JPH07118746A - Stable production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Stable production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH07118746A
JPH07118746A JP5266574A JP26657493A JPH07118746A JP H07118746 A JPH07118746 A JP H07118746A JP 5266574 A JP5266574 A JP 5266574A JP 26657493 A JP26657493 A JP 26657493A JP H07118746 A JPH07118746 A JP H07118746A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
hot
aln
rolled sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5266574A
Other languages
Japanese (ja)
Inventor
Yasunari Yoshitomi
康成 吉冨
Maremizu Ishibashi
希瑞 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5266574A priority Critical patent/JPH07118746A/en
Publication of JPH07118746A publication Critical patent/JPH07118746A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To stably obtain good magnetic properties even if hot rolled sheet annealing is obviated by controlling decarburizing annealing conditions based on the amt. of AlN to be precipitated in a hot rolled steel sheet in which C, Si, Al, N, S or the like are specified, controlling the average grain size of primarily recrystallized grains and executing nitriding treatment. CONSTITUTION:A steel having a compsm. contg. by weight, <=0.075% C, 2.2 to 4.5% Si, 0.01 to 0.06% acid soluble Al, <=0.013% N, S+0.405 Se; <=0.014% or the like is melted. This slab is heated to <1280 deg.C, is subjected to final forced draft cold rolling at >=80% draft and is annealed. At this time, decarburizing annealing conditions are feed-forward-controlled, based on the analysls value of the N content as AlN in the hot rolled sheet. After the completion of the decarburizing annealing, the average grain size of primarily recrystallized grains till the start of the final finish annealing is regulated to 18 to 35mum. Then, nitriding treatment is executed till the start of secondary recrystallization in the final finish annealing after the hot rolling to allow >=0.001% nitrogen to absorb into the steel sheet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表わす数値としては、通常磁場の強さ8
00A/m における磁束密度B8が使用される。また、鉄
損特性を表わす数値としては、周波数50Hzで1.7テ
スラー(T)まで磁化した時の1kg当りの鉄損W17/50
を使用している。磁束密度は、鉄損特性の最大支配因子
であり、一般的にいって磁束密度が高いほど鉄損特性が
良好になる。なお、一般的に磁束密度を高くすると二次
再結晶粒が大きくなり、鉄損特性が不良となる場合があ
る。これに対しては、磁区制御により、二次再結晶粒の
粒径に拘らず、鉄損特性の改善をすることができる。
2. Description of the Related Art Unidirectional magnetic steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. As a numerical value showing the excitation characteristic, the strength of a normal magnetic field is 8
A magnetic flux density B 8 at 00 A / m is used. In addition, as a numerical value showing the iron loss characteristic, the iron loss per kg when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz is W 17/50.
Are using. The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics. On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持ったいわゆるゴス組織を発達さ
せることにより製造されている。良好な磁気特性を得る
ためには、磁化容易軸である〈001〉を圧延方向に高
度に揃えることが必要である。このような高磁束密度一
方向性電磁鋼板の製造技術として代表的なものに特公昭
40−15644号公報及び特公昭51−134698
号公報記載の方法がある。前者においては主なインヒビ
ターとしてMnS及びAlNを、後者ではMnS,Mn
Se,Sb等を用いている。従って現在の技術において
はこれらのインヒビターとして機能する析出物の大き
さ、形態及び分散状態を適正に制御することが不可欠で
ある。
This unidirectional electrical steel sheet is manufactured by causing secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} axis on the steel sheet surface and <001> axis in the rolling direction. Has been done. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy magnetization axis, in the rolling direction. Typical manufacturing techniques for such a high magnetic flux density unidirectional magnetic steel sheet are Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-134698.
There is a method described in Japanese Patent Publication. In the former, MnS and AlN are the main inhibitors, and in the latter, MnS and Mn.
Se, Sb, etc. are used. Therefore, in the current technology, it is essential to appropriately control the size, morphology and dispersion state of the precipitates that function as these inhibitors.

【0004】MnSに関して言えば、現在の工程では熱
延前のスラブ加熱時にMnSを一旦完全固溶させた後、
熱延時に析出する方法がとられている。二次再結晶に必
要な量のMnSを完全固溶するためには1400℃程度
の温度が必要である。これは普通鋼のスラブ加熱温度に
比べて200℃以上も高く、この高温スラブ加熱処理に
は次に述べるような不利な点がある。1)方向性電磁鋼
専用の高温スラブ加熱炉が必要。2)加熱炉のエネルギ
ー原単位が高い。3)溶融スケール量が増大し、いわゆ
るノロかき出し等に見られるように操業上の悪影響が大
きい。
As for MnS, in the present process, after MnS is completely dissolved at the time of heating the slab before hot rolling,
The method of precipitation during hot rolling is adopted. A temperature of about 1400 ° C. is necessary to completely form a solid solution of the required amount of MnS for secondary recrystallization. This is higher than the slab heating temperature of ordinary steel by 200 ° C. or more, and this high temperature slab heating treatment has the following disadvantages. 1) A high temperature slab heating furnace exclusively for grain oriented electrical steel is required. 2) The energy intensity of the heating furnace is high. 3) The amount of molten scale increases, and the adverse effect on operation is large, as seen in so-called shaving.

【0005】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並に下げればよいわけであるが、こ
のことは同時にインヒビターとして有効なMnSの量を
少なくするかあるいは全く用いないことを意味し、必然
的に二次再結晶の不安定化をもたらす。このため低温ス
ラブ加熱化を実現するためには何らかの形でMnS以外
の析出物等によりインヒビターを強化し、仕上焼鈍時の
正常粒成長の抑制を充分にする必要がある。
In order to avoid such a problem, the slab heating temperature should be lowered to the level of ordinary steel, but at the same time, the amount of MnS effective as an inhibitor should be reduced or not used at all. Means that the destabilization of the secondary recrystallization is inevitably brought about. Therefore, in order to realize low-temperature slab heating, it is necessary to strengthen the inhibitor in some form with precipitates other than MnS to sufficiently suppress normal grain growth during finish annealing.

【0006】このようなインヒビターとしては硫化物の
他、窒化物、酸化物及び粒界析出元素等が考えられ、公
知の技術として、例えば次のようなものがあげられる。
特公昭54−24685号公報ではAs,Bi,Sn,
Sb等の粒界偏析元素を鋼中に含有することにより、ス
ラブ加熱温度を1050〜1350℃の範囲にする方法
が開示され、特開昭52−24116号公報ではAlの
他、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の
窒化物生成元素を含有することによりスラブ加熱温度を
1100〜1260℃の範囲にする方法を開示してい
る。また、特開昭57−158322号公報ではMn含
有量を下げ、Mn/Sの比率を2.5以下にすることに
より低温スラブ加熱化を行い、さらにCuの添加により
二次再結晶を安定化する技術を開示している。
As such inhibitors, in addition to sulfides, nitrides, oxides, grain boundary precipitation elements and the like are considered, and known techniques include, for example, the following.
In Japanese Examined Patent Publication No. 54-24685, As, Bi, Sn,
A method of controlling the slab heating temperature in the range of 1050 to 1350 ° C. by containing grain boundary segregation elements such as Sb in steel is disclosed. JP-A-52-24116 discloses Al, Zr, Ti, It discloses a method for controlling the slab heating temperature in the range of 1100 to 1260 ° C. by containing a nitride forming element such as B, Nb, Ta, V, Cr and Mo. Further, in JP-A-57-158322, low-temperature slab heating is performed by lowering the Mn content and setting the Mn / S ratio to 2.5 or less, and further adding Cu to stabilize secondary recrystallization. The technology to do is disclosed.

【0007】これらインヒビターの補強と組み合わせて
金属組織の側から改良を加えた技術も開示された。すな
わち特開昭57−89433号公報ではMnに加えS,
Se,Sb,Bi,Pb,Sn,B等の元素を加え、こ
れにスラブの柱状晶率と二次冷延圧下率を組み合わせる
ことにより1100〜1250℃の低温スラブ加熱化を
実現している。さらに特開昭59−190324号公報
ではSあるいはSeに加え、Al及びBと窒素を主体と
してインヒビターを構成し、これに冷延後の一次再結晶
焼鈍時にパルス焼鈍を施すことにより二次再結晶を安定
化する技術を公開している。
Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S, in addition to Mn,
Elements such as Se, Sb, Bi, Pb, Sn, and B are added, and the columnar crystal ratio of the slab and the secondary cold rolling reduction are combined to realize low-temperature slab heating at 1100 to 1250 ° C. Further, in JP-A-59-190324, an inhibitor is composed mainly of Al and B and nitrogen in addition to S or Se, and secondary annealing is performed by performing pulse annealing at the time of primary recrystallization annealing after cold rolling. The technology to stabilize is released.

【0008】このように方向性電磁鋼板製造における低
温スラブ加熱化実現のためには、これまでに多大な努力
が続けられてきている。さらに、特開昭59−5652
2号公報においてはMnを0.08〜0.45%、Sを
0.007%以下にすることにより低温スラブ加熱化を
可能にする技術が開示された。この方法により高温スラ
ブ加熱時のスラブ結晶粒粗大化に起因する製品の線状二
次再結晶不良発生の問題が解消された。
As described above, in order to realize low temperature slab heating in the production of grain-oriented electrical steel sheets, great efforts have been made so far. Furthermore, JP-A-59-5652
Japanese Patent Publication No. 2 discloses a technique that enables low temperature slab heating by setting Mn to 0.08 to 0.45% and S to 0.007% or less. By this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.

【0009】[0009]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としているもの
の、当然のことながら良好な磁気特性を安定して得る技
術でなければ、工業化できない。本発明者らは、低温ス
ラブ加熱の工業化のため、最終仕上焼鈍前の一次再結
晶の平均粒径制御と、熱延後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施すことを柱とす
る技術を構築してきた。この窒化処理により形成される
窒化物は、二次再結晶開始時点では、主にAlNになっ
ている。高温で変化しにくいインヒビターとして、Al
Nを選択しているわけであり、その意味において、スラ
ブ中にAlが含有されることは必須条件となる。
Although the method using low temperature slab heating is originally intended to reduce the manufacturing cost, it cannot be industrialized unless it is a technique that can stably obtain good magnetic characteristics. The present inventors, for industrialization of low-temperature slab heating, control the average grain size of primary recrystallization before final finishing annealing, and after hot rolling, nitriding the steel sheet between the start of secondary recrystallization of final finishing annealing. We have built a technology that is based on The nitride formed by this nitriding treatment is mainly AlN at the start of secondary recrystallization. As an inhibitor that does not easily change at high temperatures, Al
N is selected, and in that sense, the inclusion of Al in the slab is an essential condition.

【0010】他方、スラブ中にNが必要以上に含有され
ることは、本技術体系からして、再考の余地があった。
つまり、スラブ中に必須のAlと、ある程度以上のN量
があれば、スラブ加熱から脱炭焼鈍までの工程で、Al
Nが形成され、脱炭焼鈍時の一次再結晶粒の粒成長に影
響を与えることとなる。本発明の目的は、この上工程で
のAlNの析出制御をベースとし、低温スラブ加熱で、
かつ、熱延板焼鈍を省略してもなお磁性変動のない優れ
た特性を有する一方向性電磁鋼板の製造方法を提供する
ことにある。
On the other hand, from the present technical system, it was necessary to reconsider that N was contained in the slab more than necessary.
In other words, if there is an indispensable Al in the slab and a certain amount of N or more, in the process from slab heating to decarburization annealing, Al
N is formed, which affects the grain growth of primary recrystallized grains during decarburization annealing. The object of the present invention is based on the control of precipitation of AlN in the above process, and by low temperature slab heating,
Another object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet having excellent properties without magnetic fluctuation even if hot-rolled sheet annealing is omitted.

【0011】[0011]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。 (1)重量比でC:0.075%以下、Si:2.2〜
4.5%、酸可溶性Al:0.010〜0.060%、
N:0.0130%以下、S+0.405Se:0.0
14%以下、Mn:0.05〜0.8%を含有し、残部
がFe及び不可避的不純物からなるスラブを1280℃
未満の温度で加熱し、熱延を行い、引き続き、必要に応
じて、熱延板焼鈍を施し、圧下率80%以上の最終強圧
下冷延を行い、次いで、脱炭焼鈍、最終仕上焼鈍を施し
て一方向性電磁鋼板を製造する方法において、熱延板又
は熱延板焼鈍後の鋼板でのAlNとしてのN量(重量
比)をN as AlNとした時N* =N−N as AlNの
分析値を基に脱炭焼鈍の熱サイクルを決定し、脱炭焼鈍
完了後、最終仕上焼鈍開始までの一次再結晶粒の平均粒
径を18〜35μmとし、熱延後最終仕上焼鈍の二次再
結晶開始までの間に鋼板に0.0010重量%以上の窒
素吸収を行わせる窒化処理を施すことを特徴とする磁気
特性の優れた一方向性電磁鋼板の安定製造方法。 (2)前項において、スラブの成分としてさらにSn:
0.01〜0.15%を含有せしめることを特徴とする
磁気特性の優れた一方向性電磁鋼板の安定製造方法。
The gist of the present invention is as follows. (1) C: 0.075% or less by weight ratio, Si: 2.2
4.5%, acid-soluble Al: 0.010 to 0.060%,
N: 0.0130% or less, S + 0.405Se: 0.0
A slab containing 14% or less, Mn: 0.05 to 0.8%, and the balance Fe and unavoidable impurities at 1280 ° C.
Heating at a temperature of less than, followed by hot rolling, followed by hot-rolled sheet annealing, if necessary, final strong cold rolling with a reduction rate of 80% or more, followed by decarburization annealing and final finish annealing. In the method of producing a unidirectional electrical steel sheet by applying the method, when the N content (weight ratio) as AlN in the hot rolled sheet or the steel sheet after hot rolled sheet annealing is N as AlN, N * = N−N as AlN The thermal cycle of decarburization annealing is determined based on the analysis value of, and after the completion of decarburization annealing, the average grain size of primary recrystallized grains until the start of final finishing annealing is set to 18 to 35 μm, and the final finishing annealing after hot rolling is performed. A method for stable production of a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises subjecting a steel sheet to a nitriding treatment for absorbing 0.0010% by weight or more of nitrogen before starting the next recrystallization. (2) In the above item, Sn:
A stable manufacturing method of a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by containing 0.01 to 0.15%.

【0012】[0012]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程をはさ
んでスラブとし、引き続き熱間圧延して熱延板とし、必
要に応じて、熱延板を焼鈍し、次いで圧下率が80%以
上となる最終冷延を施し、次いで、脱炭焼鈍、最終仕上
焼鈍を順次行うことによって製造される。本発明者ら
は、熱延板焼鈍を省略した1回冷延法で低温スラブ加熱
材を製造する場合の磁性の変動の原因とその解決策につ
いて詳細に検討した。そして、その結果、熱延板でのA
lNとしてのN量(N as AlN)の分析値を基に、そ
の後のプロセス工程である脱炭焼鈍条件を制御すること
によって、その磁性変動を激減できることをつきとめ
た。
The unidirectional electrical steel sheet targeted by the present invention is
Molten steel obtained by the conventional steelmaking method is cast by a continuous casting method or an ingot casting method, and if necessary, a slab is formed by interposing the agglomeration process, and subsequently hot rolled into a hot rolled sheet. According to the above, the hot-rolled sheet is annealed, then subjected to final cold rolling with a reduction rate of 80% or more, and then sequentially subjected to decarburization annealing and final finishing annealing. The present inventors have studied in detail the cause of magnetic fluctuation and its solution when a low temperature slab heating material is manufactured by a single cold rolling method in which hot rolled sheet annealing is omitted. And as a result, A in hot rolled sheet
Based on the analysis value of the amount of N as 1N (N as AlN), it was found that the magnetic fluctuation can be drastically reduced by controlling the decarburization annealing condition which is the subsequent process step.

【0013】先ず、実験結果を基に、本発明の効果を説
明する。図1に、熱延板でのN−N as AlN量及び脱
炭焼鈍温度と製品の磁束密度の関係を示す。この場合、
重量比でC:0.028%、Si:2.9%、酸可溶性
Al:0.039%、N:0.0070%、Mn:0.1
2%、S:0.006%なる成分を含有し、残部Fe及
び不可避的不純物からなる250mm厚のスラブを108
0〜1210℃の温度に約120分保持した後、7パス
で粗圧延を行い、40mm厚とし、次いで、6パスで仕上
熱延を行い、2.3mm厚とした。この時、粗圧延時に水
冷を行ったり、粗熱延と仕上熱延間の時間を意図的に変
更したり、熱延終了から水冷開始までの時間を種々変更
した。
First, the effect of the present invention will be described based on experimental results. FIG. 1 shows the relationship between the N—N as AlN amount and the decarburization annealing temperature in the hot rolled sheet and the magnetic flux density of the product. in this case,
By weight, C: 0.028%, Si: 2.9%, acid-soluble Al: 0.039%, N: 0.0070%, Mn: 0.1.
A slab with a thickness of 250 mm containing 2% and S: 0.006% and the balance Fe and unavoidable impurities is used.
After holding at a temperature of 0 to 1210 ° C. for about 120 minutes, rough rolling was performed in 7 passes to a thickness of 40 mm, and finish hot rolling was performed in 6 passes to a thickness of 2.3 mm. At this time, water cooling was performed during rough rolling, the time between rough hot rolling and finish hot rolling was intentionally changed, and the time from the end of hot rolling to the start of water cooling was variously changed.

【0014】かかる熱延板に熱延板焼鈍を施すことなく
約85%の圧下率の強圧下圧延を行って最終板厚0.3
35mmの冷延板とし、810,820,830,84
0,850,860℃の各温度に150秒保持する6種
類の脱炭焼鈍を施し、次いで750℃に30秒保持する
焼鈍時、焼鈍雰囲気中にNH3 ガスを混入させ、鋼板に
窒素吸収を生ぜしめた。
The hot-rolled sheet was subjected to strong reduction rolling with a reduction rate of about 85% without annealing the hot-rolled sheet to obtain a final sheet thickness of 0.3.
35mm cold rolled sheet, 810, 820, 830, 84
Six types of decarburization annealing are carried out at temperatures of 0,850 and 860 ° C for 150 seconds respectively, and then at the time of annealing at 750 ° C for 30 seconds, NH 3 gas is mixed into the annealing atmosphere to absorb nitrogen into the steel sheet. It was born.

【0015】この窒化処理後のN量は、0.0211〜
0.0248重量%であり、一次再結晶粒の平均粒径
(円相当直径の平均値)は、21〜27μmであった。
かかる窒化処理後の鋼板にMgOを主成分とする焼鈍分
離剤を塗布し、最終仕上焼鈍を施した。また、本実験に
おける熱延板において、AlNとして存在するNの量
(=N as AlN)(重量比)を化学分析で求め、N−
N as AlNを計算して製品の磁束密度との関係を求め
た。
The amount of N after this nitriding treatment is 0.0211-
It was 0.0248% by weight, and the average particle size (average value of equivalent circle diameters) of primary recrystallized grains was 21 to 27 μm.
An annealing separator having MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed. In the hot rolled sheet in this experiment, the amount of N existing as AlN (= N as AlN) (weight ratio) was determined by chemical analysis, and N-
N as AlN was calculated to find the relationship with the magnetic flux density of the product.

【0016】図1から明らかなように、熱延板のN−N
as AlN量によって磁束密度が最大となる脱炭焼鈍温
度が異っていた。図1に示した熱延板でのN−N as A
lN量によって適正な脱炭焼鈍温度が異る機構につい
て、必ずしも明らかではないが、本発明者らは、以下の
ように推定している。
As is apparent from FIG. 1, the hot rolled sheet N--N
The decarburization annealing temperature at which the magnetic flux density was maximum was different depending on the amount of as AlN. N-N as A in the hot rolled sheet shown in FIG.
The mechanism by which the appropriate decarburization annealing temperature differs depending on the amount of 1N is not necessarily clear, but the present inventors presume as follows.

【0017】本発明は、本発明者らが特開平2−182
866号公報で開示した脱炭焼鈍後の結晶組織を適切な
ものにすることを基本とする技術体系に属する。一方、
本発明の如き低温スラブ加熱の場合、スラブ加熱時のA
lNの完全溶体化は保障されていない。なお、脱炭焼鈍
時のAlNの析出状態は、一次再結晶粒の粒成長挙動に
影響を与える。特開平2−182866号公報で開示し
た如く、脱炭焼鈍後の結晶組織を制御すれば、良好な磁
気特性が得られるわけであるが、脱炭焼鈍時のAlNの
析出状態に応じて、最適な脱炭焼鈍条件(温度、時間)
が異ってくると考えられる。
The present invention has been proposed by the present inventors in JP-A-2-182.
It belongs to a technical system disclosed in Japanese Patent No. 866, which is basically based on making the crystal structure after decarburization annealing appropriate. on the other hand,
In the case of low temperature slab heating as in the present invention, A during slab heating
Complete solution of 1N is not guaranteed. The AlN precipitation state during decarburization annealing affects the grain growth behavior of the primary recrystallized grains. As disclosed in Japanese Patent Application Laid-Open No. 2-182866, if the crystal structure after decarburization annealing is controlled, good magnetic properties can be obtained, but it is optimum depending on the AlN precipitation state during decarburization annealing. Decarburization annealing conditions (temperature, time)
Are considered to be different.

【0018】熱延時に、AlNの析出状態を完全に制御
できれば、脱炭焼鈍条件も一定化できるわけであるが、
5〜20トン程度のスラブから出発し、スラブ加熱し、
熱延を行う場合、熱延板でAlN析出状態を一定とする
ことは容易でない。図1に示した実験の熱延板のN−N
as AlN及び脱炭焼鈍温度と磁気特性の関係は、熱延
板でのAlNの析出状態に応じて、脱炭焼鈍で適切な結
晶組織を得るための脱炭焼鈍の適正温度が存在すること
を示しているものと考えられる。
If the AlN precipitation state can be completely controlled during hot rolling, the decarburizing and annealing conditions can be made constant.
Starting from a slab of about 5 to 20 tons, heating the slab,
When performing hot rolling, it is not easy to make the AlN precipitation state constant in the hot rolled sheet. N-N of the hot rolled sheet of the experiment shown in FIG.
The relationship between as AlN and decarburization annealing temperature and magnetic properties is that there is an appropriate temperature for decarburization annealing to obtain an appropriate crystal structure in decarburization annealing depending on the precipitation state of AlN in the hot rolled sheet. It is considered to indicate.

【0019】また、このことは、熱延板のN−N as A
lN量で、脱炭焼鈍での適正条件を予測できることを示
している。析出物による粒成長抑制効果(Zener因
子)は、析出物のサイズに逆比例し、その体積分率に比
例する。熱延板では、Nは窒化物としてほぼ100%析
出しているので、N−N as AlNの量は、主に熱延後
の巻取り後に析出するSi3 4 ,F816 4 等の析出
量を示していると解される。
This also means that N-N as A of hot rolled sheet
It is shown that the proper condition in decarburization annealing can be predicted by the amount of 1N. The grain growth suppression effect (Zener factor) by the precipitate is inversely proportional to the size of the precipitate and proportional to its volume fraction. Since almost 100% of N is precipitated as a nitride in the hot-rolled sheet, the amount of N-N as AlN is mainly the amount of Si 3 N 4 , F 816 N 4 or the like that is precipitated after winding after hot rolling. It is understood that it indicates the amount of precipitation.

【0020】これらの不安定窒化物は、脱炭焼鈍時分解
し、AlNとして再析出すると考えられる。このAlN
は、冷延によって増加した転位を析出核とし、脱炭焼鈍
の昇温中に、微細析出する傾向があるため、熱延板での
N−N as AlNの量は、脱炭焼鈍時の微細AlN量を
間接的に表していると解される。
It is considered that these unstable nitrides decompose during decarburization annealing and reprecipitate as AlN. This AlN
Has a tendency to precipitate finely during the temperature rise of decarburization annealing, with dislocations increased by cold rolling as precipitation nuclei. Therefore, the amount of N-N as AlN in the hot rolled sheet is It is understood that it indirectly represents the amount of AlN.

【0021】この微細AlN量が多いと適切な一次再結
晶組織を得るための脱炭焼鈍温度を高める必要があり逆
に、この微細AlN量が少ないと適切な一次再結晶組織
を得るための脱炭焼鈍温度を低める必要がある。このよ
うに、熱延板でのN−N asAlN量は、中間製品で材
質を予測制御する上で、重要なパラメーターとなり得る
と推定される。
When the amount of this fine AlN is large, it is necessary to raise the decarburization annealing temperature for obtaining an appropriate primary recrystallization structure. On the contrary, when the amount of this fine AlN is small, the decarburization for obtaining an appropriate primary recrystallization structure is required. It is necessary to lower the charcoal annealing temperature. Thus, it is estimated that the amount of N—N as AlN in the hot rolled sheet can be an important parameter in predicting and controlling the material quality of the intermediate product.

【0022】次に本発明の構成要件の限定理由について
述べる。先ず、スラブの成分と、スラブ加熱温度に関し
て限定理由を詳細に説明する。Cは、多くなりすぎると
脱炭焼鈍時間が長くなり経済的でないので0.075重
量%(以下単に%と略述)以下とした。なお磁気特性の
面で特に好ましい範囲は、0.020〜0.070%で
ある。Siは4.5%を超えると冷延時の割れが著しく
なるので4.5%以下とした。また、2.2%未満では
素材の固有抵抗が低すぎ、トランス鉄心材料として必要
な低鉄損が得られないので2.2%以上とした。
Next, the reasons for limiting the constituent features of the present invention will be described. First, the reasons for limiting the components of the slab and the slab heating temperature will be described in detail. If C is too large, the decarburization annealing time becomes long and it is not economical, so it was made 0.075% by weight (hereinafter simply referred to as%) or less. In terms of magnetic properties, a particularly preferable range is 0.020 to 0.070%. When Si exceeds 4.5%, cracking during cold rolling becomes significant, so the content of Si is set to 4.5% or less. On the other hand, if it is less than 2.2%, the specific resistance of the material is too low, and the low iron loss required for the transformer core material cannot be obtained.

【0023】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)Nを確保するため、酸可溶性A
lとして0.010%以上が必要である。酸可溶性Al
が0.060%を超えると熱延板のAlNが不適切とな
り二次再結晶が不安定になるので0.060%以下とし
た。Nについては、0.0130%を超えるとブリスタ
ーと呼ばれる鋼板表面の膨れが発生するので0.013
0%以下とした。MnS,MnSeが鋼中に存在して
も、製造工程の条件を適正に選ぶことによって磁気特性
を良好にすることが可能である。しかしながらSやSe
が高いと線状細粒と呼ばれる二次再結晶不良部が発生す
る傾向があり、この二次再結晶不良部の発生を予防する
ためには(S+0.405Se)≦0.014%とすべ
きである。
Al is AlN necessary for stabilizing the secondary recrystallization.
Alternatively, in order to secure (Al, Si) N, acid-soluble A
0.01% or more is required as l. Acid soluble Al
Is more than 0.060%, the AlN of the hot-rolled sheet becomes unsuitable and the secondary recrystallization becomes unstable, so the content was made 0.060% or less. Regarding N, if it exceeds 0.0130%, swelling of the steel plate surface called a blister occurs, so 0.013
It was set to 0% or less. Even if MnS and MnSe are present in the steel, it is possible to improve the magnetic properties by properly selecting the conditions of the manufacturing process. However, S and Se
If the value is high, secondary recrystallization defects called linear fine grains tend to occur. To prevent the generation of secondary recrystallization defects, (S + 0.405Se) ≦ 0.014% should be satisfied. Is.

【0024】SあるいはSeが上記値を超える場合に
は、製造条件をいかに変更しても二次再結晶不良部が発
生する確率は高くなり好ましくない。また最終仕上焼鈍
で純化するのに要する時間が長くなりすぎて好ましくな
く、このような観点からSあるいはSeを不必要に増す
ことは意味がない。Mnの下限値は0.05%である。
0.05%未満では、熱間圧延によって得られる熱延板
の形状(平坦さ)、つまりストリップの側縁部が波形状
となり製品歩留りを低下させる問題が発生する。一方、
Mn量が0.8%を超えると製品の磁束密度を低下さ
せ、好ましくないので、Mn量の上限を0.8%とし
た。
If S or Se exceeds the above value, the probability of occurrence of a secondary recrystallization defective portion becomes high no matter how the manufacturing conditions are changed, which is not preferable. In addition, the time required for purification in the final finish annealing is too long, which is not preferable, and it is meaningless to increase S or Se unnecessarily from this viewpoint. The lower limit of Mn is 0.05%.
If it is less than 0.05%, the shape (flatness) of the hot-rolled sheet obtained by hot rolling, that is, the side edge portion of the strip becomes wavy, which causes a problem of lowering the product yield. on the other hand,
If the Mn content exceeds 0.8%, the magnetic flux density of the product is lowered, which is not preferable, so the upper limit of the Mn content was set to 0.8%.

【0025】Snは、粒界偏析元素として知られてお
り、粒成長を抑制する元素である。一方スラブ加熱時S
nは完全固溶しており、通常考えられる数10℃の温度
差を有する加熱時のスラブ内でも、一様に固溶している
と考えられる。従って、温度差があるにもかかわらず加
熱時のスラブ内で均一に分布しているSnは、脱炭焼鈍
時の粒成長抑制効果についても、場所的に均一に作用す
ると考えられる。このため、AlNの場所的不均一に起
因する脱炭焼鈍時の粒成長の場所的不均一を、Snは希
釈する効果があるものと考えられる。従って、Snを添
加することはさらに製品の磁気特性の変動を低減させる
のに有効である。このSnの適正範囲を0.01〜0.
15%とした。この下限値未満では、粒成長抑制効果が
少なすぎて好ましくない。一方、この上限値を超えると
鋼板の窒化が難しくなり、二次再結晶不良の原因となる
ため好ましくない。
Sn is known as a grain boundary segregation element and is an element that suppresses grain growth. On the other hand, when heating the slab S
It is considered that n is completely in solid solution, and is uniformly dissolved even in the slab at the time of heating having a temperature difference of several tens of degrees C which is usually considered. Therefore, it is considered that Sn, which is uniformly distributed in the slab during heating despite the temperature difference, also acts locally in terms of the grain growth suppressing effect during decarburization annealing. Therefore, it is considered that Sn has the effect of diluting the nonuniformity of grain growth during decarburization annealing due to the nonuniformity of AlN. Therefore, the addition of Sn is effective in further reducing the fluctuation of the magnetic properties of the product. The appropriate range of Sn is 0.01 to 0.
It was set to 15%. Below this lower limit, the grain growth suppressing effect is too small, which is not preferable. On the other hand, if the upper limit is exceeded, nitriding of the steel sheet becomes difficult, which causes secondary recrystallization failure, which is not preferable.

【0026】この他インヒビター構成元素として知られ
ているSb,Cu,Cr,Ni,B,Ti,Nb等を微
量に含有することはさしつかえない。特に、B,Ti,
Nb等窒化物構成元素は、スラブ加熱時の鋼中の固溶N
量を低減するために積極的に添加してもかまわない。こ
れらのAlよりNとの親和力の高い元素がある場合に
は、後述する熱延板でのN−N as AlNの量を計算す
る際に、全N量から含有するB,Ti,Nbのために形
成される窒化物のN量を差し引きすることは、本発明に
おける制御効果の精度を高める上で好ましい。
In addition, it is possible to contain a small amount of Sb, Cu, Cr, Ni, B, Ti, Nb, etc., which are known as inhibitor constituent elements. In particular, B, Ti,
Nb and other nitride constituent elements are solid solution N in steel during slab heating.
It may be added positively to reduce the amount. When there are elements having a higher affinity for N than Al, B, Ti, and Nb contained from the total N amount when calculating the amount of N—N as AlN in the hot rolled sheet described later It is preferable to subtract the N amount of the nitride formed in order to improve the accuracy of the control effect in the present invention.

【0027】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。加熱されたスラ
ブは、引き続き熱延されて熱延板となる。熱延工程は、
通常100〜400mm厚のスラブを加熱した後、いずれ
も複数回のパスで行う粗熱延と仕上熱延よりなる。粗熱
延の方法については、特に限定するものではないが、パ
ス間時間を長くすると、AlN析出量が増す方向がある
し、スラブ加熱温度を高めにしたり、パス間で保温カバ
ーを鋼板にかぶせたりすると、AlN析出量が減少する
傾向がある。
The slab heating temperature was limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower. The heated slab is subsequently hot rolled to form a hot rolled plate. The hot rolling process is
Usually, after heating a slab having a thickness of 100 to 400 mm, both are rough hot rolling and finish hot rolling which are carried out by a plurality of passes. The method of rough hot rolling is not particularly limited, but if the time between passes is increased, the amount of AlN precipitation may increase, and the slab heating temperature may be increased or a heat insulating cover may be placed on the steel sheet between passes. If so, the amount of AlN precipitation tends to decrease.

【0028】粗熱延後仕上熱延までの時間については、
特に限定するものではないが、パス間時間が長いと、A
lNの析出量が増加する傾向があり、保熱カバーを鋼板
にかぶせ温度低下を少くするとAlNの析出が抑制され
る。引き続く仕上熱延は、通常4〜10パスの高速連続
圧延で行われる。通常仕上熱延の圧下配分は、前段が圧
下率が高く後段に行く程圧下率を下げて形状を良好なも
のとしている。
Regarding the time from rough hot rolling to finish hot rolling,
Although not particularly limited, if the time between passes is long, A
The precipitation amount of 1N tends to increase, and the precipitation of AlN is suppressed by covering the steel plate with the heat insulating cover to reduce the temperature decrease. Subsequent hot rolling for finishing is usually performed by high-speed continuous rolling for 4 to 10 passes. In the rolling distribution of the normal finish hot rolling, the rolling ratio is high in the front stage and is lowered toward the rear stage, and the shape is improved.

【0029】圧延速度は、通常100〜3000m/min
となっており、パス間の時間は、0.01〜100秒と
なっている。この仕上熱延をAlNの析出温度域(80
0〜1000℃)で行うことは、AlNの析出量を増加
させる方向にある。熱延の最終パス後、鋼板は通常0.
1〜100秒程度空冷された後水冷され、300〜70
0℃の温度で巻取られ、徐冷される。この冷却プロセス
については特に限定されるものではないが、熱延後水冷
までの時間を延ばすと、AlNの析出量が増加する傾向
がある。
The rolling speed is usually 100 to 3000 m / min.
And the time between passes is 0.01 to 100 seconds. This finish hot rolling was applied to the precipitation temperature range of AlN (80
Performing at 0 to 1000 ° C. tends to increase the precipitation amount of AlN. After the final pass of hot rolling, the steel sheet is usually 0.
Air-cooled for about 1 to 100 seconds, then water-cooled, 300 to 70
It is wound at a temperature of 0 ° C. and gradually cooled. The cooling process is not particularly limited, but if the time from hot rolling to water cooling is extended, the precipitation amount of AlN tends to increase.

【0030】熱延板又は熱延板焼鈍後の鋼板でのN*
N−N as AlNの分析値を基に、脱炭焼鈍の熱サイク
ルを決定すると規定した。熱延板焼鈍を施さないプロセ
スを例に説明すると、図1に示した如く、熱延板でのN
* =N−N as AlNの分析値に応じて良好な磁気特性
を得る脱炭焼鈍熱サイクルが異なるからである。図1の
場合、脱炭焼鈍温度で制御しているが、脱炭焼鈍時間で
制御することもでき、また、温度と時間の両方を制御パ
ラメーターとして用いることも可能である。
N * = on hot-rolled sheet or sheet after hot-rolled sheet annealing
It was stipulated that the thermal cycle of decarburization annealing should be determined based on the analysis value of N-N as AlN. Explaining an example of a process in which hot-rolled sheet annealing is not performed, as shown in FIG.
This is because the decarburization annealing thermal cycle for obtaining good magnetic properties differs depending on the analysis value of * = N-N as AlN. In the case of FIG. 1, the decarburization annealing temperature is controlled, but the decarburization annealing time may be controlled, and both the temperature and the time may be used as control parameters.

【0031】工場で熱延を行う場合、スラブ加熱炉の温
度、粗熱延、仕上熱延時の冷却等ある程度の変動要因を
内在している。従って、熱延板でのN* =N−N as A
lNの分析値を測定し、この値が適正値より大きい場合
は、高温又は長時間等脱炭焼鈍時粒成長を容易ならしめ
る熱サイクルを用いればよく、逆に、熱延板でのN*
N−N as AlNの分析値が適正値よりも小さい場合に
は、低温又は短時間等脱炭焼鈍時粒成長しにくい熱サイ
クルを用いればよい。N* の適正値は、特に限定するも
のではなく、先行実験の結果を基に決定する方法等をと
ることができる。
When hot rolling is performed in a factory, there are some fluctuation factors such as the temperature of the slab heating furnace, rough hot rolling, and cooling during finish hot rolling. Therefore, N * = N-N as A in the hot rolled sheet
When the analysis value of 1N is measured, and if this value is larger than the appropriate value, a heat cycle that facilitates grain growth during high temperature or long time decarburization annealing may be used, and conversely, N * in the hot rolled sheet may be used . =
When the analysis value of N—N as AlN is smaller than the appropriate value, a thermal cycle in which grain growth is difficult during decarburization annealing such as low temperature or short time may be used. The appropriate value of N * is not particularly limited, and a method of determining based on the result of the preceding experiment can be used.

【0032】一方、熱延板焼鈍を施すプロセスの場合に
は、上記と同様に、熱延板でのN*=N−N as AlN
の分析値を基に、脱炭焼鈍の熱サイクルを決定すること
もできる。また、さらに制御精度を向上させるため、熱
延板焼鈍後の鋼板でのN* =N−N as AlNの分析値
を基に、脱炭焼鈍の熱サイクルを決定することもでき
る。結晶組織、変態相、AlN析出等の制御の目的で、
熱延板焼鈍を行う場合には、800〜1200℃で行わ
れる。熱延板焼鈍のサイクルについては、特に限定する
ものではないが、AlNの析出量を調整するため800
〜1000℃に比較的長時間保持することも好ましい。
On the other hand, in the case of the hot-rolled sheet annealing process, N * = N-N as AlN in the hot-rolled sheet is the same as above.
It is also possible to determine the thermal cycle of decarburization annealing based on the analysis value of. Further, in order to further improve the control accuracy, the thermal cycle of decarburization annealing can be determined based on the analysis value of N * = NN-AlN in the steel sheet after hot-rolled sheet annealing. For the purpose of controlling the crystal structure, transformation phase, AlN precipitation, etc.,
When performing hot-rolled sheet annealing, it is performed at 800 to 1200 ° C. The cycle of hot-rolled sheet annealing is not particularly limited, but is 800 to adjust the precipitation amount of AlN.
It is also preferable to hold at 1000 ° C. for a relatively long time.

【0033】この熱延板は次いで、必要に応じて、熱延
板焼鈍を施した後圧下率80%以上の最終冷延を行う。
最終冷延の圧下率を80%以上としたのは、圧下率を上
記範囲とすることによって、脱炭板において尖鋭な{1
10}〈001〉方位粒と、これに蚕食されやすい対応
方位粒({111}〈112〉方位粒等)を適正量得る
ことができ、磁束密度を高める上で好ましいためであ
る。かかる冷延後の鋼板は、熱延板又は熱延板焼鈍後の
鋼板のN* =N−N as AlN量に応じて、脱炭焼鈍を
制御し、次いで焼鈍分離剤塗布、最終仕上焼鈍を施され
て最終製品となる。ここで脱炭焼鈍完了後、最終仕上焼
鈍開始までの間の一次再結晶粒の平均粒径を18〜35
μmに制御することは必要である。その理由はこの平均
粒径の範囲で良好な磁束密度が得られやすく、かつ粒径
変動に対する磁束密度の変化が少ないからである。
This hot-rolled sheet is then annealed, if necessary, and then finally cold-rolled at a rolling reduction of 80% or more.
The reduction ratio of the final cold rolling is set to 80% or more because the reduction ratio is set within the above range so that the decarburizing plate has a sharp {1
This is because it is possible to obtain an appropriate amount of 10} <001> oriented grains and the corresponding oriented grains ({111} <112> oriented grains and the like) that are easily eroded by silkworms, which is preferable in increasing the magnetic flux density. The cold rolled steel sheet is subjected to decarburization annealing according to the amount of N * = N-N as AlN of the hot rolled sheet or the steel sheet after the hot rolled sheet annealing, and then subjected to the annealing separator application and final finishing annealing. It is applied to make the final product. Here, after the decarburization annealing is completed, the average grain size of the primary recrystallized grains until the start of the final finish annealing is 18 to 35.
It is necessary to control to μm. The reason is that it is easy to obtain a good magnetic flux density in this range of the average particle size, and the change of the magnetic flux density due to the particle size variation is small.

【0034】そして、熱延後最終仕上焼鈍の二次再結晶
開始までの間に鋼板に窒化処理を施すと規定したのは、
本発明の如き低温スラブ加熱を前提とするプロセスで
は、二次再結晶に必要なインヒビター強度が不足がちに
なるからである。窒化の方法としては特に限定するもの
ではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3 ガス
を混入させ窒化する方法、プラズマを用いる方法、焼鈍
分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒化
物が分離してできた窒素を鋼板に吸収させる方法、最終
仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化す
る方法等いずれの方法でもよい。窒化量については二次
再結晶を安定して発現させるために10ppm 以上は必要
である。
Then, it is defined that the steel sheet is subjected to the nitriding treatment before the secondary recrystallization of the final finish annealing after the hot rolling.
This is because the inhibitor strength required for secondary recrystallization tends to be insufficient in the process that is premised on low temperature slab heating as in the present invention. The nitriding method is not particularly limited, and a method of mixing NH 3 gas in an annealing atmosphere after decarburization annealing to perform nitriding, a method of using plasma, adding a nitride to an annealing separator and adding a nitride to the final finishing annealing is performed. Any method such as a method of absorbing nitrogen formed by separation of nitrides in the temperature into the steel sheet, a method of increasing the N 2 partial pressure in the atmosphere of final annealing and nitriding the steel sheet may be used. The nitriding amount is required to be 10 ppm or more in order to stably develop the secondary recrystallization.

【0035】[0035]

【実施例】【Example】

実施例1 重量%で、Si:2.85%、C:0.029%、酸可
溶性Al:0.034%、N:0.0064%、Mn:
0.14%、S:0.007%を含有する250mm厚の
スラブを1200℃で60分保持した後、7パスで40
mm厚まで粗熱延し、しかる後、6パスで仕上熱延を行
い、2.3mm厚の熱延板とした。この熱延板のN as A
lNを分析し、N−N as AlNを計算すると、0.0
028%であった。この場合、図1から適正な脱炭焼鈍
温度が845℃と予測された。
Example 1 By weight%, Si: 2.85%, C: 0.029%, acid-soluble Al: 0.034%, N: 0.0064%, Mn:
A 250 mm thick slab containing 0.14% and S: 0.007% was held at 1200 ° C. for 60 minutes, and then 40 times in 7 passes.
After roughly hot rolling to a thickness of mm, finishing hot rolling was performed in 6 passes to obtain a hot rolled sheet having a thickness of 2.3 mm. N as A of this hot rolled sheet
ln was analyzed and N-N as AlN was calculated to be 0.0
It was 028%. In this case, the appropriate decarburization annealing temperature was predicted to be 845 ° C. from FIG.

【0036】この熱延板を酸洗し、約85%の圧下率で
冷延して、0.335mm厚の冷延板とした。しかる後、
(1)845℃、及び比較のため、(2)835℃の2
条件の温度で150秒保持する脱炭焼鈍(25%N2
75%H2 、露点62℃)を施し、しかる後、770℃
で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3
スを混入させ鋼板に窒素を吸収せしめた。窒化後の鋼板
のN量は0.0227〜0.0239%であり、鋼板の
一次再結晶粒の平均粒径は、21〜23μmであった。
次いで、この鋼板にMgOを主成分とする焼鈍分離剤を
塗布し、公知の方法で、最終仕上焼鈍を施した。実験条
件と磁気特性の結果を表1に示す。
The hot rolled sheet was pickled and cold rolled at a reduction rate of about 85% to obtain a cold rolled sheet having a thickness of 0.335 mm. After that,
(1) 845 ℃, and for comparison, (2) 835 ℃ 2
Decarburization annealing (25% N 2 +
75% H 2 , dew point 62 ° C), and then 770 ° C
Annealing was performed for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding was 0.0227 to 0.0239%, and the average grain size of the primary recrystallized grains of the steel sheet was 21 to 23 μm.
Then, an annealing separator having MgO as a main component was applied to this steel sheet, and final finish annealing was performed by a known method. Table 1 shows the experimental conditions and the results of magnetic properties.

【0037】[0037]

【表1】 [Table 1]

【0038】実施例2 重量%で、Si:3.20%、C:0.035%、酸可
溶性Al:0.033%、N:0.0055%、Mn:
0.14%、S:0.005%を含有する250mm厚の
スラブを1100℃で、90分保持した後、7パスで4
0mm厚まで粗熱延し、しかる後、6パスで仕上熱延を行
い、2.3mm厚の熱延板とした。この熱延板のN as A
lNを分析し、N−N as AlNを計算すると、0.0
025%であった。この場合、図1から、適正な脱炭焼
鈍温度が、835℃と予測された。
Example 2 By weight, Si: 3.20%, C: 0.035%, acid-soluble Al: 0.033%, N: 0.0055%, Mn:
A 250 mm-thick slab containing 0.14% and S: 0.005% was held at 1100 ° C for 90 minutes, and then 4 times in 7 passes.
Rough hot rolling was performed to a thickness of 0 mm, and then finish hot rolling was performed in 6 passes to obtain a hot rolled sheet having a thickness of 2.3 mm. N as A of this hot rolled sheet
ln was analyzed and N-N as AlN was calculated to be 0.0
It was 025%. In this case, the appropriate decarburization annealing temperature was predicted to be 835 ° C. from FIG. 1.

【0039】この熱延板を酸洗し、約88%の圧下率で
冷延して、0.285mm厚の冷延板とした。しかる後、
(1)835℃、及び比較のため、(2)845℃の2
条件の温度で150秒保持する脱炭焼鈍(25%N2
75%H2 、露点60℃)を施し、しかる後、750℃
で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3
スを混入させ鋼板に窒素を吸収せしめた。窒化後の鋼板
のN量は0.0228〜0.0241%であり、鋼板の
一次再結晶粒の平均粒径は、22〜24μmであった。
次いで、この鋼板にMgOを主成分とする焼鈍分離剤を
塗布し、公知の方法で、最終仕上焼鈍を施した。実験条
件と磁気特性の結果を表2に示す。
This hot-rolled sheet was pickled and cold-rolled at a rolling reduction of about 88% to obtain a 0.285 mm-thick cold-rolled sheet. After that,
(1) 835 ℃, and for comparison, (2) 845 ℃ 2
Decarburization annealing (25% N 2 +
75% H 2 , dew point 60 ° C), and then 750 ° C
Annealing was performed for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding was 0.0228 to 0.0241%, and the average grain size of the primary recrystallized grains of the steel sheet was 22 to 24 μm.
Then, an annealing separator having MgO as a main component was applied to this steel sheet, and final finish annealing was performed by a known method. Table 2 shows the experimental conditions and the results of magnetic properties.

【0040】[0040]

【表2】 [Table 2]

【0041】実施例3 重量%で、Si:2.79%、C:0.029%、酸可
溶性Al:0.035%、N:0.0058%、Mn:
0.13%、S:0.007%を含有し、さらに、
(1)Sn<0.005%、(2)Sn:0.06%、
(3)Sn:0.11%を含有する250mm厚の3種類
のスラブを1100℃で、60分保持した後、7パスで
40mm厚まで粗熱延し、しかる後、6パスで仕上熱延を
行い、2.6mm厚の熱延板とした。この熱延板のN as
AlNを分析し、N−N as AlNを計算すると、各
々、(1)0.0021%、(2)0.0021%、
(3)0.0022%であった。この場合、図1から、
適正な脱炭焼鈍温度が、830℃と予測された。
Example 3 By weight%, Si: 2.79%, C: 0.029%, acid-soluble Al: 0.035%, N: 0.0058%, Mn:
0.13%, S: 0.007%, and
(1) Sn <0.005%, (2) Sn: 0.06%,
(3) Three types of slabs with a thickness of 250 mm containing Sn: 0.11% were held at 1100 ° C. for 60 minutes, then roughly hot rolled to a thickness of 40 mm in 7 passes, and then finish hot rolled in 6 passes. The hot rolled sheet having a thickness of 2.6 mm was obtained. N as of this hot rolled sheet
When AlN was analyzed and N-N as AlN was calculated, (1) 0.0021%, (2) 0.0021%,
(3) It was 0.0022%. In this case, from FIG.
The proper decarburization annealing temperature was predicted to be 830 ° C.

【0042】この熱延板を酸洗し、約87%の圧下率で
冷延して、0.335mm厚の冷延板とした。しかる後、
(A)830℃、及び比較のため、(B)845℃の2
条件の温度で150秒保持する脱炭焼鈍(25%N2
75%H2 、露点62℃)を施し、しかる後、750℃
で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3
スを混入させ鋼板に窒素を吸収せしめた。窒化後の鋼板
のN量は0.0225〜0.0238%であり、鋼板の
一次再結晶粒の平均粒径は、23〜26μmであった。
次いで、この鋼板にMgOを主成分とする焼鈍分離剤を
塗布し、公知の方法で、最終仕上焼鈍を施した。実験条
件と磁気特性の結果を表3に示す。
The hot-rolled sheet was pickled and cold-rolled at a reduction rate of about 87% to obtain a cold-rolled sheet having a thickness of 0.335 mm. After that,
(A) 830 ° C., and (B) 845 ° C. 2 for comparison
Decarburization annealing (25% N 2 +
75% H 2 , dew point 62 ° C), then 750 ° C
Annealing was performed for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding was 0.0225 to 0.0238%, and the average grain size of the primary recrystallized grains of the steel sheet was 23 to 26 μm.
Then, an annealing separator having MgO as a main component was applied to this steel sheet, and final finish annealing was performed by a known method. Table 3 shows the experimental conditions and the results of magnetic properties.

【0043】[0043]

【表3】 [Table 3]

【0044】実施例4 重量%で、Si:3.28%、C:0.049%、酸可
溶性Al:0.030%、N:0.0074%、Mn:
0.10%、S:0.006%を含有する250mm厚の
スラブを1150℃で、90分保持した後、7パスで4
0mm厚まで粗熱延し、しかる後、6パスで仕上熱延を行
い、2.3mm厚の熱延板とした。次いで、(1)112
0℃に30秒保持し、引き続き、900℃に30秒保持
後急冷、(2)1100℃に3分間保持後急冷、なる2
通りの熱延板焼鈍を施した。この熱延板焼鈍後の鋼板の
N as AlNを分析し、N−N as AlNを計算する
と、各々、(1)0.0012%、(2)0.0028
%であった。この場合、図1から、適正な脱炭焼鈍温度
が、各々、(1)820℃、(2)850℃と予測され
た。
Example 4 Si: 3.28%, C: 0.049%, acid-soluble Al: 0.030%, N: 0.0074%, Mn: wt%
A 250 mm-thick slab containing 0.10% and S: 0.006% was held at 1150 ° C for 90 minutes, and then 4 times in 7 passes.
Rough hot rolling was performed to a thickness of 0 mm, and then finish hot rolling was performed in 6 passes to obtain a hot rolled sheet having a thickness of 2.3 mm. Then, (1) 112
Hold at 0 ° C for 30 seconds, then hold at 900 ° C for 30 seconds and then quench, (2) Hold at 1100 ° C for 3 minutes, then quench. 2
Street hot rolled sheet was annealed. When N as AlN of the steel sheet after this hot-rolled sheet annealing is analyzed and N-N as AlN is calculated, (1) 0.0012% and (2) 0.0028, respectively.
%Met. In this case, from FIG. 1, the appropriate decarburization annealing temperatures were predicted to be (1) 820 ° C. and (2) 850 ° C., respectively.

【0045】この熱延板焼鈍後の鋼板を、約88%の圧
下率で冷延して、0.285mm厚の冷延板とした。しか
る後、(A)820℃、(B)850℃の2条件の温度
で150秒保持する脱炭焼鈍(25%N2 +75%
2 、露点60℃)を施し、しかる後、750℃で30
秒保持する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混
入させ鋼板に窒素を吸収せしめた。窒化後の鋼板のN量
は0.0205〜0.0223%であり、鋼板の一次再
結晶粒の平均粒径は、21〜27μmであった。次い
で、この鋼板にMgOを主成分とする焼鈍分離剤を塗布
し、公知の方法で、最終仕上焼鈍を施した。実験条件と
磁気特性の結果を表4に示す。
The annealed steel sheet was cold-rolled at a reduction rate of about 88% to obtain a cold-rolled sheet having a thickness of 0.285 mm. Then, decarburization annealing (25% N 2 + 75%) for 150 seconds at two temperatures (A) 820 ° C. and (B) 850 ° C.
H 2, dew point 60 ° C.) alms, thereafter, 30 at 750 ° C.
Annealing was performed for 2 seconds, and NH 3 gas was mixed into the annealing atmosphere to cause the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding was 0.0205 to 0.0223%, and the average grain size of primary recrystallized grains was 21 to 27 μm. Then, an annealing separator having MgO as a main component was applied to this steel sheet, and final finish annealing was performed by a known method. Table 4 shows the experimental conditions and the results of magnetic properties.

【0046】[0046]

【表4】 [Table 4]

【0047】[0047]

【発明の効果】本発明においては、熱延板又は熱延板焼
鈍後の鋼板のAlN析出量を基に脱炭焼鈍条件をフィー
ドフォワード制御し、一次再結晶粒の平均粒径を制御
し、熱延後、最終仕上焼鈍の二次再結晶開始までの間に
鋼板に窒化処理を施し、さらには、Sn添加を行うこと
により、低温スラブ加熱でかつ熱延板焼鈍を省略しても
なお良好な磁気特性を安定して得ることができるので、
その工業的効果は大である。
INDUSTRIAL APPLICABILITY In the present invention, decarburization annealing conditions are feed-forward controlled based on the amount of AlN precipitation of the hot-rolled sheet or the steel sheet after the hot-rolled sheet annealing, and the average grain size of primary recrystallized grains is controlled, After hot rolling, by nitriding the steel sheet before the start of secondary recrystallization of final finish annealing, and further by adding Sn, it is still good even if low temperature slab heating and hot strip annealing are omitted. Since stable magnetic characteristics can be obtained,
Its industrial effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱延板でのN−N as AlN量及び脱炭焼鈍温
度と製品の磁束密度の関係を表すグラフである。
FIG. 1 is a graph showing the relationship between the amount of N—N as AlN and decarburization annealing temperature in a hot rolled sheet and the magnetic flux density of the product.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年1月17日[Submission date] January 17, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持ったいわゆるゴス組織を発達さ
せることにより製造されている。良好な磁気特性を得る
ためには、磁化容易軸である〈001〉を圧延方向に高
度に揃えることが必要である。このような高磁束密度一
方向性電磁鋼板の製造技術として代表的なものに特公昭
40−15644号公報及び特公昭51−13469
公報記載の方法がある。前者においては主なインヒビタ
ーとしてMnS及びAlNを、後者ではMnS,MnS
e,Sb等を用いている。従って現在の技術においては
これらのインヒビターとして機能する析出物の大きさ、
形態及び分散状態を適正に制御することが不可欠であ
る。
This unidirectional electrical steel sheet is manufactured by causing secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} axis on the steel sheet surface and <001> axis in the rolling direction. Has been done. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy magnetization axis, in the rolling direction. Typical methods for producing such a high magnetic flux density unidirectional electrical steel sheet are the methods described in JP-B- 40-15644 and JP-B- 51-13469 . In the former, MnS and AlN are the main inhibitors, and in the latter, MnS and MnS.
e, Sb, etc. are used. Therefore, in the present technology, the size of precipitates that function as these inhibitors,
Proper control of morphology and dispersion is essential.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】また、このことは、熱延板のN−N as A
lN量で、脱炭焼鈍での適正条件を予測できることを示
している。析出物による粒成長抑制効果(Zener因
子)は、析出物のサイズに逆比例し、その体積分率に比
例する。熱延板では、Nは窒化物としてほぼ100%析
出しているので、N−N as AlNの量は、主に熱延後
の巻取り後に析出するSi3 4 Fe16 4 等の析出
量を示していると解される。
This also means that N-N as A of hot rolled sheet
It is shown that the proper condition in decarburization annealing can be predicted by the amount of 1N. The grain growth suppression effect (Zener factor) by the precipitate is inversely proportional to the size of the precipitate and proportional to its volume fraction. Since almost 100% of N is precipitated as a nitride in the hot-rolled sheet, the amount of N—N as AlN is mainly the amount of Si 3 N 4 , Fe 16 N 4 or the like precipitated after winding after hot rolling. It is understood that it indicates the amount of precipitation.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。加熱されたスラ
ブは、引き続き熱延されて熱延板となる。熱延工程は、
通常100〜400mm厚のスラブを加熱した後、いずれ
も複数回のパスで行う粗熱延と仕上熱延よりなる。粗熱
延の方法については、特に限定するものではないが、パ
ス間時間を長くすると、AlN析出量が増す傾向がある
し、スラブ加熱温度を高めにしたり、パス間で保温カバ
ーを鋼板にかぶせたりすると、AlN析出量が減少する
傾向がある。
The slab heating temperature was limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower. The heated slab is subsequently hot rolled to form a hot rolled plate. The hot rolling process is
Usually, after heating a slab having a thickness of 100 to 400 mm, both are rough hot rolling and finish hot rolling which are carried out by a plurality of passes. The method of rough hot rolling is not particularly limited, but if the time between passes is increased, the amount of AlN precipitation tends to increase, the slab heating temperature is increased, and a heat insulating cover is placed on the steel sheet between passes. If so, the amount of AlN precipitation tends to decrease.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C22C 38/00 303 U 38/60 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C22C 38/00 303 U 38/60

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.075%以下、 Si:2.2〜4.5%、 酸可溶性Al:0.010〜0.060%、 N :0.0130%以下、 S+0.405Se:0.014%以下、 Mn:0.05〜0.8%、 残部がFe及び不可避的不純物からなるスラブを128
0℃未満の温度で加熱し、熱延を行い、引き続き、必要
に応じて、熱延板焼鈍を施し、圧下率80%以上の最終
強圧下冷延を行い、次いで脱炭焼鈍、最終仕上焼鈍を施
して一方向性電磁鋼板を製造する方法において、熱延板
又は熱延板焼鈍後の鋼板でのAlNとしてのN量(重量
比)をN as AlNとした時N* =N−N as AlNの
分析値を基に脱炭焼鈍の熱サイクルを決定し、脱炭焼鈍
完了後、最終仕上焼鈍開始までの一次再結晶粒の平均粒
径を18〜35μmとし、熱延後最終仕上焼鈍の二次再
結晶開始までの間に鋼板に0.0010重量%以上の窒
素吸収を行わせる窒化処理を施すことを特徴とする磁気
特性の優れた一方向性電磁鋼板の安定製造方法。
1. By weight ratio, C: 0.075% or less, Si: 2.2-4.5%, acid-soluble Al: 0.010-0.060%, N: 0.0130% or less, S + 0. 405 Se: 0.014% or less, Mn: 0.05 to 0.8%, 128 slabs with the balance Fe and unavoidable impurities
It is heated at a temperature of less than 0 ° C., hot-rolled, and subsequently, if necessary, hot-rolled sheet annealing is performed, final cold rolling with a reduction ratio of 80% or more, followed by decarburization annealing and final finish annealing. In the method for producing a unidirectional electrical steel sheet by applying the above, when the N amount (weight ratio) as AlN in the hot rolled sheet or the steel sheet after hot rolled sheet annealing is N as AlN, N * = N−N as The thermal cycle of decarburization annealing is determined based on the analysis value of AlN, and after decarburization annealing is completed, the average particle size of primary recrystallized grains until the start of final finishing annealing is set to 18 to 35 μm, and after hot rolling, the final finishing annealing is performed. A stable manufacturing method of a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises subjecting a steel sheet to a nitriding treatment for absorbing 0.0010% by weight or more of nitrogen before starting secondary recrystallization.
【請求項2】 スラブの成分としてSn:0.01〜
0.15%を含有せしめることを特徴とする請求項1記
載の磁気特性の優れた一方向性電磁鋼板の安定製造方
法。
2. Sn: 0.01 to as a slab component
The method for stable production of a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein 0.15% is contained.
JP5266574A 1993-10-25 1993-10-25 Stable production of grain-oriented silicon steel sheet excellent in magnetic property Withdrawn JPH07118746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5266574A JPH07118746A (en) 1993-10-25 1993-10-25 Stable production of grain-oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5266574A JPH07118746A (en) 1993-10-25 1993-10-25 Stable production of grain-oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH07118746A true JPH07118746A (en) 1995-05-09

Family

ID=17432708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5266574A Withdrawn JPH07118746A (en) 1993-10-25 1993-10-25 Stable production of grain-oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH07118746A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544537B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 Method for manufacturing low temperature slab heating grain-oriented electrical steel sheets having excellent magnetic properties by using Al,Si,MnN precipitate
JP2007314823A (en) * 2006-05-24 2007-12-06 Nippon Steel Corp Method for producing grain oriented silicon steel sheet having high magnetic flux density
JP2008001983A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Method for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2016505706A (en) * 2012-11-26 2016-02-25 バオシャン アイアン アンド スティール カンパニー リミテッド Directional silicon steel and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544537B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 Method for manufacturing low temperature slab heating grain-oriented electrical steel sheets having excellent magnetic properties by using Al,Si,MnN precipitate
JP2007314823A (en) * 2006-05-24 2007-12-06 Nippon Steel Corp Method for producing grain oriented silicon steel sheet having high magnetic flux density
JP2008001983A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Method for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP4714637B2 (en) * 2006-05-24 2011-06-29 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP2016505706A (en) * 2012-11-26 2016-02-25 バオシャン アイアン アンド スティール カンパニー リミテッド Directional silicon steel and method for producing the same

Similar Documents

Publication Publication Date Title
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH08269571A (en) Production of grain-oriented silicon steel strip
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06228646A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2784687B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH07138643A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3348217B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH07138642A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH05295438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226