JPH05230534A - Production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH05230534A
JPH05230534A JP4035395A JP3539592A JPH05230534A JP H05230534 A JPH05230534 A JP H05230534A JP 4035395 A JP4035395 A JP 4035395A JP 3539592 A JP3539592 A JP 3539592A JP H05230534 A JPH05230534 A JP H05230534A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
slab
hot
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4035395A
Other languages
Japanese (ja)
Inventor
Yasunari Yoshitomi
康成 吉冨
Katsuro Kuroki
克郎 黒木
Hiroaki Masui
浩昭 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4035395A priority Critical patent/JPH05230534A/en
Publication of JPH05230534A publication Critical patent/JPH05230534A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet excellent in magnetic properties by regulating the components of a slab as raw material, controlling the temp. between passes at cold rolling and the primary recrystallized grain size before finish annealing, respectively, and adding Sn, if necessary, to the raw material at the time of producing a silicon steel sheet. CONSTITUTION:A slab of a steel having a composition which contains, by weight, 0.025-0.075% C, 2.5-4.5% Si, 0.010-0.060% acid-soluble Al, <0.0030% Ni, S and Se by the amounts satisfying (S+0.405Se)<0.014%, and 0.05-0.8% Mn or further contains 0.01-0.15% Sn and where the relations between respective contents, represented by percentages, of acid-soluble Al and N a controller in the rauge of Al-27/14N>0.0100 is heated up to <1280 deg.C and hot-rolled into a plate. This plate is subjected, without annealing, to cold rolling at 60-70% draft, and the temp. between cold rolling passes is regulated to <=200 deg.C. Successively, the resulting cold rolled steel sheet is subjected to decarburizing annealing, and the average value of the primary recrystallized grain sizes in the course between the completion of annealing and the initiation of final finish annealing is regulated to 18-30mum and the steel sheet is subjected to nitriding treatment in the course between the hot rolling and the initiation of secondary recrystallization at the final finish annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、通常磁場の強さ80
0A/mにおける磁束密度B8が使用される。また、鉄
損特性を表す数値としては、周波数50Hzで1.7テ
スラ(T)まで磁化した時の1kg当りの鉄損W17/50
を使用している。磁束密度は、鉄損特性の最大支配因子
であり、一般的にいって磁束密度が高いほど鉄損特性が
良好になる。なお、一般的に磁束密度を高くすると二次
再結晶粒が大きくなり、鉄損特性が不良となる場合があ
る。これに対しては、磁区制御により、二次再結晶粒の
粒径に拘らず、鉄損特性を改善することができる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. As a numerical value showing the excitation characteristic, the strength of a normal magnetic field is 80
A magnetic flux density B 8 at 0 A / m is used. In addition, as the numerical value showing the iron loss characteristic, the iron loss per kg when magnetized to 1.7 Tesla (T) at a frequency of 50 Hz is W 17/50.
Are using. The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics. On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に<001>軸を持った、いわゆるゴス組織を発達
させることにより製造されている。良好な磁気特性を得
るためには、磁化容易軸である<001>を圧延方向に
高度に揃えることが必要である。このような高磁束密度
一方向性電磁鋼板の製造技術として代表的なものに田口
悟等による特公昭40−15644号公報及び今中拓一
等による特公昭51−13469号公報記載の方法があ
る。前者においては主なインヒビターとしてMnSおよ
びAlNを、後者ではMnS、MnSe、Sb等を用い
ている。従って現在の技術においてはこれらのインヒビ
ターとして機能する析出物の大きさ、形態及び分散状態
を適正に制御することが不可欠である。MnSに関して
言えば、現在の工程では熱延前のスラブ加熱時にMnS
を一旦完全固溶させた後、熱延時に析出する方法がとら
れている。二次再結晶に必要な量のMnSを完全固溶す
るためには1400℃程度の温度が必要である。これは
普通鋼のスラブ加熱温度に比べて200℃以上も高く、
この高温スラブ加熱処理には以下に述べるような不利な
点がある。
This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and <001> axis in the rolling direction. Being manufactured. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy magnetization axis, in the rolling direction. Typical methods for producing such a high magnetic flux density unidirectional electrical steel sheet are methods described in Japanese Patent Publication No. 40-15644 by Satoru Taguchi et al. And Japanese Patent Publication No. 51-13469 by Takuichi Imanaka. . In the former, MnS and AlN are used as main inhibitors, and in the latter, MnS, MnSe, Sb, etc. are used. Therefore, in the current technology, it is essential to appropriately control the size, morphology and dispersion state of the precipitates that function as these inhibitors. Speaking of MnS, in the current process, when the slab is heated before hot rolling, MnS
A method is used in which the solid solution is once completely dissolved and then precipitated during hot rolling. A temperature of about 1400 ° C. is necessary to completely form a solid solution of the required amount of MnS for secondary recrystallization. This is more than 200 ℃ higher than the slab heating temperature of ordinary steel,
This high temperature slab heat treatment has the following disadvantages.

【0004】1)方向性電磁鋼専用の高温スラブ加熱炉
が必要。 2)加熱炉のエネルギー原単位が高い。 3)溶融スケール量が増大し、いわゆるノロかき出し等
に見られるように操業上の悪影響が大きい。 このような問題点を回避するためにはスラブ加熱温度を
普通鋼並みに下げれば良いわけであるが、このことは同
時にインヒビターとして有効なMnSの量を少なくする
かあるいは全く用いないことを意味し、必然的に二次再
結晶の不安定化をもたらす。このため低温スラブ加熱化
を実現するためには何らかの形でMnS以外の析出物な
どによりインヒビターを強化し、仕上焼鈍時の正常粒成
長の抑制を充分にする必要がある。このようなインヒビ
ターとしては硫化物の他、窒化物、酸化物及び粒界析出
元素等が考えられ、公知の技術として、例えば次のよう
なものがあげられる。
1) A high temperature slab heating furnace dedicated to grain-oriented electrical steel is required. 2) The energy intensity of the heating furnace is high. 3) The amount of molten scale increases, and the adverse effect on operation is large, as seen in so-called shaving. In order to avoid such problems, the slab heating temperature should be lowered to the level of ordinary steel, but this means that at the same time, the amount of MnS effective as an inhibitor is reduced or not used at all. , Inevitably brings about destabilization of secondary recrystallization. Therefore, in order to realize low temperature slab heating, it is necessary to strengthen the inhibitor in some form by a precipitate other than MnS to sufficiently suppress normal grain growth during finish annealing. As such inhibitors, sulfides, nitrides, oxides, grain boundary precipitation elements, and the like are conceivable. Known techniques include, for example, the following.

【0005】特公昭54−24685号公報ではAs、
Bi、Sn、Sb等の粒界偏析元素を鋼中に含有するこ
とにより、スラブ加熱温度を1050〜1350℃の範
囲にする方法が開示され、特開昭52−24116号公
報ではAlの他、Zr、Ti、B、Nb、Ta、V、C
r、Mo等の窒化物生成元素を含有することによりスラ
ブ加熱温度を1100〜1260℃の範囲にする方法を
開示している。また、特開昭57−158322号公報
ではMn含有量を下げ、Mn/Sの比率を2.5以下に
することにより低温スラブ加熱化を行い、さらにCuの
添加により二次再結晶を安定化する技術を開示してい
る。これらインヒビターの補強と組み合わせて金属組織
の側から改良を加えた技術も開示された。すなわち特開
昭57−89433号公報ではMnに加えS、Se、S
b、Bi、Pb、Sn、B等の元素を加え、これにスラ
ブの柱状晶率と二次冷延圧下率を組み合わせることによ
り1100〜1250℃の低温スラブ加熱化を実現して
いる。さらに特開昭59−190324号公報ではSあ
るいはSeに加え、Al及びBと窒素を主体としてイン
ヒビターを構成し、これに冷延後の一次再結晶焼鈍時に
パルス焼鈍を施すことにより二次再結晶を安定化する技
術を公開している。このように方向性電磁鋼板製造にお
ける低温スラブ加熱化実現のためには、これまでに多大
な努力が続けられてきている。
In Japanese Patent Publication No. 54-24685, As,
A method of controlling the slab heating temperature in the range of 1050 to 1350 ° C. by containing grain boundary segregation elements such as Bi, Sn, and Sb in the steel is disclosed, and in JP-A-52-24116, in addition to Al, Zr, Ti, B, Nb, Ta, V, C
It discloses a method for controlling the slab heating temperature in the range of 1100 to 1260 ° C. by containing a nitride forming element such as r or Mo. Further, in JP-A-57-158322, low-temperature slab heating is performed by lowering the Mn content and setting the Mn / S ratio to 2.5 or less, and further adding Cu to stabilize secondary recrystallization. The technology to do is disclosed. Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S, Se, S in addition to Mn are added.
Elements such as b, Bi, Pb, Sn, and B are added, and the columnar crystal ratio of the slab and the secondary cold rolling reduction are combined to realize low temperature slab heating at 1100 to 1250 ° C. Further, in JP-A-59-190324, an inhibitor is composed mainly of Al and B and nitrogen in addition to S or Se, and secondary annealing is performed by performing pulse annealing at the time of primary recrystallization annealing after cold rolling. The technology to stabilize is released. Thus, in order to realize low temperature slab heating in the production of grain-oriented electrical steel sheets, great efforts have been made so far.

【0006】さて、特開昭59−56522号公報にお
いてはMnを0.08〜0.45%、Sを0.007%
以下にすることにより低温スラブ加熱化を可能にする技
術が開示された。この方法により高温スラブ加熱時のス
ラブ結晶粒粗大化に起因する製品の線状二次再結晶不良
発生の問題が解消された。
In JP-A-59-56522, Mn is 0.08 to 0.45% and S is 0.007%.
A technique for enabling low temperature slab heating by the following has been disclosed. By this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.

【0007】[0007]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としているもの
の、当然のことながら良好な磁気特性を安定して得る技
術でなければ、工業化できない。本発明者らは、製造コ
ストの低減と磁気特性の両立を図ることをさらに追求す
べく、低温スラブ加熱による方法において、熱延板焼鈍
の省略を目指してきた。
Although the method of low temperature slab heating is originally intended to reduce the manufacturing cost, it cannot be industrialized unless it is a technique of stably obtaining good magnetic characteristics. The present inventors have sought to omit hot-rolled sheet annealing in a method by low-temperature slab heating in order to further pursue both reduction of manufacturing cost and magnetic properties.

【0008】一方向性電磁鋼板の製造においては、通常
熱延後組織の不均一化、析出処理等を目的として熱延板
焼鈍が行われている。例えばAlNを主インヒビターと
する製造方法においては、特公昭46−23820号公
報に示すように熱延板焼鈍においてAlNの析出処理を
行ってインヒビターを制御する方法がとられている。通
常一方向性電磁鋼板は鋳造−熱延−焼鈍−冷延−脱炭焼
鈍−仕上焼鈍のような主工程を経て製造され、多量のエ
ネルギーを必要としており、加えて普通鋼製造プロセス
等と比較して製造コストも高くなっている。
In the production of unidirectional electrical steel sheet, hot-rolled sheet annealing is usually performed for the purpose of making the structure non-uniform after hot rolling, precipitation treatment and the like. For example, in the production method using AlN as the main inhibitor, a method of controlling the inhibitor by performing precipitation treatment of AlN in hot-rolled sheet annealing is adopted as shown in JP-B-46-23820. Normally unidirectional electrical steel sheet is manufactured through the main processes such as casting-hot rolling-annealing-cold rolling-decarburization annealing-finishing annealing and requires a large amount of energy. Therefore, the manufacturing cost is also high.

【0009】近年多量のエネルギー消費をするこのよう
な製造工程に対する見直しが進められ、工程、エネルギ
ーの簡省略化の要請が強まってきた。このような要請に
応えるべく、AlNを主インヒビターとする製造方法に
おいて、熱延板焼鈍でのAlNの析出処理を、熱延後の
高温巻取で代替する方法(特公昭59−45730号公
報)が提案された。確かに、この方法によって熱延板焼
鈍を省略しても、磁気特性をある程度確保することはで
きるが、5〜20トンのコイル状で巻取られる通常の方
法においては、冷却過程でコイル内での場所的な熱履歴
の差が生じ、必然的にAlNの析出が不均一となり、最
終的な磁気特性はコイル内の場所によって変動し、歩留
りが低下する結果となる。
In recent years, a review has been made on such a manufacturing process that consumes a large amount of energy, and there has been an increasing demand for simplifying the process and energy. In order to meet such a demand, in a production method using AlN as a main inhibitor, the precipitation treatment of AlN in hot-rolled sheet annealing is replaced by high-temperature winding after hot rolling (Japanese Patent Publication No. 59-45730). Was proposed. Certainly, even if the hot-rolled sheet annealing is omitted by this method, the magnetic characteristics can be secured to some extent, but in the ordinary method of winding in a coil shape of 5 to 20 tons, in the coil during the cooling process, Difference in the thermal history due to the location occurs, inevitably the deposition of AlN becomes non-uniform, and the final magnetic characteristics vary depending on the location in the coil, resulting in a decrease in yield.

【0010】そこで本発明者らは、先に従来ほとんど注
目されていなかった仕上熱延最終パス後の再結晶現象に
着目し、この現象を利用して80%以上の強圧下1回冷
延による製造法において熱延板焼鈍を省略する方法(特
開平2−263923号公報、特開平2−263924
号公報参照)を提示した。これらの技術は、仕上熱延最
終3パスの強圧下及び熱延終了後の高温での保持により
熱延板を微細再結晶組織としたことに特徴があり、これ
らの技術により、1280℃未満の温度でのスラブ加熱
と、熱延板焼鈍の省略の両立が可能となった。
Therefore, the present inventors have paid attention to the recrystallization phenomenon after the final hot rolling final pass, which has received little attention in the past, and utilize this phenomenon to perform cold rolling once under a high pressure of 80% or more. A method of omitting hot-rolled sheet annealing in the manufacturing method (JP-A-2-263923, JP-A-2-263924).
(See Japanese Patent Publication). These techniques are characterized in that the hot-rolled sheet has a fine recrystallized structure by being strongly pressed in the final 3 passes of hot-rolling for finishing and kept at high temperature after the end of hot-rolling. It became possible to achieve both slab heating at temperature and omitting hot-rolled sheet annealing.

【0011】ところで、近年タービン発電機用鉄心材料
等の用途に、現用の高級無方向性電磁鋼板にかわって、
方向性電磁鋼板を用いたいというニーズが高まってき
た。上記用途に関していえば、他の無方向性電磁鋼板の
用途と比較して、一方向の磁気特性が重要とされるた
め、方向性電磁鋼板を用いたいというニーズが高まって
きたわけである。一方、方向性電磁鋼板の熱延後の製造
の主工程は、熱延板焼鈍−冷延−脱炭焼鈍−仕上焼鈍と
なっており、無方向性電磁鋼板の熱延後の主工程である
冷延−焼鈍と比較して複雑となっている。そのため、製
造コストからして、方向性電磁鋼板の方が無方向性電磁
鋼板よりかなり高いものとなる。
By the way, in recent years, in place of the current high-grade non-oriented electrical steel sheet for use as an iron core material for turbine generators,
The need to use grain-oriented electrical steel sheets has increased. Regarding the above-mentioned applications, the unidirectional magnetic properties are more important than the applications of other non-oriented electrical steel sheets, so that the need for using grain-oriented electrical steel sheets has increased. On the other hand, the main process of manufacturing the grain-oriented electrical steel sheet after hot rolling is hot-rolled sheet annealing-cold rolling-decarburization annealing-finish annealing, which is the main step after hot rolling of non-oriented electrical steel sheet. It is more complicated than cold rolling-annealing. Therefore, in terms of manufacturing cost, the grain-oriented electrical steel sheet is considerably higher than the non-oriented electrical steel sheet.

【0012】さらには、通常の酸洗ラインや、タンデム
冷延ラインでは、通板できる板厚に制限があり、厚い板
厚の冷延素材を通板すると破断が生じる可能性がある。
そこで、0.5mm厚等の厚手材を1回冷延で製造しよ
うとすると、冷延素材の板厚に上限があるため、冷延率
を低くとる必要が生じる。そこで本発明者らは、128
0℃未満の温度でのスラブ加熱と、熱延板焼鈍の省略
と、低圧下率での冷延を前提とする一方向性電磁鋼板の
製造方法において、良好な磁気特性を得る技術開発にと
りくんできた。そして、この技術開発の過程で、コイル
の長手方向に磁性の変動が生ずる現象を見出した。
Further, in a normal pickling line or a tandem cold rolling line, there is a limit to the plate thickness that can be passed, and if a cold rolled material having a large plate thickness is passed, breakage may occur.
Therefore, if a thick material having a thickness of 0.5 mm or the like is to be cold-rolled once, there is an upper limit to the plate thickness of the cold-rolled material, so that the cold-rolling rate needs to be low. Therefore, the present inventors
Technical development for obtaining good magnetic properties in the manufacturing method of unidirectional electrical steel sheet which is premised on slab heating at a temperature of less than 0 ° C, omission of hot-rolled sheet annealing, and cold rolling at a low pressure reduction rate. did it. Then, in the process of this technological development, they found a phenomenon in which magnetic fluctuations occur in the longitudinal direction of the coil.

【0013】本発明者らは、この磁性変動の原因を詳細
に検討した結果、この現象が低温スラブ加熱時のスラブ
内の温度差に起因することを突き止めた。その結果、前
記温度差による磁性変動を解消する手法を見出した。す
なわち、本発明はスラブの成分調整、さらには冷延時の
パス間の鋼板の温度制御、仕上焼鈍前の一次再結晶粒の
平均粒径の制御、Sn添加により、低温スラブ加熱及び
熱延板焼鈍省略、低冷延圧下率を前提とする製造プロセ
スでも、磁性変動のない優れた特性を有する一方向性電
磁鋼板を製造し得る方法を提供するものである。
As a result of detailed examination of the cause of this magnetic fluctuation, the present inventors have found that this phenomenon is due to the temperature difference in the slab during low temperature slab heating. As a result, they have found a method of eliminating the magnetic fluctuation due to the temperature difference. That is, the present invention adjusts the components of the slab, further controls the temperature of the steel sheet between passes during cold rolling, controls the average grain size of the primary recrystallized grains before finish annealing, and adds Sn to effect low-temperature slab heating and hot-rolled sheet annealing. It is intended to provide a method capable of producing a grain-oriented electrical steel sheet having excellent characteristics without magnetic fluctuation even in the production process which is omitted and has a low cold rolling reduction.

【0014】[0014]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。すなわち、 (1) 重量%で、C:0.025〜0.075%、S
i:2.5〜4.5%、酸可溶性Al:0.010〜
0.060%、N:0.0030%未満、S+0.40
5Se:0.014%以下、Mn:0.05〜0.8%
を含有し、残部がFe及び不可避的不純物からなるスラ
ブを1280℃未満の温度で加熱し、熱延し、次いで熱
延板焼鈍を施すことなく、圧下率60〜79%の冷延、
脱炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板を製
造する方法において、スラブの酸可溶性Al、Nの含有
量を重量%を単位としてAl(%)、N(%)とした
時、下記の式の範囲に制御し、 Al(%)−27/14N(%)>0.0100 熱延後、最終仕上焼鈍の二次再結晶開始までの間に鋼板
に窒化処理を施すことを特徴とする磁気特性の優れた一
方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. That is, (1)% by weight, C: 0.025 to 0.075%, S
i: 2.5-4.5%, acid-soluble Al: 0.010
0.060%, N: less than 0.0030%, S + 0.40
5Se: 0.014% or less, Mn: 0.05 to 0.8%
A slab containing Fe, the balance of which is Fe and unavoidable impurities, is heated at a temperature of less than 1280 ° C., hot-rolled, and then cold-rolled at a reduction rate of 60 to 79% without performing hot-rolled sheet annealing.
In the method for producing a grain-oriented electrical steel sheet by performing decarburization annealing and final finishing annealing, when the acid-soluble Al and N contents of the slab are Al (%) and N (%) in weight% units, Controlled within the range of the following formula, Al (%)-27 / 14N (%)> 0.0100 After hot rolling, the steel sheet is nitrided before the start of secondary recrystallization of final annealing. And a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.

【0015】(2) 重量%で C:0.025〜0.075%、Si:2.5〜4.5
%、酸可溶性Al:0.010〜0.060%、N:
0.0030%未満、S+0.405Se:0.014
%以下、Mn:0.05〜0.8%、Sn:0.01〜
0.15%を含有し、残部がFe及び不可避的不純物か
らなるスラブを1280℃未満の温度で加熱し、熱延
し、次いで熱延板焼鈍を施すことなく、圧下率60〜7
9%の冷延、脱炭焼鈍、最終仕上焼鈍を施して一方向性
電磁鋼板を製造する方法において、スラブの酸可溶性A
l、Nの含有量を重量%を単位としてAl(%)、N
(%)とした時、下記の式の範囲に制御し、 Al(%)−27/14N(%)>0.0100 熱延後、最終仕上焼鈍の二次再結晶開始までの間に鋼板
に窒化処理を施すことを特徴とする磁気特性の優れた一
方向性電磁鋼板の製造方法。
(2) C: 0.025 to 0.075% by weight, Si: 2.5 to 4.5
%, Acid-soluble Al: 0.010 to 0.060%, N:
Less than 0.0030%, S + 0.405Se: 0.014
% Or less, Mn: 0.05 to 0.8%, Sn: 0.01 to
A slab containing 0.15% and the balance consisting of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., hot-rolled, and then hot-rolled sheet is annealed and a rolling reduction of 60 to 7 is performed.
In the method for producing a unidirectional electrical steel sheet by performing cold rolling of 9%, decarburization annealing, and final finishing annealing, the acid-soluble A of the slab is used.
The content of l and N is Al (%), N in weight% as a unit.
(%), It is controlled within the range of the following formula: Al (%)-27 / 14N (%)> 0.0100 After hot rolling, a steel sheet is formed before the start of secondary recrystallization of final finish annealing. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by performing a nitriding treatment.

【0016】(3) 冷延のパス間の鋼板の温度を20
0℃以下とすることを特徴とする前項1又は2記載の磁
気特性の優れた一方向性電磁鋼板の製造方法。
(3) The temperature of the steel sheet between the cold rolling passes is set to 20.
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to the above item 1 or 2, wherein the temperature is 0 ° C. or less.

【0017】(4) 脱炭焼鈍完了後、最終仕上焼鈍開
始までの一次再結晶粒の平均粒径を18〜30μmとす
ることを特徴とする前項1、2又は3のいずれかに記載
の磁気特性の優れた一方向性電磁鋼板の製造方法。
(4) The magnetic particles according to any one of the above 1, 2 or 3, wherein the average grain size of the primary recrystallized grains after the completion of decarburization annealing is to be 18 to 30 μm until the start of final finish annealing. A method for producing a grain-oriented electrical steel sheet having excellent characteristics.

【0018】[0018]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程をはさ
んでスラブとし、引き続き熱間圧延して熱延板とし、熱
延板焼鈍を施すことなく、次いで圧下率60〜79%の
冷延、脱炭焼鈍、最終仕上焼鈍を順次行うことによって
製造される。
The function of the grain-oriented electrical steel sheet of the present invention is
Molten steel obtained by the conventional steelmaking method is cast by a continuous casting method or an ingot making method, and if necessary, the slab is separated by a slab, and then hot-rolled into a hot-rolled sheet. It is manufactured by sequentially performing cold rolling with a rolling reduction of 60 to 79%, decarburization annealing, and final finishing annealing without performing the sheet annealing.

【0019】本発明者らは、熱延板焼鈍を省略した1回
冷延法で低温スラブ加熱材を製造した場合の磁性の変動
原因とその解消策について詳細に検討した。そしてその
結果、この現象がスラブ加熱時のスラブ内の温度差に基
づく、AlNの析出のバラツキに起因し、その磁性変動
の程度が、Al量、N量によって異なるという新知見を
得た。
The inventors of the present invention have studied in detail the cause of variation in magnetism and its solution when a low temperature slab heating material is manufactured by a single cold rolling method without hot-rolled sheet annealing. As a result, we obtained a new finding that this phenomenon is caused by the variation in precipitation of AlN based on the temperature difference in the slab during slab heating, and the degree of magnetic fluctuation varies depending on the Al content and the N content.

【0020】そして、その課題の解決策として、N量
を低減することと、Al量、N量を両者の関係式で規定
される所定の範囲に抑えること、冷延のパス間での鋼
板温度を制御すること、脱炭焼鈍完了後最終仕上焼鈍
開始までの一次再結晶粒の平均粒径を制御すること、
必要に応じてSnを添加すること、が有効であることが
わかった。
As a solution to the problem, the N content is reduced and the Al content and the N content are suppressed within a predetermined range defined by the relational expression between them, and the steel sheet temperature between cold rolling passes is increased. Controlling the average grain size of the primary recrystallized grains from the completion of decarburization annealing to the start of final finish annealing,
It was found that adding Sn as needed was effective.

【0021】以下これらの点について詳細に説明する。
本発明者らは、スラブ加熱時のAlNの固溶、析出に着
目した。本発明の前提としている1280℃未満の温度
では、本発明のAl、N、Siの成分範囲では、α相で
のAlNの完全固溶は保障されていない。一方、スラブ
加熱の方式は種々あるが、スラブを炉に装入後、プッシ
ャーで移動させながら出口から出す方式やスキッド上に
スラブを置き、スキッドを動かしてスラブを入口から出
口方向へ移動させる方式等が一般的に行われている。そ
してスラブの中でスキッドや炉の下面に接する部分は、
温度が低めとなることが多い。従って、このスラブ内の
温度差に起因するAlNの析出量、固溶N量の差が生じ
ることが考えられた。そして、熱延から脱炭焼鈍までの
工程で、スラブ加熱時に固溶していたNは、大部分Al
Nとして微細析出し、その程度がスラブ加熱時の固溶N
量に依存することが考えられた。実際、工場で実験を行
った際、磁気特性の変動が生じたコイルの、脱炭焼鈍後
の一次再結晶粒の平均粒径を光学顕微鏡と画像解析機を
用いて測定したところ、その平均粒径が変動しているこ
とが判明した。そして、そのバラツキの程度は、Al、
N量によって異なっていた。
Hereinafter, these points will be described in detail.
The present inventors have paid attention to solid solution and precipitation of AlN during slab heating. At the temperature lower than 1280 ° C. which is the premise of the present invention, the complete solid solution of AlN in the α phase is not guaranteed within the Al, N and Si component ranges of the present invention. On the other hand, there are various slab heating methods, but after charging the slab into the furnace, the slab is moved from the outlet while moving with a pusher, or the slab is placed on the skid and the slab is moved from the inlet to the outlet. Etc. are generally performed. And the part of the slab that contacts the skid and the bottom of the furnace is
The temperature is often lower. Therefore, it was considered that the difference in the precipitation amount of AlN and the amount of solid solution N caused by the temperature difference in the slab occurred. In the process from hot rolling to decarburization annealing, most of the N dissolved during slab heating is Al.
Finely precipitates as N, the degree of which is solid solution N when heating the slab
It was considered to depend on the amount. In fact, when conducting an experiment in a factory, the average grain size of the primary recrystallized grains after decarburization annealing of the coil in which the magnetic characteristics fluctuated was measured using an optical microscope and an image analyzer. It was found that the diameter fluctuated. The degree of variation is Al,
It was different depending on the amount of N.

【0022】そこで本発明者らは、変動するAlN量を
減らすことを考えた。そのためには、AlまたはN量を
減らすことが有効であるが、二次再結晶時のインヒビ
ターとしてのAlN量を確保する必要がある点、Nは
鋼板に窒化で導入することが可能であるが、Alは鋼板
に導入することが困難である点を考慮し、N量を減らす
ことを検討した。そして、N量を製鋼段階で減らすこと
は技術的に制約があるかもしくはコストアップにつなが
ることも考慮し、固溶するN量と強い相関があると予想
されるAlR (%)=Al(%)−27/14N(%)
〔Al(%):酸可溶性Alの重量%、N(%):Nの
重量%〕という量を定義し、N(%)、AlR (%)と
磁気特性の変動との関係を次の実験に基づいて調査し
た。
Therefore, the present inventors have considered reducing the varying amount of AlN. For that purpose, it is effective to reduce the amount of Al or N, but it is necessary to secure the amount of AlN as an inhibitor at the time of secondary recrystallization, and N can be introduced into the steel sheet by nitriding. , Al was considered to be difficult to introduce into the steel sheet, and it was considered to reduce the N content. Considering that reducing the amount of N at the steelmaking stage is technically limited or leads to cost increase, it is expected that there is a strong correlation with the amount of N dissolved in solid solution Al R (%) = Al ( %) -27 / 14N (%)
[Al (%):% by weight of acid-soluble Al, N (%):% by weight of N] is defined, and the relationship between N (%), Al R (%) and fluctuations in magnetic properties is defined as follows. It was investigated based on the experiment.

【0023】すなわち、重量で、C=0.045%、S
i=3.01%、酸可溶性Al=0.010〜0.05
7%、N=0.0003〜0.0118%、S=0.0
07%、Mn=0.14%を含有し、残部Fe及び不可
避的不純物からなる250mm厚のスラブを作成した。
そして1100℃、1200℃の2水準の温度で各
スラブを60分均熱後11パスの熱延で2.0mm厚と
し、約2秒後に水冷し、550℃まで冷却した後、巻取
り、550℃の温度に1時間保持した。
That is, by weight, C = 0.045%, S
i = 3.01%, acid-soluble Al = 0.10 to 0.05
7%, N = 0.003 to 0.0118%, S = 0.0
A slab having a thickness of 250 mm containing 07% and Mn = 0.14% and the balance Fe and unavoidable impurities was prepared.
Then, each slab was soaked at 2 levels of temperature of 1100 ° C. and 1200 ° C. for 60 minutes and then hot-rolled in 11 passes to have a thickness of 2.0 mm, water-cooled after about 2 seconds, cooled to 550 ° C., and then wound 550 The temperature of ° C was maintained for 1 hour.

【0024】かかる熱延板に熱延板焼鈍を施すことなく
約75%の圧延を行って最終板厚0.50mmの冷延板
とした。この冷延板を830℃に300秒保持し、引き
続き875℃に20秒保持する脱炭焼鈍を施し、次いで
750℃に30秒保持する焼鈍時、焼鈍雰囲気中にNH
3 ガスを導入させ、鋼板に窒素を吸収せしめた。この窒
化処理後のN量は、0.0193〜0.0212重量%
であった。かかる窒化処理後の鋼板にMgOを主成分と
する焼鈍分離剤を塗布し、最終仕上焼鈍を行った。しか
る後、製品の磁束密度B8 を測定し、同一成分のスラブ
に対してとった2つのスラブ均熱条件でのB8 の差ΔB
8 〔スラブ加熱温度1100℃におけるB8 (T)−同
温度1200℃におけるB8 (T)〕を求め、図1に示
した。
About 75% of the hot-rolled sheet was rolled without annealing the hot-rolled sheet to obtain a cold-rolled sheet having a final sheet thickness of 0.50 mm. This cold-rolled sheet was kept at 830 ° C for 300 seconds, then decarburized by keeping it at 875 ° C for 20 seconds, and then kept at 750 ° C for 30 seconds during annealing.
3 gas was introduced to make the steel sheet absorb nitrogen. The amount of N after this nitriding treatment is 0.0193 to 0.0212% by weight.
Met. An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed. After that, the magnetic flux density B 8 of the product was measured, and the difference ΔB of B 8 between the two slab soaking conditions taken for the slab of the same composition
8 - seeking [B 8 in slab heating temperature 1100 ℃ (T) B 8 ( T) at the same temperature 1200 ° C.], shown in Figure 1.

【0025】図1から明らかなように、N(%)<0.
0030、AlR (%)>0.0100の範囲で、スラ
ブ加熱温度差に起因する製品の磁束密度の差ΔB
8 (T)が0.02T未満におさまっている。図1で示
された現象のメカニズムについて、本発明者らは、次の
ように考えている。
As is apparent from FIG. 1, N (%) <0.
In the range of 0030, Al R (%)> 0.0100, the magnetic flux density difference ΔB of the product due to the slab heating temperature difference
8 (T) is less than 0.02T. The present inventors consider the mechanism of the phenomenon shown in FIG. 1 as follows.

【0026】本実験では、加熱炉内でのスラブ内の温度
差により生じている現象を、スラブ加熱温度を変えてシ
ミュレートした。それによると、本発明のAl、Nの成
分範囲では1280℃未満のスラブ加熱温度条件の場
合、スラブの高温部と低温部でAlNの固溶、析出量に
差が生じる。すなわち、スラブ加熱時のスラブ高温部で
は固溶Nが多く、引き続く熱延及び脱炭焼鈍時に、この
固溶Nは、AlNの形で微細析出する。他方スラブ加熱
時のスラブ低温部では固溶Nが少なく、引き続く熱延及
び脱炭焼鈍時に微細に析出するAlN量は少ない。この
ようなAlNの析出の場所的不均一は、脱炭焼鈍時の一
次再結晶粒の粒成長の場所的不均一を生じさせる。つま
り、スラブ加熱時のスラブ内高温部に相当する部分で
は、脱炭焼鈍時微細なAlNが多いため、一次再結晶粒
の粒成長は抑制される。一方、スラブ加熱時のスラブ内
低温部に相当する部分では、脱炭焼鈍時微細なAlNが
少ないため、一次再結晶粒は粒成長しやすい。このた
め、脱炭焼鈍完了時、コイル内に、スラブ加熱時のスラ
ブ内の温度差に起因する一次再結晶粒径の場所的不均一
が生じる。本発明者らが、特開平2−182866号公
報で開示したように、この脱炭焼鈍完了時の一次再結晶
粒径は、製品の磁束密度と極めて強い相関がある。従っ
て、この一次再結晶粒径の場所的不均一は、製品での磁
束密度の場所的不均一を生ぜしめることとなる。それゆ
え、その磁束密度のバラツキの原因となっているスラブ
加熱時におけるスラブ内の固溶N量のバラツキを所定の
範囲に入れれば、製品の磁束密度のバラツキが低減され
るものと考えられる。
In this experiment, a phenomenon caused by a temperature difference in the slab in the heating furnace was simulated by changing the slab heating temperature. According to this, in the composition range of Al and N of the present invention, under the slab heating temperature condition of less than 1280 ° C., a difference occurs in the solid solution and precipitation amount of AlN between the high temperature portion and the low temperature portion of the slab. That is, a large amount of solid solution N is present in the high temperature slab during slab heating, and during subsequent hot rolling and decarburization annealing, this solid solution N is finely precipitated in the form of AlN. On the other hand, the amount of solid solution N is small in the low temperature portion of the slab during heating of the slab, and the amount of AlN finely precipitated during the subsequent hot rolling and decarburization annealing is small. Such local nonuniformity of AlN precipitation causes local nonuniformity of grain growth of primary recrystallized grains during decarburization annealing. That is, in the portion corresponding to the high temperature portion in the slab during heating of the slab, since the amount of fine AlN during decarburization annealing is large, grain growth of primary recrystallized grains is suppressed. On the other hand, in the portion corresponding to the low temperature portion in the slab during heating of the slab, since the fine AlN is small during decarburization annealing, the primary recrystallized grains are likely to grow. For this reason, when the decarburization annealing is completed, there is a spatial nonuniformity of the primary recrystallized grain size in the coil due to the temperature difference in the slab during the heating of the slab. As disclosed by the present inventors in Japanese Patent Application Laid-Open No. 2-182866, the primary recrystallized grain size at the completion of decarburization annealing has an extremely strong correlation with the magnetic flux density of the product. Therefore, the spatial nonuniformity of the primary recrystallized grain size causes the spatial nonuniformity of the magnetic flux density in the product. Therefore, if the variation in the amount of solid solution N in the slab during heating of the slab, which causes the variation in the magnetic flux density, is set within a predetermined range, it is considered that the variation in the magnetic flux density of the product is reduced.

【0027】次に本発明の構成要件を限定した理由につ
いて述べる。先ず、スラブ成分とスラブ加熱温度に関し
て限定理由を詳細に説明する。Cは0.025重量%
(以下単に%と略述)未満になると二次再結晶が不安定
になり、かつ二次再結晶した場合でもB8 >1.80
(T)が得がたいので0.025%以上とした。一方、
Cが多くなり過ぎると脱炭焼鈍時間が長くなり経済的で
ないので0.075%以下とした。
Next, the reasons for limiting the constituent features of the present invention will be described. First, the reasons for limiting the slab components and the slab heating temperature will be described in detail. C is 0.025% by weight
If it is less than (hereinafter simply abbreviated as%), the secondary recrystallization becomes unstable, and even if secondary recrystallization is performed, B 8 > 1.80.
Since (T) is hard to obtain, it was set to 0.025% or more. on the other hand,
If the amount of C is too large, the decarburization annealing time becomes long and it is not economical, so the content was made 0.075% or less.

【0028】Siは4.5%を超えると冷延時の割れが
著しくなるので4.5%以下とした。また、2.5%未
満では素材の固有抵抗が低すぎ、トランス鉄心材料とし
て必要な低鉄損が得られないので2.5%以上とした。
望ましくは3.2%以上である。Alは二次再結晶の安
定化に必要なAlNもしくは(Al、Si)Nを確保す
るため、酸可溶性Alとして0.010%以上が必要で
ある。酸可溶性Alが0.060%を超えると熱延板の
AlNが不適切となり二次再結晶が不安定となるので
0.060%以下とした。
If Si exceeds 4.5%, cracking during cold rolling becomes significant, so the content of Si is set to 4.5% or less. On the other hand, if it is less than 2.5%, the specific resistance of the material is too low, and the low iron loss required for the transformer core material cannot be obtained.
It is preferably 3.2% or more. In order to secure AlN or (Al, Si) N necessary for stabilizing the secondary recrystallization, Al needs to be 0.010% or more as acid-soluble Al. If the acid-soluble Al exceeds 0.060%, the AlN of the hot-rolled sheet becomes unsuitable and the secondary recrystallization becomes unstable, so the content was made 0.060% or less.

【0029】N量については、図1に示した如く、0.
0030%未満にすることが必要である。そして、これ
がスラブ加熱時の温度偏差に起因する磁性の変動を低減
するのに有効である。N量の下限については特に限定す
るものではないが、製鋼段階でNを0.0001%以下
にすることは工業的には難しい。酸可溶性AlとN量は
図1に示した如く、AlR =Al−27/14N>0.
0100とすることが必要である。これも、スラブ加熱
時の温度偏差に起因する磁性の変動を低減するのに有効
である。AlR =Al−27/14Nの上限は、酸可溶
性AlとN量の規定から定まるものであるが、0.06
0%まで許容される。
As for the N content, as shown in FIG.
It should be less than 0030%. And, this is effective in reducing the fluctuation of magnetism due to the temperature deviation during slab heating. The lower limit of the amount of N is not particularly limited, but it is industrially difficult to make N 0.0001% or less in the steelmaking stage. As shown in FIG. 1, the amounts of acid-soluble Al and N are Al R = Al-27 / 14N> 0.
It is necessary to set it to 0100. This is also effective in reducing fluctuations in magnetism due to temperature deviation during slab heating. The upper limit of Al R = Al-27 / 14N is determined from the regulation of the amount of acid-soluble Al and N, but is 0.06.
Permissible up to 0%.

【0030】MnS、MnSeが鋼中に存在しても、製
造工程の条件を適正に選ぶことによって磁気特性を良好
にすることは可能である。しかしながらSやSeが高い
と線状細粒と呼ばれる二次再結晶不良部が発生する傾向
がある。S当量=S+32/79Se=S+0.405
Seを定義して、これと二次再結晶不良率との関係を調
査した。この二次再結晶不良部の発生を予防するために
は(S+0.405Se)≦0.014%とすべきであ
る。SあるいはSeが上記値を超える場合には製造条件
をいかに変更しても二次再結晶不良部が発生する確率が
高くなると共に、最終仕上焼鈍で純化するのに要する時
間が長くなり過ぎて好ましくなく、この様な観点からS
あるいはSeを不必要に増すことは意味がない。
Even if MnS and MnSe are present in the steel, it is possible to improve the magnetic properties by properly selecting the conditions of the manufacturing process. However, if S and Se are high, secondary recrystallization defects called linear fine grains tend to occur. S equivalent = S + 32 / 79Se = S + 0.405
Se was defined and the relationship between this and the secondary recrystallization defect rate was investigated. In order to prevent the occurrence of this secondary recrystallization defect portion, (S + 0.405Se) ≦ 0.014% should be satisfied. If S or Se exceeds the above value, the probability of occurrence of secondary recrystallization defects will be high no matter how the manufacturing conditions are changed, and the time required for purification by final annealing will be too long, which is preferable. Not from this perspective, S
Alternatively, there is no point in unnecessarily increasing Se.

【0031】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)不良、ストリップの側縁部が波形状となり製
品歩留りを低下させる等の問題が発生する。一方、Mn
量が0.8%を超えると製品の磁束密度を低下させ好ま
しくないので、Mn量の上限を0.8%とした。Sn
は、粒界偏析元素として知られており、粒成長を抑制す
る元素である。一方、スラブ加熱時Snは完全固溶して
おり、通常考えられる数10℃の温度差を有する加熱時
のスラブ内でも、一様に固溶していると考えられる。従
って、温度差があるにも拘らず加熱時のスラブ内で均一
に分布しているSnは、脱炭焼鈍時の粒成長抑制効果に
ついても、場所的に均一に作用すると考えられる。この
ため、AlNの析出の場所的不均一に起因する脱炭焼鈍
時の粒成長の場所的不均一を、Snは希釈する効果があ
るものと考えられる。従って、本発明のN量、AlR
を制限する技術及び、後述する冷延のパス間での鋼板の
温度制御、一次再結晶粒径の制御に加え、Snを添加す
ることはさらに製品の磁気特性の場所的バラツキを低減
させるのに有効である。このSnの適正範囲を0.01
〜0.15%とした。この下限値未満では、粒成長抑制
効果が少な過ぎて好ましくない。一方、この上限値を超
えると鋼板の窒化が難しくなり、二次再結晶不良の原因
となるため好ましくない。
The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, problems such as a defective shape (flatness) of the hot-rolled sheet obtained by hot rolling and a corrugated side edge portion of the strip and a reduction in product yield occur. On the other hand, Mn
If the amount exceeds 0.8%, the magnetic flux density of the product decreases, which is not preferable, so the upper limit of the Mn amount was made 0.8%. Sn
Is known as a grain boundary segregation element and is an element that suppresses grain growth. On the other hand, Sn is completely dissolved during heating of the slab, and it is considered that Sn is evenly dissolved within the slab during heating having a temperature difference of several tens of degrees Celsius which is usually considered. Therefore, it is considered that Sn, which is uniformly distributed in the slab during heating despite the temperature difference, also acts locally in terms of the grain growth suppressing effect during decarburization annealing. Therefore, it is considered that Sn has the effect of diluting the nonuniformity of grain growth during decarburization annealing due to the nonuniformity of precipitation of AlN. Therefore, in addition to the technique of the present invention for limiting the amount of N and the amount of Al R , the temperature control of the steel sheet between the cold rolling passes described below, and the control of the primary recrystallized grain size, the addition of Sn is more effective for the product. This is effective in reducing the spatial variation in magnetic characteristics. The proper range of this Sn is 0.01
˜0.15%. Below this lower limit, the grain growth suppressing effect is too small, which is not preferable. On the other hand, if the upper limit is exceeded, nitriding of the steel sheet becomes difficult, which causes secondary recrystallization failure, which is not preferable.

【0032】この他インヒビター構成元素として知られ
ているSb、Cu、Cr、Ni、B、Ti、Nb等を微
量に含有することは差し支えない。特に、B、Ti、N
b等窒化物構成元素は、スラブ内の温度差に起因するA
lNの析出の場所的不均一を低減するために積極的に添
加しても構わない。スラブ加熱温度は、普通鋼並にして
コストダウンを行うという目的から1280℃未満と限
定した。好ましくは1200℃以下である。
In addition to these, a small amount of Sb, Cu, Cr, Ni, B, Ti, Nb, etc., which are known as inhibitor constituent elements, may be contained. Especially B, Ti, N
The nitride constituent elements such as b are caused by the temperature difference in the slab.
It may be positively added in order to reduce the spatial nonuniformity of 1N precipitation. The slab heating temperature was limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower.

【0033】加熱されたスラブは、引き続き熱延されて
熱延板となる。この熱延方法については、特に限定され
るものではないが、熱延の終了温度を850〜1050
℃とし、熱延の最終パスの累積圧下率を40%以上とす
ることは、製品の磁性の場所的バラツキを低減し、かつ
磁性を向上させる上でさらに好ましい。熱延の最終パス
後、通常0.1〜100秒程度空冷された後、水冷さ
れ、300〜700℃の温度で巻取られ、徐冷される。
この冷却プロセスについては特に限定されるものではな
いが、熱延後1秒以上空冷することは、再結晶を進ま
せ、磁性を高位安定化する上で好ましい。この熱延板
は、熱延板焼鈍をすることなく、引き続き、圧下率60
〜79%の冷延を行い、最終冷延板となる。
The heated slab is subsequently hot rolled to form a hot rolled plate. The hot rolling method is not particularly limited, but the hot rolling end temperature is set to 850 to 1050.
It is more preferable that the temperature is set to 0 ° C. and the cumulative rolling reduction in the final pass of hot rolling is set to 40% or more in order to reduce the local variation in the magnetism of the product and improve the magnetism. After the final pass of hot rolling, it is usually air-cooled for about 0.1 to 100 seconds, water-cooled, wound at a temperature of 300 to 700 ° C., and gradually cooled.
The cooling process is not particularly limited, but air cooling for 1 second or more after hot rolling is preferable for promoting recrystallization and stabilizing magnetism at a high level. This hot-rolled sheet was continuously subjected to a rolling reduction of 60 without annealing the hot-rolled sheet.
Cold rolling of ~ 79% is performed to obtain the final cold rolled sheet.

【0034】この圧下率を60〜79%と規定したの
は、冷延板の板厚が0.5mm等と厚い場合、圧下率を
80%以上とすると、当然冷延素材(熱延板)が厚くな
りすぎ、酸洗ラインや冷延ラインの通板時破断を生じや
すく好ましくないためである。一方、下限値は、磁束密
度を高位に保つ必要から規定した。この冷延のパス間で
の鋼板の温度を200℃以下とすることは、本発明の如
き低冷延率の場合には、磁束密度を高位に保つ上で好ま
しい。このメカニズムについて、本発明者らは次のよう
に推察している。従来から、冷延率は、冷延再結晶集合
組織の支配因子として知られており、特に、二次再結晶
方位に対する支配因子として{110}<001>、
{111}<112>方位粒の存在量が重要である。再
結晶集合組織中のこの{110}<001>方位粒は、
60〜70%の圧下率の時最大となり、70%超の圧下
率範囲では圧下率が高まるにつれ、減少していく。一
方、再結晶集合組織中の{111}<112>の方位粒
は、約90%までの圧下率範囲で、圧下率が高まるにつ
れ、増加する傾向がある。他方、冷延でのパス間時効
は、冷延時変形帯の形成を助長し、変形帯から核生する
{110}<001>方位粒を再結晶集合組織中で増加
させる傾向がある。このパス間時効は、その反面再結晶
集合組織中での{111}<112>方位粒の存在量を
減少させる傾向がある。従って、{110}<001>
方位粒と{111}<112>方位粒の再結晶集合組織
中の存在量の観点からすると、パス間時効を施すこと
は、冷延率を低めたのと同じ影響を与えることになる。
このため、通常80%以上の高冷延率で得られる再結晶
集合組織に、80%未満の低冷延率のものをできるだけ
近づけるためには、本発明のようにパス間時効の影響を
極力排除することが有効と考えられる。
The reduction ratio is defined as 60 to 79% because, when the cold-rolled sheet has a large thickness such as 0.5 mm, when the reduction ratio is 80% or more, the cold-rolled material (hot-rolled sheet) is naturally used. Is too thick, and it is not preferable because it easily breaks when passing through the pickling line or the cold rolling line. On the other hand, the lower limit value is defined because it is necessary to keep the magnetic flux density at a high level. It is preferable to keep the temperature of the steel sheet between the cold rolling passes at 200 ° C. or lower in order to maintain the magnetic flux density at a high level in the case of the low cold rolling rate as in the present invention. The present inventors presume about this mechanism as follows. Conventionally, the cold rolling rate is known as a controlling factor of the cold rolling recrystallization texture, and in particular, {110} <001> as a controlling factor for the secondary recrystallization orientation,
The abundance of {111} <112> oriented grains is important. The {110} <001> oriented grains in the recrystallized texture are
It becomes maximum at a reduction rate of 60 to 70%, and decreases in the reduction rate range of more than 70% as the reduction rate increases. On the other hand, the {111} <112> oriented grains in the recrystallized texture tend to increase in the rolling reduction range up to about 90% as the rolling reduction increases. On the other hand, interpass aging in cold rolling tends to promote the formation of deformation zones during cold rolling and increase the {110} <001> oriented grains nucleating from the deformation zones in the recrystallization texture. On the other hand, this interpass aging tends to reduce the amount of {111} <112> oriented grains present in the recrystallized texture. Therefore, {110} <001>
From the viewpoint of the abundance of the oriented grains and the {111} <112> oriented grains in the recrystallized texture, the inter-pass aging has the same effect as the reduction of the cold rolling reduction.
Therefore, in order to bring a recrystallized texture that is usually obtained at a high cold rolling rate of 80% or more to a cold rolling rate of less than 80% as close as possible, the effect of interpass aging as in the present invention is minimized. Elimination is considered effective.

【0035】この冷延の方式については特に限定するも
のではない。タンデム方式、リバース方式どちらでもよ
い。パス間の温度を200℃以下にしておけば十分であ
る。パス回数についても特に限定するものではないが、
不必要に100回以上もパス回数をとることは意味がな
い。かかる冷延後の鋼板は、通常の方法で脱炭焼鈍、焼
鈍分離剤塗布、最終仕上焼鈍を施されて最終製品とな
る。ここで脱炭焼鈍完了後、最終仕上焼鈍開始までの間
の一次再結晶粒の平均粒径を18〜30μmに制御する
ことは、N、AlR 量の制御に加え、さらに好ましい。
その理由はこの平均粒径の範囲で良好な磁束密度が得ら
れやすく、かつ粒径変動に対する磁束密度の変化が少な
いからである。
The cold rolling method is not particularly limited. Either the tandem method or the reverse method may be used. It is sufficient to keep the temperature between passes at 200 ° C or lower. Although the number of passes is not particularly limited,
It makes no sense to take more than 100 passes unnecessarily. The steel sheet after such cold rolling is subjected to decarburization annealing, annealing separation agent coating, and final finishing annealing by a usual method to obtain a final product. Here, it is more preferable to control the average particle size of the primary recrystallized grains to 18 to 30 μm after the completion of decarburization annealing and before the start of final finish annealing, in addition to controlling the amounts of N and Al R.
The reason is that it is easy to obtain a good magnetic flux density in this range of the average particle size, and the change of the magnetic flux density due to the particle size variation is small.

【0036】そして、熱延後最終仕上焼鈍の二次再結晶
開始までの間に鋼板に窒化処理を施すと規定したのは、
本発明の如き低温スラブ加熱を前提とするプロセスで
は、二次再結晶に必要なインヒビター強度が不足がちに
なるからである。窒化の方法としては特に限定するもの
ではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3 ガス
を混入させ窒化する方法、プラズマを用いる方法、焼鈍
分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒化
物が分解してできた窒素を鋼板に吸収させる方法、最終
仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化す
る方法等何れの方法でも良い。窒化量については特に限
定するものではないが、1ppm以上は必要である。
It is defined that the steel sheet is subjected to the nitriding treatment before the secondary recrystallization of the final finish annealing after the hot rolling.
This is because the inhibitor strength required for secondary recrystallization tends to be insufficient in the process that is premised on low temperature slab heating as in the present invention. The method of nitriding is not particularly limited, and it is a method of mixing NH 3 gas into the annealing atmosphere after decarburization annealing to perform nitriding, a method of using plasma, a nitride is added to an annealing separating agent, and a final finishing annealing is performed. Any method may be used, such as a method of absorbing nitrogen generated by decomposition of nitrides in the temperature into the steel sheet, or a method of nitriding the steel sheet by increasing the N 2 partial pressure in the atmosphere of final annealing. The nitriding amount is not particularly limited, but 1 ppm or more is necessary.

【0037】[0037]

【実施例】以下実施例を説明する。 実施例1 C:0.051重量%、Si:3.10重量%、Mn:
0.14重量%、S:0.006重量%、酸可溶性A
l:0.034重量%を基本成分とし、N量を0.0
081重量%、0.0062重量%、0.0025
重量%、0.0013重量%なる4水準で添加し、残
部Fe及び不可避的不純物からなる4種類の250mm
厚スラブを作成した。この場合AlR (%)は、0.
0184重量%、0.0220重量%、0.029
2重量%、0.0315重量%であった。
EXAMPLES Examples will be described below. Example 1 C: 0.051 wt%, Si: 3.10 wt%, Mn:
0.14% by weight, S: 0.006% by weight, acid-soluble A
1: 0.034% by weight as a basic component and N content of 0.0
081% by weight, 0.0062% by weight, 0.0025
%, 0.0013% by weight added at 4 levels, the balance being Fe and unavoidable impurities of 4 types of 250 mm
Created a thick slab. In this case, Al R (%) is 0.
0184% by weight, 0.0220% by weight, 0.029
It was 2% by weight and 0.0315% by weight.

【0038】かかるスラブをa:1180℃、b:11
10℃の2水準の温度で60分均熱した後、直ちに熱延
を開始し、5パスで40mm厚とした後、6パスで2.
3mm厚の熱延板とした。次いで、熱延終了後は1秒間
空冷後550℃まで水冷し、550℃に1時間保持した
後炉冷する巻取りシミュレーションを行った。
Such a slab was a: 1180 ° C., b: 11
After soaking for 60 minutes at two levels of temperature of 10 ° C., hot rolling was immediately started, and 40 mm thickness was obtained by 5 passes and then 2.
A hot rolled plate having a thickness of 3 mm was used. Then, after the hot rolling was finished, a coiling simulation was performed in which the material was air-cooled for 1 second, water-cooled to 550 ° C., held at 550 ° C. for 1 hour, and then furnace-cooled.

【0039】この熱延板を酸洗して圧下率約78%で
0.50mmの冷延板とし、820℃で300秒保持す
る脱炭焼鈍を施した。しかる後、750℃で30秒保持
する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入さ
せ、鋼板に窒素を吸収せしめた。窒化後のこの鋼板のN
量は0.0198〜0.0214重量%であった。次い
で、この鋼板にMgOを主成分とする焼鈍分離剤を塗布
し、N2 25%、H2 75%の雰囲気ガス中で15℃/
時の速度で1200℃まで昇温し、引き続きH2 100
%雰囲気ガス中で1200℃で20時間保持する最終仕
上焼鈍を行った。
The hot-rolled sheet was pickled to form a cold-rolled sheet having a rolling reduction of about 78% and a length of 0.50 mm, and subjected to decarburization annealing at 820 ° C. for 300 seconds. After that, annealing was carried out at 750 ° C. for 30 seconds, NH 3 gas was mixed in the annealing atmosphere, and the steel sheet was made to absorb nitrogen. N of this steel sheet after nitriding
The amount was 0.0198-0.0214% by weight. Then, an annealing separator containing MgO as a main component was applied to this steel sheet, and the temperature was kept at 15 ° C. in an atmosphere gas of N 2 25% and H 2 75%.
The temperature was raised to 1200 ° C at the same time, and then H 2 100 was added.
% Final atmosphere annealing was carried out at 1200 ° C. for 20 hours in an atmosphere gas.

【0040】実験条件と磁気特性の結果は表1に示す。
比較例(No.1〜4)は、スラブ加熱条件による磁気
特性(B8 )の差が大きいが、本発明(No.5〜8)
の場合は差が小さい。
The experimental conditions and the results of the magnetic properties are shown in Table 1.
The comparative examples (No. 1 to 4) have a large difference in magnetic characteristics (B 8 ) depending on the slab heating conditions, but the present invention (No. 5 to 8)
In the case of, the difference is small.

【0041】[0041]

【表1】 [Table 1]

【0042】実施例2 C:0.041重量%、Si:3.25重量%、Mn:
0.15重量%、S:0.007重量%、N:0.00
22重量%を基本成分とし、酸可溶性Alを、0.0
13重量%、0.019重量%、0.025重量
%、0.037重量%なる4水準のレベルで添加し、
残部Fe及び不可避的不純物からなる4種類の250m
m厚スラブを作成した。この場合AlR (%)は、
0.0088重量%、0.0148重量%、0.0
208重量%、0.0328重量%であった。
Example 2 C: 0.041% by weight, Si: 3.25% by weight, Mn:
0.15% by weight, S: 0.007% by weight, N: 0.00
22% by weight as a basic component, acid-soluble Al is 0.0
13 levels, 0.019% by weight, 0.025% by weight, 0.037% by weight, added at 4 levels,
4 types of 250m consisting of balance Fe and unavoidable impurities
An m-thick slab was created. In this case Al R (%) is
0.0088% by weight, 0.0148% by weight, 0.0
It was 208% by weight and 0.0328% by weight.

【0043】かかるスラブをa:1170℃、b:11
00℃の2水準の温度で60分均熱した後、直ちに熱延
を開始し、5パスで40mm厚とした後、6パスで2.
0mm厚の熱延板とした。次いで、この熱延板を最終仕
上焼鈍まで実施例1の条件で処理した。この場合、冷延
圧下率は75%であり、窒化後のN量は0.0195〜
0.0212重量%であった。
The slab is a: 1170 ° C., b: 11
After soaking at two levels of temperature of 00 ° C. for 60 minutes, hot rolling was immediately started, and 40 mm thickness was obtained by 5 passes and then 2.
A hot rolled sheet having a thickness of 0 mm was used. Next, this hot rolled sheet was treated under the conditions of Example 1 until the final finish annealing. In this case, the cold rolling reduction is 75%, and the N amount after nitriding is 0.0195 to
It was 0.0212% by weight.

【0044】実験条件と製品の磁気特性を表2に示す。
比較例(No.1〜2)は、スラブ加熱条件による磁気
特性(B8 )の差が大きいが、本発明(No.3〜N
o.8)の場合は差が小さい。
Table 2 shows the experimental conditions and the magnetic properties of the products.
The comparative examples (Nos. 1 and 2) have a large difference in magnetic characteristics (B 8 ) depending on the slab heating conditions, but the present invention (Nos. 3 to N).
o. In the case of 8), the difference is small.

【0045】[0045]

【表2】 [Table 2]

【0046】実施例3 C:0.044重量%、Si:3.28重量%、Mn:
0.14重量%、S:0.007重量%、酸可溶性A
l:0.028重量%、N:0.0025重量%を含有
し(AlR :0.0232重量%)、残部Fe及び不可
避的不純物からなる40mm厚のスラブを、a:115
0℃、b:1100℃の温度で加熱した後、6パスで熱
延して2.3mmの熱延板とした。この時圧下配分を4
0→24→16→11→6.6→3.9→2.3(m
m)とした。
Example 3 C: 0.044% by weight, Si: 3.28% by weight, Mn:
0.14% by weight, S: 0.007% by weight, acid-soluble A
1: 0.028 wt%, N: 0.0025 wt% (Al R : 0.0232 wt%), a 40 mm thick slab consisting of the balance Fe and unavoidable impurities, a: 115
After heating at a temperature of 0 ° C. and b: 1100 ° C., hot rolling was performed in 6 passes to obtain a hot rolled plate of 2.3 mm. At this time, the reduction distribution is 4
0 → 24 → 16 → 11 → 6.6 → 3.9 → 2.3 (m
m).

【0047】しかる後、この熱延板を酸洗し、次いで圧
下率78%で同一方向に冷延し、0.50mm厚の冷延
板とした。この際、1.5mmと1.0mm厚の時に、
時効処理なし、250℃×5分(均熱)なる時効処
理あり、の2種類の冷延板を作成した。次いで、820
℃に300秒保持し、870℃に20秒保持する脱炭焼
鈍を施した。しかる後、750℃に30秒保持する熱処
理中、雰囲気ガス中にNH3 ガスを混入させ、鋼板に窒
素吸収を生ぜしめた。この時鋼板のN量は0.0208
〜0.0221重量%であった。
Thereafter, the hot rolled sheet was pickled, and then cold rolled in the same direction at a rolling reduction of 78% to obtain a cold rolled sheet having a thickness of 0.50 mm. At this time, when the thickness is 1.5 mm and 1.0 mm,
Two types of cold-rolled sheets were prepared, one without aging treatment and the other with aging treatment of 250 ° C. × 5 minutes (soaking). Then 820
Decarburization annealing was performed at 300 ° C. for 300 seconds and 870 ° C. for 20 seconds. Then, during the heat treatment of holding at 750 ° C. for 30 seconds, NH 3 gas was mixed into the atmosphere gas to cause the steel sheet to absorb nitrogen. At this time, the N content of the steel plate is 0.0208
Was 0.0221% by weight.

【0048】次いでこの窒化処理後の鋼板にMgOを主
成分とする焼鈍分離剤を塗布し、公知の方法で最終仕上
焼鈍を行った。実験条件と製品の磁気特性を表3に示
す。時効処理を行った場合(No.3〜4)の方が、時
効処理を行わない場合(No.1〜2)に比較してスラ
ブ加熱条件による磁気特性(B8 )の差が大きい。
Next, an annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed by a known method. Table 3 shows the experimental conditions and the magnetic properties of the products. When the aging treatment is performed (Nos. 3 to 4), the difference in the magnetic characteristics (B 8 ) depending on the slab heating conditions is larger than when the aging treatment is not performed (Nos. 1 to 2).

【0049】[0049]

【表3】 [Table 3]

【0050】実施例4 C:0.041重量%、Si:3.15重量%、Mn:
0.14重量%、S:0.006重量%、酸可溶性A
l:0.036重量%、N:0.0020重量%を添加
し、残部Fe及び不可避的不純物からなるスラブを作成
した。この場合AlR (%)は、0.0321重量%で
あった。
Example 4 C: 0.041% by weight, Si: 3.15% by weight, Mn:
0.14% by weight, S: 0.006% by weight, acid-soluble A
l: 0.036 wt% and N: 0.0020 wt% were added to prepare a slab consisting of the balance Fe and inevitable impurities. In this case, Al R (%) was 0.0321% by weight.

【0051】かかるスラブをa:1150℃、b:10
90℃の2水準の温度で60分均熱した後、直ちに熱延
を開始し、5パスで40mm厚とした後、6パスで1.
8mm厚の熱延板とした。次いで、かかる熱延板を酸洗
して圧下率約78%で0.40mmの冷延板とし、8
00℃、820℃、840℃、850℃の各温度
で250秒保持する脱炭焼鈍を施した。しかる後、75
0℃で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH
3 ガスを混入させ、鋼板に窒素吸収を生ぜしめた。窒化
後のこの鋼板のN量は0.0198〜0.0211重量
%であった。そしてこの鋼板の平均結晶粒径を、光学顕
微鏡と画像解析機を用いて測定した。
Such a slab was subjected to a: 1150 ° C., b: 10
After soaking at two levels of temperature of 90 ° C. for 60 minutes, hot rolling was started immediately, the thickness was 40 mm in 5 passes, and 1.
It was a hot rolled plate having a thickness of 8 mm. Then, the hot-rolled sheet is pickled to make a cold-rolled sheet of 0.40 mm with a reduction rate of about 78%,
Decarburization annealing was performed by holding each temperature of 00 ° C, 820 ° C, 840 ° C, and 850 ° C for 250 seconds. After that, 75
Annealing is carried out by holding at 0 ° C for 30 seconds.
3 gases were mixed in to cause the steel sheet to absorb nitrogen. The N content of this steel sheet after nitriding was 0.0198 to 0.0211% by weight. Then, the average crystal grain size of this steel sheet was measured using an optical microscope and an image analyzer.

【0052】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、N2 50%、H2 50%の雰囲気
ガス中で10℃/時の速度で1200℃まで昇温し、引
き続きH2 100%雰囲気ガス中で1200℃で20時
間保持する最終仕上焼鈍を行った。実験条件と製品の磁
気特性を表4に示す。
Then, an annealing separator containing MgO as a main component was applied to this steel sheet, and the temperature was raised to 1200 ° C. at a rate of 10 ° C./hour in an atmosphere gas of N 2 50% and H 2 50%, and then continued. The final finish annealing was carried out by holding at 1200 ° C. for 20 hours in a H 2 100% atmosphere gas. Table 4 shows the experimental conditions and the magnetic properties of the products.

【0053】一次再結晶粒径を所定の範囲(18〜30
μm)に制御した場合(No.3〜6)には、制御しな
い場合(No.1〜2、No.7〜8)に比較して、ス
ラブ加熱条件による磁気特性(B8 )の差をさらに小さ
くすることが出来る。
The primary recrystallized grain size falls within a predetermined range (18 to 30).
.mu.m) (No. 3 to 6), the magnetic characteristics (B.sub.8) due to the slab heating conditions are different from those in the case of not controlling (No. 1 to 2, No. 7 to 8 ). It can be made even smaller.

【0054】[0054]

【表4】 [Table 4]

【0055】実施例5 C:0.054重量%、Si:3.23重量%、Mn:
0.15重量%、S:0.007重量%、酸可溶性A
l:0.038重量%、N:0.0021重量%を基本
成分とし、Sn量を添加なし(<0.01重量%)、
0.05重量%、0.14重量%なる3水準で添加
し、残部Fe及び不可避的不純物からなる3種類の25
0mm厚のスラブを作成した。この場合AlR (%)
は、0.0340重量%であった。
Example 5 C: 0.054% by weight, Si: 3.23% by weight, Mn:
0.15% by weight, S: 0.007% by weight, acid-soluble A
1: 0.038% by weight, N: 0.0021% by weight as a basic component, and no Sn amount added (<0.01% by weight),
It is added at three levels of 0.05% by weight and 0.14% by weight.
A 0 mm thick slab was created. In this case Al R (%)
Was 0.0340% by weight.

【0056】かかるスラブをa:1160℃、b:10
80℃の2水準の温度で60分均熱した後、直ちに熱延
を開始し、5パスで40mm厚とした後、6パスで2.
3mm厚の熱延板とした。次いでこの熱延板を最終仕上
焼鈍まで実施例1の条件で処理した。ただし、脱炭焼鈍
条件については、800℃×250秒(均熱)、8
20℃×250秒(均熱)で行った。窒化後のN量は、
0.0184〜0.0201重量%であった。
Such a slab was subjected to a: 1160 ° C., b: 10
After soaking at 2 levels of temperature of 80 ° C. for 60 minutes, hot rolling was immediately started, and after 5 passes to 40 mm thickness, 2.
A hot rolled plate having a thickness of 3 mm was used. Then, this hot-rolled sheet was treated under the conditions of Example 1 until the final finish annealing. However, the decarburization annealing conditions are 800 ° C. × 250 seconds (soaking), 8
It was carried out at 20 ° C. for 250 seconds (soaking). The amount of N after nitriding is
It was 0.0184 to 0.0201% by weight.

【0057】実験条件と製品の磁気特性を表5に示す。
Sn無添加の場合(No.1〜4)に比較して、Snを
添加した場合(No.5〜12)の方がスラブ加熱条件
による磁気特性(B8 )の差をより小さくすることが出
来る。
Table 5 shows the experimental conditions and the magnetic properties of the products.
Compared with the case where Sn is not added (Nos. 1 to 4), the case where Sn is added (Nos. 5 to 12) can make the difference in magnetic characteristics (B 8 ) depending on the slab heating conditions smaller. I can.

【0058】[0058]

【表5】 [Table 5]

【0059】〔実施例6〕C:0.038重量%、S
i:3.00重量%、Mn:0.16重量%、S:0.
007重量%、酸可溶性Al:0.029重量%、N:
0.0020重量%を含有し(AlR :0.0251重
量%)、残部Fe及び不可避的不純物からなる40mm
厚のスラブを、a:1150℃、b:1100℃の温度
で加熱した後、1050℃で熱延を開始し、40→23
→14→9→6→3.5→2.0(mm)なるパススケ
ジュールで熱延して熱延板とした。
[Example 6] C: 0.038% by weight, S
i: 3.00% by weight, Mn: 0.16% by weight, S: 0.
007% by weight, acid-soluble Al: 0.029% by weight, N:
40 mm containing 0.0020 wt% (Al R : 0.0251 wt%), balance Fe and unavoidable impurities
After heating the thick slab at a temperature of a: 1150 ° C and b: 1100 ° C, hot rolling is started at 1050 ° C, and 40 → 23.
→ 14 → 9 → 6 → 3.5 → 2.0 (mm) hot rolling was performed to obtain a hot rolled sheet.

【0060】しかる後、この熱延板を酸洗し、次いで圧
下率75%で冷延し、0.50mm厚の冷延板とした。
この時、1.2mm厚の時に時効処理なし、110
℃×2分(均熱)、300℃×2分(均熱)なる3種
類の時効処理を施した3種類の冷延板を作成した。次い
で820℃に300秒保持し、860℃に20秒保持す
る脱炭焼鈍を施した。しかる後770℃に30秒保持す
る熱処理中、雰囲気ガス中にNH3 ガスを混入させ、鋼
板に窒素吸収を生ぜしめた。この時鋼板のN量は、0.
0194〜0.0221重量%であった。また、この鋼
板の板厚全厚での一次再結晶粒の平均粒径を光学顕微鏡
と画像解析機を用いて測定したところ23〜25μmで
あった。
Thereafter, the hot rolled sheet was pickled and then cold rolled at a rolling reduction of 75% to obtain a cold rolled sheet having a thickness of 0.50 mm.
At this time, when the thickness is 1.2 mm, no aging treatment, 110
Three types of cold-rolled sheets that had been subjected to three types of aging treatments of ℃ × 2 minutes (soaking) and 300 ℃ × 2 minutes (soaking) were prepared. Then, decarburization annealing was carried out at 820 ° C. for 300 seconds and at 860 ° C. for 20 seconds. Then, during the heat treatment of holding at 770 ° C. for 30 seconds, NH 3 gas was mixed into the atmosphere gas to cause the steel sheet to absorb nitrogen. At this time, the N content of the steel sheet was 0.
It was 0194 to 0.0221% by weight. The average grain size of the primary recrystallized grains of this steel sheet was 23 to 25 μm when measured using an optical microscope and an image analyzer.

【0061】次いでこの窒化処理後の鋼板にMgOを主
成分とする焼鈍分離剤を塗布し、公知の方法で最終仕上
焼鈍を行った。実験条件と製品の磁気特性を表6に示
す。冷延板の時効温度を所定の範囲に制御した場合(N
o.3〜4)や時効処理なしの場合(No.1〜2)
は、時効温度が所定の範囲外の場合(No.5〜6)に
比較して、スラブ加熱条件による磁気特性(B8 )の差
を小さくすることが出来る。
Then, an annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed by a known method. Table 6 shows the experimental conditions and the magnetic properties of the products. When the aging temperature of the cold-rolled sheet is controlled within the specified range (N
o. 3-4) or without aging treatment (No. 1-2)
In comparison with the case where the aging temperature is out of the predetermined range (Nos. 5 to 6 ), the difference in the magnetic characteristics (B 8 ) depending on the slab heating conditions can be reduced.

【0062】[0062]

【表6】 [Table 6]

【0063】[0063]

【発明の効果】以上説明したように、本発明において
は、N量、AlR 量、(AlR =Al−27/14N)
を制御し、さらには冷延のパス間の鋼板温度を制御し、
さらには脱炭焼鈍完了後、最終仕上焼鈍開始までの間で
の一次再結晶粒の平均粒径を制御し、さらにはSn添加
することにより、熱延板焼鈍を省略して、良好な磁気特
性をスラブ加熱時のスラブの温度偏差に起因する場所的
バラツキなく安定して得ることができるので、その工業
的効果は極めて大である。
As described above, in the present invention, the amount of N, the amount of Al R , (Al R = Al-27 / 14N)
To control the temperature of the steel sheet between cold rolling passes,
Furthermore, by controlling the average grain size of the primary recrystallized grains after the completion of decarburization annealing and before the start of final finishing annealing, and further by adding Sn, hot-rolled sheet annealing can be omitted and good magnetic properties can be obtained. Can be stably obtained without spatial variation due to temperature deviation of the slab during slab heating, and therefore its industrial effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】N量、AlR 量(AlR =Al−27/14
N)とスラブ加熱温度差起因の磁気特性差との関係を表
すグラフである。
FIG. 1 Amount of N and Al R (Al R = Al-27 / 14
It is a graph showing the relationship between N) and the magnetic property difference resulting from the slab heating temperature difference.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月4日[Submission date] February 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】すなわち、重量で、C=0.045%、S
i=3.01%、酸可溶性Al=0.010〜0.05
7%、N=0.0003〜0.0118%、S=0.0
07%、Mn=0.14%を含有し、残部Fe及び不可
避的不純物からなる250mm厚のスラブを作成した。
そして1100℃、1200℃の2水準の温度で各
スラブを60分均熱後11パスの熱延で2.0mm厚と
し、約2秒後に水冷し、550℃まで冷却した後、55
0℃の温度に1時間保持した。
That is, by weight, C = 0.045%, S
i = 3.01%, acid-soluble Al = 0.10 to 0.05
7%, N = 0.003 to 0.0118%, S = 0.0
A slab having a thickness of 250 mm containing 07% and Mn = 0.14% and the balance Fe and unavoidable impurities was prepared.
Then, each slab was soaked for 60 minutes at two levels of temperature of 1100 ° C. and 1200 ° C., hot rolled in 11 passes to a thickness of 2.0 mm, water-cooled after about 2 seconds, cooled to 550 ° C. , and then 55
The temperature of 0 ° C was maintained for 1 hour.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0053[Correction target item name] 0053

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0053】一次再結晶粒の平均粒径を所定の範囲(1
8〜30μm)に制御した場合(No.3〜6)には、
制御しない場合(No.1〜2、No.7〜8)に比較
して、スラブ加熱条件による磁気特性(B8 )の差をさ
らに小さくすることが出来る。
The average grain size of the primary recrystallized grains is within a predetermined range (1
8 to 30 μm) (No. 3 to 6),
It is possible to further reduce the difference in magnetic characteristics (B 8 ) depending on the slab heating conditions, as compared with the case where no control is performed (No. 1 to 2, No. 7 to 8 ).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.025〜0.075%、 Si:2.5〜4.5%、 酸可溶性Al:0.010〜0.060%、 N:0.0030%未満、 S+0.405Se:0.014%以下、 Mn:0.05〜0.8% を含有し、残部がFe及び不可避的不純物からなるスラ
ブを1280℃未満の温度で加熱し、熱延し、次いで熱
延板焼鈍を施すことなく、圧下率60〜79%の冷延、
脱炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板を製
造する方法において、スラブの酸可溶性Al、Nの含有
量を重量%を単位としてAl(%)、N(%)とした
時、下記の式の範囲に制御し、 Al(%)−27/14N(%)>0.0100 熱延後、最終仕上焼鈍の二次再結晶開始までの間に鋼板
に窒化処理を施すことを特徴とする磁気特性の優れた一
方向性電磁鋼板の製造方法。
1. By weight%, C: 0.025 to 0.075%, Si: 2.5 to 4.5%, acid soluble Al: 0.010 to 0.060%, N: 0.0030% Less than S + 0.405Se: 0.014% or less, Mn: 0.05 to 0.8%, and the remaining part is a slab consisting of Fe and inevitable impurities, heated at a temperature of less than 1280 ° C., and hot rolled, Then, cold rolling with a rolling reduction of 60 to 79% without annealing the hot rolled sheet,
In the method for producing a grain-oriented electrical steel sheet by performing decarburization annealing and final finishing annealing, when the acid-soluble Al and N contents of the slab are Al (%) and N (%) in weight% units, Controlled within the range of the following formula, Al (%)-27 / 14N (%)> 0.0100 After hot rolling, the steel sheet is nitrided before the start of secondary recrystallization of final annealing. And a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.
【請求項2】 重量%で C:0.025〜0.075%、 Si:2.5〜4.5%、 酸可溶性Al:0.010〜0.060%、 N:0.0030%未満、 S+0.405Se:0.014%以下、 Mn:0.05〜0.8%、 Sn:0.01〜0.15% を含有し、残部がFe及び不可避的不純物からなるスラ
ブを1280℃未満の温度で加熱し、熱延し、次いで熱
延板焼鈍を施すことなく、圧下率60〜79%の冷延、
脱炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板を製
造する方法において、スラブの酸可溶性Al、Nの含有
量を重量%を単位としてAl(%)、N(%)とした
時、下記の式の範囲に制御し、 Al(%)−27/14N(%)>0.0100 熱延後、最終仕上焼鈍の二次再結晶開始までの間に鋼板
に窒化処理を施すことを特徴とする磁気特性の優れた一
方向性電磁鋼板の製造方法。
2. By weight%, C: 0.025 to 0.075%, Si: 2.5 to 4.5%, acid soluble Al: 0.010 to 0.060%, N: less than 0.0030%. S + 0.405Se: 0.014% or less, Mn: 0.05 to 0.8%, Sn: 0.01 to 0.15%, and a balance of Fe and unavoidable impurities in the balance is less than 1280 ° C. At the temperature of 60% to 79% without hot-rolled sheet annealing.
In the method for producing a grain-oriented electrical steel sheet by performing decarburization annealing and final finishing annealing, when the acid-soluble Al and N contents of the slab are Al (%) and N (%) in weight% units, Controlled within the range of the following formula, Al (%)-27 / 14N (%)> 0.0100 After hot rolling, the steel sheet is nitrided before the start of secondary recrystallization of final annealing. And a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.
【請求項3】 冷延のパス間の鋼板の温度を200℃以
下とすることを特徴とする請求項1又は2記載の磁気特
性の優れた一方向性電磁鋼板の製造方法。
3. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the temperature of the steel sheet between cold rolling passes is set to 200 ° C. or lower.
【請求項4】 脱炭焼鈍完了後、最終仕上焼鈍開始まで
の一次再結晶粒の平均粒径を18〜30μmとすること
を特徴とする請求項1、2又は3のいずれかに記載の磁
気特性の優れた一方向性電磁鋼板の製造方法。
4. The magnetic material according to claim 1, wherein the average grain size of the primary recrystallized grains after the completion of decarburization annealing and before the start of final finishing annealing is 18 to 30 μm. A method for producing a grain-oriented electrical steel sheet having excellent characteristics.
JP4035395A 1992-02-21 1992-02-21 Production of grain-oriented silicon steel sheet excellent in magnetic property Withdrawn JPH05230534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4035395A JPH05230534A (en) 1992-02-21 1992-02-21 Production of grain-oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4035395A JPH05230534A (en) 1992-02-21 1992-02-21 Production of grain-oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH05230534A true JPH05230534A (en) 1993-09-07

Family

ID=12440737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4035395A Withdrawn JPH05230534A (en) 1992-02-21 1992-02-21 Production of grain-oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH05230534A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
JP2009503265A (en) * 2005-08-03 2009-01-29 ティッセンクルップ スチール アクチェンゲゼルシャフト Method for producing directional electromagnetic steel strip
JP2009503264A (en) * 2005-08-03 2009-01-29 ティッセンクルップ スチール アクチェンゲゼルシャフト Method for producing directional electromagnetic steel strip
JP2013544320A (en) * 2010-11-10 2013-12-12 ポスコ Wire rods, steel wires having excellent magnetic properties, and methods for producing them

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
JP2009503265A (en) * 2005-08-03 2009-01-29 ティッセンクルップ スチール アクチェンゲゼルシャフト Method for producing directional electromagnetic steel strip
JP2009503264A (en) * 2005-08-03 2009-01-29 ティッセンクルップ スチール アクチェンゲゼルシャフト Method for producing directional electromagnetic steel strip
JP2013544320A (en) * 2010-11-10 2013-12-12 ポスコ Wire rods, steel wires having excellent magnetic properties, and methods for producing them
US9728332B2 (en) 2010-11-10 2017-08-08 Posco Wire rod and steel wire having superior magnetic characteristics, and method for manufacturing same

Similar Documents

Publication Publication Date Title
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2878501B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH06145802A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JPH04362133A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic property
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH09104922A (en) Production of grain-oriented silicon steel sheet extremely high in magnetic flux density
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH06145803A (en) Stable manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518