JP2948455B2 - Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties - Google Patents

Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties

Info

Publication number
JP2948455B2
JP2948455B2 JP5261344A JP26134493A JP2948455B2 JP 2948455 B2 JP2948455 B2 JP 2948455B2 JP 5261344 A JP5261344 A JP 5261344A JP 26134493 A JP26134493 A JP 26134493A JP 2948455 B2 JP2948455 B2 JP 2948455B2
Authority
JP
Japan
Prior art keywords
hot rolling
annealing
rolling
slab
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5261344A
Other languages
Japanese (ja)
Other versions
JPH07118745A (en
Inventor
康成 吉冨
希瑞 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5261344A priority Critical patent/JP2948455B2/en
Priority to US08/322,909 priority patent/US5472521A/en
Priority to DE69425406T priority patent/DE69425406T2/en
Priority to EP94116331A priority patent/EP0648847B1/en
Priority to KR1019940026613A priority patent/KR0139247B1/en
Publication of JPH07118745A publication Critical patent/JPH07118745A/en
Application granted granted Critical
Publication of JP2948455B2 publication Critical patent/JP2948455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表わす数値としては、通常磁場の強さ8
00A/m における磁束密度B8が使用される。また、鉄
損特性を表わす数値としては、周波数50Hzで1.7テ
スラー(T)まで磁化した時の1kg当りの鉄損W17/50
を使用している。磁束密度は、鉄損特性の最大支配因子
であり、一般的にいって磁束密度が高いほど鉄損特性が
良好になる。なお、一般的に磁束密度を高くすると二次
再結晶粒が大きくなり、鉄損特性が不良となる場合があ
る。これに対しては、磁区制御により、二次再結晶粒の
粒径に拘らず、鉄損特性の改善をすることができる。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as an iron core material for transformers and other electric equipment, and is required to have excellent magnetic properties such as excitation properties and iron loss properties. Numerical values representing the excitation characteristics include a normal magnetic field strength of 8
A magnetic flux density B 8 at 00 A / m is used. Further, as a numerical value representing the iron loss characteristic, an iron loss W 17/50 per kg when magnetized at a frequency of 50 Hz to 1.7 Tesla (T).
You are using The magnetic flux density is the largest controlling factor of the iron loss characteristics. Generally, the higher the magnetic flux density, the better the iron loss characteristics. In general, when the magnetic flux density is increased, the secondary recrystallized grains become large, and the iron loss characteristics may become poor. In contrast, by controlling the magnetic domain, the iron loss characteristics can be improved regardless of the particle size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持ったいわゆるゴス組織を発達さ
せることにより製造されている。良好な磁気特性を得る
ためには、磁化容易軸である〈001〉を圧延方向に高
度に揃えることが必要である。
[0003] This grain-oriented electrical steel sheet is manufactured by causing secondary recrystallization in the final finish annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and a <001> axis in the rolling direction. Have been. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction.

【0004】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに特公昭40−15644
号公報及び特公昭51−13469号公報記載の方法が
ある。前者においては主なインヒビターとしてMnS及
びAlNを、後者ではMnS,MnSe,Sb等を用い
ている。従って現在の技術においてはこれらのインヒビ
ターとして機能する析出物の大きさ、形態及び分散状態
を適正に制御することが不可欠である。MnSに関して
言えば、現在の工程では熱延前のスラブ加熱時にMnS
を一旦完全固溶させた後、熱延時に析出する方法がとら
れている。二次再結晶に必要な量のMnSを完全固溶す
るためには1400℃程度の温度が必要である。
[0004] As a typical production technique of such a high magnetic flux density unidirectional magnetic steel sheet, Japanese Patent Publication No. 40-15644 is disclosed.
And JP-B-51-13469. In the former, MnS and AlN are used as main inhibitors, and in the latter, MnS, MnSe, Sb and the like are used. Therefore, it is indispensable in the current technology to appropriately control the size, morphology, and dispersion state of the precipitates functioning as these inhibitors. With regard to MnS, in the current process, MnS is used during slab heating before hot rolling.
Is once dissolved completely and then precipitated during hot rolling. A temperature of about 1400 ° C. is required to completely dissolve the required amount of MnS for secondary recrystallization.

【0005】これは普通鋼のスラブ加熱温度に比べて2
00℃以上も高く、この高温スラブ加熱処理には以下に
述べるような不利な点がある。1)方向性電磁鋼専用の
高温スラブ加熱炉が必要。2)加熱炉のエネルギー原単
位が高い。3)溶融スケール量が増大し、いわゆるノロ
かき出し等に見られるように操業上の悪影響が大きい。
[0005] This is 2 times lower than the slab heating temperature of ordinary steel.
Since the temperature is higher than 00 ° C., this high-temperature slab heat treatment has the following disadvantages. 1) A high-temperature slab heating furnace dedicated to directional magnetic steel is required. 2) The unit energy consumption of the heating furnace is high. 3) The amount of the molten scale increases, and the adverse effect on the operation is large as seen in so-called scraping.

【0006】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並みに下げれば良いわけであるが、
このことは同時にインヒビターとして有効なMnSの量
を少なくするかあるいは全く用いないことを意味し、必
然的に二次再結晶の不安定化をもたらす。このため低温
スラブ加熱化を実現するためには何らかの形でMnS以
外の析出物等によりインヒビターを強化し、仕上焼鈍時
の正常粒成長の抑制を充分にする必要がある。
In order to avoid such a problem, the heating temperature of the slab may be reduced to the level of ordinary steel.
This means at the same time that the amount of MnS effective as an inhibitor is reduced or not used at all, which necessarily leads to instability of secondary recrystallization. Therefore, in order to realize low-temperature slab heating, it is necessary to reinforce the inhibitor with a precipitate other than MnS in some form, and to sufficiently suppress normal grain growth during finish annealing.

【0007】このようなインヒビターとしては硫化物の
他、窒化物、酸化物及び粒界析出元素等が考えられ、公
知の技術として例えば次のようなものがあげられる。特
公昭54−24685号公報ではAs,Bi,Sn,S
b等の粒界偏析元素を鋼中に含有することにより、スラ
ブ加熱温度を1050〜1350℃の範囲にする方法が
開示され、特開昭52−24116号公報ではAlの
他、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の
窒化物生成元素を含有することによりスラブ加熱温度を
1100〜1260℃の範囲にする方法を開示してい
る。また、特開昭57−158322号公報ではMn含
有量を下げ、Mn/Sの比率を2.5以下にすることに
より低温スラブ加熱化を行い、さらにCuの添加により
二次再結晶を安定化する技術を開示している。
[0007] In addition to sulfides, nitrides, oxides, and intergranular precipitation elements can be considered as such inhibitors. Known techniques include, for example, the following. In Japanese Patent Publication No. 54-24687, As, Bi, Sn, S
Japanese Patent Application Laid-Open No. 52-24116 discloses a method in which a slab heating temperature is controlled to be in the range of 1050 to 1350 ° C. by containing a grain boundary segregation element such as b in steel. A method is disclosed in which a slab heating temperature is set in a range of 1100 to 1260 ° C. by containing a nitride-forming element such as B, Nb, Ta, V, Cr, and Mo. In Japanese Patent Application Laid-Open No. 57-158322, low-temperature slab heating is performed by lowering the Mn content and the Mn / S ratio to 2.5 or less, and further, the secondary recrystallization is stabilized by adding Cu. To disclose the technology.

【0008】これらインヒビターの補強と組み合わせて
金属組織の側から改良を加えた技術も開示された。すな
わち特開昭57−89433号公報ではMnに加えS,
Se,Sb,Bi,Pb,Sn,B等の元素を加え、こ
れにスラブの柱状晶率と二次冷延圧下率を組み合わせる
ことにより1100〜1250℃の低温スラブ加熱化を
実現している。さらに特開昭59−190324号公報
ではSあるいはSeに加え、Al及びBと窒素を主体と
してインヒビターを構成し、これに冷延後の一次再結晶
焼鈍時にパルス焼鈍を施すことにより二次再結晶を安定
化する技術を公開している。
[0008] Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S,
By adding elements such as Se, Sb, Bi, Pb, Sn, and B, and combining the columnar crystal ratio of the slab and the secondary cold rolling reduction, a low-temperature slab heating of 1100 to 1250 ° C. is realized. Further, in JP-A-59-190324, an inhibitor is constituted mainly of Al, B and nitrogen in addition to S or Se, and this is subjected to pulse annealing at the time of primary recrystallization annealing after cold rolling to perform secondary recrystallization. The technology to stabilize is disclosed.

【0009】このように方向性電磁鋼板製造における低
温スラブ加熱化実現のためには、これまでに多大な努力
が続けられてきている。さらに、特開昭59−5652
2号公報においてはMnを0.08〜0.45%、Sを
0.007%以下にすることにより低温スラブ加熱化を
可能にする技術が開示された。この方法により高温スラ
ブ加熱時のスラブ結晶粒粗大化に起因する製品の線状二
次再結晶不良発生の問題が解消された。
As described above, great efforts have been made so far to realize the low-temperature slab heating in the production of grain-oriented electrical steel sheets. Further, JP-A-59-5652
No. 2 discloses a technology that enables low-temperature slab heating by reducing Mn to 0.08 to 0.45% and S to 0.007% or less. By this method, the problem of occurrence of defective linear secondary recrystallization of a product due to coarsening of slab crystal grains during heating of a high-temperature slab was solved.

【0010】[0010]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としているもの
の、当然のことながら良好な磁気特性を安定して得る技
術でなければ、工業化できない。本発明者らは、低温ス
ラブ加熱の工業化のため、最終仕上焼鈍前の一次再結
晶の平均粒径制御と、熱延後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施すことを柱とす
る技術を構築してきた。この窒化処理により形成される
窒化物は、二次再結晶開始時点では、主にAlNになっ
ている。高温で変化しにくいインヒビターとして、Al
Nを選択しているわけであり、その意味において、スラ
ブ中にAlが含有されることは必須条件となる。
The method using the low-temperature slab heating originally aims at reducing the manufacturing cost, but it cannot be industrialized unless it is a technique to obtain good magnetic properties stably as a matter of course. The present inventors, for industrialization of low-temperature slab heating, control of the average grain size of primary recrystallization before final finish annealing, and nitriding treatment of steel sheet after hot rolling and before the start of secondary recrystallization of final finish annealing. Has been built as a pillar. The nitride formed by this nitriding treatment is mainly AlN at the start of the secondary recrystallization. Al as an inhibitor that does not change easily at high temperatures
N is selected, and in that sense, it is an essential condition that Al is contained in the slab.

【0011】他方、スラブ中にNが必要以上に含有され
ることは、本技術体系からして、再考の余地があった。
つまり、スラブ中に必須のAlと、ある程度以上のN量
があれば、スラブ加熱から脱炭焼鈍までの工程で、Al
Nが形成され、脱炭焼鈍時の一次再結晶粒の粒成長に影
響を与えることとなる。本発明の目的は、この上工程で
のAlNの析出制御方策を検討し、低温スラブ加熱で、
かつ、熱延板焼鈍を省略して、なお優れた特性を有する
一方向性電磁鋼板の製造方法を提供することにある。
On the other hand, the fact that the slab contains N more than necessary has room for reconsideration in view of the present technical system.
In other words, if there is essential Al and a certain amount of N in the slab, in the process from slab heating to decarburizing annealing, Al
N is formed and affects the grain growth of primary recrystallized grains during decarburizing annealing. The purpose of the present invention is to examine a control method of AlN precipitation in the above process, and to perform low-temperature slab heating,
Another object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet having excellent properties by omitting hot-rolled sheet annealing.

【0012】[0012]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。 (1)重量比で、C:0.075%以下、Si:2.2
〜4.5%、酸可溶性Al:0.010〜0.060%、
N:0.0130%以下、S+0.405Se:0.0
14%以下、Mn:0.05〜0.8%を含有し、残部
がFe及び不可避的不純物からなるスラブを1280℃
未満の温度で加熱し、熱延を行い、引き続き熱延板焼鈍
を施すことなく、圧下率80%以上の最終強圧下冷延を
行い、次いで、脱炭焼鈍、最終仕上焼鈍を施して一方向
性電磁鋼板を製造する方法において、粗熱延の累積圧下
率を60%以上とし、粗熱延と仕上熱延の間の時間を1
秒以上とし、スラブの酸可溶性Al,Nの含有量(重量
%)、仕上熱延の開始温度FoT(℃)を下記(1)式
の範囲に制御し、脱炭焼鈍完了後、最終仕上焼鈍開始ま
での一次再結晶粒の平均粒径を18〜35μmとし、熱
延後、最終仕上焼鈍の二次再結晶開始までの間に鋼板に
0.0010重量%以上の窒素吸収を行わせる窒化処理
を施すことを特徴とする磁気特性の優れた一方向性電磁
鋼板の安定製造方法。 800 ≦FoT(℃)≦900 +9500×{Al(%)−(27/14)×N(%)}…(1) 但し、Al:酸可溶性Al (2)前項において、スラブの成分としてさらにSn:
0.01〜0.15%を含有せしめることを特徴とする
磁気特性の優れた一方向性電磁鋼板の安定製造方法。
The gist of the present invention is as follows. (1) By weight ratio, C: 0.075% or less, Si: 2.2
~ 4.5%, acid soluble Al: 0.010-0.060%,
N: 0.0130% or less, S + 0.405Se: 0.0
A slab containing 14% or less, Mn: 0.05 to 0.8%, and the balance being Fe and inevitable impurities is 1280 ° C.
Heating is performed at a temperature less than or equal to, and hot rolling is performed, and then, without subjecting the hot-rolled sheet to annealing, cold rolling is performed at a final high rolling rate of 80% or more, and then decarburizing annealing and final finishing annealing are performed. In the method for producing a conductive magnetic steel sheet, the cumulative draft of the rough hot rolling is set to 60% or more, and the time between the rough hot rolling and the finish hot rolling is 1
Seconds or more, the content (% by weight) of acid-soluble Al and N in the slab and the starting temperature FoT (° C.) of the finish hot rolling are controlled within the range of the following formula (1). Nitriding treatment in which the average grain size of the primary recrystallized grains before the start is 18 to 35 μm, and after hot rolling, the steel sheet is subjected to nitrogen absorption of 0.0010% by weight or more before the secondary recrystallization of the final finish annealing is started. A stable production method of a grain-oriented electrical steel sheet having excellent magnetic properties. 800 ≦ FoT (° C.) ≦ 900 + 9500 × {Al (%) − (27/14) × N (%)} (1) Al: Acid-soluble Al (2) In the preceding paragraph, Sn is further added as a component of the slab. :
A stable production method for a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by containing 0.01 to 0.15%.

【0013】[0013]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程をはさ
んでスラブとし、引き続き熱間圧延して熱延板とし、熱
延板を焼鈍することなく、次いで圧下率が80%以上と
なる最終冷延を施し、次いで、脱炭焼鈍、最終仕上焼鈍
を順次行うことによって製造される。
The grain-oriented electrical steel sheet to which the present invention is directed is:
The molten steel obtained by the conventional steelmaking method is cast by the continuous casting method or the ingot-making method, and if necessary, the slab is sandwiched by the sizing process, and subsequently hot-rolled to form a hot-rolled sheet. It is manufactured by performing final cold rolling in which the rolling reduction becomes 80% or more without annealing the rolled sheet, and then sequentially performing decarburizing annealing and final finishing annealing.

【0014】本発明者らは、熱延板焼鈍を省略した1回
冷延法で低温スラブ加熱材を製造する場合の磁性の変動
の原因とその解決策について詳細に検討した。そしてそ
の結果、スラブの酸可溶性Al量、N量に応じて仕上熱
延開始温度を制御し、粗熱延の累積圧下率、粗熱延と仕
上熱延の間の時間を制御することによって、その磁性変
動を激減できることをつきとめた。
The present inventors have studied in detail the causes of magnetic fluctuations and the solutions to the problem when a low-temperature slab heating material is manufactured by a single cold rolling method omitting hot-rolled sheet annealing. And, as a result, the acid-soluble Al amount of the slab, the finish hot rolling start temperature is controlled according to the N amount, and the cumulative rolling reduction of the rough hot rolling, and the time between the rough hot rolling and the finish hot rolling are controlled, It has been found that the magnetic fluctuation can be drastically reduced.

【0015】まず、実験結果を基に、本発明の効果を説
明する。図1に、スラブにおけるAl(%)−(27/
14)×N(%)量(但しAl:酸可溶性Al)、仕上
熱延開始温度FoT(℃)と製品の磁束密度の変動の関
係を示す。この場合、重量比で、C:0.024〜0.
035%、Si:2.5〜3.2%、酸可溶性Al:
0.026〜0.040%、N:0.0050〜0.0
078%、S:0.005〜0.007%、Mn:0.
10〜0.14%を含有し、残部Fe及び不可避的不純
物からなる250mm厚のスラブを作成した。
First, the effects of the present invention will be described based on experimental results. FIG. 1 shows Al (%)-(27 /
14) The relationship between the amount of × N (%) (where Al: acid-soluble Al), the finish hot rolling start temperature FoT (° C.), and the variation of the magnetic flux density of the product. In this case, C: 0.024-0.
035%, Si: 2.5 to 3.2%, acid-soluble Al:
0.026 to 0.040%, N: 0.0050 to 0.0
078%, S: 0.005 to 0.007%, Mn: 0.
A 250 mm thick slab containing 10 to 0.14%, the balance being Fe and unavoidable impurities was prepared.

【0016】そして1050〜1250℃の温度に約9
0分保持した後、7パスで粗熱延を行い、40mm厚と
し、次いで6パスで仕上熱延を行い、2.3mm厚の熱延
板とした。この熱延において、粗熱延でのパス間に水冷
を施したり、パス間時間を変更したり、粗熱延と仕上熱
延の間の時間を積極的に変更し、仕上熱延開始温度を広
範囲にとった。
Then, the temperature of about 1050 to 1250 ° C.
After holding for 0 minutes, rough hot rolling was performed in 7 passes to obtain a thickness of 40 mm, and then finishing hot rolling was performed in 6 passes to obtain a 2.3 mm thick hot rolled sheet. In this hot rolling, water cooling is performed between passes in rough hot rolling, the time between passes is changed, the time between rough hot rolling and finish hot rolling is positively changed, and the finish hot rolling start temperature is changed. Taken extensively.

【0017】かかる熱延板に熱延板焼鈍を施すことなく
約85%の圧下率で強圧下圧延を行って最終板厚0.3
35mmの冷延板とし、810℃、820℃、83
0℃、840℃の各温度に150秒保持する4条件の
脱炭焼鈍を施し、次いで、750℃に30秒保持する焼
鈍時、焼鈍雰囲気中にNH3 ガスを混入させ、鋼板に窒
素吸収を生ぜしめた。
The hot-rolled sheet is subjected to strong rolling at a rolling reduction of about 85% without subjecting the hot-rolled sheet to annealing to obtain a final sheet thickness of 0.3%.
35 mm cold rolled sheet, 810 ° C, 820 ° C, 83
Four conditions of decarburizing annealing at 150 ° C. and 150 ° C. for 150 seconds, and then annealing at 750 ° C. for 30 seconds, mixing NH 3 gas into the annealing atmosphere to absorb nitrogen into the steel sheet. I was born.

【0018】この窒化処理後のN量は0.0194〜
0.0247重量%であり、一次再結晶粒の平均粒径
(円相当直径の平均値)は、20〜28μmであった。
かかる窒化処理後の鋼板にMgOを主成分とする焼鈍分
離剤を塗布し、最終仕上焼鈍を行った。しかる後、製品
の磁束密度を測定し、同一成分、同一熱延条件の熱延板
に対してとった4つの脱炭焼鈍条件でのB8 の最高値と
最低値の差ΔB8 を求めた。
The amount of N after the nitriding treatment is 0.0194 to
0.0247% by weight, and the average particle size of primary recrystallized grains (average value of equivalent circle diameters) was 20 to 28 μm.
An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed. Thereafter, the magnetic flux density of the product was measured, and the difference ΔB 8 between the highest value and the lowest value of B 8 under the four conditions of decarburization annealing obtained for the hot-rolled sheet having the same components and the same hot-rolling conditions was determined. .

【0019】図1から明らかなように、800≦FoT
(℃)≦900+9500×{Al(%)−(27/1
4)×N(%)}の範囲で、ΔB8 ≦0.02Tとな
り、安定した磁気特性となっている。図1に示したスラ
ブの酸可溶性Al,Nの量に対応して仕上熱延開始温度
を制御する効果のメカニズムについて、必ずしも明らか
ではないが、本発明者らは、以下のように推定してい
る。
As is apparent from FIG. 1, 800 ≦ Fot
(° C) ≦ 900 + 9500 × ΔAl (%) − (27/1
4) In the range of × N (%)}, ΔB 8 ≦ 0.02T, and stable magnetic characteristics are obtained. The mechanism of the effect of controlling the finish hot rolling start temperature in accordance with the amounts of the acid-soluble Al and N in the slab shown in FIG. 1 is not necessarily clear, but the present inventors presume as follows. I have.

【0020】本発明は、本発明者らが特開平2−182
866号公報で開示した脱炭焼鈍後の結晶組織を適切な
ものにすることを基本とする技術体系に属する。一方、
スラブ加熱完了時に固溶していたNは、熱延中、または
脱炭焼鈍時(特に昇温時)微細な窒化物(主にAlN)
となると考えられる。この微細な窒化物は、脱炭焼鈍時
のわずかの温度変化においても、サイズ、析出量が変動
すると考えられる。
The present invention relates to a method disclosed by the present inventors in JP-A-2-182.
It belongs to a technical system disclosed in Japanese Patent Publication No. 866 which is based on making the crystal structure after decarburization annealing appropriate. on the other hand,
N dissolved in the slab at the time of completion of slab heating is fine nitride (mainly AlN) during hot rolling or during decarburizing annealing (especially during heating).
It is thought that it becomes. It is considered that the size and the amount of precipitation of this fine nitride fluctuate even with a slight temperature change during decarburization annealing.

【0021】しかしながら、析出物による粒成長抑制効
果(Zener因子)は、析出物のサイズに逆比例し、
その体積分率に比例する。従って、スラブ加熱完了時の
固溶N量を減少しすぎても、析出物の粒成長抑制効果が
小さくなりすぎ、その結果、脱炭焼鈍時の粒成長が顕著
になりすぎ、結晶組織の制御が困難となる。
However, the grain growth suppressing effect (Zener factor) of the precipitate is inversely proportional to the size of the precipitate.
It is proportional to its volume fraction. Therefore, even if the amount of solute N at the time of completion of slab heating is excessively reduced, the effect of suppressing grain growth of precipitates becomes too small, and as a result, the grain growth during decarburization annealing becomes too remarkable, and the control of the crystal structure Becomes difficult.

【0022】図1における800≦FoT(℃)≦90
0+9500×{Al(%)−(27/14)×N
(%)}は、スラブの酸可溶性Al量、N量に応じて、
仕上熱延開始温度を規定することを意味する。ここで、
Al(%)−(27/14)×N(%)が大きい程、仕
上熱延開始時の固溶N量は減少するので、固溶N量が少
ない成分系の場合、仕上熱延開始温度の許容範囲が広い
ことを意味する。FoTの下限は、AlNの析出の観点
よりむしろ熱延時の再結晶の点から理解される。つまり
800℃未満の温度で仕上熱延を行った場合、熱延再結
晶が生じ難く、この結果磁気特性が不安定となるものと
考えられる。
800 ≦ FoT (° C.) ≦ 90 in FIG.
0 + 9500 × {Al (%) − (27/14) × N
(%)} Depends on the amount of acid-soluble Al and N in the slab,
This means that the hot rolling start temperature is set. here,
The larger the ratio of Al (%)-(27/14) × N (%), the smaller the amount of solute N at the start of hot-rolling for finishing. Means that the tolerance is wide. The lower limit of FoT is understood from the viewpoint of recrystallization during hot rolling rather than from the viewpoint of precipitation of AlN. That is, when the finish hot rolling is performed at a temperature of less than 800 ° C., it is considered that hot rolling recrystallization hardly occurs, and as a result, the magnetic properties become unstable.

【0023】次に本発明の構成要件の限定理由について
述べる。先ず、スラブの成分と、スラブ加熱温度に関し
て限定理由を詳細に説明する。Cは、多くなりすぎると
脱炭焼鈍時間が長くなり経済的でないので0.075重
量%(以下単に%と略述)以下とした。なお磁気特性の
面で特に好ましい範囲は0.020〜0.070%であ
る。Siは4.5%を超えると冷延時の割れが著しくな
るので4.5%以下とした。又、2.2%未満では素材
の固有抵抗が低すぎ、トランス鉄心材料として必要な低
鉄損が得られないので2.2%以上とした。
Next, the reasons for limiting the constituent elements of the present invention will be described. First, the reasons for limiting the components of the slab and the slab heating temperature will be described in detail. If C is excessively large, the decarburizing annealing time becomes long and it is not economical. Therefore, the content of C is set to 0.075% by weight (hereinafter simply referred to as%) or less. A particularly preferable range in terms of magnetic properties is 0.020 to 0.070%. If the content of Si exceeds 4.5%, cracking at the time of cold rolling becomes remarkable, so the content is set to 4.5% or less. If it is less than 2.2%, the specific resistance of the material is too low, and a low iron loss required as a transformer core material cannot be obtained.

【0024】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)Nを確保するため、酸可溶性A
lとして0.010%以上が必要である。酸可溶性Al
が0.060%を超えると熱延板のAlNが不適切とな
り二次再結晶が不安定になるので0.060%以下とし
た。Nについては、0.0130%を超えるとブリスタ
ーと呼ばれる鋼板表面のふくれが発生するので0.01
30%以下とした。
Al is AlN necessary for stabilizing secondary recrystallization.
Alternatively, to secure (Al, Si) N, acid-soluble A
l must be 0.010% or more. Acid soluble Al
Exceeds 0.060%, the AlN of the hot-rolled sheet becomes inappropriate and secondary recrystallization becomes unstable. When N exceeds 0.0130%, blisters on the surface of the steel plate called blisters are generated.
30% or less.

【0025】MnS,MnSeが鋼中に存在しても、製
造工程の条件を適正に選ぶことによって磁気特性を良好
にすることが可能である。しかしながらSやSeが高い
と線状細粒と呼ばれる二次再結晶不良部が発生する傾向
があり、この二次再結晶不良部の発生を予防するために
は(S+0.405Se)≦0.014%とすべきであ
る。SあるいはSeが上限値を超える場合には、製造条
件をいかに変更しても二次再結晶不良部が発生する確率
が高くなり好ましくない。また最終仕上焼鈍で純化する
のに要する時間が長くなりすぎて好ましくなく、このよ
うな観点からSあるいはSeを不必要に増すことは意味
がない。
Even if MnS and MnSe are present in the steel, it is possible to improve the magnetic properties by properly selecting the conditions of the manufacturing process. However, when S or Se is high, a secondary recrystallization defective portion called linear fine grain tends to occur. To prevent the occurrence of the secondary recrystallization defective portion, (S + 0.405Se) ≦ 0.014 Should be%. If S or Se exceeds the upper limit, the probability of occurrence of a secondary recrystallization defective portion increases, no matter how the manufacturing conditions are changed, which is not preferable. In addition, the time required for purification in the final finish annealing is too long, which is not preferable. From such a viewpoint, it is meaningless to increase S or Se unnecessarily.

【0026】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、つまりストリップの側縁部が波形状となり
製品歩留りを低下させる問題が発生する。一方、Mn量
が0.8%を超えると製品の磁束密度を低下させ、好ま
しくないので、Mn量の上限を0.8%とした。
The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, the shape (flatness) of the hot rolled sheet obtained by hot rolling, that is, the side edge portion of the strip becomes corrugated, which causes a problem of lowering the product yield. On the other hand, if the Mn content exceeds 0.8%, the magnetic flux density of the product is lowered, which is not preferable. Therefore, the upper limit of the Mn content is set to 0.8%.

【0027】Snは、粒界偏析元素として知られており
粒成長を抑制する元素である。一方スラブ加熱時Snは
完全固溶しており、通常考えられる数10℃の温度差を
有する加熱時のスラブ内でも、一様に固溶していると考
えられる。従って、温度差があるにもかかわらず加熱時
のスラブ内で均一に分布しているSnは、脱炭焼鈍時の
粒成長抑制効果についても、場所的に均一に作用すると
考えられる。このため、AlNの場所的不均一に起因す
る脱炭焼鈍時の粒成長の場所的不均一を、Snは希釈す
る効果があるものと考えられる。従って、Snを添加す
ることはさらに製品の磁気特性の変動を低減させるのに
有効である。このSnの適正範囲を0.01〜0.15
%とした。この下限値未満では、粒成長抑制効果が少な
すぎて好ましくない。一方、上限値を超えると鋼板の窒
化が難しくなり、二次再結晶不良の原因となるため好ま
しくない。
Sn is an element which is known as a grain boundary segregation element and suppresses grain growth. On the other hand, Sn at the time of slab heating is considered to be completely solid-dissolved, and even in a slab at the time of heating having a temperature difference of several tens of degrees which is normally considered, a solid solution is considered. Therefore, it is considered that Sn which is uniformly distributed in the slab at the time of heating despite the temperature difference also acts on the grain growth suppressing effect at the time of decarburizing annealing uniformly in place. For this reason, it is considered that Sn has the effect of diluting the spatial nonuniformity of the grain growth during the decarburizing annealing caused by the spatial nonuniformity of the AlN. Therefore, the addition of Sn is effective in further reducing the variation in the magnetic properties of the product. The proper range of Sn is 0.01 to 0.15.
%. Below this lower limit, the effect of suppressing grain growth is undesirably too small. On the other hand, if it exceeds the upper limit, nitriding of the steel sheet becomes difficult, which causes secondary recrystallization failure, which is not preferable.

【0028】この他インヒビター構成元素として知られ
ているSb,Cu,Cr,Ni,B,Ti,Nb等を微
量に含有することはさしつかえない。特に、B,Ti,
Nb等窒化物構成元素は、スラブ加熱時の鋼中の固溶N
量を低減するために積極的に添加してもかまわない。こ
れらのAlよりNとの親和力の高い元素がある場合に
は、後述する仕上熱延開始温度を規定する式を計算する
際に、全N量から含有するB,Ti,Nbのために形成
される窒化物のN量を差し引きすることは、本発明にお
ける制御効果の精度を高める上で好ましい。スラブ加熱
温度は、普通鋼並にしてコストダウンを行うという目的
から1280℃未満と限定した。好ましくは1200℃
以下である。
In addition, trace amounts of Sb, Cu, Cr, Ni, B, Ti, Nb, etc., which are known as inhibitor constituent elements, may be contained. In particular, B, Ti,
The nitride constituent elements such as Nb are dissolved N in the steel during slab heating.
It may be added positively to reduce the amount. In the case where there is an element having a higher affinity for N than Al, when calculating a formula for defining the hot rolling start temperature to be described later, it is formed for B, Ti, and Nb contained from the total N amount. Subtracting the N content of the nitride is preferable in increasing the accuracy of the control effect in the present invention. The slab heating temperature was limited to less than 1280 ° C. for the purpose of reducing costs to the same level as ordinary steel. Preferably 1200 ° C
It is as follows.

【0029】加熱されたスラブは、引き続き熱延されて
熱延板となる。熱延工程は、通常100〜400mm厚の
スラブを加熱した後、いずれも複数回のパスで行う粗熱
延と仕上熱延よりなる。この粗圧延の累積圧下率を60
%以上とする必要がある。本発明の如きAlN析出制御
技術の場合、AlNの析出核としての転位を多く導入す
る必要がある。累積圧下率が60%未満ではこの転位の
導入が不十分であるので、60%以上と規定した。この
累積圧下率の上限は、特に限定されるものではなく、9
9.9%程度まで許容される。
The heated slab is subsequently hot-rolled into a hot-rolled sheet. The hot rolling process generally comprises a rough hot rolling and a finishing hot rolling, which are performed in a plurality of passes after heating a slab having a thickness of 100 to 400 mm. The cumulative rolling reduction of this rough rolling is 60
% Or more. In the case of the AlN precipitation control technique as in the present invention, it is necessary to introduce many dislocations as precipitation nuclei of AlN. If the cumulative rolling reduction is less than 60%, the introduction of the dislocations is insufficient, so it is specified as 60% or more. The upper limit of the cumulative rolling reduction is not particularly limited.
It is allowable up to about 9.9%.

【0030】粗熱延と仕上熱延のパス間時間を1秒以上
と規定した。これは、このパス間でのAlNの析出を生
ぜしめるためであり、1秒未満では、その効果が少な
い。パス間時間の上限については、特に限定するもので
はないが、1時間以上もパス間時間をとることは、生産
性の点で好ましくない。
The inter-pass time between the rough hot rolling and the finish hot rolling was specified to be 1 second or more. This is to cause the precipitation of AlN between the passes, and less than 1 second has little effect. The upper limit of the inter-pass time is not particularly limited, but taking an inter-pass time of 1 hour or more is not preferable in terms of productivity.

【0031】仕上熱延開始温度FoT(℃)を800≦
FoT(℃)≦900+9500×{Al(%)−(2
7/14)×N(%)}と規定した。これは、図1に示
すとおり、この範囲にすることが、磁気特性を安定化す
るために必要なためである。仕上熱延開始温度を上記範
囲にする方策については特に限定するものではない。ス
ラブ加熱温度を調整する方法、粗熱延のパス間時間の調
整、粗熱延と仕上熱延のパス間時間の調整、粗熱延及び
そのパス間の冷却制御、粗熱延と仕上熱延の間の保温又
は水冷等による温度制御等を実施することができる。
The finishing hot rolling start temperature FoT (° C.) is set to 800 ≦
FoT (° C.) ≦ 900 + 9500 × ΔAl (%) − (2
7/14) × N (%)}. This is because, as shown in FIG. 1, it is necessary to keep this range in order to stabilize the magnetic characteristics. There is no particular limitation on the method for setting the finish hot rolling start temperature in the above range. Method of adjusting slab heating temperature, adjustment of inter-pass time of rough hot rolling, adjustment of inter-pass time of rough hot rolling and finishing hot rolling, control of cooling between rough hot rolling and its pass, rough hot rolling and finishing hot rolling , Or temperature control by water cooling or the like.

【0032】引き続く仕上熱延は、通常4〜10パスの
高速連続圧延で行われる。通常仕上熱延の圧下配分は前
段が圧下率が高く後段に行くほど圧下率を下げて形状を
良好なものとしている。圧延速度は通常100〜300
0m/minとなっており、パス間の時間は0.01〜10
0秒となっている。
The subsequent finishing hot rolling is usually performed by high-speed continuous rolling of 4 to 10 passes. Normally, the rolling reduction of the finish hot rolling is such that the rolling reduction is higher in the former stage and the rolling reduction is lower in the latter stage so that the shape is good. Rolling speed is usually 100-300
0m / min and the time between passes is 0.01-10
0 seconds.

【0033】本発明では、仕上熱延条件を限定している
ものではないが、AlN析出を行わしめるため、本発明
の特徴の1つである仕上熱延開始温度の制御に加え、仕
上熱延終了温度を調整したり、圧下配分を調整すること
は積極的に行うべきである。AlNの析出しやすい温度
域(800〜950℃)、またはその近傍で積極的に圧
下率を高め、加工誘起析出を生ぜしめることも、AlN
析出量制御に有効な手段となる。
Although the present invention does not limit the conditions for finishing hot rolling, in order to perform AlN precipitation, in addition to controlling the starting temperature of finishing hot rolling, which is one of the features of the present invention, the finishing hot rolling is also performed. Adjusting the end temperature or adjusting the rolling reduction should be aggressive. In the temperature range (800 to 950 ° C.) where AlN is likely to be precipitated (800 to 950 ° C.) or in the vicinity thereof, the rolling reduction is positively increased to cause the work-induced precipitation.
This is an effective means for controlling the amount of precipitation.

【0034】熱延の最終パス後、鋼板は通常0.1〜1
00秒程度空冷された後水冷され300〜700℃の温
度で巻取られ、徐冷される。この冷却プロセスについて
は特に限定されるものではないが、熱延後1秒以上空冷
等を行い、鋼板をAlNの析出温度域にできるだけ長時
間保持する等の方法をAlN析出量制御に利用すること
は好ましい。
After the final pass of hot rolling, the steel sheet is usually 0.1 to 1
After air cooling for about 00 seconds, it is water cooled, wound up at a temperature of 300 to 700 ° C., and gradually cooled. The cooling process is not particularly limited, but a method of performing air cooling or the like for at least one second after hot rolling and maintaining the steel sheet in the AlN precipitation temperature range for as long as possible is used for controlling the amount of AlN precipitation. Is preferred.

【0035】この熱延板は次いで、熱延板焼鈍を施すこ
となく圧下率80%以上の最終冷延を行う。最終冷延の
圧下率を80%以上としたのは、圧下率を上記範囲とす
ることによって、脱炭板において尖鋭な{110}〈0
01〉方位粒と、これに蚕食されやすい対応方位粒
({111}〈112〉方位粒等)を適正量得ることが
でき、磁束密度を高める上で好ましいためである。かか
る冷延後の鋼板は、通常の方法で脱炭焼鈍、焼鈍分離剤
塗布、最終仕上焼鈍を施されて最終製品となる。ここで
脱炭焼鈍完了後、最終仕上焼鈍開始までの間の一次再結
晶粒の平均粒径を18〜35μmに制御することは、必
要である。その理由はこの平均粒径の範囲で良好な磁束
密度が得られやすく、かつ粒径変動に対する磁束密度の
変化が少ないからである。
Next, the hot-rolled sheet is subjected to final cold rolling at a rolling reduction of 80% or more without performing hot-rolled sheet annealing. The reason why the rolling reduction of the final cold rolling is set to 80% or more is that the sharpening {110} <0 in the decarburized plate is achieved by setting the rolling reduction within the above range.
This is because an appropriate amount of <01> orientation grains and corresponding orientation grains (e.g., {111} <112> orientation grains) easily susceptible to silkworm can be obtained, which is preferable in increasing the magnetic flux density. The steel sheet after such cold rolling is subjected to decarburizing annealing, application of an annealing separating agent, and final finish annealing by a usual method, and becomes a final product. Here, it is necessary to control the average grain size of the primary recrystallized grains from 18 to 35 μm after the completion of the decarburization annealing until the start of the final finish annealing. The reason is that a good magnetic flux density is easily obtained in the range of the average particle diameter, and the change of the magnetic flux density with respect to the fluctuation of the particle diameter is small.

【0036】そして、熱延後最終仕上焼鈍の二次再結晶
開始までの間に鋼板に窒化処理を施すと規定したのは、
本発明の如き低温スラブ加熱を前提とするプロセスで
は、二次再結晶に必要なインヒビター強度が不足がちに
なるからである。窒化の方法としては特に限定するもの
ではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3 ガス
を混入させ窒化する方法、プラズマを用いる方法、焼鈍
分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒化
物が分離してできた窒素を鋼板に吸収させる方法、最終
仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化す
る方法等いずれの方法でもよい。窒化量については二次
再結晶を安定して発現させるために10ppm 以上は必要
である。
The provision that the steel sheet is subjected to nitriding treatment after hot rolling and before the start of secondary recrystallization of final finish annealing is defined as follows.
This is because in the process based on low-temperature slab heating as in the present invention, the inhibitor strength required for secondary recrystallization tends to be insufficient. The method of nitriding is not particularly limited, but may be a method of nitriding by mixing NH 3 gas in the annealing atmosphere after decarburizing annealing, a method using plasma, adding a nitride to the annealing separator, and increasing the final finish annealing. Any method may be used, such as a method of absorbing nitrogen formed by separating nitrides in a temperature into a steel sheet, or a method of nitriding a steel sheet by increasing the N 2 partial pressure in an atmosphere of final finish annealing. The amount of nitriding is required to be 10 ppm or more in order to stably develop secondary recrystallization.

【0037】[0037]

【実施例】【Example】

実施例1 重量%で、Si:3.05%、C:0.036%、酸可
溶性Al:0.032%、N:0.0060%、Mn:
0.14%、S:0.006%を含有する250mm厚の
スラブに対して、Z(℃)=900+9500×{Al
(%)−(27/14)×N(%)}を計算したとこ
ろ、1094であった。図1より、仕上熱延開始温度を
800〜1094℃にすることが良好な磁気特性を得る
ために必要なことが予測できた。そこで、スラブ(1)
1100℃、及び、比較のために、(2)1250℃の
各温度で90分保持した後、7パスで40mm厚まで粗熱
延し(累積圧下率:84%)、しかる後、仕上熱延開始
まで、15秒空冷した後、6パスで仕上熱延を行い、
2.3mm厚の熱延板とした。この時の仕上熱延開始温度
は、各スラブ加熱温度に対して、(1)1002℃、
(2)1142℃であった。
Example 1 By weight%, Si: 3.05%, C: 0.036%, acid-soluble Al: 0.032%, N: 0.0060%, Mn:
For a 250 mm thick slab containing 0.14%, S: 0.006%, Z (° C.) = 900 + 9500 × {Al
(%) − (27/14) × N (%)} was calculated to be 1,094. From FIG. 1, it could be predicted that it is necessary to set the finish hot rolling start temperature to 800 to 1094 ° C. in order to obtain good magnetic properties. So, slab (1)
1100 ° C. and, for comparison, (2) after holding at each temperature of 1250 ° C. for 90 minutes, rough hot rolling to 40 mm thickness by 7 passes (cumulative rolling reduction: 84%), and then finishing hot rolling Until the start, after air cooling for 15 seconds, finish hot rolling in 6 passes,
A hot-rolled sheet having a thickness of 2.3 mm was obtained. The finish hot rolling start temperature at this time is (1) 1002 ° C. with respect to each slab heating temperature.
(2) It was 1142 ° C.

【0038】これらの熱延板を、酸洗し、約85%の圧
下率で冷延して、0.335mm厚の冷延板とし、81
0℃、820℃、830℃、840℃の各温度に
150秒保持する脱炭焼鈍(25%N2 +75%H2
露点62℃)を施し、しかる後、770℃で30秒保持
する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ
鋼板に窒素を吸収せしめた。窒化後の鋼板のN量は0.
0198〜0.0212%であり、鋼板の一次再結晶粒
の平均粒径は、19〜28μmであった。
These hot rolled sheets were pickled and cold rolled at a rolling reduction of about 85% to form a 0.335 mm thick cold rolled sheet.
Decarburizing annealing (25% N 2 + 75% H 2 , holding at 150 ° C., 820 ° C., 830 ° C., 840 ° C. for 150 seconds)
(Dew point: 62 ° C.). Thereafter, annealing was performed at 770 ° C. for 30 seconds, and NH 3 gas was mixed in the annealing atmosphere to absorb nitrogen into the steel sheet. The N content of the steel sheet after nitriding is 0.
0198 to 0.0212%, and the average grain size of the primary recrystallized grains of the steel sheet was 19 to 28 µm.

【0039】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、公知の方法で、最終仕上焼鈍を施
した。実験条件と磁気特性の結果を表1に示す。
Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and final finish annealing was performed by a known method. Table 1 shows the experimental conditions and the results of the magnetic characteristics.

【0040】[0040]

【表1】 [Table 1]

【0041】実施例2 重量%で、Si:2.89%、C:0.028%、酸可
溶性Al:0.029%、N:0.0068%、Mn:
0.14%、S:0.007%を含有する250mm厚の
スラブに対して、Z(℃)=900+9500×{Al
(%)−(27/14)×N(%)}を計算したとこ
ろ、1051であった。図1より、仕上熱延開始温度を
800〜1051℃にすることが良好な磁気特性を得る
ために必要なことが予測できた。そこで、(1)スラブ
を1150℃に60分保持した後、7パスで50mm厚ま
で粗熱延し(累積圧下率:80%)、しかる後、仕上熱
延開始まで、20秒空冷した後、6パスで仕上熱延を行
い、2.3mm厚の熱延板とした。この時の仕上熱延開始
温度は、1038℃であった。また、比較のため、
(2)同一成分のスラブを1150℃に60分保持した
後、7パスで60mm厚まで粗熱延し(累積圧下率:76
%)、しかる後、仕上熱延開始まで、10秒間保熱カバ
ーを鋼板にかぶせ、かつ、保熱カバーの内側のバーナー
で加熱した後、6パスで仕上熱延を行い、2.3mm厚の
熱延板とした。この時の仕上熱延開始温度は、1107
℃であった。
Example 2 Si: 2.89%, C: 0.028%, acid-soluble Al: 0.029%, N: 0.0068%, Mn:
For a 250 mm thick slab containing 0.14%, S: 0.007%, Z (° C.) = 900 + 9500 × ΔAl
(%) − (27/14) × N (%)} was calculated to be 1051. From FIG. 1, it could be predicted that it is necessary to set the finish hot rolling start temperature to 800 to 1051 ° C. in order to obtain good magnetic properties. Therefore, (1) After holding the slab at 1150 ° C. for 60 minutes, it was roughly hot-rolled to a thickness of 50 mm in 7 passes (cumulative rolling reduction: 80%), and then air-cooled for 20 seconds until the finish hot rolling was started. Finish hot rolling was performed in 6 passes to obtain a 2.3 mm thick hot rolled sheet. The hot rolling start temperature at this time was 1038 ° C. Also, for comparison,
(2) After holding the slab of the same component at 1150 ° C. for 60 minutes, it was roughly hot-rolled to a thickness of 60 mm in 7 passes (cumulative rolling reduction: 76
%), After that, until the start of the finish hot rolling, cover the steel sheet with the steel sheet for 10 seconds, and heat it with the burner inside the heat keep cover. Then, finish hot rolling in 6 passes, and make a 2.3 mm thick sheet. A hot rolled sheet was used. The hot rolling start temperature at this time was 1107
° C.

【0042】これらの熱延板に熱延板焼鈍を施すことな
く酸洗し、約85%の圧下率で冷延して、0.335mm
厚の冷延板とした。しかる後、810℃、820
℃、830℃、840℃の各温度に150秒保持す
る脱炭焼鈍(25%N2 +75%H2 、露点60℃)を
施し、しかる後、750℃で30秒保持する焼鈍を行
い、焼鈍雰囲気中にNH3 ガスを混入させ鋼板に窒素を
吸収せしめた。窒化後の鋼板のN量は0.0215〜
0.0228%であり、鋼板の一次再結晶粒の平均粒径
は、21〜30μmであった。次いで、この鋼板にMg
Oを主成分とする焼鈍分離剤を塗布し、公知の方法で、
最終仕上焼鈍を施した。実験条件と磁気特性の結果を表
2に示す。
These hot-rolled sheets were pickled without being subjected to hot-rolled sheet annealing, and cold-rolled at a rolling reduction of about 85% to obtain 0.335 mm
A thick cold rolled sheet was used. After that, 810 ° C, 820
Decarburization annealing (25% N 2 + 75% H 2 , dew point 60 ° C.) for 150 seconds at each of ℃, 830 ° C. and 840 ° C., and then annealing for 30 seconds at 750 ° C. NH 3 gas was mixed into the atmosphere to absorb nitrogen into the steel sheet. The N content of the steel sheet after nitriding is 0.0215 to
0.0228%, and the average particle size of the primary recrystallized grains of the steel sheet was 21 to 30 μm. Next, Mg was added to this steel sheet.
Apply an annealing separator containing O as a main component, and by a known method,
The final finish annealing was performed. Table 2 shows the experimental conditions and the results of the magnetic properties.

【0043】[0043]

【表2】 [Table 2]

【0044】実施例3 重量%で、Si:3.12%、C:0.034%、酸可
溶性Al:0.025%、N:0.0074%、Mn:
0.14%、S:0.007%を含有し、さらに、
(1)Sn<0.005%、(2)Sn:0.05%を
含有する150mm厚の2種類のスラブに対して、Z
(℃)=900+9500×{Al(%)−(27/1
4)×N(%)}を計算したところ、1002であっ
た。図1より、仕上熱延開始温度を800〜1002℃
にすることが良好な磁気特性を得るために必要なことが
予測できた。そこで、(A)スラブを1000℃に60
分保持した後、7パスで50mm厚まで粗熱延し(累積圧
下率:67%)、しかる後、仕上熱延開始まで、15秒
空冷した後、6パスで仕上熱延を行い、2.3mm厚の熱
延板とした。
Example 3 In terms of weight%, Si: 3.12%, C: 0.034%, acid-soluble Al: 0.025%, N: 0.0074%, Mn:
0.14%, S: 0.007%,
For two 150 mm thick slabs containing (1) Sn <0.005% and (2) Sn: 0.05%, Z
(° C.) = 900 + 9500 × ΔAl (%) − (27/1
4) × N (%)} was calculated to be 1002. From FIG. 1, the finish hot rolling start temperature is 800 to 1002 ° C.
Can be predicted to be necessary to obtain good magnetic properties. Then, (A) the slab is heated to 1000 ° C for 60
After holding for a minute, the sheet was roughly hot-rolled to a thickness of 50 mm in 7 passes (cumulative rolling reduction: 67%). Thereafter, it was air-cooled for 15 seconds until the start of the finish hot rolling, followed by finish hot rolling in 6 passes. It was a hot-rolled sheet having a thickness of 3 mm.

【0045】この時の仕上熱延開始温度は、895℃で
あった。また、比較のため、(B)同一成分のスラブを
1000℃に60分保持した後、7パスで65mm厚まで
粗熱延し(累積圧下率:57%)、しかる後、仕上熱延
開始まで、15秒空冷した後、6パスで仕上熱延を行
い、2.3mm厚の熱延板とした。この時の仕上熱延開始
温度は、923℃であった。さらに、比較のため、
(C)同一成分のスラブを1000℃に60分保持した
後、7パスで30mm厚まで粗熱延し(累積圧下率:80
%)、しかる後、仕上熱延開始まで、25秒水冷した
後、6パスで仕上熱延を行い、2.3mm厚の熱延板とし
た。この時の仕上熱延開始温度は、782℃であった。
The hot rolling start temperature at this time was 895 ° C. For comparison, (B) a slab of the same component was kept at 1000 ° C. for 60 minutes, and then roughly hot-rolled to a thickness of 65 mm in seven passes (cumulative rolling reduction: 57%). After air cooling for 15 seconds, finish hot rolling was performed in 6 passes to obtain a 2.3 mm thick hot rolled sheet. The hot rolling start temperature at this time was 923 ° C. Furthermore, for comparison,
(C) After maintaining a slab of the same component at 1000 ° C. for 60 minutes, it is roughly hot-rolled to a thickness of 30 mm in 7 passes (cumulative rolling reduction: 80).
%), And then water-cooled for 25 seconds until the start of hot-rolling, and then hot-rolling in 6 passes to give a 2.3 mm thick hot-rolled sheet. The hot rolling start temperature at this time was 782 ° C.

【0046】これらの熱延板に熱延板焼鈍を施すことな
く酸洗し、約88%の圧下率で冷延して、0.285mm
厚の冷延板とした。しかる後、810℃、820
℃、830℃、840℃の各温度に150秒保持す
る脱炭焼鈍(25%N2 +75%H2 、露点64℃)を
施し、しかる後、750℃で30秒保持する焼鈍を行
い、焼鈍雰囲気中にNH3 ガスを混入させ鋼板に窒素を
吸収せしめた。窒化後の鋼板のN量は0.0221〜
0.0239%であり、鋼板の一次再結晶粒の平均粒径
は、19〜30μmであった。次いで、この鋼板にMg
Oを主成分とする焼鈍分離剤を塗布し、公知の方法で、
最終仕上焼鈍を施した。実験条件と磁気特性の結果を表
3に示す。
These hot-rolled sheets were pickled without being subjected to hot-rolling annealing, and were cold-rolled at a rolling reduction of about 88% to obtain 0.285 mm
A thick cold rolled sheet was used. After that, 810 ° C, 820
Decarburizing annealing (25% N 2 + 75% H 2 , dew point 64 ° C.) for 150 seconds at each of ℃, 830 ° C., and 840 ° C., and then annealing for 30 seconds at 750 ° C. NH 3 gas was mixed into the atmosphere to absorb nitrogen into the steel sheet. The N content of the steel sheet after nitriding is 0.0221 to
0.0239%, and the average particle size of the primary recrystallized grains of the steel sheet was 19 to 30 μm. Next, Mg was added to this steel sheet.
Apply an annealing separator containing O as a main component, and by a known method,
The final finish annealing was performed. Table 3 shows the experimental conditions and the results of the magnetic characteristics.

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【発明の効果】本発明においては、粗熱延の累積圧下
率、粗熱延と仕上熱延間の時間を制御し、酸可溶性Al
量、N量を基に仕上熱延開始温度を制御し、一次再結晶
粒の平均粒径を制御し、熱延後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施し、さらには、
Sn添加を行うことにより、低温スラブ加熱でかつ熱延
板焼鈍を省略してもなお良好な磁気特性を安定して得る
ことができるので、その工業的効果は大である。
According to the present invention, the acid-soluble Al is controlled by controlling the cumulative draft of the rough hot rolling and the time between the rough hot rolling and the finish hot rolling.
Control the finishing hot rolling start temperature based on the amount of N and the amount of N, control the average grain size of the primary recrystallized grains, and after hot rolling, subject the steel sheet to nitriding before the start of the secondary recrystallization of the final finish annealing. Alms, and
By adding Sn, good magnetic properties can be stably obtained even with low-temperature slab heating and omission of hot-rolled sheet annealing, so that the industrial effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸可溶性Al量、N量、仕上熱延開始温度と磁
束密度の変動の関係を表わす図表である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a chart showing a relationship among an acid-soluble Al amount, an N amount, a finish hot rolling start temperature, and a change in magnetic flux density.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21D 8/12 C22C 38/00 303 C22C 38/06 H01F 1/16 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) C21D 8/12 C22C 38/00 303 C22C 38/06 H01F 1/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で C :0.075%以下、 Si:2.2〜4.5%、 酸可溶性Al:0.010〜0.060%、 N :0.0130%以下、 S+0.405Se:0.014%以下、 Mn:0.05〜0.8%、 残部がFe及び不可避的不純物からなるスラブを128
0℃未満の温度で加熱し、熱延を行い、引き続き熱延板
焼鈍を施すことなく、圧下率80%以上の最終強圧下冷
延を行い、次いで脱炭焼鈍、最終仕上焼鈍を施して一方
向性電磁鋼板を製造する方法において、粗熱延の累積圧
下率を60%以上とし、粗熱延と仕上熱延の間の時間を
1秒以上とし、スラブの酸可溶性Al,Nの含有量(重
量%)、仕上熱延の開始温度FoT(℃)を下記(1)
式の範囲に制御し、脱炭焼鈍完了後、最終仕上焼鈍開始
までの一次再結晶粒の平均粒径を18〜35μmとし、
熱延後、最終仕上焼鈍の二次再結晶開始までの間に鋼板
に0.0010重量%以上の窒素吸収を行わせる窒化処
理を施すことを特徴とする磁気特性の優れた一方向性電
磁鋼板の安定製造方法。 800 ≦FoT(℃)≦900 +9500×{Al(%)−(27/14)×N(%)}…(1) 但し、Al:酸可溶性Al
1. C: 0.075% or less by weight, Si: 2.2 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: 0.0130% or less, S + 0. 405Se: 0.014% or less, Mn: 0.05 to 0.8%, balance of slab consisting of Fe and unavoidable impurities is 128
Heating is performed at a temperature of less than 0 ° C., hot rolling is performed, followed by final high-pressure cold rolling at a rolling reduction of 80% or more without performing hot-rolled sheet annealing, followed by decarburizing annealing and final finishing annealing. In the method for producing a grain-oriented electrical steel sheet, the cumulative draft of rough hot rolling is set to 60% or more, the time between rough hot rolling and finish hot rolling is set to 1 second or more, and the content of acid-soluble Al and N in the slab. (% By weight), and the starting temperature FoT (° C.) of the finish hot rolling is as follows (1)
After the decarburization annealing is completed, the average particle size of the primary recrystallized grains until the start of the final finish annealing is set to 18 to 35 μm.
Unidirectional electrical steel sheet with excellent magnetic properties, characterized in that the steel sheet is subjected to a nitriding treatment for absorbing at least 0.0010% by weight of nitrogen after hot rolling and before the start of secondary recrystallization in final finish annealing. Stable production method. 800 ≦ FoT (° C.) ≦ 900 + 9500 × {Al (%) − (27/14) × N (%)} (1) where Al: acid-soluble Al
【請求項2】 スラブの成分としてさらにSn:0.0
1〜0.15%を含有せしめることを特徴とする請求項
1記載の磁気特性の優れた一方向性電磁鋼板の安定製造
方法。
2. The slab component further contains Sn: 0.0
2. The method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the content is 1 to 0.15%.
JP5261344A 1933-10-19 1993-10-19 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties Expired - Fee Related JP2948455B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5261344A JP2948455B2 (en) 1993-10-19 1993-10-19 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
US08/322,909 US5472521A (en) 1933-10-19 1994-10-13 Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
DE69425406T DE69425406T2 (en) 1993-10-19 1994-10-17 Process for producing grain-oriented electrical steel sheet with excellent magnetic properties
EP94116331A EP0648847B1 (en) 1993-10-19 1994-10-17 Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
KR1019940026613A KR0139247B1 (en) 1993-10-19 1994-10-18 Production method of grain oriented electrical steel sheet having excellent magnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5261344A JP2948455B2 (en) 1993-10-19 1993-10-19 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH07118745A JPH07118745A (en) 1995-05-09
JP2948455B2 true JP2948455B2 (en) 1999-09-13

Family

ID=17360535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5261344A Expired - Fee Related JP2948455B2 (en) 1933-10-19 1993-10-19 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2948455B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102164329B1 (en) * 2018-12-19 2020-10-12 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing therof

Also Published As

Publication number Publication date
JPH07118745A (en) 1995-05-09

Similar Documents

Publication Publication Date Title
JP2003166019A (en) Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor
JPH0730397B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH08269571A (en) Production of grain-oriented silicon steel strip
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3348217B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JP2878501B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH07138643A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH04154914A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees