS and AlN are used, and in the latter, MnS, MnSe, Sb are used.
Are used as the main inhibitors.

【0005】従って現在の技術においてはこれらインヒ
ビターとして機能する析出物の大きさ、形態及び分散状
態を適正制御することが不可欠である。MnSに関して
言えば、現在の工程では熱延前のスラブ加熱時にMnS
を一旦完全固溶させた後、熱延時に析出させる方法がと
られている。二次再結晶に必要な量のMnSを完全固溶
するためには1400℃程度の温度が必要である。これ
は普通鋼のスラブ加熱温度に比べて200℃以上も高
く、この高温スラブ加熱処理には以下に述べるような不
利な点がある。即ち、1)方向性電磁鋼専用の高温スラ
ブ加熱炉が必要である。2)加熱炉のエネルギー原単位
が高い。3)溶融スケール量が増大し、いわゆるノロか
き出し等にみられるように操業上の悪影響が大きい。
[0005] Therefore, in the current technology, it is essential to appropriately control the size, morphology and dispersion state of the precipitates functioning as these inhibitors. With regard to MnS, in the current process, MnS is used during slab heating before hot rolling.
Is once dissolved completely and then precipitated during hot rolling. A temperature of about 1400 ° C. is required to completely dissolve the required amount of MnS for secondary recrystallization. This is more than 200 ° C. higher than the slab heating temperature of ordinary steel, and this high-temperature slab heating treatment has the following disadvantages. That is, 1) a high-temperature slab heating furnace dedicated to directional magnetic steel is required. 2) The unit energy consumption of the heating furnace is high. 3) The amount of the molten scale increases, and the adverse effect on the operation is large as seen in so-called scraping.

【0006】このような問題点を回避するためには、ス
ラブ加熱温度を普通鋼並みに下げればよいわけである
が、このことは同時にインヒビターとして有効なMnS
の量を少なくするかあるいはまったく用いないことを意
味し、必然的に二次再結晶の不安定化をもたらす。この
ため低温スラブ加熱化を実現するためには何らかの形で
MnS以外の析出物等によりインヒビターを強化し、仕
上焼鈍時の正常粒成長の抑制を十分にする必要がある。
このようなインヒビターとしては硫化物の他、窒化物、
酸化物及び粒界析出元素等が考えられ、公知の技術とし
て例えば次のようなものがあげられる。
In order to avoid such a problem, the slab heating temperature may be reduced to the same level as that of ordinary steel.
Means to use less or not to use at all, which necessarily leads to instability of secondary recrystallization. For this reason, in order to realize low-temperature slab heating, it is necessary to strengthen the inhibitor with a precipitate other than MnS in some form, and to sufficiently suppress normal grain growth during finish annealing.
Such inhibitors include nitrides, as well as sulfides.
Oxides and grain boundary precipitation elements are conceivable. Known techniques include, for example, the following.

【0007】特公昭54−24685号公報ではAs,
Bi,Sn,Sb等の粒界偏析元素を鋼中に含有するこ
とによりスラブ加熱温度を1050〜1350℃の範囲
にする方法が開示された。特開昭52−24116号公
報ではAlの他、Zr,Ti,B,Nb,Ta,V,C
r,Mo等の窒化物生成元素を含有することによりスラ
ブ加熱温度を1100〜1260℃の範囲にする方法が
開示された。又、特開昭57−158322号公報では
Mn含有量を下げ、Mn/Sの比率を2.5以下にする
ことにより低温スラブ加熱化を行い、さらにCuの添加
により二次再結晶を安定化する技術が開示された。
[0007] In Japanese Patent Publication No. 54-24684, As,
A method has been disclosed in which a slab heating temperature is set in a range of 1050 to 1350 ° C. by including grain boundary segregation elements such as Bi, Sn, and Sb in steel. JP-A-52-24116 discloses that Al, Zr, Ti, B, Nb, Ta, V, C
A method has been disclosed in which a slab heating temperature is adjusted to a range of 1100 to 1260 ° C. by containing a nitride-forming element such as r or Mo. In Japanese Patent Application Laid-Open No. 57-158322, low-temperature slab heating is performed by lowering the Mn content and the Mn / S ratio to 2.5 or less, and the addition of Cu stabilizes the secondary recrystallization. A technique for doing so has been disclosed.

【0008】一方、これらインヒビターの補強と組み合
わせて金属組織の側から改良を加えた技術も開示され
た。すなわち特開昭57−89433号公報ではMnに
加え、S,Se,Sb,Bi,Pb,Sn,B等の元素
を加え、これにスラブの柱状晶率と二次冷延圧下率を組
み合わせることにより、1100〜1250℃の低温ス
ラブ加熱化を実現している。さらに特開昭59−190
324号公報ではSあるいはSeに加え、Al及びBと
窒素を主体としてインヒビターを構成し、これに冷延後
の一次再結晶焼鈍時にパルス焼鈍を施すことにより二次
再結晶を安定化する技術が公開された。このように方向
性電磁鋼板製造における低温スラブ加熱化実現のために
は、これまでに多大な努力が続けられてきている。
On the other hand, there has been disclosed a technique in which the metal structure is improved in combination with the reinforcement of the inhibitor. That is, in JP-A-57-89433, elements such as S, Se, Sb, Bi, Pb, Sn and B are added in addition to Mn, and the columnar crystal ratio of the slab and the secondary cold rolling reduction are combined. Thereby, low-temperature slab heating at 1100 to 1250 ° C. is realized. Further, JP-A-59-190
Japanese Patent No. 324 discloses a technique for stabilizing the secondary recrystallization by forming an inhibitor mainly composed of Al, B and nitrogen in addition to S or Se, and subjecting the inhibitor to pulse annealing at the time of primary recrystallization annealing after cold rolling. It was published. As described above, great efforts have been made so far to realize low-temperature slab heating in the production of grain-oriented electrical steel sheets.

【0009】さて、先に特開昭59−56522号公報
において、Mnを0.08〜0.45%、Sを0.00
7%以下にすることにより低温スラブ加熱化を可能にす
る技術が開示された。この方法により高温スラブ加熱時
のスラブ結晶粒粗大化に起因する製品の線状二次再結晶
不良発生の問題が解消された。一方、方向性電磁鋼板の
需要家における使用時に磁気特性と共に要なのは被膜
特性と共に加工性である。通常、方向性電磁鋼板は最終
仕上焼鈍時に形成するグラス被膜と絶縁被膜によって表
面処理がなされている。
In Japanese Patent Application Laid-Open No. 59-56522, Mn is 0.08 to 0.45% and S is 0.00
A technique has been disclosed that enables low-temperature slab heating by reducing the content to 7% or less. By this method, the problem of occurrence of defective linear secondary recrystallization of a product due to coarsening of slab crystal grains during heating of a high-temperature slab was solved. On the other hand, a workability with important is coating properties with magnetic properties when used in consumer oriented electrical steel sheet. Normally, the grain-oriented electrical steel sheet is surface-treated by a glass coating and an insulating coating formed at the time of final finish annealing.

【0010】グラス被膜は焼鈍分離剤のMgOと脱炭時
に形成する酸化膜のSiO2 との反応物であるフォルス
テライト(Mg2 SiO4 )が主成分の被膜である。こ
のグラス被膜は硬質で摩耗性が強く、電磁鋼板加工時の
スリット切断、打抜き等の際の工具類の耐久性に著しい
影響を及ぼす。例えばグラス被膜を有する方向性電磁鋼
板の打抜き加工を行う場合には、金型の摩耗が生じ、数
千回程度の打抜きによって打抜いたシートの返りが大き
くなって使用時に問題を生じる程になる。このため金型
の再研磨、新品との取替等が必要になる。
The glass film is a film mainly composed of forsterite (Mg 2 SiO 4 ), which is a reaction product of MgO as an annealing separator and SiO 2 as an oxide film formed during decarburization. The glass coating is hard and highly wearable, and has a remarkable effect on the durability of tools at the time of slit cutting, punching, and the like when processing an electromagnetic steel sheet. For example, when performing a punching process on a grain-oriented electrical steel sheet having a glass coating, a die is worn, and the return of the punched sheet is increased by punching about several thousand times, so that a problem occurs during use. . For this reason, it is necessary to re-grind the mold, replace it with a new one, and the like.

【0011】これは需要家における鉄心加工時の作業能
率を低下させ、又、コスト上昇を招く結果になる。同様
にしてスリット性、切断性等についてもグラス被膜によ
る悪影響が問題である。グラス被膜を殆ど有しない方向
性電磁鋼板の製造法としては、例えば特開昭53−22
113号公報に開示のものがある。これは脱炭焼鈍にお
いて酸化膜の厚みを3μm以下として、焼鈍分離剤とし
て、含水珪酸塩鉱物粉末を5〜40%含有する微粒子の
アルミナを用いる。これを鋼板に塗布し、仕上焼鈍を行
う。これによると酸化膜を薄くし、さらに含水塩鉱物の
配合によって剥離しやすいグラス被膜が形成され、金属
光沢を有するものが得られるとされている。
[0011] This results in a reduction in the work efficiency of the iron core processing at the customer and an increase in cost. Similarly, the adverse effect of the glass coating is also a problem on the slitting property and the cutting property. A method for producing a grain-oriented electrical steel sheet having almost no glass coating is disclosed in, for example, JP-A-53-22.
There is one disclosed in JP-A-113. In the decarburizing annealing, the thickness of the oxide film is set to 3 μm or less, and fine alumina containing 5 to 40% of hydrous silicate mineral powder is used as an annealing separator. This is applied to a steel plate and finish annealing is performed. According to this, an oxide film is made thin, and a glass coating which is easy to peel off is formed by blending a hydrated mineral, thereby obtaining a film having a metallic luster.

【0012】又、焼鈍分離剤によりグラス被膜の形成を
抑制する方法としては特開昭56−65983号公報で
は、水酸化アルミニウムに不純物除去用添加物20重量
部、抑制物質10重量部配合した焼鈍分離剤を鋼板に塗
布し、0.5μm以下の薄いグラス被膜を形成する方法
がある。又、特開昭59−96278号公報には脱炭焼
鈍で形成した酸化層のSiO2 と反応性が弱いAl2
3 と1300℃以上の高温で焼成し活性を低下させたM
gOとからなる焼鈍分離剤がある。これによるとフォル
ステライトの形成が抑制されるというものである。
Japanese Patent Application Laid-Open No. 56-65883 discloses a method for suppressing the formation of a glass film by using an annealing separating agent. An annealing method in which 20 parts by weight of an impurity removing additive and 10 parts by weight of an inhibitor are mixed with aluminum hydroxide. There is a method in which a separating agent is applied to a steel sheet to form a thin glass film of 0.5 μm or less. JP-A-59-96278 discloses Al 2 O having a low reactivity with SiO 2 of an oxide layer formed by decarburizing annealing.
3 and M reduced in activity by firing at a high temperature of 1300 ° C or higher
There is an annealing separator composed of gO. According to this, formation of forsterite is suppressed.

【0013】これらの先行技術はいずれも通常のオリエ
ントコアと呼ばれる方向性電磁鋼板で、磁束密度1.8
8Tesla 以下と低い低級な方向性電磁鋼板をベースとす
るものであり、グラス被膜を殆ど有さない点では本発明
と類似の効果は得られるかもしれないが、本発明のよう
に高磁束密度、低鉄損の高級な方向性電磁鋼板の開発技
術を得るまでに至っていない。
Each of these prior arts is a grain-oriented electrical steel sheet called a normal orient core, and has a magnetic flux density of 1.8.
It is based on a low-grade grain-oriented electrical steel sheet as low as 8 Tesla or less, and may have an effect similar to that of the present invention in that it has almost no glass coating. The technology for developing high-grade grain-oriented electrical steel sheets with low iron loss has not yet been obtained.

【0014】[0014]

【発明が解決しようとする課題】近年タービン発電機用
鉄心材料等の用途に、現用の高級無方向性電磁鋼板に代
わって、グラス被膜の殆どない方向性電磁鋼板を用いた
いというニーズが高まってきた。上記用途に関していえ
ば、他の無方向性電磁鋼板の用途と比較して、一方向の
磁気特性が重要とされるため、方向性電磁鋼板を用いた
いというニーズが高まってきたわけである。かつ打抜
き、切断、スリット等の加工性のよいグラスの殆どない
材料が求められる。一方、方向性電磁鋼板の熱延後の製
造の主工程は、熱延板焼鈍−冷延−脱炭焼鈍−仕上焼鈍
となっており、無方向性電磁鋼板の熱延後の主工程であ
る冷延−焼鈍と比較して複雑となっている。そのため、
製造コストからして、方向性電磁鋼板の方が無方向性電
磁鋼板よりかなり高いものとなる。
In recent years, there has been a growing need to use a grain-oriented electrical steel sheet having almost no glass coating in place of an existing high-grade non-oriented electrical steel sheet for applications such as iron core materials for turbine generators. Was. With respect to the above-mentioned applications, unidirectional magnetic properties are more important than those of other non-oriented electrical steel sheets, and thus the need to use grain-oriented electrical steel sheets has increased. In addition, a material that has almost no glass with good workability, such as punching, cutting, and slitting, is required. On the other hand, the main process of manufacturing the grain-oriented electrical steel sheet after hot rolling is hot-rolled sheet annealing-cold rolling-decarburizing annealing-finish annealing, which is the main process after hot-rolling the non-oriented electrical steel sheet. It is more complicated than cold rolling and annealing. for that reason,
From the viewpoint of manufacturing cost, the grain-oriented electrical steel sheet is considerably higher than the non-oriented electrical steel sheet.

【0015】さらには、通常の酸洗ラインや、タンデム
冷延ラインでは、通板できる板厚に制限があり、厚い板
厚の冷延素材を通板すると破断が生じる可能性がある。
そこで、0.5mm厚等の厚手材を1回冷延で製造しよう
とすると、冷延素材の板厚に上限があるため、冷延率を
低くとる必要が生じる。又、方向性電磁鋼板の製造にお
いては通常熱延後組織の不均一化、析出処理等を目的と
して熱延板焼鈍が行われている。例えばAlNを主イン
ヒビターとする製造方法においては、特公昭46−23
820号公報に示すように熱延板焼鈍においてAlNの
析出処理を行ってインヒビターを制御する方法がとられ
ている。近年多量のエネルギー消費をするこのような方
向性電磁鋼板の製造工程に対する見直しが進められ、工
程、エネルギーの簡省略化の要請が強まってきた。この
ような要請に応えるべく、AlNを主インヒビターとす
る製造方法において、熱延板焼鈍でのAlNの析出処理
を、熱延後の高温巻取りで代替する方法(特公昭59−
45730号公報)が提案された。確かに、この方法に
よって熱延板焼鈍を省略しても、磁気特性をある程度確
保することはできるが、5〜20トンのコイル状で巻取
られる通常の方法においては、冷却過程でコイル内での
場所的な熱履歴の差が生じ、必然的にAlNの析出が不
均一となり、最終的な磁気特性はコイル内の場所によっ
て変動し、歩留りが低下する結果となる。
Further, in a normal pickling line or a tandem cold rolling line, there is a limit to the thickness of a sheet that can be passed, and there is a possibility that breakage may occur when a cold rolled material having a large thickness is passed.
Therefore, when a thick material having a thickness of 0.5 mm or the like is to be manufactured by cold rolling once, it is necessary to reduce the cold rolling rate because the thickness of the cold rolled material has an upper limit. Further, in the production of grain-oriented electrical steel sheets, hot-rolled sheet annealing is usually performed for the purpose of making the structure after hot rolling non-uniform and performing a precipitation treatment. For example, in a production method using AlN as a main inhibitor, Japanese Patent Publication No.
As disclosed in Japanese Patent Publication No. 820, a method of controlling an inhibitor by performing AlN precipitation treatment in hot-rolled sheet annealing is adopted. In recent years, the production process of such grain-oriented electrical steel sheets that consume a large amount of energy has been reviewed, and there has been an increasing demand for simplification of the process and energy. In order to respond to such a demand, in a manufacturing method using AlN as a main inhibitor, a method in which the precipitation treatment of AlN in hot-rolled sheet annealing is replaced by high-temperature winding after hot rolling (Japanese Patent Publication No. 59-1984)
No. 45730). Certainly, even if the hot-rolled sheet annealing is omitted by this method, the magnetic properties can be secured to some extent. However, in a normal method of winding in a coil shape of 5 to 20 tons, the inside of the coil during the cooling process is reduced. In this case, a difference in the thermal history is generated, and the precipitation of AlN is inevitably inconsistent, and the final magnetic properties vary depending on the location in the coil, resulting in a decrease in yield.

【0016】そこで本発明者らは、従来殆ど注目されて
いなかった仕上熱延最終パス後の再結晶現象に着目し、
この現象を利用して80%以上の強圧下1回冷延による
製造法において、熱延板焼鈍を省略する方法(特開平2
−263923号、特開平2−263924号)を提示
した。これらの技術は、仕上熱延最終3パスの強圧下及
び熱延終了後の高温での保持により熱延板を微細再結晶
組織としたことに特徴があり、これらの技術により、1
280℃未満の温度でのスラブ加熱と、熱延板焼鈍の省
略の両立が可能となった。
Therefore, the present inventors have focused on the recrystallization phenomenon after the final pass of the finish hot rolling, which has hardly been noticed in the past,
Utilizing this phenomenon, a method of omitting hot-rolled sheet annealing in a production method by once cold rolling under a high pressure of 80% or more (Japanese Patent Laid-Open No.
-263923, JP-A-2-263924). These techniques are characterized in that the hot-rolled sheet has a fine recrystallized structure by applying high pressure under the final three passes of finishing hot rolling and holding at a high temperature after the end of hot rolling.
It has become possible to achieve both slab heating at a temperature lower than 280 ° C. and omission of hot-rolled sheet annealing.

【0017】一方向性電磁鋼板の熱延に関しては、高温
スラブ加熱(例えば1300℃以上)時のスラブ結晶粒
の粗大成長に起因する二次再結晶不良(圧延方向に連な
った線状細粒発生)を防止するために、熱延時の960
〜1190℃での温度で1パス当り30%以上の圧下率
で再結晶化高圧下圧延を施し、粗大結晶粒を分断する方
法が提案されている(特公昭60−37172号公
報)。確かにこの方法によって線状細粒発生が減少する
が、熱延板焼鈍を施す製造プロセスを前提としている。
Regarding hot rolling of a grain-oriented electrical steel sheet, poor secondary recrystallization due to coarse growth of slab crystal grains during high-temperature slab heating (for example, 1300 ° C. or higher) (the generation of linear fine grains continuous in the rolling direction) 960) during hot rolling to prevent
A method has been proposed in which recrystallization high-pressure rolling is performed at a temperature of 111190 ° C. and a rolling reduction of 30% or more per pass to cut coarse crystal grains (Japanese Patent Publication No. 60-37172). Although this method certainly reduces the generation of linear fine grains, it is premised on a manufacturing process in which hot-rolled sheet annealing is performed.

【0018】又MnS,MnSe,Sbをインヒビター
とする製造方法において、熱延時の950〜1200℃
の温度で圧下率10%以上で連続して熱延し、引き続き
3℃/sec以上の冷却速度で冷却することによってMn
S,MnSeを均一微細に析出させ、磁気特性を向上さ
せる方法が提案されている(特開昭51−20716号
公報)。又熱延を低温で行い、再結晶の進行を抑制し、
剪断変形で形成される{110}〈001〉方位粒が引
き続く再結晶で減少するのを防止することによって磁気
特性を向上させる方法が提案されている(特公昭59−
32526号公報、特公昭59−35415号公報)。
Further, in the production method using MnS, MnSe, and Sb as inhibitors, the method comprises the steps of:
Hot rolling at a reduction rate of 10% or more at a temperature of 3% and then cooling at a cooling rate of 3 ° C./sec or more
There has been proposed a method of precipitating S and MnSe uniformly and finely to improve magnetic properties (JP-A-51-20716). In addition, hot rolling is performed at a low temperature to suppress the progress of recrystallization,
There has been proposed a method of improving magnetic properties by preventing the {110} <001> -oriented grains formed by shear deformation from being reduced by subsequent recrystallization (Japanese Patent Publication No. 59-1984).
No. 32526, JP-B-59-35415).

【0019】これらの方法においても、熱延板焼鈍なし
の1回冷延法での製造は検討さえされていない。又超低
炭素を含有する珪素鋼スラブの熱延において、熱延板で
歪を蓄積させる低温大圧下熱延を行い、引き続く熱延板
焼鈍での再結晶により超低炭素材特有の粗大結晶粒を分
断する方法が提案されている(特公昭59−34212
号公報)。しかし、この方法においても、熱延板焼鈍な
しの1回冷延法での製造は検討さえされていない。従っ
て、本発明者らが先に示した低温スラブ加熱と熱延板焼
鈍の省略を両立させた技術(特開平2−263923
号,特開平2−263924号)の意義は大きいことが
わかるが、本発明はさらに厚い板厚のグラス被膜の少な
い一方向性電磁鋼板の製造方法を提供するものである。
Even in these methods, production by a single cold rolling method without annealing of a hot-rolled sheet has not even been studied. In addition, in hot rolling of silicon steel slabs containing ultra-low carbon, hot-rolling under low temperature and large pressure to accumulate strain in the hot-rolled sheet, and subsequent recrystallization in hot-rolled sheet annealing, coarse grains unique to ultra-low carbon material Has been proposed (Japanese Patent Publication No. 59-34212).
No.). However, even in this method, production by a single cold rolling method without annealing of a hot-rolled sheet has not even been studied. Accordingly, a technique in which the present inventors have achieved both the low-temperature slab heating and the omission of hot-rolled sheet annealing as described above (Japanese Patent Laid-Open No. 2-263923).
It is understood that the significance of the present invention is large, but the present invention provides a method for producing a unidirectional magnetic steel sheet having a larger thickness and less glass coating.

【0020】[0020]

【課題を解決するための手段】本発明は重量比で、C:
0.021〜0.075%、Si:2.5〜4.5%、
酸可溶Al:0.010〜0.060%、N:0.00
10〜0.0130%、S+0.405Se:0.01
4%以下、Mn:0.05〜0.8%、残部がFeと不
可避の不純物からなるスラブを1280℃未満の温度で
加熱した後、熱延し、熱延板焼鈍を施すことなく引き続
き圧下率60〜79%の冷延を行い、次いで脱炭焼鈍
し、焼鈍分離剤を塗布し、仕上焼鈍をし、絶縁被膜剤を
塗布する0.4〜1.0mm厚の厚手一方向性電磁鋼板の
製造方法において、熱延終了温度を800〜1100℃
とし、熱延の最終3パスの累積圧下率を40%以上と
し、冷延のパス間の鋼板の温度を250℃以下とし、脱
炭焼鈍完了後、最終仕上焼鈍開始までの間の一次再結晶
粒の平均粒径を18〜30μmとし、熱延後最終仕上焼
鈍の二次再結晶開始までの間に鋼板に窒化処理を施し、
焼鈍分離剤としてMgO100重量部に対し、Li,
K,Na,Ba,Ca,Mg,Zn,Fe,Zr,S
r,Sn,Alの塩化物、硝酸塩、硫化物、硫酸塩の中
から選ばれる1種又は2種以上を2〜30重量部添加し
た焼鈍分離剤を塗布することを特徴とする磁気特性の優
れた厚い板厚のグラス被膜の少ない一方向性電磁鋼板の
製造方法を提供するものである。
According to the present invention, C:
0.021 to 0.075%, Si: 2.5 to 4.5%,
Acid-soluble Al: 0.010-0.060%, N: 0.00
10 to 0.0130%, S + 0.405Se: 0.01
A slab comprising 4% or less, Mn: 0.05 to 0.8%, the balance being Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C, then hot-rolled, and continuously reduced without performing hot-rolled sheet annealing. Cold-rolled at a rate of 60 to 79%, then decarburized, coated with an annealing separator, finish-annealed, and coated with an insulating coating agent. The hot rolling end temperature is from 800 to 1100 ° C.
The cumulative rolling reduction of the final three passes of hot rolling is set to 40% or more, the temperature of the steel sheet between the passes of cold rolling is set to 250 ° C. or less, and the primary recrystallization from the completion of decarburizing annealing to the start of final finishing annealing. The average grain size of the grains is 18 to 30 μm, and after the hot rolling, the steel sheet is subjected to nitriding treatment until the start of the secondary recrystallization of the final finish annealing,
As an annealing separator, Li,
K, Na, Ba, Ca, Mg, Zn, Fe, Zr, S
Excellent in magnetic properties characterized by applying an annealing separator containing 2 to 30 parts by weight of one or more selected from chlorides, nitrates, sulfides and sulfates of r, Sn, Al. An object of the present invention is to provide a method for producing a unidirectional magnetic steel sheet having a large thickness and a small glass coating.

【0021】[0021]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程を挟ん
でスラブとし、引き続き熱間圧延して熱延板とし、次い
で熱延板焼鈍を施すことなく圧下率60〜79%の冷
延、脱炭焼鈍、最終仕上焼鈍を順次行うことによって製
造される。本発明者らは、冷延素材の板厚制限のため、
圧下率を低める必要が生じ、80%未満の圧下率で磁気
特性を良好ならしめる方策を広範にわたって検討した。
その結果、冷延のパス間で板温を不必要に上げないこと
が圧下率80%未満の低冷延率で良好な磁気特性を得る
のに有効であるという知見を得た。
The grain-oriented electrical steel sheet to which the present invention is directed is:
Molten steel obtained by a conventional steelmaking method is cast by a continuous casting method or an ingot-making method, and if necessary, a slab is sandwiched by a lump-forming step, and subsequently hot-rolled into a hot-rolled sheet, and then hot-rolled. It is manufactured by successively performing cold rolling at a rolling reduction of 60 to 79%, decarburizing annealing, and final finishing annealing without performing strip annealing. The present inventors have limited the thickness of the cold-rolled material,
It was necessary to reduce the rolling reduction, and measures to improve the magnetic properties with a rolling reduction of less than 80% were extensively studied.
As a result, it was found that not unnecessarily increasing the sheet temperature between the cold rolling passes is effective for obtaining good magnetic properties at a low cold rolling reduction of less than 80%.

【0022】以下、実験結果を基に詳細に説明する。図
1は冷延時のパス間での鋼板の温度が製品の磁束密度に
与える影響を表したグラフである。ここでは、C:0.
030重量%、Si:2.81重量%、酸可溶性Al:
0.034重量%、N:0.0060重量%、S:0.
007重量%、Mn:0.14重量%を含有し、残部F
e及び不可避的不純物からなる40mm厚のスラブを11
50℃に加熱し、6パスで2.0mm厚の熱延板とした。
この時パススケジュールは、40→26→15→8→5
→3→2(mm)であり、熱延終了温度は938℃であっ
た。この場合、最終3パスの累積圧下率は75%であっ
た。熱延後4秒空冷後、550℃まで水冷し、550℃
に1時間保持後炉冷する巻取りシミュレーションを施し
た。しかる後、この熱延板を酸洗し、次いで圧下率75
%で冷延し、0.50mm厚の冷延板とした。この時、板
厚1.5mm、1.0mmの時に50℃×5分(均熱)、
100℃×5分(均熱)、150℃×5分(均
熱)、200℃×5分(均熱)、250℃×5分
(均熱)、300℃×5分(均熱)、350℃×5
分(均熱)、時効処理なし、なる8種類の時効処理を
施した8種類の冷延板を作成した。
Hereinafter, a detailed description will be given based on experimental results. FIG. 1 is a graph showing the effect of the temperature of a steel sheet between passes during cold rolling on the magnetic flux density of a product. Here, C: 0.
030% by weight, Si: 2.81% by weight, acid-soluble Al:
0.034% by weight, N: 0.0060% by weight, S: 0.
007% by weight, Mn: 0.14% by weight, and the balance F
e and a 40 mm thick slab consisting of unavoidable impurities
The sheet was heated to 50 ° C. to form a hot-rolled sheet having a thickness of 2.0 mm in six passes.
At this time, the pass schedule is 40 → 26 → 15 → 8 → 5
→ 3 → 2 (mm), and the hot rolling end temperature was 938 ° C. In this case, the cumulative rolling reduction in the last three passes was 75%. Air-cooled for 4 seconds after hot rolling, then water-cooled to 550 ° C, 550 ° C
Was subjected to a winding simulation in which the furnace was cooled for one hour and then cooled. Thereafter, the hot-rolled sheet is pickled, and then the reduction rate is reduced to 75%.
% To obtain a cold rolled sheet having a thickness of 0.50 mm. At this time, when the plate thickness is 1.5 mm and 1.0 mm, 50 ° C. × 5 minutes (soaking)
100 ° C x 5 minutes (soaking), 150 ° C x 5 minutes (soaking), 200 ° C x 5 minutes (soaking), 250 ° C x 5 minutes (soaking), 300 ° C x 5 minutes (soaking), 350 ℃ × 5
Eight kinds of cold-rolled sheets which were subjected to eight kinds of aging treatments (minute (soaking), no aging treatment) were prepared.

【0023】次いで830℃に400秒保持し、850
℃×20秒保持する脱炭焼鈍を施した。しかる後、75
0℃に30秒保持する熱処理中、雰囲気ガス中にNH3
ガスを混入させ、鋼板に窒素吸収を生ぜしめた。この時
鋼板のN量は0.0198〜0.0240重量%であっ
た。この鋼板の板厚全厚での一次再結晶粒の平均粒径を
光学顕微鏡と画像解析機を用いて測定したところ22〜
23μmであった。次いで、この窒化処理後の板にMg
O100重量部に対してCaCl2 を5重量部添加した
焼鈍分離剤を塗布し、最終仕上焼鈍を行った。最終仕上
焼鈍後の鋼板は全く被膜を形成せず、均一な金属光沢を
示した。図1から明らかなようにパス間の鋼板温度が2
50℃以下で良好な磁束密度が得られている。
Then, the temperature was maintained at 830 ° C. for 400 seconds,
Decarburization annealing was performed at a temperature of 20 ° C. × 20 seconds. After a while, 75
During the heat treatment at 30 ° C. for 30 seconds, NH 3
The gas was mixed in, causing the steel sheet to absorb nitrogen. At this time, the N content of the steel sheet was 0.0198 to 0.0240% by weight. When the average grain size of the primary recrystallized grains in the entire thickness of the steel sheet was measured using an optical microscope and an image analyzer, 22 to
It was 23 μm. Next, Mg is added to the plate after the nitriding treatment.
An annealing separator in which 5 parts by weight of CaCl 2 was added to 100 parts by weight of O was applied, and final finish annealing was performed. The steel sheet after the final finish annealing did not form any coating and showed a uniform metallic luster. As is clear from FIG.
Good magnetic flux density is obtained below 50 ° C.

【0024】図1に示した如き関係が成立する理由につ
いては必ずしも明らかではないが、本発明者らは次のよ
うに推察している。従来から、冷延率は、冷延再結晶集
合組織の支配因子として知られており、特に、二次再結
晶方位に対する支配因子として{110}〈001〉,
{111}〈112〉方位粒の存在量が重要である。再
結晶集合組織中のこの{110}〈001〉方位粒は、
60〜70%の圧下率の時最大となり、70%超の圧下
率範囲では圧下率が高まるにつれ、減少していく。
Although the reason why the relationship as shown in FIG. 1 is established is not always clear, the present inventors speculate as follows. Conventionally, the cold-rolling rate is known as a controlling factor of the cold-rolled recrystallization texture, and in particular, {110} <001>,
The amount of {111} <112> orientation grains is important. The {110} <001> orientation grains in the recrystallized texture
It reaches a maximum when the rolling reduction is 60 to 70%, and decreases as the rolling reduction increases in the rolling reduction range exceeding 70%.

【0025】一方、再結晶集合組織中の{111}〈1
12〉の方位粒は、約90%までの圧下率範囲で、圧下
率が高まるにつれ、増加する傾向がある。他方、冷延で
のパス間時効は、冷延時変形帯の形成を助長し、変形帯
から核生する{110}〈001〉方位粒を再結晶集合
組織中で増加させる傾向がある。このパス間時効は、そ
の反面再結晶集合組織中での{111}〈112〉方位
粒の存在量を減少させる傾向がある。
On the other hand, {111} <1 in the recrystallized texture
The grain orientation of <12> tends to increase as the rolling reduction increases in the rolling reduction range up to about 90%. On the other hand, inter-pass aging in cold rolling tends to promote the formation of the deformation zone during cold rolling, and tends to increase the {110} <001> orientation grains nucleated from the deformation zone in the recrystallized texture. This interpass aging, on the other hand, tends to reduce the amount of {111} <112> oriented grains in the recrystallized texture.

【0026】従って、{110}〈001〉方位粒と
{111}〈112〉方位粒の再結晶集合組織中の存在
量の観点からすると、パス間時効を施すことは、冷延率
を低めたのと同じ影響を与えることになる。このため、
通常80%以上の高冷延率で得られる再結晶集合組織
に、80%未満の低冷延率のものをできるだけ近づける
ために、本発明のようにパス間時効の影響を極力排除す
ることが有効と考えられる。
Therefore, from the viewpoint of the abundance of the {110} <001> -oriented grains and the {111} <112> -oriented grains in the recrystallized texture, the aging between passes reduced the cold rolling rate. Will have the same effect as For this reason,
In order to make the recrystallized texture obtained at a high cold rolling reduction of 80% or more as close as possible to a low cold rolling reduction of less than 80% as possible, it is necessary to minimize the influence of aging between passes as in the present invention. It is considered effective.

【0027】このような成分と工程による、本発明の方
向性電磁鋼板の製造方法においては焼鈍分離剤塗布〜仕
上焼鈍〜絶縁被膜剤塗布の過程での表面処理方法に特徴
がある。最終冷延された素材は連続ラインにおいて脱炭
焼鈍される。この脱炭焼鈍により、鋼中のCの除去と一
次再結晶が行われ、同時に鋼板表面にSiO2 を主成分
とする酸化膜の形成が行われる。脱炭焼鈍は800〜8
75℃、雰囲気はN2 +H2 中で露点をコントロールし
て行われる。
The method for producing a grain-oriented electrical steel sheet according to the present invention using such components and steps is characterized by a surface treatment method in the process of applying an annealing separator, finishing annealing and applying an insulating coating agent. The final cold rolled material is decarburized and annealed in a continuous line. By this decarburizing annealing, removal of C in the steel and primary recrystallization are performed, and at the same time, an oxide film mainly composed of SiO 2 is formed on the surface of the steel sheet. Decarburization annealing is 800-8
At 75 ° C., the atmosphere is controlled by controlling the dew point in N 2 + H 2 .

【0028】例えば、次いで脱炭焼鈍の後半あるいは終
了後に同一ライン内又は別ラインで窒化処理が行われ
る。但しこの窒化処理は、熱延終了後最終仕上焼鈍の二
次再結晶開始までの間に行えばよい。この際の窒化量は
1ppm 以上、好ましくは、窒化処理後のN量として15
0〜300ppm として処理される。この後焼鈍分離剤を
塗布し、乾燥して巻取り、仕上焼鈍される。この際の焼
鈍分離剤としてはMgO100重量部に対してLi,
K,Na,Ba,Ca,Mg,Zn,Fe,Zr,S
n,Sr,Alの塩化物、炭酸塩、硝酸塩、硫化物、硫
酸塩の1種又は2種以上を2〜30重量部添加したもの
を用いる。
For example, a nitriding treatment is performed in the same line or in another line after the second half or after the decarburizing annealing. However, this nitriding treatment may be performed between the end of hot rolling and the start of secondary recrystallization of final finish annealing. The nitriding amount at this time is 1 ppm or more, and preferably 15 % as the N amount after the nitriding treatment.
Treated as 0-300 ppm. Thereafter, an annealing separating agent is applied, dried, wound up, and finish annealed. At this time, as an annealing separator, Li,
K, Na, Ba, Ca, Mg, Zn, Fe, Zr, S
One obtained by adding 2 to 30 parts by weight of one or more of chlorides, carbonates, nitrates, sulfides, and sulfates of n, Sr, and Al is used.

【0029】本発明のようにインヒビターとしてMnS
を殆ど使用せず(Al,Si)N系インヒビターを利用
する工程においては、二次再結晶開始温度が1100℃
前後で、従来のAlN,MnS等をインヒビターとして
利用する高磁束密度方向性電磁鋼板によるものより高
い。このため、二次再結晶開始温度領域までグラス被膜
の形成抑制、分解反応を行いながらインヒビターの強度
を一定レべルに保つ必要がある。これは、焼鈍分離剤に
より、一旦グラス被膜の形成が始まり、次いで分解反応
が進行する工程では、グラス被膜の分解開始の時期から
のインヒビターの分解が急速に進行するからである。
As in the present invention, MnS is used as an inhibitor.
In the step of using an (Al, Si) N-based inhibitor without using Al, the secondary recrystallization initiation temperature is 1100 ° C.
Before and after, it is higher than that of the conventional high magnetic flux density directional magnetic steel sheet using AlN, MnS or the like as an inhibitor. For this reason, it is necessary to keep the inhibitor strength at a certain level while suppressing the formation of a glass film and performing a decomposition reaction up to the secondary recrystallization start temperature region. This is because, in the step in which the formation of the glass film is started once by the annealing separator, and then the decomposition reaction proceeds, the decomposition of the inhibitor proceeds rapidly from the time when the decomposition of the glass film starts.

【0030】仕上焼鈍としては、グラス被膜の形成、分
解が進行する昇温時を好ましくは、N2 30%以上とし
て行われる。これにより、(Al,Si)Nの安定化が
保たれ、良好な二次再結晶粒が得られる。仕上焼鈍され
たグラス被膜を殆ど有さない高磁束密度材は形成矯正と
歪取り焼鈍をかねて連続ラインで800〜900℃で絶
縁被膜剤塗布とヒートフラットニングが行われる。
The finish annealing is preferably carried out at a temperature rise during which the formation and decomposition of the glass coating proceeds, preferably with N 2 being 30% or more. Thereby, the stabilization of (Al, Si) N is maintained, and good secondary recrystallized grains are obtained. The high magnetic flux density material having almost no annealed glass coating is subjected to application of an insulating coating agent and heat flattening at 800 to 900 ° C. in a continuous line for forming correction and strain relief annealing.

【0031】次に本発明の構成要件の限定理由について
述べる。先ず、スラブの成分と、スラブ加熱温度に関し
て限定理由を詳細に説明する。Cは0.021重量%
(以下単に%と略述)未満になると二次再結晶が不安定
になり、かつ二次再結晶した場合でもB8 >1.80
(T)が得がたいので0.021%以上とした。一方、
Cが多くなりすぎると脱炭焼鈍時間が長くなり経済的で
ないので0.075%以下とした。
Next, the reasons for limiting the constituent elements of the present invention will be described. First, the reasons for limiting the components of the slab and the slab heating temperature will be described in detail. C is 0.021% by weight
(Hereinafter simply abbreviated as%), the secondary recrystallization becomes unstable, and even when secondary recrystallization occurs, B 8 > 1.80.
Since (T) is difficult to obtain, the content is set to 0.021% or more. on the other hand,
If the amount of C is too large, the decarburization annealing time becomes long and it is not economical.

【0032】Siは4.5%を超えると冷延時の割れが
著しくなるので4.5%以下とした。又2.5%未満で
は素材の固有抵抗が低すぎ、トランス鉄心材料として必
要な低鉄損が得られないので2.5%以上とした。望ま
しくは3.2%以上である。Alは二次再結晶の安定化
に必要なAlNもしくは(Al,Si)nitride
sを確保するため、酸可溶性Alとして0.010%以
上が必要である。酸可溶性Alが0.060%を超える
と熱延板のAlNが不適切となり、二次再結晶が不安定
になるので0.060%以下とした。
If the content of Si exceeds 4.5%, cracking at the time of cold rolling becomes remarkable, so the content is set to 4.5% or less. If it is less than 2.5%, the specific resistance of the material is too low, and a low iron loss required for a transformer core material cannot be obtained. Desirably, it is at least 3.2%. Al is AlN or (Al, Si) nitride necessary for stabilizing secondary recrystallization.
To secure s, 0.010% or more of acid-soluble Al is required. If the acid-soluble Al content exceeds 0.060%, the AlN of the hot-rolled sheet becomes inappropriate and secondary recrystallization becomes unstable.

【0033】Nについては通常の製鋼作業では0.00
10%未満にすることが困難であり、かつ経済的に好ま
しくないので0.0010%以上とし、一方、0.01
30%を超えるとブリスターと呼ばれる“鋼板表面ふく
れ”が発生するので0.0130%以下とした。Mn
S,MnSeが鋼中に存在しても、製造工程の条件を適
正に選ぶことによって磁気特性を良好にすることが可能
である。しかしながらSやSeが高いと線状細粒と呼ば
れる二次再結晶不良部が発生する傾向があり、この二次
再結晶不良部の発生を予防するためには(S+0.40
5Se)≦0.014%であることが望ましい。Sある
いはSeが上記値を超える場合には製造条件をいかに変
更しても二次再結晶不良部が発生する確率が高くなり好
ましくない。又最終仕上焼鈍で純化するのに要する時間
が長くなりすぎて好ましくなく、このような観点からS
あるいはSeを不必要に増すことは意味がない。
N is 0.00 in a normal steel making operation.
It is difficult to reduce the content to less than 10%, and it is not economically preferable.
When the content exceeds 30%, “steel surface swelling” called blister occurs, so the content is set to 0.0130% or less. Mn
Even if S and MnSe are present in the steel, it is possible to improve the magnetic properties by properly selecting the conditions of the manufacturing process. However, when S or Se is high, a secondary recrystallization defective portion called linear fine grain tends to occur. To prevent the occurrence of the secondary recrystallization defective portion, (S + 0.40
5Se) ≦ 0.014% is desirable. If S or Se exceeds the above-mentioned value, the probability of occurrence of a secondary recrystallization defective portion increases, no matter how the manufacturing conditions are changed, which is not preferable. In addition, the time required for purification in the final finish annealing is too long, which is not preferable.
Or, it is meaningless to increase Se unnecessarily.

【0034】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、就中、ストリップの側縁部が波形状となり
製品歩留りを低下させる問題が発生する。一方、Mn量
が0.8%を超えると製品の磁束密度を低下させ、好ま
しくないので、Mn量の上限を0.8%とした。この
他、インヒビター構成元素として知られているSn,S
b,Cr,Cu,Ni,B,Ti等を微量に含有するこ
とはさしつかえない。
The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, the shape (flatness) of the hot rolled sheet obtained by hot rolling, particularly, the side edge of the strip becomes corrugated, which causes a problem of lowering the product yield. On the other hand, if the Mn content exceeds 0.8%, the magnetic flux density of the product is lowered, which is not preferable. Therefore, the upper limit of the Mn content is set to 0.8%. In addition, Sn, S, which is known as an inhibitor constituent element,
A small amount of b, Cr, Cu, Ni, B, Ti or the like may be contained.

【0035】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。引き続く熱延工
程は、通常100〜400mm厚のスラブを加熱した後、
いずれも複数回のパスで行う粗熱延と仕上熱延よりな
る。粗熱延の方法については特に限定するものではなく
通常の方法で行われる。本発明の特徴は粗熱延に引き続
く仕上熱延にある。仕上熱延は通常4〜10パスの高速
連続圧延で行われる。通常仕上熱延の圧下分配は前段が
圧下率が高く後段に行くほど圧下率を下げて形状を良好
なものとしている。圧延速度は通常100〜3000m
/minとなっており、パス間の時間は0.01〜100秒
となっている。
The heating temperature of the slab is limited to less than 1280 ° C. for the purpose of reducing the cost as compared with ordinary steel. Preferably it is 1200 ° C or lower. The subsequent hot-rolling process is usually performed after heating a slab having a thickness of 100 to 400 mm.
Each of them consists of rough hot rolling and finish hot rolling performed in a plurality of passes. The method of rough hot rolling is not particularly limited, and is performed by a usual method. The feature of the present invention lies in finish hot rolling subsequent to rough hot rolling. Finish hot rolling is usually performed by high-speed continuous rolling of 4 to 10 passes. Normally, in the rolling distribution of the finish hot rolling, the rolling reduction is higher in the former stage and the rolling reduction is lower in the latter stage so that the shape is good. Rolling speed is usually 100-3000m
/ min, and the time between passes is 0.01 to 100 seconds.

【0036】本発明で限定しているのは、熱延終了温度
と熱延最終3パスの累積圧下率だけであり、その他の条
件は特に限定するものではないが、粗熱延、仕上熱延の
前段で強圧下を行うことも、幾分なりとも再結晶を生ぜ
しめ、組織を改善することになり好ましい。又最終3パ
スでも、特に最終パスでの強圧下が熱延後の再結晶を促
進する上で効果的である。
In the present invention, only the hot rolling end temperature and the cumulative rolling reduction in the last three passes of the hot rolling are limited, and other conditions are not particularly limited. It is also preferable to carry out high pressure reduction before the step described above, because recrystallization occurs to some extent and the structure is improved. Even in the final three passes, strong pressure reduction in the final pass is effective in promoting recrystallization after hot rolling.

【0037】次いで上記熱延条件の限定理由について述
べる。熱延終了温度を800〜1100℃とした。11
00℃を超えると、圧延中の動的回復による歪低下が大
きく、熱延終了後の再結晶が生じにくい。一方、800
℃未満では、温度が低すぎるため、熱延終了後に引き続
く再結晶が生じにくく、製品の磁束密度が低下するので
好ましくない。
Next, the reasons for limiting the hot rolling conditions will be described. The hot rolling end temperature was set to 800 to 1100 ° C. 11
If the temperature is higher than 00 ° C., the reduction in strain due to dynamic recovery during rolling is large, and recrystallization after the end of hot rolling hardly occurs. On the other hand, 800
If the temperature is lower than 0 ° C., the temperature is too low, so that subsequent recrystallization hardly occurs after the end of hot rolling, and the magnetic flux density of the product is undesirably reduced.

【0038】一方、仕上熱延最終3パスでの累積圧下率
を40%以上とした。この値未満では、熱延後の再結晶
の効果が不十分なので好ましくない。なお、最終3パス
の累積圧下率に上限については特に限定するものではな
いが、工業的には99.9%以上の累積圧下を加えるこ
とは困難である。熱延の最終パス後、通常0.1〜10
0秒程度空冷された後、水冷され、300〜700℃の
温度で巻取られ、徐冷される。この冷却プロセスについ
ては特に限定されるものではないが、熱延後1秒以上空
冷することは、再結晶を進ませる上で好ましい。この熱
延板は、熱延板焼鈍をすることなく、引き続き、圧下率
60〜79%の冷延を行い、0.4〜1.0mmの冷延板
となる。
On the other hand, the cumulative rolling reduction in the final three passes of the hot rolling was set to 40% or more. Below this value, the effect of recrystallization after hot rolling is insufficient, which is not preferable. The upper limit of the cumulative rolling reduction in the final three passes is not particularly limited, but it is industrially difficult to apply a cumulative rolling reduction of 99.9% or more. After final pass of hot rolling, usually 0.1-10
After air cooling for about 0 seconds, it is water cooled, wound up at a temperature of 300 to 700 ° C., and gradually cooled. The cooling process is not particularly limited, but air cooling for 1 second or more after hot rolling is preferable in order to advance recrystallization. This hot-rolled sheet is continuously cold-rolled at a rolling reduction of 60 to 79% without annealing the hot-rolled sheet to form a cold-rolled sheet of 0.4 to 1.0 mm.

【0039】冷延板の板厚を0.4〜1.0mmと規定し
たのは、厚手一方向性電磁鋼板を得る本発明の目的のた
めである。又、1.0mm超では、脱炭焼鈍に時間がかか
りすぎて好ましくない。この圧下率を60〜79%と規
定したのは、冷延素材として厚すぎるものは、酸洗ライ
ンや、冷延ラインの通板時破断を生じやすいので必然的
に冷延率を低める必要があるためである。この上限値
は、冷延素材の板厚制限からきており、一方、下限値
は、磁束密度を高位に保つ必要から規定した。冷延のパ
ス間での鋼板の温度は、250℃以下とした。この温度
を超えると、図1に示した如く、パス間時効の影響がで
るので、本発明の如き低冷延率の場合には、かえって磁
束密度が低下する結果となり好ましくない。
The reason why the thickness of the cold-rolled sheet is specified to be 0.4 to 1.0 mm is for the purpose of the present invention to obtain a thick unidirectional magnetic steel sheet. On the other hand, if it exceeds 1.0 mm, decarburizing annealing takes too much time, which is not preferable. The reason why the rolling reduction is defined as 60 to 79% is that if the material is too thick as a cold rolled material, it is necessary to lower the cold rolling ratio inevitably because the material is easily broken at the time of passing the pickling line or the cold rolling line. Because there is. The upper limit comes from the limitation of the thickness of the cold-rolled material, while the lower limit is specified because the magnetic flux density must be kept high. The temperature of the steel sheet between the cold rolling passes was 250 ° C. or less. If the temperature exceeds this, as shown in FIG. 1, the influence of aging between passes occurs, so that in the case of a low cold rolling reduction as in the present invention, the magnetic flux density is rather lowered, which is not preferable.

【0040】冷延の方式については特に限定するもので
はない。タンデム方式、リバース方式どちらでもよい。
パス間の温度を250℃以下にしておけば十分である。
パス回数についても特に限定するものではないが、不必
要に100回以上もパス回数をとることは意味がない。
かかる冷延後の鋼板は通常の方法で脱炭焼鈍、焼鈍分離
剤塗布、最終仕上焼鈍が施されて最終製品となる。ここ
で脱炭焼鈍完了後、最終仕上焼鈍開始までの間の一次再
結晶粒の平均粒径を18〜30μmとしたのは、この値
の範囲でB8 (T)≧1.88なる良好な磁束密度が得
られるからである。
The method of cold rolling is not particularly limited. Either the tandem type or the reverse type may be used.
It is sufficient to keep the temperature between passes below 250 ° C.
Although the number of passes is not particularly limited, it is meaningless to take the number of passes more than 100 times unnecessarily.
The steel sheet after such cold rolling is subjected to decarburizing annealing, application of an annealing separating agent, and final finish annealing by a usual method to be a final product. Here, the reason why the average grain size of the primary recrystallized grains from the completion of the decarburizing annealing to the start of the final finishing annealing is set to 18 to 30 μm is that B 8 (T) ≧ 1.88 in the range of this value. This is because a magnetic flux density can be obtained.

【0041】焼鈍分離剤としては、MgO100重量部
に対し、Li,K,Na,Ba,Ca,Mg,Zn,F
e,Zr,Sr,Sn,Alの塩化物、炭酸塩、硝酸
塩、硫化物、硫酸塩の中から選ばれる1種又は2種以上
2〜30重量部を添加したものが用いられる。2重量部
以下で、コイル全面で均一にグラス被膜を殆どもたない
製品が得られ難い。一方30重量部超では添加物の成分
元素が鋼中に拡散侵入してインヒビターに影響を与えた
り、粒界エッチングを生じたり又、後の純化に影響を与
えるため好ましくない。これらの添加物により、まず仕
上焼鈍昇温時前段でMgOと酸化膜が低融点化して適度
の薄いフォルステライト被膜が形成される。
As the annealing separating agent, Li, K, Na, Ba, Ca, Mg, Zn, F
One or more selected from chlorides, carbonates, nitrates, sulfides, and sulfates of e, Zr, Sr, Sn, and Al are used, to which 2 to 30 parts by weight are added. If the amount is less than 2 parts by weight, it is difficult to obtain a product having almost no glass coating on the entire surface of the coil. On the other hand, if it exceeds 30 parts by weight, the component elements of the additive diffuse and penetrate into the steel to affect the inhibitor, cause grain boundary etching, and affect the subsequent purification, which is not preferable. With these additives, the MgO and the oxide film have a low melting point in the first stage at the time of finishing annealing and the temperature is raised, and a moderately thin forsterite film is formed.

【0042】次いでフォルステライトの成長と追加酸化
が防止され、昇温時後段では被膜中のFeのエッチング
反応による被膜層が分解され、グラス被膜の殆どない表
面が得られる。この時のグラス被膜量は0.5g/m2
以下となる。0.5g/m2以下とすることで通常のグ
ラス被膜を有する場合よりはるかに加工性の点で有利と
なる。最終焼鈍の条件は、本発明のように最終焼鈍過程
で前述のようなグラス被膜の適度な形成と分解を行う工
程においては特に重要である。
Next, the growth and additional oxidation of forsterite are prevented, and at the later stage of the temperature rise, the coating layer is decomposed by the etching reaction of Fe in the coating, and a surface having almost no glass coating is obtained. The glass coating amount at this time was 0.5 g / m 2.
It is as follows. When the content is 0.5 g / m 2 or less, it is far more advantageous in terms of processability than in the case of having a normal glass coating. The conditions of the final annealing are particularly important in the step of appropriately forming and decomposing the glass coating as described above in the final annealing process as in the present invention.

【0043】通常、方向性電磁鋼板の最終仕上焼鈍にお
いては、雰囲気ガスはN2 ,H2 、あるいはこれらの混
合ガスが用いられるが、昇温過程においては、本発明の
場合グラス被膜分解過程の中でインヒビターの安定化を
図ることが重要である。このため、好ましくは、昇温中
の雰囲気N2 30%以上のN2 ,H2 及び他の不活性ガ
スが用いられる。一方、N2 100%のような場合には
MgOの物性値によっては、鋼板間が極度に酸化性とな
って鋼板表面を酸化し、むらが生じやすい。好ましくは
2 30〜90%である。又、N2 ガス30%以上に増
加する領域は、昇温時全般でもよいが、最も好ましい条
件は700℃以後均熱温度到達時点までである。
Normally, in the final finish annealing of the grain-oriented electrical steel sheet, N 2 , H 2 , or a mixed gas thereof is used as the atmosphere gas. It is important to stabilize the inhibitors. For this reason, it is preferable to use N 2 , H 2, and other inert gases in which the temperature N 2 is 30% or more during the temperature rise. On the other hand, in the case of N 2 100%, depending on the physical property value of MgO, the space between the steel sheets becomes extremely oxidizable, and the steel sheet surface is oxidized, so that unevenness is likely to occur. Preferably a N 2 30 to 90%. The area where the N 2 gas increases to 30% or more may be the whole area at the time of temperature rise, but the most preferable condition is from 700 ° C. to the point of reaching the soaking temperature.

【0044】最終焼鈍における均熱温度は本発明におい
ては1180〜1250℃にするのが有利である、本発
明においては最終仕上焼鈍の均熱温度に到達した時点で
グラス被膜の分解が終了しており、この時期の温度によ
ってはさらにサーマルエッチングが生じてさらに鋼板の
鏡面化が得られる。これによりさらに鉄損向上効果が増
大する。
In the present invention, the soaking temperature in the final annealing is advantageously set to 1180 to 1250 ° C. In the present invention, when the soaking temperature of the final finishing annealing is reached, the decomposition of the glass coating is completed. Depending on the temperature at this time, further thermal etching occurs, and the steel sheet is further mirror-finished. This further increases the iron loss improving effect.

【0045】均熱温度が1180℃未満ではこの効果が
弱く、又純化に対して不利となる。一方1250℃超で
は鏡面化効果に限界があることと、コイル形状が悪くな
ったり、エッジ部の焼付が発生する場合があり問題であ
る。本発明では、絶縁被膜剤の処理条件は下記が好まし
い。通常のグラス被膜を有する方向性電磁鋼板では、張
力付与型の絶縁被膜剤を塗布焼付する場合、付着量は3
〜5g/m2 程度で処理される。これは、これ以上の付
着量で処理してもグラス被膜の厚い内部酸化の影響と、
被膜重量増の問題で鉄損改善に限界があり、又、占積率
の低下により磁性が劣化するからである。本発明のグラ
ス被膜を有さない製品では、張力付与型絶縁被膜剤は
2.5〜15g/m2 で処理される。
If the soaking temperature is lower than 1180 ° C., this effect is weak and disadvantageous to purification. On the other hand, if the temperature exceeds 1250 ° C., there is a problem in that the mirror effect is limited, the coil shape may be deteriorated, and the edge portion may be seized. In the present invention, the processing conditions of the insulating coating agent are preferably as follows. For a grain-oriented electrical steel sheet having a normal glass coating, the amount of adhesion is 3 when applying and baking a tension-imparting insulating coating agent.
It is processed at about 5 g / m 2 . This is due to the effect of thick internal oxidation of the glass film,
This is because there is a limit in improving iron loss due to the problem of increase in the coating weight, and magnetism is deteriorated due to a decrease in the space factor. In the product having no glass coating according to the present invention, the tension imparting type insulating coating agent is treated at 2.5 to 15 g / m 2 .

【0046】絶縁被膜剤成分としては、特に限定しない
が、例えばSiO2 ,SnO2 ,Al2 3 等のコロイ
ド状溶液100重量部(固形分換算)、Al,Mg,C
a等の第一リン酸塩130〜200重量部、クロム酸、
あるいはクロム酸塩をCrO3 として12〜40重量部
である。ヒートフラットニング時の雰囲気条件は特に限
定しないが600℃以上の温度域ではP H2 O /P H2
≦0.1、H2 ≧5%が望ましい。これは本発明のよう
にグラス被膜をもたない鋼板を高温でヒートフラットニ
ングする場合、炉内で酸化が起きやすいため、磁性と表
面の被膜の密着性を良好に保つために制限される。
The insulating coating agent component is not particularly limited. For example, 100 parts by weight (in terms of solid content) of a colloidal solution of SiO 2 , SnO 2 , Al 2 O 3, etc., Al, Mg, C
130 to 200 parts by weight of a first phosphate such as a, chromic acid,
Alternatively, the amount of the chromate is 12 to 40 parts by weight as CrO 3 . Atmospheric conditions during heat flattening are not particularly limited, but P H 2 O / P H 2
≦ 0.1 and H 2 ≧ 5% are desirable. This is limited when heat flattening a steel sheet having no glass coating at a high temperature as in the present invention because oxidation is apt to occur in a furnace, so that the magnetism and the adhesion of the coating on the surface are kept good.

【0047】本発明によりグラス被膜を殆ど有しない超
低鉄損材が得られるメカニズムは以下のように考えられ
る。本発明においては、新規な焼鈍分離剤と脱炭酸化膜
との反応により、まず仕上焼鈍の昇温前段で適正量のグ
ラス被膜が形成する。これにより鋼板表面に適度なシー
ル効果が生じ(Al,Si)Nの安定化と鋼板の追加酸
化が防止される。
The mechanism by which the present invention can provide an ultra-low iron loss material having almost no glass coating is considered as follows. In the present invention, an appropriate amount of a glass coating is formed before the temperature rise of the finish annealing by the reaction between the novel annealing separator and the decarbonated film. As a result, an appropriate sealing effect is generated on the surface of the steel sheet, thereby stabilizing (Al, Si) N and preventing additional oxidation of the steel sheet.

【0048】次いで仕上焼鈍昇温時後段で添加剤成分に
よりグラス被膜層をケミカルエッチングして分解し、酸
化物中のSiO2 を表面のMgO側に反応させる。この
後さらに仕上焼鈍の高温均熱段階でサーマルエッチング
効果がもたらされる。この段階においては冷延時の表面
荒れ、脱炭焼鈍時の酸化膜の不均一等によって生じた鋼
板地鉄表面の凹凸が平滑化されて鏡面的な表面となる。
グラス被膜が高温で消失することにより、表面の原子移
動が容易になり、表面張力を下げる結果、平滑化がもた
らされるからである。
Next, the glass coating layer is decomposed by chemical etching with an additive component at the later stage of the finish annealing when the temperature is raised, and SiO 2 in the oxide is reacted with MgO on the surface. Thereafter, a thermal etching effect is provided in the high-temperature soaking stage of the finish annealing. At this stage, the irregularities on the surface of the steel sheet steel caused by the surface roughening during cold rolling and the unevenness of the oxide film during decarburization annealing are smoothed to a mirror-like surface.
This is because the disappearance of the glass coating at a high temperature facilitates the movement of atoms on the surface and lowers the surface tension, resulting in smoothing.

【0049】このグラス被膜分解過程でのインヒビター
(Al,Si)Nの分解を、昇温時二次再結晶終了まで
安定化するのに好ましくは、雰囲気のN2 比率が重量で
230%以上の雰囲気にすることにより極めて安定に
保たれ、良好な二次再結晶が得られる。熱延後最終仕上
焼鈍の二次再結晶開始までの間に鋼板に窒化処理を施す
と規定したのは、本発明の如き低温スラブ加熱を前提と
するプロセスでは、二次再結晶に必要なインヒビター強
度が不足がちになるからである。
In order to stabilize the decomposition of the inhibitor (Al, Si) N during the glass film decomposition process until the completion of the secondary recrystallization at the time of raising the temperature, the N 2 ratio in the atmosphere is preferably 30% by weight of N 2 . With the above atmosphere, the temperature is kept extremely stable, and good secondary recrystallization can be obtained. The requirement that the steel sheet be subjected to nitriding treatment before the start of the secondary recrystallization of the final finish annealing after hot rolling is defined as the inhibitor required for the secondary recrystallization in the process assuming low-temperature slab heating as in the present invention. This is because the strength tends to be insufficient.

【0050】窒化の方法としては特に限定するものでは
なく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3 ガスを混
入させ窒化する方法、プラズマを用いる方法、焼鈍分離
剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒化物が
分解してできた窒素を鋼板に吸収させる方法、最終仕上
焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化する方
法等いずれの方法でもよい。窒化量については特に限定
するものではないが、1ppm 以上は必要である。
The nitriding method is not particularly limited, but may be a method of nitriding by mixing NH 3 gas into the annealing atmosphere after decarburizing annealing, a method using plasma, a method in which a nitride is added to an annealing separating agent, and the final finishing is performed. Any method may be used, such as a method in which nitrogen generated by the decomposition of nitrides during the temperature rise of annealing is absorbed in the steel sheet, or a method in which the steel sheet is nitrided by increasing the N 2 partial pressure in the atmosphere of the final finish annealing. The amount of nitriding is not particularly limited, but 1 ppm or more is required.

【0051】[0051]

【実施例】 実施例1 C:0.036重量%、Si:3.10重量%、Mn:
0.14重量%、S:0.006重量%、酸可溶性A
l:0.030重量%、N:0.0060重量%を含有
し、残部Fe及び不可避的不純物からなる40mm厚のス
ラブを1150℃の温度で加熱した後、1050℃で熱
延を開始し、40→23→14→9→6→3.5→2
(mm)なるパススケジュールで熱延して熱延板とした。
この時熱延終了温度は926℃であり、この場合、最終
3パスの累積圧下率は78%であった。熱延後4秒空冷
後、550℃まで水冷し、550℃に1時間保持後炉冷
する巻取りシミュレーションを施した。
EXAMPLES Example 1 C: 0.036% by weight, Si: 3.10% by weight, Mn:
0.14% by weight, S: 0.006% by weight, acid soluble A
1: a slab containing 0.030% by weight and N: 0.0060% by weight, the balance being Fe and inevitable impurities and having a thickness of 40 mm was heated at a temperature of 1150 ° C., and then hot-rolled at 1050 ° C .; 40 → 23 → 14 → 9 → 6 → 3.5 → 2
A hot rolled sheet was prepared by hot rolling with a pass schedule of (mm).
At this time, the hot rolling end temperature was 926 ° C., and in this case, the cumulative rolling reduction in the last three passes was 78%. Winding simulation was performed in which air cooling was performed for 4 seconds after hot rolling, water cooling to 550 ° C., holding at 550 ° C. for 1 hour, and furnace cooling.

【0052】しかる後、この熱延板を酸洗し、次いで圧
下率75%で冷延し、0.50mm厚の冷延板とした。こ
の時、1.2mm厚の時に時効処理なし、100℃×
5分(均熱)、300℃×5分(均熱)なる3種類の
時効処理を施した3種類の冷延板を作成した。次いで8
30℃に300秒保持し、850℃に20秒保持する脱
炭焼鈍を施した。しかる後770℃に30秒保持する熱
処理中、雰囲気ガス中にNH3 ガスを混入させ、鋼板に
窒素吸収を生ぜしめた。
Thereafter, the hot-rolled sheet was pickled and then cold-rolled at a reduction of 75% to obtain a cold-rolled sheet having a thickness of 0.50 mm. At this time, when the thickness is 1.2 mm, no aging treatment, 100 ° C x
Three types of cold-rolled sheets were prepared which were subjected to three types of aging treatment for 5 minutes (soaking) and 300 ° C. × 5 minutes (soaking). Then 8
Decarburization annealing was performed at 30 ° C. for 300 seconds and at 850 ° C. for 20 seconds. Thereafter, during the heat treatment at 770 ° C. for 30 seconds, NH 3 gas was mixed into the atmosphere gas to cause the steel sheet to absorb nitrogen.

【0053】この時鋼板のN量は、0.0218〜0.
0244重量%であった。又、この鋼板の板厚全厚での
一次再結晶粒の平均粒径を光学顕微鏡と画像解析機を用
いて測定したところ22〜24μmであった。次いでこ
の窒化処理後の鋼板にMgO100重量部に対してCa
Cl2 10重量部を添加した焼鈍分離剤を塗布し、N2
75%、H2 25%の雰囲気ガス中で15℃/時で12
00℃まで昇温し、1200℃でH2 100%の雰囲気
中で20時間焼鈍する最終仕上焼鈍を行った。実験条件
と製品の磁気特性、表面状態を表1に示す。
At this time, the N content of the steel sheet is 0.0218 to 0.2.
It was 0244% by weight. The average grain size of the primary recrystallized grains of the steel sheet at a total thickness was measured using an optical microscope and an image analyzer, and was found to be 22 to 24 μm. Next, Ca was added to the steel sheet after the nitriding treatment with respect to 100 parts by weight of MgO.
An annealing separator containing 10 parts by weight of Cl 2 was applied, and N 2 was added.
75%, in H 2 25% of the atmospheric gas at 15 ° C. / time 12
The temperature was raised to 00 ° C., and final finishing annealing was performed at 1200 ° C. in an atmosphere of 100% H 2 for 20 hours. Table 1 shows the experimental conditions and the magnetic properties and surface conditions of the product.

【0054】[0054]

【表1】 [Table 1]

【0055】実施例2 C:0.040重量%、Si:3.09重量%、Mn:
0.14重量%、S:0.007重量%、酸可溶性A
l:0.028重量%、N:0.0030重量%を含有
し、残部Fe及び不可避的不純物からなる40mm厚のス
ラブを1150℃の温度で加熱した後、6パスで熱延し
て2.3mmの熱延板とした。この時圧下配分を40→2
4→16→11→6.6→3.9→2.3(mm)とし
た。この時熱延終了温度は947℃であり、この場合、
最終3パスの累積圧下率は79%であった。熱延後2秒
空冷後550℃まで水冷し、550℃に1時間保持後炉
冷する巻取りシミュレーションを施した。
Example 2 C: 0.040% by weight, Si: 3.09% by weight, Mn:
0.14% by weight, S: 0.007% by weight, acid soluble A
1. A slab having a thickness of 40 mm, containing 0.028% by weight of N and 0.0030% by weight of N, the balance being Fe and unavoidable impurities, was heated at a temperature of 1150 ° C., and then hot rolled in 6 passes. It was a hot-rolled sheet of 3 mm. At this time, the rolling reduction is 40 → 2
4 → 16 → 11 → 6.6 → 3.9 → 2.3 (mm) At this time, the hot rolling end temperature is 947 ° C. In this case,
The cumulative rolling reduction in the last three passes was 79%. Winding simulation was performed in which the steel sheet was air-cooled for 2 seconds after hot rolling, water-cooled to 550 ° C., held at 550 ° C. for 1 hour, and cooled in a furnace.

【0056】しかる後、この熱延板を酸洗し、次いで圧
下率78%で同一方向に冷延し、0.50mm厚の冷延板
とした。この際、1.5mmと1.0mm厚の時に、時効
処理なし、350℃×5分(均熱)なる2種類の時効
処理を施した2種類の冷延板を作成した。次いで830
℃に300秒保持し、870℃に20秒保持する脱炭焼
鈍を施した。しかる後、750℃に30秒保持する熱処
理中、雰囲気ガス中にNH3 ガスを混入させ、鋼板に窒
素吸収を生ぜしめた。
Thereafter, the hot-rolled sheet was pickled and then cold-rolled in the same direction at a rolling reduction of 78% to obtain a cold-rolled sheet having a thickness of 0.50 mm. At this time, two types of cold-rolled sheets having a thickness of 1.5 mm and 1.0 mm and having been subjected to two types of aging treatment of 350 ° C. × 5 minutes (soaking) without aging were prepared. Then 830
C. for 300 seconds, and decarburization annealing at 870.degree. C. for 20 seconds. Thereafter, during a heat treatment at 750 ° C. for 30 seconds, NH 3 gas was mixed into the atmosphere gas to cause the steel sheet to absorb nitrogen.

【0057】この時鋼板のN量は0.0231〜0.0
245重量%であった。又、この鋼板の板厚全厚での一
次再結晶粒の平均粒径を光学顕微鏡と画像解析機を用い
て測定したところ25〜26μmであった。次いでこの
窒化処理後の鋼板に実施例1と同じ条件で焼鈍分離剤を
塗布し、最終仕上焼鈍を行った。実験条件と製品の磁気
特性、表面状態を表2に示す。
At this time, the N content of the steel sheet was 0.0231 to 0.0
245% by weight. The average grain size of the primary recrystallized grains of the steel sheet at a total thickness was measured using an optical microscope and an image analyzer and found to be 25 to 26 μm. Next, an annealing separator was applied to the steel sheet after the nitriding treatment under the same conditions as in Example 1, and final finish annealing was performed. Table 2 shows the experimental conditions and the magnetic properties and surface conditions of the product.

【0058】[0058]

【表2】 [Table 2]

【0059】実施例3 C:0.031重量%、Si:3.01重量%、Mn:
0.14重量%、S:0.006重量%、酸可溶性A
l:0.029重量%、N:0.0040重量%を含有
し、残部Fe及び不可避的不純物からなる30mm厚のス
ラブを1150℃の温度で加熱した後1050℃で熱延
を開始し、圧下配分を30→20→13→8→5→3.
0→2.0(mm)とした。この時、熱延終了温度は86
2℃であり、この場合、最終3パスの累積圧下率は75
%であった。熱延後1秒空冷後、400℃まで水冷し、
400℃に1時間保持後炉冷する巻取りシミュレーショ
ンを施した。
Example 3 C: 0.031% by weight, Si: 3.01% by weight, Mn:
0.14% by weight, S: 0.006% by weight, acid soluble A
l: A 30 mm thick slab containing 0.029% by weight and N: 0.0040% by weight, the balance being Fe and unavoidable impurities, was heated at a temperature of 1150 ° C, and then hot-rolled at 1050 ° C. The allocation is 30 → 20 → 13 → 8 → 5 → 3.
0 → 2.0 (mm). At this time, the hot rolling end temperature was 86
2 ° C., in which case the cumulative rolling reduction for the last three passes is 75
%Met. After air cooling for 1 second after hot rolling, water cooling to 400 ° C,
A winding simulation in which the furnace was cooled at a temperature of 400 ° C. for one hour and then cooled was performed.

【0060】しかる後、この熱延板を酸洗し、次いで圧
下率70%で冷延し、0.60mm厚の冷延板とした。こ
の際、1.5mm,1.2mm,0.8mm厚の時に、50
℃×5分(均熱)、300℃×5分(均熱)なる2種
類の時効処理を施した2種類の冷延板を作成した。次い
で840℃に400秒保持する脱炭焼鈍を施した。しか
る後、750℃に30秒保持する熱処理中、雰囲気ガス
中にNH3 ガスを混入させ、鋼板に窒素吸収を生ぜしめ
た。
Thereafter, the hot-rolled sheet was pickled and then cold-rolled at a reduction of 70% to obtain a cold-rolled sheet having a thickness of 0.60 mm. At this time, when the thickness is 1.5 mm, 1.2 mm, 0.8 mm, 50
Two types of cold-rolled sheets subjected to two types of aging treatments of (C) 5 minutes (soaking) and 300 ° C x 5 minutes (soaking) were prepared. Next, decarburizing annealing was performed at 840 ° C. for 400 seconds. Thereafter, during a heat treatment at 750 ° C. for 30 seconds, NH 3 gas was mixed into the atmosphere gas to cause the steel sheet to absorb nitrogen.

【0061】この時鋼板のN量は、0.0218〜0.
0240重量%であった。又、この鋼板の板厚全厚での
一次再結晶粒の平均粒径を光学顕微鏡と画像解析機を用
いて測定したところ、21〜22μmであった。次い
で、この窒化処理後の鋼板にMgOを主成分とする焼鈍
分離剤を塗布し、公知の方法で最終仕上焼鈍を行った。
実験条件と製品の磁気特性、表面状態を表3に示す。
At this time, the N content of the steel sheet is 0.0218 to 0.02.
It was 0240% by weight. The average grain size of the primary recrystallized grains of the steel sheet was measured using an optical microscope and an image analyzer, and was found to be 21 to 22 μm. Next, an annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed by a known method.
Table 3 shows the experimental conditions and the magnetic properties and surface conditions of the product.

【0062】[0062]

【表3】 [Table 3]

【0063】実施例4 実施例2に記載の0.50mm厚の冷延板にN2 25%+
2 75%、露点50℃の雰囲気中で850℃×400
秒間脱炭焼鈍後、750℃,N2 25%+H275%+
NH3 のDry雰囲気中で鋼板〔N〕量230ppm にな
るように窒化処理を行い、供試材とした。この時の一次
再結晶平均粒径は、21〜23μmであった。
[0063] N 2 25% cold-rolled sheet of 0.50mm thickness as described in Example 4 Example 2 +
850 ° C × 400 in an atmosphere of 75% H 2 and a dew point of 50 ° C
After decarburizing annealing for 2 seconds, 750 ° C, N 2 25% + H 2 75% +
In a dry atmosphere of NH 3 , a nitriding treatment was performed so that the steel sheet [N] amount was 230 ppm to obtain a test material. At this time, the average primary recrystallization particle size was 21 to 23 μm.

【0064】この鋼板上に表4に示す組成の焼鈍分離剤
を塗布し、N2 50%、H2 50%の焼鈍雰囲気で、1
0℃/時で1180℃まで昇温し、1180℃で、20
時間H2 100%焼鈍雰囲気中で行う最終仕上焼鈍を行
った。次いで、絶縁被膜剤として20%コロイド状シリ
カ50ml+20%コロイド状SnO2 50ml+CrO3
6gからなるコーティング剤を乾燥後重量で7.5g/
2 になるように処理し、880℃×60秒の歪取り焼
鈍と焼付処理を行った。この実験における鋼板の表面状
況と磁気特性の結果を表5に示す。
An annealing separator having the composition shown in Table 4 was applied to the steel sheet, and the steel sheet was heated in an annealing atmosphere of 50% N 2 and 50% H 2.
The temperature was raised to 1180 ° C at 0 ° C / hour,
By a final finish annealing carried out in a time H 2 100% in the annealing atmosphere. Next, 50 ml of 20% colloidal silica + 50 ml of 20% colloidal SnO 2 + CrO 3 as an insulating coating agent
6 g of the coating agent after drying was 7.5 g /
m 2 , and then subjected to strain relief annealing and baking treatment at 880 ° C. × 60 seconds. Table 5 shows the results of the surface conditions and magnetic properties of the steel sheet in this experiment.

【0065】[0065]

【表4】 [Table 4]

【0066】[0066]

【表5】 [Table 5]

【0067】実施例5 実施例4と同一条件で窒化処理までの工程を処理した。
窒化処理後の窒素量及び一次再結晶の平均粒径は、実施
例4と同じである。この鋼板に表6に示すような組成の
焼鈍分離剤を塗布し、実施例1に示す条件で仕上焼鈍し
た。この鋼板に絶縁被膜剤として20%コロイド状シリ
カ100ml+50%リン酸アルミニウム55ml+CrO
3 5gからなるコーティング剤を乾燥後の重量で0〜1
0g/m2 の範囲で850℃×30秒の焼付と歪取り焼
鈍を行った。この工程における鋼板の表面状態と磁気特
性の結果を表7に示す。
Example 5 The steps up to nitriding were performed under the same conditions as in Example 4.
The amount of nitrogen after nitriding and the average particle size of primary recrystallization are the same as in Example 4. An annealing separator having a composition as shown in Table 6 was applied to this steel sheet, and was subjected to finish annealing under the conditions shown in Example 1. This steel sheet is coated with 20% colloidal silica 100ml + 50% aluminum phosphate 55ml + CrO2 as an insulating coating agent.
A coating agent consisting of 3 5 g in weight after drying 0-1
Baking at 850 ° C. for 30 seconds and strain relief annealing were performed in the range of 0 g / m 2 . Table 7 shows the results of the surface condition and magnetic properties of the steel sheet in this step.

【0068】[0068]

【表6】 [Table 6]

【0069】[0069]

【表7】 [Table 7]

【0070】[0070]

【発明の効果】本発明において、熱延終了温度、熱延の
最終3パスの累積圧下率、冷延のパス間の鋼板の温度、
脱炭焼鈍完了後、最終仕上焼鈍開始までの間での一次再
結晶粒の平均粒径を制御し、鋼板に窒化処理を施し、焼
鈍分離剤に塩化物、硝酸塩、硫化物、硫酸塩を添加し、
熱延板焼鈍を省略して、低冷延率で良好な磁気特性を有
する厚い板厚のグラス被膜を有しない一方向性電磁鋼板
を得ることができるので、その工業的効果は極めて大で
ある。
In the present invention, the hot rolling end temperature, the cumulative rolling reduction in the last three passes of hot rolling, the temperature of the steel sheet between the passes of cold rolling,
After the decarburization annealing is completed, the average primary grain size of the recrystallized grains is controlled between the start of final finishing annealing, the steel sheet is nitrided, and chlorides, nitrates, sulfides, and sulfates are added to the annealing separator. And
Since the hot rolled sheet annealing can be omitted to obtain a unidirectional electrical steel sheet having a low cold rolling reduction rate and good magnetic properties and having no thick glass coating with a large thickness, the industrial effect is extremely large. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷延時のパス間での鋼板の温度が製品の磁束密
度に与える影響を表したグラフである。
FIG. 1 is a graph showing the effect of the temperature of a steel sheet between passes during cold rolling on the magnetic flux density of a product.

フロントページの続き (72)発明者 増井 浩昭 北九州市戸畑区飛幡町1番1号 新日本 製鐵株式会社 八幡製鐵所内 (72)発明者 石橋 希瑞 北九州市戸畑区飛幡町1番1号 新日本 製鐵株式会社 八幡製鐵所内 (56)参考文献 特開 平2−263923(JP,A) 特開 平2−263924(JP,A) 特開 平4−324(JP,A) 特開 昭57−134519(JP,A) 特開 昭57−47829(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 22/00 - 22/86 C21D 8/12 C22C 38/00 303 C22C 38/06 Continuing from the front page (72) Inventor Hiroaki Masui 1-1, Tobata-cho, Tobata-ku, Kitakyushu Nippon Steel Corporation Inside Yawata Works (72) Inventor, Kisumi Ishibashi 1-1-1, Tobata-cho, Tobata-ku, Kitakyushu New Nippon Steel Corporation Yawata Works (56) References JP-A-2-263923 (JP, A) JP-A-2-263924 (JP, A) JP-A-4-324 (JP, A) JP 57-134519 (JP, A) JP-A-57-47829 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 22/00-22/86 C21D 8/12 C22C 38 / 00 303 C22C 38/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で C :0.021〜0.075%、 Si:2.5〜4.5%、 酸可溶Al:0.010〜0.060%、 N :0.0010〜0.0130%、 S+0.405Se:0.014%以下、 Mn:0.05〜0.8%、 残部がFeと不可避の不純物からなるスラブを1280
℃未満の温度で加熱した後、熱延し、熱延板焼鈍を施す
ことなく引き続き圧下率60〜79%の冷延を行い、次
いで脱炭焼鈍し、焼鈍分離剤を塗布し、仕上焼鈍をし、
絶縁被膜剤を塗布する0.4〜1.0mm厚の厚手一方向
性電磁鋼板の製造方法において、熱延終了温度を800
〜1100℃とし、熱延の最終3パスの累積圧下率を4
0%以上とし、冷延のパス間の鋼板の温度を250℃以
下とし、脱炭焼鈍完了後、最終仕上焼鈍開始までの間の
一次再結晶粒の平均粒径を18〜30μmとし、熱延後
最終仕上焼鈍の二次再結晶開始までの間に鋼板に窒化処
理を施し、焼鈍分離剤としてMgO100重量部に対
し、Li,K,Na,Ba,Ca,Mg,Zn,Fe,
Zr,Sr,Sn,Alの塩化物、硝酸塩、硫化物、硫
酸塩の中から選ばれる1種又は2種以上を2〜30重量
部添加した焼鈍分離剤を塗布することを特徴とする磁気
特性の優れた厚い板厚のグラス被膜の少ない一方向性電
磁鋼板の製造方法。
1. A weight ratio of C: 0.021 to 0.075%, Si: 2.5 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: 0.0010% 0.0130%, S + 0.405Se: 0.014% or less, Mn: 0.05 to 0.8%, 1280 slabs composed of Fe and unavoidable impurities.
After heating at a temperature of less than 100 ° C., it is hot-rolled, continuously cold-rolled at a reduction rate of 60 to 79% without performing hot-rolled sheet annealing, then decarburized annealing, coated with an annealing separating agent, and subjected to finish annealing. And
In a method for producing a thick unidirectional magnetic steel sheet having a thickness of 0.4 to 1.0 mm to which an insulating coating agent is applied, the hot rolling end temperature is set to 800
~ 1100 ° C and the cumulative rolling reduction of the last three passes of hot rolling is 4
0% or more, the temperature of the steel sheet between the cold rolling passes is set to 250 ° C. or less, and the average grain size of the primary recrystallized grains from the completion of decarburizing annealing to the start of final finishing annealing is set to 18 to 30 μm. The steel sheet is subjected to a nitriding treatment until the start of the secondary recrystallization of the post-final finish annealing, and Li, K, Na, Ba, Ca, Mg, Zn, Fe,
Magnetic properties characterized by applying an annealing separator containing 2 to 30 parts by weight of one or more selected from chlorides, nitrates, sulfides and sulfates of Zr, Sr, Sn, Al. Method for producing unidirectional magnetic steel sheet with excellent thickness and less glass coating.
JP4328251A 1992-12-08 1992-12-08 Method for producing unidirectional electrical steel sheet with excellent magnetic properties Expired - Fee Related JP3061491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4328251A JP3061491B2 (en) 1992-12-08 1992-12-08 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4328251A JP3061491B2 (en) 1992-12-08 1992-12-08 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH06173019A JPH06173019A (en) 1994-06-21
JP3061491B2 true JP3061491B2 (en) 2000-07-10

Family

ID=18208131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328251A Expired - Fee Related JP3061491B2 (en) 1992-12-08 1992-12-08 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3061491B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102246577B1 (en) 2019-09-05 2021-04-30 오영철 Method injecting lubricant of buried type pipe conditioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078002A (en) * 2001-04-04 2002-10-18 태석정밀주식회사 Coating solution for anti-adhesion of annealing and the coating method of nickel iron magnetic alloy sheets using the coating solution
HUE027079T2 (en) * 2005-08-03 2016-10-28 Thyssenkrupp Steel Europe Ag Method for producing a magnetic grain oriented steel strip
PL1752549T3 (en) * 2005-08-03 2017-08-31 Thyssenkrupp Steel Europe Ag Process for manufacturing grain-oriented magnetic steel spring
US11239012B2 (en) 2014-10-15 2022-02-01 Sms Group Gmbh Process for producing grain-oriented electrical steel strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102246577B1 (en) 2019-09-05 2021-04-30 오영철 Method injecting lubricant of buried type pipe conditioner

Also Published As

Publication number Publication date
JPH06173019A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
WO1991016462A1 (en) Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JP3336555B2 (en) Method for producing grain-oriented electrical steel sheet without glass coating with excellent surface properties
JPH0617137A (en) Production of grain-priented silicon steel sheet free from glass film and having high magnetic flux density
JPH05311353A (en) Ultralow core loss grain-oriented silicon steel sheet without glass coating film and its production
JP3056970B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
JP3390109B2 (en) Low iron loss high magnetic flux density
JPH06100937A (en) Production of silicon steel sheet having no glass film and extremely excellent in core loss
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JPH09268322A (en) Production of grain oriented silicon steel sheet with ultralow iron loss
JPH09279247A (en) Production of grain-oriented silicon steel sheet high in density of magnetic flux
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JPH1046252A (en) Production of superlow core loss grain oriented magnetic steel sheet
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH0949027A (en) Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees