JPH06306473A - Production of grain-oriented magnetic steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented magnetic steel sheet excellent in magnetic property

Info

Publication number
JPH06306473A
JPH06306473A JP5099817A JP9981793A JPH06306473A JP H06306473 A JPH06306473 A JP H06306473A JP 5099817 A JP5099817 A JP 5099817A JP 9981793 A JP9981793 A JP 9981793A JP H06306473 A JPH06306473 A JP H06306473A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
subjected
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5099817A
Other languages
Japanese (ja)
Inventor
Yasunari Yoshitomi
康成 吉冨
Hiroaki Masui
浩昭 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5099817A priority Critical patent/JPH06306473A/en
Publication of JPH06306473A publication Critical patent/JPH06306473A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetic properties such as excitation properties, core loss properties or the like in a steel sheet by subjecting a cold rolled magnetic steel sheet to decarburizing treatment, thereafter subjecting it to nitriding treatment under specified conditions and then producing secondary recrystallization by final finish annealing by continuous annealing. CONSTITUTION:A slab contg., by weight, <=0.075% C, 2.2 to 5.0% Si, <=0.0050% N, <=0.0050% S and 0.005 to 0.060% Al, and the balance Fe is heated at <1280 deg.C and is subjected to hot rolling. Next, cold rolling contg. cold rolling at >=80% draft and including, at need, process annealing is executed for one or more times. Next, it is subjected to decarburizmng annealing, is thereafter subjected to nitriding treatment at 600 to 1000 deg.C so as to regulate the amt. of nitrogen to be increased into >=0.0005% and is successively subjected to final finish annealing for producing secondary recrystallization by continuous annealing, by which the grain-oriented silicon steel sheet excellent in magnetic properties can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表わす数値としては、通常磁場の強さ8
00A/m における磁束密度B8が使用される。また、鉄
損特性を表わす数値としては、周波数50Hzで1.7テ
スラー(T)まで磁化した時の1kg当りの鉄損W17/50
を使用している。磁束密度は、鉄損特性の最大支配因子
であり、一般的にいって磁束密度が高いほど鉄損特性が
良好になる。なお、一般的に磁束密度を高くすると二次
再結晶粒が大きくなり、鉄損特性が不良となる場合があ
る。これに対しては、磁区制御により、二次再結晶粒の
粒径に拘らず、鉄損特性の改善をすることができる。
2. Description of the Related Art Unidirectional magnetic steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. As a numerical value showing the excitation characteristic, the strength of a normal magnetic field is 8
A magnetic flux density B 8 at 00 A / m is used. In addition, as a numerical value showing the iron loss characteristic, the iron loss per kg when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz is W 17/50.
Are using. The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics. On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持ったいわゆるゴス組織を発達さ
せることにより、製造されている。良好な磁気特性を得
るためには、磁化容易軸である〈001〉を圧延方向に
高度を揃えることが必要である。
This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and <001> axis in the rolling direction. Being manufactured. In order to obtain good magnetic properties, it is necessary to align <001>, which is the easy axis of magnetization, in the rolling direction.

【0004】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに特公昭40−15644
号公報及び特公昭51−13469号公報記載の方法が
ある。前者においては主なインヒビターとしてMnS及
びAlNを、後者ではMnS,MnSe,Sb等を用い
ている。従って現在の技術においてはこれらのインヒビ
ターとして機能する析出物の大きさ、形態及び分散状態
を適正に制御することが不可欠である。
A typical technique for producing such a high magnetic flux density unidirectional electrical steel sheet is Japanese Patent Publication No. 40-15644.
There is a method described in JP-B No. 51-13469. In the former, MnS and AlN are used as main inhibitors, and in the latter, MnS, MnSe, Sb, etc. are used. Therefore, in the current technology, it is essential to appropriately control the size, morphology and dispersion state of the precipitates that function as these inhibitors.

【0005】MnSに関して言えば、現在の工程では熱
延前のスラブ加熱時にMnSを一旦完全固溶させた後、
熱延時に析出する方法がとられている。二次再結晶に必
要な量のMnSを完全固溶するためには1400℃程度
の温度が必要である。これは普通鋼のスラブ加熱温度に
比べて200℃以上も高く、この高温スラブ加熱処理に
は以下に述べるような不利な点がある。1)方向性電磁
鋼専用の高温スラブ加熱炉が必要。2)加熱炉のエネル
ギー原単位が高い。3)溶融スケール量が増大し、いわ
ゆるノロかき出し等に見られるように操業上の悪影響が
大きい。
As for MnS, in the present process, after the MnS is completely solid-soluted at the time of heating the slab before hot rolling,
The method of precipitation during hot rolling is adopted. A temperature of about 1400 ° C. is necessary to completely form a solid solution of the required amount of MnS for secondary recrystallization. This is higher than the slab heating temperature of ordinary steel by 200 ° C. or more, and this high-temperature slab heating treatment has the following disadvantages. 1) A high temperature slab heating furnace exclusively for grain oriented electrical steel is required. 2) The energy intensity of the heating furnace is high. 3) The amount of molten scale increases, and the adverse effect on operation is large, as seen in so-called shaving.

【0006】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並みに下げればよいわけであるが、
このことは同時にインヒビターとして有効なMnSの量
を少なくするかあるいは全く用いないことを意味し、必
然的に二次再結晶の不安定化をもたらす。このため低温
スラブ加熱化を実現するためには何らかの形でMnS以
外の析出物等によりインヒビターを強化し、仕上焼鈍時
の正常粒成長の抑制を十分にする必要がある。
In order to avoid such a problem, the slab heating temperature should be lowered to the level of ordinary steel.
This means that at the same time, the amount of MnS effective as an inhibitor is reduced or not used at all, and inevitably results in destabilization of secondary recrystallization. Therefore, in order to realize low-temperature slab heating, it is necessary to strengthen the inhibitor in some form with precipitates other than MnS to sufficiently suppress normal grain growth during finish annealing.

【0007】このようなインヒビターとしては硫化物の
他、窒化物、酸化物及び粒界析出元素等が考えられ、公
知の技術として例えば次のようなものがあげられる。す
なわち特公昭54−24685号公報ではAs,Bi,
Sn,Sb等の粒界偏析元素を鋼中に含有することによ
り、スラブ加熱温度を1050〜1350℃の範囲にす
る方法が開示され、特開昭52−24116号公報では
Alの他、Zr,Ti,B,Nb,Ta,V,Cr,M
o等の窒化物生成元素を含有することによりスラブ加熱
温度を1100〜1260℃の範囲にする方法を開示し
ている。また、特開昭57−158322号公報ではM
n含有量を下げ、Mn/Sの比率を2.5以下にするこ
とにより低温スラブ加熱化を行い、さらにCuの添加に
より二次再結晶を安定化する技術を開示している。
As such inhibitors, sulfides, nitrides, oxides, grain boundary precipitation elements, and the like are considered, and known techniques include, for example, the following. That is, in Japanese Examined Patent Publication No. 54-24685, As, Bi,
A method of controlling the slab heating temperature in the range of 1050 to 1350 ° C. by including grain boundary segregation elements such as Sn and Sb in the steel is disclosed. JP-A-52-24116 discloses Al, Zr, Ti, B, Nb, Ta, V, Cr, M
It discloses a method for controlling the slab heating temperature in the range of 1100 to 1260 ° C. by containing a nitride-forming element such as o. Further, in JP-A-57-158322, M
A technique is disclosed in which the n content is reduced and the Mn / S ratio is set to 2.5 or less to perform low temperature slab heating, and further Cu is added to stabilize secondary recrystallization.

【0008】これらインヒビターの補強と組み合わせて
金属組織の側から改良を加えた技術も開示された。すな
わち特開昭57−89433号公報ではMnに加えS,
Se,Sb,Bi,Pb,Sn,B等の元素を加え、こ
れにスラブの柱状晶率と二次冷延圧下率を組み合わせる
ことにより1100〜1250℃の低温スラブ加熱化を
実現している。さらに特開昭59−190324号公報
ではSあるいはSeに加え、Al及びBと窒素を主体と
してインヒビターを構成し、これに冷延後の一次再結晶
焼鈍時にパルス焼鈍を施すことにより二次再結晶を安定
化する技術を公開している。
Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S, in addition to Mn,
Elements such as Se, Sb, Bi, Pb, Sn, and B are added, and the columnar crystal ratio of the slab and the secondary cold rolling reduction are combined to realize low-temperature slab heating at 1100 to 1250 ° C. Further, in JP-A-59-190324, an inhibitor is composed mainly of Al and B and nitrogen in addition to S or Se, and secondary annealing is performed by performing pulse annealing at the time of primary recrystallization annealing after cold rolling. The technology to stabilize is released.

【0009】このように方向性電磁鋼板製造における低
温スラブ加熱化実現のためには、これまでに多大な努力
が続けられてきている。さらに、特開昭59−5652
2号公報においてはMnを0.08〜0.45%、Sを
0.007%以下にすることにより低温スラブ加熱化を
可能にする技術が開示された。この方法により高温スラ
ブ加熱時のスラブ結晶粒粗大化に起因する製品の線状二
次再結晶不良発生の問題が解消された。
As described above, in order to realize the low temperature slab heating in the production of grain-oriented electrical steel sheet, great efforts have been made so far. Furthermore, JP-A-59-5652
Japanese Patent Publication No. 2 discloses a technique that enables low temperature slab heating by setting Mn to 0.08 to 0.45% and S to 0.007% or less. By this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.

【0010】[0010]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としているもの
の、当然のことながら良好な磁気特性を安定して得る技
術でなければ、工業化できない。本発明者らは、低温ス
ラブ加熱の工業化のため、最終仕上焼鈍前の一次再結
晶の平均粒径制御、熱延後、最終仕上焼鈍の二次再結
晶開始までに鋼板に窒化処理を施すことを柱とする技術
を構築してきた。一方、通常一方向性電磁鋼板の最終仕
上焼鈍は、鋼板を5〜20TON 程度のコイル状として行
われており、この最終仕上焼鈍の900〜1200℃の
間で生じる二次再結晶は、鋼板がわん曲した状態で起こ
る。最終仕上焼鈍後に鋼板は歪取り焼鈍とコーティング
を施し、製品となる。この製品は平板状で使用される
が、わん曲状態で二次再結晶した時、二次再結晶粒内
(粒径:1〜50mm)で同一方位であったものが、平板
にした状態(製品)では、幾何学的理由で粒内のTD軸
まわりの方位分散が生じる。
Although the method using low temperature slab heating is originally intended to reduce the manufacturing cost, it cannot be industrialized unless it is a technique that can stably obtain good magnetic characteristics. The present inventors, for the industrialization of low-temperature slab heating, average grain size control of primary recrystallization before final finish annealing, after hot rolling, to perform nitriding treatment on the steel sheet before the start of secondary recrystallization of final annealing. We have built technology centered on. On the other hand, the final finish annealing of the unidirectional electrical steel sheet is usually performed by forming the steel sheet into a coil shape of about 5 to 20 tons, and the secondary recrystallization that occurs between 900 and 1200 ° C. in this final finish annealing is It occurs in a bent state. After the final finish annealing, the steel sheet is subjected to strain relief annealing and coating to become a product. This product is used in the form of a flat plate, but when it is recrystallized in a curved state, it is in a flat state when it has the same orientation within the secondary recrystallized grains (particle size: 1 to 50 mm). In the product), azimuth dispersion occurs around the TD axis in the grain due to geometrical reasons.

【0011】この方位分散は、当然のことながら、{1
10}〈001〉方位からの方位分散となり、磁束密度
の低下の要因となる。鋼板がわん曲した状態で二次再結
晶させることが、磁束密度低下の原因となるわけである
が、これは最終仕上焼鈍で不純物の純化をする必要から
最高温度が1100〜1300℃となり、総時間も50
〜300時間程かかるため、コイル状でBoxでの焼鈍
を行わざるを得ないためである。本発明の目的は、二次
再結晶を平板状で生ぜしめる、連続焼鈍で最終仕上焼鈍
を行わしめ、磁気特性を良好ならしめる一方向性電磁鋼
板の製造方法を提供することである。
This azimuth dispersion is, of course, {1
The azimuth dispersion is from the 10} <001> azimuth, which causes a decrease in the magnetic flux density. Secondary recrystallization in the bent state of the steel sheet causes a decrease in magnetic flux density, but this is because the maximum temperature is 1100 to 1300 ° C because the impurities must be purified in the final annealing. 50 hours
This is because it takes about 300 hours to perform annealing in a box shape in Box. An object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet which causes secondary recrystallization in the form of a flat plate, performs final finishing annealing by continuous annealing, and has good magnetic properties.

【0012】[0012]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。 (1)重量比でC:0.075%以下、Si:2.2〜
5.0%、N:0.0050%以下、S:0.0050
%以下、Al:0.005〜0.060%を含有し、残
余がFe及び不可避的不純物からなるスラブを1280
℃未満の温度で加熱し、熱延し、圧下率80%以上の最
終冷延を含み、必要に応じて中間焼鈍を挟む1回以上の
冷延を施し、次いで脱炭焼鈍、最終仕上焼鈍を施して一
方向性電磁鋼板を製造する方法において、脱炭焼鈍に引
き続き、600〜1000℃の温度範囲で鋼板に増窒素
量で0.0005%以上の窒化処理を施し、次いで、1
000〜1300℃の温度範囲での連続焼鈍によって、
二次再結晶を生ぜしめる最終仕上焼鈍を行うことを特徴
とする磁気特性の優れた一方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) C: 0.075% or less by weight, Si: 2.2
5.0%, N: 0.0050% or less, S: 0.0050
% Or less, Al: 0.005 to 0.060%, with the balance 1280 slabs consisting of Fe and unavoidable impurities.
Heating at a temperature of less than ℃, hot rolling, including final cold rolling with a rolling reduction of 80% or more, if necessary, one or more cold rolling with intermediate annealing sandwiched, then decarburization annealing, final finish annealing In the method for producing a grain-oriented electrical steel sheet by applying the method, following decarburization annealing, the steel sheet is subjected to a nitriding treatment of 0.0005% or more with a nitrogen increase amount in a temperature range of 600 to 1000 ° C, and then 1
By continuous annealing in the temperature range of 000 to 1300 ° C,
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises performing final finishing annealing that causes secondary recrystallization.

【0013】(2)前記(1)において、Sb,Sn,
Pの1種または2種以上を各々0.005〜1.00重
量%含有するスラブを用いることを特徴とする磁気特性
の優れた一方向性電磁鋼板の製造方法。 (3)前記(1)または、(2)において、二次再結晶
を生ぜしめた最終仕上焼鈍に引き続き、1100〜13
00℃の温度範囲で水素分圧25%以上の雰囲気ガス中
で、不純物の純化焼鈍を施すことを特徴とする磁気特性
の優れた一方向性電磁鋼板の製造方法。
(2) In the above (1), Sb, Sn,
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises using a slab containing 0.005 to 1.00% by weight of one or more Ps, respectively. (3) In the above (1) or (2), after the final finishing annealing that causes secondary recrystallization, 1100 to 13
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises subjecting impurities to purification annealing in an atmosphere gas having a hydrogen partial pressure of 25% or more in a temperature range of 00 ° C.

【0014】[0014]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程を挟ん
でスラブとし、引き続き熱間圧延して熱延板とし、次い
で圧下率80%以上の最終冷延を含み、必要に応じて中
間焼鈍を挟む1回以上の冷延を施し、次いで、脱炭焼
鈍、最終仕上焼鈍を順次行うことによって製造される。
The unidirectional electrical steel sheet targeted by the present invention is
Molten steel obtained by the conventional steelmaking method is cast by continuous casting method or ingot making method, and if necessary, the slab is sandwiched to form a slab, followed by hot rolling into a hot rolled sheet, and then reduction. It is manufactured by including a final cold rolling of a rate of 80% or more, performing one or more cold rollings with an intermediate annealing as needed, and then sequentially performing decarburization annealing and final finishing annealing.

【0015】本発明者らは、二次再結晶を平板状で生ぜ
しめる連続焼鈍で最終仕上焼鈍を行わしめ、磁気特性を
良好ならしめる方法について詳細に検討した。そしてそ
の方策として、スラブにおけるN,S量を極端に下
げ、脱炭焼鈍後窒化処理を施し、高温で連続焼鈍を施す
こと、Sb,Sn,Pの1種または2種以上をスラブ
に所定量含有すること、上記連続焼鈍後に純化焼鈍を
施すことが有効であることがわかった。
The present inventors have conducted a detailed study on a method for making the magnetic characteristics favorable by carrying out final finishing annealing by continuous annealing which causes secondary recrystallization in the form of a flat plate. And as a measure, the amount of N and S in the slab is extremely reduced, decarburization annealing is followed by nitriding treatment, and continuous annealing is performed at a high temperature. It has been found that it is effective to contain and to carry out purification annealing after the above continuous annealing.

【0016】以下これらの点について詳細に説明する。
元来、二次再結晶は、粒界移動の粒界性格依存性を、不
純物を使って強調せしめた現象である。従って、日本金
属学会誌第55巻第6号(1991)P630〜638
に記載されている如く、二次再結晶進行時のインヒビタ
ー強度(Zener因子(比例析出物体積分率/析出物
サイズ))が高い程、二次再結晶方位粒の{110}
〈001〉集積度が高い。インヒビター強度を高めるに
は、通常、析出物の量を増すか、析出物サイズを細かく
する方法がとられる。析出物の量を増加させると、二次
再結晶後の不純物の純化に必要な時間が長くなったり、
必要な温度が高くなったりするため、短時間の連続焼鈍
で最終仕上焼鈍を行うのには不適当である。
These points will be described in detail below.
Originally, secondary recrystallization is a phenomenon in which the grain boundary character dependence of grain boundary migration is emphasized by using impurities. Therefore, Journal of the Japan Institute of Metals, Vol. 55, No. 6 (1991) P630-638.
As described in (1), the higher the inhibitor strength (Zener factor (proportional precipitate body integration rate / precipitate size)) during the progress of secondary recrystallization, the more the {110} of the secondary recrystallization oriented grains.
<001> High degree of integration. In order to increase the inhibitor strength, usually, a method of increasing the amount of precipitates or making the precipitate size finer is used. Increasing the amount of precipitates lengthens the time required to purify impurities after secondary recrystallization,
Since the required temperature becomes high, it is unsuitable for performing final finishing annealing by short-time continuous annealing.

【0017】一方、析出サイズを細かくする方法は、量
を増加せしめる方法よりは短時間の連続昇温にむいてい
る。しかしながら、この方法も量の制限を前提としてい
る。そこで、本発明者らが、検討した第三の方法は、析
出物の粒界析出と、粒界偏析の利用である。以下に、実
験結果を基に詳細に説明する。
On the other hand, the method of making the precipitation size finer is suitable for continuous temperature increase in a short time, as compared with the method of increasing the amount. However, this method is also subject to volume limitations. Therefore, the third method studied by the present inventors is the use of grain boundary precipitation of precipitates and grain boundary segregation. Below, it demonstrates in detail based on an experimental result.

【0018】C=0.054重量%(以下%と略述)、
Si=3.20%、酸可溶性Al=0.020%、N=
0.0015%、S=0.0017%を含有し、残部F
e及び不可避的不純物からなる40mmのスラブを作成し
た。そして1150℃の温度で60分均熱した後熱延し
て、2.3mm厚の熱延板とした。
C = 0.054% by weight (hereinafter abbreviated as%),
Si = 3.20%, acid-soluble Al = 0.020%, N =
0.0015%, S = 0.017%, balance F
A 40 mm slab consisting of e and inevitable impurities was prepared. Then, after soaking at a temperature of 1150 ° C. for 60 minutes, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.3 mm.

【0019】かかる熱延板に1100℃に10秒保持し
た後900℃に30秒保持した後700℃まで空冷して
から急冷する熱延板焼鈍を施した。しかる後約90%の
強圧下圧延を行って最終板厚0.220mmの冷延板とし
た。この冷延板を810℃に90秒保持する脱炭焼鈍を
施し、次いで、以下の3種類の処理を施した。750
℃に30秒保持する焼鈍時、焼鈍雰囲気中にNH3 ガス
を混入させ鋼板に窒素吸収を生ぜしめた。この窒化処理
後の鋼板のNは0.0052%であった。N2 :90
%、H2 :10%の焼鈍雰囲気中で、800℃×1hr
(均熱)の焼鈍を施した。この焼鈍後の鋼板のNは、
0.0049%であった。処理を行わなかった。
The hot-rolled sheet was annealed at 1100 ° C. for 10 seconds, at 900 ° C. for 30 seconds, air-cooled to 700 ° C., and then rapidly cooled. Then, about 90% strong reduction rolling was performed to obtain a cold rolled sheet having a final sheet thickness of 0.220 mm. The cold-rolled sheet was subjected to decarburization annealing at 810 ° C for 90 seconds, and then subjected to the following three types of treatments. 750
During annealing at 30 ° C. for 30 seconds, NH 3 gas was mixed into the annealing atmosphere to cause the steel sheet to absorb nitrogen. The N of the steel sheet after this nitriding treatment was 0.0052%. N 2 : 90
%, H 2 : 10% in an annealing atmosphere, 800 ° C. × 1 hr
Annealing (soaking) was performed. The N of the steel sheet after this annealing is
It was 0.0049%. No treatment was done.

【0020】これら〜の処理後の鋼板を(a)平板
状、(b)内径600mm相当のわん曲面に鋼板を固定の
2条件で1150℃×5分(均熱)の最終仕上焼鈍を施
し、しかる後850℃×4hr(均熱)なる歪取り焼鈍と
張力コーティングを施した。この歪取り焼鈍後の状態で
の鋼板のN量はの条件で0.0037%、の条件で
0.0033%、の条件で0.0009%であった。
これらの条件での磁気特性を表1に示す。
After these treatments, the steel sheet is subjected to final finishing annealing at 1150 ° C. for 5 minutes (soaking) under two conditions: (a) flat plate shape, and (b) fixing the steel sheet to a curved surface having an inner diameter of 600 mm. Thereafter, strain relief annealing and tension coating at 850 ° C. × 4 hr (uniform heating) were applied. The N content of the steel sheet after the stress relief annealing was 0.0037% under the condition, 0.0033% under the condition, and 0.0009% under the condition.
Table 1 shows the magnetic characteristics under these conditions.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように窒化処理を施し、
かつ平板状で二次再結晶を行わしめたものが良好な磁気
特性を示している。表1で示された現象のメカニズムに
ついて、本発明者らは、次のように考えている。二次再
結晶を生ぜしめるには、粒界移動の粒界性格依存性を強
調するインヒビターがある程度必要である。本発明の素
材はN,S量を通常より極端に少なくしたスラブを出発
材としており、インヒビター効果を十分きかせるために
は、少量で効果のあるインヒビターの補強が必要であ
る。
As is clear from Table 1, nitriding treatment was performed,
In addition, a flat plate that has been subjected to secondary recrystallization exhibits good magnetic properties. The present inventors consider the mechanism of the phenomenon shown in Table 1 as follows. In order to cause secondary recrystallization, some inhibitors that emphasize the dependence of grain boundary migration on grain boundary character are necessary. The material of the present invention uses a slab having an extremely small amount of N and S as a starting material, and in order to sufficiently bring out the inhibitor effect, it is necessary to reinforce the inhibitor which is effective in a small amount.

【0023】このために、本発明の如き窒化処理が有効
と考えられる。というのは、本発明の如き750℃や8
00℃等の温度での窒化では、Nの粒界拡散が粒内拡散
より顕著なため、窒化物の析出は粒界析出が主となる。
これは、粒界移動を抑制するインヒビターを粒界に選択
的に配置することを意味し、本発明の如く短時間の連続
焼鈍で二次再結晶せしめ、純化時間をとりわけとらない
技術においては、極めて有効と考えられる。
Therefore, the nitriding treatment according to the present invention is considered to be effective. This is because 750 ° C or 8 as in the present invention
In nitriding at a temperature of 00 ° C. or the like, grain boundary diffusion of N is more prominent than intragranular diffusion, so that precipitation of nitride mainly occurs at grain boundary.
This means that an inhibitor that suppresses grain boundary migration is selectively arranged at grain boundaries, and secondary recrystallization is performed by continuous annealing for a short time as in the present invention, and in a technique that does not particularly take a purification time, It is considered to be extremely effective.

【0024】さらに、本技術の場合、平板状で二次再結
晶が生じるため、製品にした時の{110}〈001〉
方位からのTD軸まわりの方位分散が生ぜず、結果的に
磁束密度を高位に保つことができる。次に本発明の構成
要件を限定した理由について述べる。
Further, in the case of the present technology, since secondary recrystallization occurs in a flat plate shape, {110} <001> when made into a product.
The azimuth dispersion around the TD axis from the azimuth does not occur, and as a result, the magnetic flux density can be kept high. Next, the reasons for limiting the constituent features of the present invention will be described.

【0025】先ず、スラブ成分とスラブ加熱温度に関し
て限定理由を詳細に説明する。Cが多くなり過ぎると脱
炭焼鈍時間が長くなり経済的でないので0.075%以
下とした。Siは5.0%を超えると冷延時の割れが著
しくなるので5.0%以下とした。また、2.2%未満
では素材の固有抵抗が低すぎ、トランス鉄心材料として
必要な低鉄損が得られないので2.2%以上とした。望
ましくは3.0%以上である。
First, the reasons for limiting the slab components and the slab heating temperature will be described in detail. If the amount of C is too large, the decarburization annealing time becomes long and it is not economical, so the content was made 0.075% or less. If Si exceeds 5.0%, cracking during cold rolling becomes significant, so the content of Si is set to 5.0% or less. On the other hand, if it is less than 2.2%, the specific resistance of the material is too low, and the low iron loss required for the transformer core material cannot be obtained. It is preferably 3.0% or more.

【0026】N量は、0.0050%以下とした。これ
は本発明の如く、最終仕上焼鈍を短時間で行う場合に
は、純化があまりできないので、スラブのN量を少なく
することが鉄損低減につながるためである。N量の下限
については特に限定するものではないが、製鋼段階でN
を0.0001%以下にすることは工業的には難しい。
The amount of N was set to 0.0050% or less. This is because, as in the present invention, when the final finish annealing is performed in a short time, purification cannot be performed so much, so reducing the N content of the slab leads to reduction of iron loss. The lower limit of the amount of N is not particularly limited, but N in the steelmaking stage
Of 0.0001% or less is industrially difficult.

【0027】S量は、0.0050%以下とした。これ
も本発明の如く、最終仕上焼鈍を短時間で行う場合に
は、純化があまりできないので、スラブのS量を少なく
することが鉄損低減につながるためである。N量の下限
については特に限定するものではないが製鋼段階でSを
0.0001%以下にすることは工業的には難しい。
The S content was set to 0.0050% or less. This is also because when the final finish annealing is performed in a short time as in the present invention, purification cannot be performed so much, and thus reducing the S content of the slab leads to a reduction in iron loss. The lower limit of the amount of N is not particularly limited, but it is industrially difficult to make S 0.0001% or less in the steelmaking stage.

【0028】Alは、窒化処理でAlNもしくは(A
l,Si)Nを確保するため、酸可溶性Alとして0.
005%以上が必要である。酸可溶性Alが0.060
%を超えると短時間の最終仕上焼鈍で窒化物の分解が生
じがたくなるため、少量ながらも純化が生じがたくな
り、鉄損特性の点で好ましくない。
Al is AlN or (A
1, Si) N to ensure that the acid-soluble Al is 0.1.
005% or more is required. Acid soluble Al 0.060
If it exceeds 0.1%, the decomposition of the nitride is less likely to occur in the final finish annealing for a short time, so purification is difficult to occur even in a small amount, which is not preferable in terms of iron loss characteristics.

【0029】さらに、Sb,Sn,Pの1種または2種
以上を各々0.005〜1.00%含有することは、磁
気特性を良好にする上で好ましい。Sb,Sn,Pは粒
界偏析元素であり、粒成長の抑制効果がある。これらの
元素を添加することによって、脱炭焼鈍後の窒化量を少
なくしても二次再結晶できるようになる。これは短時間
での最終焼鈍後、N量が少ない状態で良好な二次再結晶
組織が得られることを意味し、鉄損特性の点で有利であ
る。Sb,Sn,Pとも0.01%未満の添加では、粒
界移動抑制効果が十分でなく、1.00%を超えると、
脆性に悪影響を与えるので好ましくない。この他インヒ
ビター構成元素として知られているCu,Cr,Ni,
B,Nb等を微量に含有することは差し支えない。
Further, it is preferable that 0.005 to 1.00% of each of Sb, Sn, and P is contained in an amount of 0.005 to 1.00% in order to improve magnetic properties. Sb, Sn, and P are grain boundary segregation elements and have an effect of suppressing grain growth. By adding these elements, secondary recrystallization can be performed even if the amount of nitriding after decarburization annealing is reduced. This means that a good secondary recrystallized structure can be obtained with a small amount of N after the final annealing in a short time, which is advantageous in terms of iron loss characteristics. Addition of less than 0.01% of Sb, Sn, and P is not sufficient for suppressing grain boundary migration, and if more than 1.00%,
It is not preferable because it adversely affects brittleness. In addition, Cu, Cr, Ni, which are known as inhibitor constituent elements,
There is no problem in containing a small amount of B, Nb, etc.

【0030】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。加熱されたスラ
ブは、引き続き熱延されて熱延板となる。この熱延方法
については、特に限定されるものではないが、熱延の終
了温度を850〜1050℃とし、熱延の最終了パスの
累積圧下率を40%以上とすることは、製品の磁性の場
所的バラツキを低減し、かつ磁性を向上させる上でさら
に好ましい。
The slab heating temperature was limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower. The heated slab is subsequently hot rolled to form a hot rolled plate. The hot rolling method is not particularly limited, but the hot rolling finish temperature is set to 850 to 1050 ° C., and the cumulative rolling reduction of the hot rolling finish pass is set to 40% or more. It is more preferable in terms of reducing the local variation of the above and improving the magnetism.

【0031】この熱延板は次いで、圧下率80%以上の
最終冷延を含み、必要に応じて中間焼鈍を挟む1回以上
の冷延を施す。最終冷延の圧下率を80%以上としたの
は、圧下率を上記範囲とすることによって、脱炭板にお
いて尖鋭な{110}〈001〉方位粒と、これに蚕食
されやすい対応方位粒({111}〈112〉方位粒
等)を適正量得ることができ、磁束密度を高める上で好
ましいためである。
This hot-rolled sheet is then subjected to one or more cold-rollings including a final cold-rolling with a rolling reduction of 80% or more, with intermediate annealing sandwiched as necessary. The reduction ratio of the final cold rolling is set to 80% or more because the reduction ratio is set in the above range because the sharpened {110} <001> oriented grains in the decarburized plate and the corresponding oriented grains ( This is because an appropriate amount of {111} <112> oriented grains, etc. can be obtained, which is preferable in increasing the magnetic flux density.

【0032】前記熱延後、特に限定されるものではない
が、850〜1250℃の熱延板焼鈍を施すことは、磁
気特性を高位安定化する上でさらに好ましい。この温度
域で熱処理することは、AlNの熱延板の場所的不均一
性を低減する効果がある。最終冷延後の鋼板は、通常の
方法で脱炭焼鈍、最終仕上焼鈍を施されて最終製品とな
る。ここで特に限定するものではないが、脱炭焼鈍完了
後、最終仕上焼鈍開始までの間の一次再結晶粒の平均粒
径を18〜35μmに制御することは、さらに好まし
い。その理由はこの平均粒径の範囲で良好な磁束密度が
得られやすく、かつ粒径変動に対する磁束密度の変化が
少ないからである。
After the hot rolling, although not particularly limited, it is more preferable to perform hot rolled sheet annealing at 850 to 1250 ° C. in order to stabilize the magnetic characteristics at a high level. The heat treatment in this temperature range has the effect of reducing the spatial nonuniformity of the AlN hot rolled sheet. The steel sheet after the final cold rolling is subjected to decarburization annealing and final finishing annealing by a usual method to obtain a final product. Although not particularly limited here, it is more preferable to control the average particle size of the primary recrystallized grains to 18 to 35 μm after the completion of decarburization annealing and before the start of final finish annealing. The reason is that it is easy to obtain a good magnetic flux density in this range of the average particle size, and the change of the magnetic flux density due to the particle size variation is small.

【0033】そして、脱炭焼鈍に引き続き、600〜1
000℃の温度範囲で鋼板に増窒素量で、0.0005
%以上の窒化処理を施すと規定したのは、本発明の如
く、N,Sがスラブで極端に少ない鋼を用いて、二次再
結晶を生ぜしめるには、窒化によるインヒビターの補強
が有効であり、かつ、600〜1000℃の温度範囲で
処理すると、粒界析出が主になり、同じ窒化量でのイン
ヒビターとしての効率が高いためである。この増窒素量
が0.0005%未満では、このインヒビター効果が十
分でなく好ましくない。
Then, after decarburization annealing, 600 to 1
The amount of nitrogen added to the steel plate in the temperature range of 000 ° C is 0.0005
%, The nitriding treatment is specified to be carried out. As in the present invention, reinforcement of the inhibitor by nitriding is effective for causing secondary recrystallization by using a steel having a very small N and S slab. This is because when the treatment is performed in the temperature range of 600 to 1000 ° C., grain boundary precipitation mainly occurs and the efficiency as an inhibitor is high with the same nitriding amount. If the amount of nitrogen increase is less than 0.0005%, this inhibitory effect is not sufficient, which is not preferable.

【0034】この上限値は、特に限定しないが、0.3
000%以上窒化すると、本発明の如く、短時間で最終
仕上焼鈍を施す場合には、製品に窒化物が多く残留し
て、鉄損特性を劣化させて好ましくない。また、窒化温
度の規定理由を述べると、600℃未満では、窒化処理
に時間がかかりすぎて、好ましくなく、1000℃を超
えると粒界析出の割合が低下して好ましくない。
The upper limit value is not particularly limited, but is 0.3.
Nitriding of 000% or more is not preferable because when a final finish annealing is performed in a short time as in the present invention, a large amount of nitride remains in the product and iron loss characteristics deteriorate. Further, the reason for defining the nitriding temperature will be described. If the temperature is lower than 600 ° C, the nitriding treatment takes too long, which is not preferable, and if it exceeds 1000 ° C, the ratio of grain boundary precipitation is lowered, which is not preferable.

【0035】この窒化の方法としては特に限定するもの
ではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3 ガス
を混入させて窒化する方法、プラズマを用いる方法、鋼
板表面に窒化物を塗布し、焼鈍する方法、N2 を含む雰
囲気中で焼鈍する方法等何れの方法でもよい。
The method of nitriding is not particularly limited, and after decarburizing and annealing, a method of nitriding by subsequently mixing NH 3 gas in an annealing atmosphere, a method of using plasma, a method of applying nitride to the surface of a steel sheet and annealing. And the method of annealing in an atmosphere containing N 2 .

【0036】次いで1000〜1300℃の温度範囲で
の連続焼鈍によって二次再結晶を生ぜしめる最終仕上焼
鈍を行うと規定したのは、本発明の目的とするところで
あり、本発明の必要条件となる。1000℃未満で短時
間で二次再結晶粒で鋼板全体を覆うことは困難であり、
1300℃超では、インヒビターの分解等が顕著に起こ
り、その結果、二次再結晶方位粒の{110}〈00
1〉集積度を高位に保ち難く好ましくない。
Next, it is an object of the present invention that the final finishing annealing that causes secondary recrystallization is performed by continuous annealing in the temperature range of 1000 to 1300 ° C., which is a necessary condition of the present invention. . It is difficult to cover the entire steel sheet with secondary recrystallized grains in a short time below 1000 ° C,
If it exceeds 1300 ° C, the decomposition of the inhibitor occurs remarkably, and as a result, the {110} <00
1> It is not preferable because it is difficult to keep the degree of integration high.

【0037】焼鈍時間については特に限定するものでは
ないが、温度が低めの場合には、時間をかける必要が生
じる。しかしながら、10時間以上かけることは工業的
には好ましくなく、10分以内で完了することが望まし
い。この最終仕上焼鈍後、不純物が例えばN量で0.0
050%以上残存する場合には、1100〜1300℃
の温度範囲で水素分圧25%以上の雰囲気ガス中で、不
純物の純化焼鈍を施すことは、鉄損特性を改善する点
で、さらに好ましい。
The annealing time is not particularly limited, but it takes a long time when the temperature is low. However, it is not industrially preferable to take 10 hours or more, and it is desirable to complete the process within 10 minutes. After this final finish annealing, impurities such as N amount of 0.0
When 050% or more remains, 1100 to 1300 ° C
It is more preferable to carry out purification annealing of impurities in an atmosphere gas having a hydrogen partial pressure of 25% or more in the temperature range of 1) from the viewpoint of improving iron loss characteristics.

【0038】1100℃未満では、純化に時間がかかり
すぎて好ましくなく、1300℃超では、焼鈍設備の点
で、コストアップとなってしまい好ましくない。雰囲気
ガス中の水素分圧を25%未満とすると純化に時間がか
かりすぎて好ましくない。水素分圧の上限は特に規定す
るものではなく、一般に、水素分圧が高い程純化が容易
となる。水素ガス以外のガスは、N2 ,Ar等でかまわ
ない。
If it is less than 1100 ° C., it takes too much time for purification, and if it exceeds 1300 ° C., it is not preferable because the cost of annealing equipment increases. If the hydrogen partial pressure in the atmosphere gas is less than 25%, purification takes too much time, which is not preferable. The upper limit of the hydrogen partial pressure is not particularly specified, and generally, the higher the hydrogen partial pressure, the easier the purification. Gas other than hydrogen gas may be N 2 , Ar or the like.

【0039】[0039]

【実施例】【Example】

実施例1 C=0.051%、Si=3.28%、酸可溶性Al=
0.018%、N=0.0012%、S=0.0007
%を含有し、残部Fe及び不可避的不純物からなる40
mmのスラブを作成した。そして1150℃の温度で60
分均熱した後熱延して、2.3mm厚の熱延板とした。か
かる熱延板に1100℃に10秒保持した後900℃に
30秒保持した後、急冷する熱延板焼鈍を施した。しか
る後約88%の強圧下圧延を行って最終板厚0.285
mmの冷延板とした。
Example 1 C = 0.051%, Si = 3.28%, acid-soluble Al =
0.018%, N = 0.0012%, S = 0.007
%, With the balance being Fe and unavoidable impurities 40
Created a mm slab. And 60 at a temperature of 1150 ° C
After soaking and soaking, the hot-rolled sheet was 2.3 mm thick. The hot-rolled sheet was held at 1100 ° C. for 10 seconds, then at 900 ° C. for 30 seconds, and then subjected to hot-rolled sheet annealing for rapid cooling. Then, about 88% strong reduction rolling is performed to obtain a final plate thickness of 0.285.
mm cold rolled sheet.

【0040】この冷延板を810℃に90秒保持する脱
炭焼鈍を施し、次いで、以下の3種類の処理を施した。
750℃に30秒保持する焼鈍時、焼鈍雰囲気中にN
3ガスを混入させ鋼板に窒素吸収を生ぜしめた。この
窒化処理後の鋼板のNは0.0045%であった。N
2 :75%、H2 :25%の焼鈍雰囲気中で、800℃
×1hr(均熱)の焼鈍を施した。この焼鈍後の鋼板のN
は、0.0043%であった。処理を行わなかった。
This cold-rolled sheet was subjected to decarburizing annealing at 810 ° C. for 90 seconds, and then subjected to the following three types of treatments.
During annealing at 750 ° C for 30 seconds, N in the annealing atmosphere
Nitrogen absorption was caused to the steel sheet is mixed with H 3 gas. The N of the steel sheet after this nitriding treatment was 0.0045%. N
800 ° C in an annealing atmosphere of 2 : 75% and H 2 : 25%
Annealing was performed for x 1 hr (soaking). N of the steel sheet after this annealing
Was 0.0043%. No treatment was done.

【0041】これら〜の処理後の鋼板を(a)平板
状、(b)内径500mm相当のわん曲面に鋼板を固定の
2条件で1180℃×5分(均熱)の最終仕上焼鈍を施
し、しかる後850℃×4hr(均熱)なる歪取り焼鈍と
張力コーティングを施した。この歪取り焼鈍後の状態で
の鋼板のN量はの条件で0.0030%、の条件で
0.0028%、の条件で0.0006%であった。
これらの条件での磁気特性を表2に示す。
The steel sheets after these treatments are subjected to final finishing annealing at 1180 ° C. for 5 minutes (soaking) under the two conditions of (a) flat plate shape, and (b) fixing the steel sheet to a curved surface having an inner diameter of 500 mm. Thereafter, strain relief annealing and tension coating at 850 ° C. × 4 hr (uniform heating) were applied. The N content of the steel sheet after the stress relief annealing was 0.0030% under the condition, 0.0028% under the condition, and 0.0006% under the condition.
Table 2 shows the magnetic characteristics under these conditions.

【0042】[0042]

【表2】 [Table 2]

【0043】表2から明らかなように窒化処理を施し、
かつ平板状(連続焼鈍相当)で二次再結晶を行わしめた
ものが良好な磁気特性を示している。
As is clear from Table 2, nitriding treatment was performed,
In addition, a plate (corresponding to continuous annealing) that has been subjected to secondary recrystallization exhibits good magnetic properties.

【0044】実施例2 C=0.050%、Si=3.25%、酸可溶性Al=
0.017%、N=0.0013%、S=0.0010
%を含有し、さらにSb=0.10%添加、Sn=
0.15%添加、P=0.10%添加、Sb=0.
05%添加、Sn=0.06%添加、Sn=0.07
%添加、P=0.05%添加、Sb=0.05%添
加、P=0.07%添加、Sb=0.07%添加、S
n=0.07%添加、P=0.07%添加、添加な
し、残部Fe及び不可避的不純物からなる40mmのスラ
ブを作成した。そして1150℃の温度で60分均熱し
た後熱延して、2.3mm厚の熱延板とした。
Example 2 C = 0.050%, Si = 3.25%, acid-soluble Al =
0.017%, N = 0.0013%, S = 0.0010
%, Sb = 0.10% added, Sn =
0.15% addition, P = 0.10% addition, Sb = 0.
05% addition, Sn = 0.06% addition, Sn = 0.07
% Addition, P = 0.05% addition, Sb = 0.05% addition, P = 0.07% addition, Sb = 0.07% addition, S
A 40 mm slab consisting of n = 0.07% addition, P = 0.07% addition, no addition, balance Fe and unavoidable impurities was prepared. Then, after soaking at a temperature of 1150 ° C. for 60 minutes, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.3 mm.

【0045】かかる熱延板に1100℃に10秒保持し
た後900℃に30秒保持した後700℃まで空冷して
から急冷する熱延板焼鈍を施した。しかる後約90%の
強圧下圧延を行って最終板厚0.220mmの圧延板とし
た。この冷延板を810℃に90秒保持する脱炭焼鈍を
施し、次いで、750℃に30秒保持する焼鈍時、焼鈍
雰囲気中にNH3 ガスを混入させ鋼板に窒素吸収を生ぜ
しめた。
The hot-rolled sheet was annealed at 1100 ° C. for 10 seconds, at 900 ° C. for 30 seconds, air-cooled to 700 ° C., and then rapidly cooled. Then, about 90% strong reduction rolling was performed to obtain a rolled sheet having a final sheet thickness of 0.220 mm. The cold-rolled sheet was subjected to decarburizing annealing at 810 ° C. for 90 seconds, and then, at the time of annealing at 750 ° C. for 30 seconds, NH 3 gas was mixed into the annealing atmosphere to cause nitrogen absorption in the steel sheet.

【0046】この窒化処理において、NH3 ガス量を調
整し、窒化後のN量を成分〜に対して、(a)0.
0031%、成分に対して(b)0.0045%とし
た。しかる後、鋼板を平板状で1150℃×5分(均
熱)の最終仕上焼鈍を施し、しかる後歪取り焼鈍と張力
コーティングを施した。この歪取り焼鈍後の状態での鋼
板のN量は(a)の条件で0.0015〜0.0020
%、(b)の条件で0.0031〜0.0037%であ
った。これらの条件での磁気特性を表3に示す。表3か
ら明らかなように、Sb,Sn,Pの1種または2種以
上を添加し、かつ窒化量を少なめにしたものが、鉄損特
性が特に良好となっている。
In this nitriding treatment, the amount of NH 3 gas was adjusted, and the amount of N after nitriding was set to (a) 0.
0031% and (b) 0.0045% with respect to the components. After that, the steel sheet was subjected to final finishing annealing at 1150 ° C. for 5 minutes (soaking) in a flat plate shape, and then subjected to strain relief annealing and tension coating. The N content of the steel sheet after the strain relief annealing is 0.0015 to 0.0020 under the condition (a).
%, 0.0031 to 0.0037% under the condition of (b). Table 3 shows the magnetic characteristics under these conditions. As is clear from Table 3, iron loss characteristics are particularly good when one or more of Sb, Sn and P are added and the amount of nitriding is reduced.

【0047】[0047]

【表3】 [Table 3]

【0048】実施例3 実施例2の条件で最終仕上焼鈍を施した後、H2 100
%雰囲気中で1200℃×5hr(均熱)なる純化焼鈍を
施した。次いで歪取り焼鈍と張力コーティングを施し
た。この歪取り焼鈍後の状態での鋼中N量は、いずれの
条件においても0.0001〜0.0007%であっ
た。これらの条件での磁気特性を表4に示す。表3,4
の比較から明らかなように、純化焼鈍を施すことによっ
て鉄損特性が向上している。
Example 3 After the final finishing annealing was performed under the conditions of Example 2, H 2 100 was added.
% Annealing was performed at 1200 ° C. for 5 hours (soaking). Then, strain relief annealing and tension coating were applied. The N content in the steel after this strain relief annealing was 0.0001 to 0.0007% under any of the conditions. Table 4 shows the magnetic characteristics under these conditions. Tables 3 and 4
As is clear from the comparison of, the iron loss characteristics are improved by performing the purification annealing.

【0049】[0049]

【表4】 [Table 4]

【0050】実施例4 C=0.051%、Si=3.25%、酸可溶性Al=
0.021%、N=0.0010%、S=0.0007
%を含有し、Sn=0.15%添加、Sn添加なし
で、残部Fe及び不可避的不純物からなる40mmのスラ
ブを作成した。そして1150℃の温度で60分均熱し
た後熱延して、2.3mm厚の熱延板とした。
Example 4 C = 0.051%, Si = 3.25%, acid-soluble Al =
0.021%, N = 0.0010%, S = 0.007
%, Sn = 0.15% addition, no Sn addition, a 40 mm slab consisting of balance Fe and inevitable impurities was prepared. Then, after soaking at a temperature of 1150 ° C. for 60 minutes, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.3 mm.

【0051】かかる熱延板に熱延板焼鈍を施すことな
く、約88%の強圧下圧延を行って最終板厚0.285
mmの冷延板とした。この冷延板を815℃に120秒保
持する脱炭焼鈍を施し、次いで、750℃に30秒保持
する焼鈍時、焼鈍雰囲気中にNH3 ガスを混入させ鋼板
に窒素吸収を生ぜしめた。この窒化処理後の鋼板のNは
0.0032%であった。
Without hot-rolled sheet annealing, the hot-rolled sheet was subjected to strong reduction rolling of about 88% to obtain a final sheet thickness of 0.285.
mm cold rolled sheet. This cold-rolled sheet was subjected to decarburizing annealing at 815 ° C. for 120 seconds, and then, at the time of annealing at 750 ° C. for 30 seconds, NH 3 gas was mixed into the annealing atmosphere to cause nitrogen absorption in the steel sheet. The N of the steel sheet after this nitriding treatment was 0.0032%.

【0052】次いで、この鋼板に1150℃×5分(均
熱)の最終仕上焼鈍を施し、しかる後850℃×4hr
(均熱)なる歪取り焼鈍と張力コーティングを施した。
この歪取り焼鈍後の状態での鋼板のN量は0.0023
〜0.0026%であった。これらの条件での磁気特性
を表5に示す。
Next, this steel sheet was subjected to final finish annealing at 1150 ° C. for 5 minutes (soaking), and then 850 ° C. for 4 hours.
The strain relief annealing (uniform heating) and tension coating were applied.
The N content of the steel sheet after the stress relief annealing was 0.0023.
Was 0.0026%. Table 5 shows the magnetic characteristics under these conditions.

【0053】[0053]

【表5】 [Table 5]

【0054】[0054]

【発明の効果】本発明において、スラブ中のN量,S量
を極端に低減した珪素鋼素材を有し、脱炭焼鈍後微量な
窒化を施すことにより短時間最終仕上焼鈍で製品を得る
ことができ、さらに、Sb,Sn,P添加することによ
り窒化量を少なめにできるため鉄損特性が改善でき、さ
らに、付加的に純化焼鈍を施すことにより鉄損特性が向
上するので、その工業的効果は極めて大である。
Industrial Applicability According to the present invention, a product having a silicon steel material in which the amount of N and S in the slab is extremely reduced is obtained, and a final finish annealing is performed for a short time by performing a slight amount of nitriding after decarburization annealing. In addition, the addition of Sb, Sn, and P can reduce the amount of nitriding to improve the iron loss characteristics, and the additional annealing for purification improves the iron loss characteristics. The effect is extremely large.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年7月25日[Submission date] July 25, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】以下これらの点について詳細に説明する。
元来、二次再結晶は、粒界移動の粒界性格依存性を、不
純物を使って強調せしめた現象である。従って、日本金
属学会誌第55巻第6号(1991)P630〜638
に記載されている如く、二次再結晶進行時のインヒビタ
ー強度(Zener因子(定数×析出物体積分率/析出
物サイズ))が高い程、二次再結晶方位粒の{110}
〈001〉集積度が高い。インヒビター強度を高めるに
は、通常、析出物の量を増すか、析出物サイズを細かく
する方法がとられる。析出物の量を増加させると、二次
再結晶後の不純物の純化に必要な時間が長くなったり、
必要な温度が高くなったりするため、短時間の連続焼鈍
で最終仕上焼鈍を行うのには不適当である。
These points will be described in detail below.
Originally, secondary recrystallization is a phenomenon in which the grain boundary character dependence of grain boundary migration is emphasized by using impurities. Therefore, Journal of the Japan Institute of Metals, Vol. 55, No. 6 (1991) P630-638.
As described in (1), the higher the inhibitor strength (Zener factor ( constant × precipitate integral fraction / precipitate size)) during the progress of secondary recrystallization, the {110} of the secondary recrystallization oriented grains.
<001> High degree of integration. In order to increase the inhibitor strength, usually, a method of increasing the amount of precipitates or making the precipitate size finer is used. Increasing the amount of precipitates lengthens the time required to purify impurities after secondary recrystallization,
Since the required temperature becomes high, it is unsuitable for performing final finishing annealing by short-time continuous annealing.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】一方、析出サイズを細かくする方法は、量
を増加せしめる方法よりは短時間の連続焼鈍にむいてい
る。しかしながら、この方法も量の制限を前提としてい
る。そこで、本発明者らが、検討した第三の方法は、析
出物の粒界析出と、粒界偏析の利用である。以下に、実
験結果を基に詳細に説明する。
On the other hand, the method of making the precipitation size finer is suitable for continuous annealing in a shorter time than the method of increasing the amount. However, this method is also subject to volume limitations. Therefore, the third method studied by the present inventors is the use of grain boundary precipitation of precipitates and grain boundary segregation. Below, it demonstrates in detail based on an experimental result.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】S量は、0.0050%以下とした。これ
も本発明の如く、最終仕上焼鈍を短時間で行う場合に
は、純化があまりできないので、スラブのS量を少なく
することが鉄損低減につながるためである。量の下限
については特に限定するものではないが製鋼段階でSを
0.0001%以下にすることは工業的には難しい。
The S content was set to 0.0050% or less. This is also because when the final finish annealing is performed in a short time as in the present invention, purification cannot be performed so much, and thus reducing the S content of the slab leads to a reduction in iron loss. The lower limit of the amount of S is not particularly limited, but it is industrially difficult to set S to 0.0001% or less in the steelmaking stage.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area H01F 1/16 B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.075%以下、 Si:2.2〜5.0%、 N :0.0050%以下、 S :0.0050%以下、 Al:0.005〜0.060% 残余がFe及び不可避的不純物からなるスラブを128
0℃未満の温度で加熱し、熱延し、圧下率80%以上の
最終冷延を含み、必要に応じて中間焼鈍を挟む1回以上
の冷延を施し、次いで脱炭焼鈍、最終仕上焼鈍を施して
一方向性電磁鋼板を製造する方法において、脱炭焼鈍に
引き続き、600〜1000℃の温度範囲で鋼板に増窒
素量で0.0005%以上の窒化処理を施し、次いで、
1000〜1300℃の温度範囲での連続焼鈍によっ
て、二次再結晶を生ぜしめる最終仕上焼鈍を行うことを
特徴とする磁気特性の優れた一方向性電磁鋼板の製造方
法。
1. C: 0.075% or less by weight ratio, Si: 2.2 to 5.0%, N: 0.0050% or less, S: 0.0050% or less, Al: 0.005 to 0 0.060% 128 slabs with the balance being Fe and unavoidable impurities
Heating at a temperature below 0 ° C, hot rolling, including final cold rolling with a rolling reduction of 80% or more, if necessary, one or more cold rollings with intermediate annealing sandwiched, then decarburizing annealing, final annealing In the method of producing a unidirectional electrical steel sheet by applying the above method, following decarburization annealing, the steel sheet is subjected to a nitriding treatment of 0.0005% or more with a nitrogen increase amount in a temperature range of 600 to 1000 ° C., and then,
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises performing final finishing annealing that causes secondary recrystallization by continuous annealing in a temperature range of 1000 to 1300 ° C.
【請求項2】 Sb,Sn,Pの1種または2種以上を
各々0.005〜1.00重量%含有するスラブを用い
ることを特徴とする請求項1記載の磁気特性の優れた一
方向性電磁鋼板の製造方法。
2. A unidirectional excellent magnetic property according to claim 1, wherein a slab containing 0.005 to 1.00% by weight of one or more of Sb, Sn and P is used. For manufacturing high-performance electrical steel sheet.
【請求項3】 二次再結晶を生ぜしめた最終仕上焼鈍に
引き続き、1100〜1300℃の温度範囲で水素分圧
25%以上の雰囲気ガス中で、不純物の純化焼鈍を施す
ことを特徴とする請求項1または2記載の磁気特性の優
れた一方向性電磁鋼板の製造方法。
3. Purification annealing of impurities is carried out in an atmosphere gas having a hydrogen partial pressure of 25% or more in a temperature range of 1100 to 1300 ° C., following the final finishing annealing that causes secondary recrystallization. The method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1.
JP5099817A 1993-04-26 1993-04-26 Production of grain-oriented magnetic steel sheet excellent in magnetic property Withdrawn JPH06306473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5099817A JPH06306473A (en) 1993-04-26 1993-04-26 Production of grain-oriented magnetic steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5099817A JPH06306473A (en) 1993-04-26 1993-04-26 Production of grain-oriented magnetic steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH06306473A true JPH06306473A (en) 1994-11-01

Family

ID=14257400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5099817A Withdrawn JPH06306473A (en) 1993-04-26 1993-04-26 Production of grain-oriented magnetic steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH06306473A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046413A1 (en) * 1998-03-10 1999-09-16 Acciai Speciali Terni S.P.A Process for the production of grain oriented electrical steel strips
JP2001506702A (en) * 1996-12-24 2001-05-22 アッキアイ スペシャリ テルニ エス.ピー.エー. Method for manufacturing oriented grain electrical steel sheet with high magnetic properties
JP2014508858A (en) * 2011-12-19 2014-04-10 ポスコ Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
US20220106657A1 (en) * 2015-12-21 2022-04-07 Posco Oriented electrical steel sheet and manufacturing method thereof
JP2023508029A (en) * 2019-12-20 2023-02-28 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506702A (en) * 1996-12-24 2001-05-22 アッキアイ スペシャリ テルニ エス.ピー.エー. Method for manufacturing oriented grain electrical steel sheet with high magnetic properties
JP4651755B2 (en) * 1996-12-24 2011-03-16 アッキアイ スペシャリ テルニ エス.ピー.エー. Method for producing oriented grain electrical steel sheet with high magnetic properties
WO1999046413A1 (en) * 1998-03-10 1999-09-16 Acciai Speciali Terni S.P.A Process for the production of grain oriented electrical steel strips
CZ299028B6 (en) * 1998-03-10 2008-04-09 Acciai Speciali Terni S. P. A. Process for the production of grain oriented electrical steel strips
JP2014508858A (en) * 2011-12-19 2014-04-10 ポスコ Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
US20220106657A1 (en) * 2015-12-21 2022-04-07 Posco Oriented electrical steel sheet and manufacturing method thereof
JP2023508029A (en) * 2019-12-20 2023-02-28 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH05295443A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP2878501B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH08176666A (en) Production of grain oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704