JP3065853B2 - Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties - Google Patents

Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties

Info

Publication number
JP3065853B2
JP3065853B2 JP5115033A JP11503393A JP3065853B2 JP 3065853 B2 JP3065853 B2 JP 3065853B2 JP 5115033 A JP5115033 A JP 5115033A JP 11503393 A JP11503393 A JP 11503393A JP 3065853 B2 JP3065853 B2 JP 3065853B2
Authority
JP
Japan
Prior art keywords
weight
annealing
steel sheet
slab
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5115033A
Other languages
Japanese (ja)
Other versions
JPH06228646A (en
Inventor
康成 吉冨
克郎 黒木
浩昭 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5115033A priority Critical patent/JP3065853B2/en
Publication of JPH06228646A publication Critical patent/JPH06228646A/en
Application granted granted Critical
Publication of JP3065853B2 publication Critical patent/JP3065853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、通常磁場の強さ80
0A/mにおける磁束密度B8が使用される。また、鉄
損特性を表す数値としては、周波数50Hzで1.7テス
ラー(T)まで磁化した時の1kg当りの鉄損W17/50
使用している。磁束密度は、鉄損特性の最大支配因子で
あり、一般的にいって磁束密度が高いほど鉄損特性が良
好になる。なお、一般的に磁束密度を高くすると二次再
結晶粒が大きくなり、鉄損特性が不良となる場合があ
る。これに対しては、磁区制御により、二次再結晶粒の
粒径に拘らず、鉄損特性を改善することができる。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as an iron core material for transformers and other electric equipment, and is required to have excellent magnetic properties such as excitation properties and iron loss properties. Numerical values representing the excitation characteristics include a normal magnetic field strength of 80
A magnetic flux density B 8 at 0 A / m is used. As a numerical value representing the iron loss characteristic, the iron loss W 17/50 per kg when magnetized at a frequency of 50 Hz to 1.7 Tesla (T) is used. The magnetic flux density is the largest controlling factor of the iron loss characteristics. Generally, the higher the magnetic flux density, the better the iron loss characteristics. In general, when the magnetic flux density is increased, the secondary recrystallized grains become large, and the iron loss characteristics may become poor. In contrast, by controlling the magnetic domain, the iron loss characteristics can be improved regardless of the particle size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持ったいわゆるゴス組織を発達さ
せることにより製造されている。良好な磁気特性を得る
ためには、磁化容易軸である〈001〉を圧延方向に高
度に揃えることが必要である。
[0003] This grain-oriented electrical steel sheet is manufactured by causing secondary recrystallization in the final finish annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and a <001> axis in the rolling direction. Have been. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction.

【0004】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに特公昭40−15644
号公報及び特公昭51−13469号公報記載の方法が
ある。前者においては主なインヒビターとしてMnS及
びAlNを、後者ではMnS,MnSe,Sb等を用い
ている。従って現在の技術においてはこれらのインヒビ
ターとして機能する析出物の大きさ、形態及び分散状態
を適正に制御することが不可欠である。MnSに関して
言えば、現在の工程では熱延前のスラブ加熱時にMnS
を一旦完全固溶させた後、熱延時に析出する方法がとら
れている。二次再結晶に必要な量のMnSを完全固溶す
るためには1400℃程度の温度が必要である。これは
普通鋼のスラブ加熱温度に比べて200℃以上も高く、
この高温スラブ加熱処理には以下に述べるような不利な
点がある。 1)方向性電磁鋼専用の高温スラブ加熱炉が必要。 2)加熱炉のエネルギー原単位が高い。 3)溶融スケール量が増大し、いわゆるノロかき出し等
に見られるように操業上の悪影響が大きい。
[0004] As a typical production technique of such a high magnetic flux density unidirectional magnetic steel sheet, Japanese Patent Publication No. 40-15644 is disclosed.
And JP-B-51-13469. In the former, MnS and AlN are used as main inhibitors, and in the latter, MnS, MnSe, Sb and the like are used. Therefore, it is indispensable in the current technology to appropriately control the size, morphology, and dispersion state of the precipitates functioning as these inhibitors. With regard to MnS, in the current process, MnS is used during slab heating before hot rolling.
Is once dissolved completely and then precipitated during hot rolling. A temperature of about 1400 ° C. is required to completely dissolve the required amount of MnS for secondary recrystallization. This is more than 200 ℃ higher than the slab heating temperature of ordinary steel,
This high-temperature slab heat treatment has the following disadvantages. 1) A high-temperature slab heating furnace dedicated to directional magnetic steel is required. 2) The unit energy consumption of the heating furnace is high. 3) The amount of the molten scale increases, and the adverse effect on the operation is large as seen in so-called scraping.

【0005】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並みに下げれば良いわけであるが、
このことは同時にインヒビターとして有効なMnSの量
を少なくするかあるいは全く用いないことを意味し、必
然的に二次再結晶の不安定化をもたらす。このため低温
スラブ加熱化を実現するためには何らかの形でMnS以
外の析出物等によりインヒビターを強化し、仕上焼鈍時
の正常粒成長の抑制を充分にする必要がある。
[0005] In order to avoid such problems, the slab heating temperature may be lowered to the level of ordinary steel.
This means at the same time that the amount of MnS effective as an inhibitor is reduced or not used at all, which necessarily leads to instability of secondary recrystallization. Therefore, in order to realize low-temperature slab heating, it is necessary to reinforce the inhibitor with a precipitate other than MnS in some form, and to sufficiently suppress normal grain growth during finish annealing.

【0006】このようなインヒビターとしては硫化物の
他、窒化物、酸化物及び粒界析出元素等が考えられ、公
知の技術として例えば次のようなものがあげられる。特
公昭54−24685号公報ではAs,Bi,Sn,S
b等の粒界偏析元素を鋼中に含有することにより、スラ
ブ加熱温度を1050〜1350℃の範囲にする方法が
開示され、特開昭52−24116号公報ではAlの
他、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の
窒化物生成元素を含有することによりスラブ加熱温度を
1100〜1260℃の範囲にする方法を開示してい
る。また、特開昭57−158322号公報ではMn含
有量を下げ、Mn/Sの比率を2.5以下にすることに
より低温スラブ加熱化を行い、さらにCuの添加により
二次再結晶を安定化する技術を開示している。
[0006] In addition to sulfides, nitrides, oxides, and intergranular precipitation elements can be considered as such inhibitors. Known techniques include, for example, the following. In Japanese Patent Publication No. 54-24687, As, Bi, Sn, S
Japanese Patent Application Laid-Open No. 52-24116 discloses a method in which a slab heating temperature is controlled to be in the range of 1050 to 1350 ° C. by containing a grain boundary segregation element such as b in steel. A method is disclosed in which a slab heating temperature is set in a range of 1100 to 1260 ° C. by containing a nitride-forming element such as B, Nb, Ta, V, Cr, and Mo. In Japanese Patent Application Laid-Open No. 57-158322, low-temperature slab heating is performed by lowering the Mn content and the Mn / S ratio to 2.5 or less, and further, the secondary recrystallization is stabilized by adding Cu. To disclose the technology.

【0007】これらインヒビターの補強と組み合わせて
金属組織の側から改良を加えた技術も開示された。すな
わち特開昭57−89433号公報ではMnに加えS,
Se,Sb,Bi,Pb,Sn,B等の元素を加え、こ
れにスラブの柱状晶率と二次冷延圧下率を組み合わせる
ことにより1100〜1250℃の低温スラブ加熱化を
実現している。さらに特開昭59−190324号公報
ではSあるいはSeに加え、Al及びBと窒素を主体と
してインヒビターを構成し、これに冷延後の一次再結晶
焼鈍時にパルス焼鈍を施すことにより二次再結晶を安定
化する技術を公開している。このように方向性電磁鋼板
製造における低温スラブ加熱化実現のためには、これま
でに多大な努力が続けられてきている。
[0007] Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S,
By adding elements such as Se, Sb, Bi, Pb, Sn, and B, and combining the columnar crystal ratio of the slab and the secondary cold rolling reduction, a low-temperature slab heating of 1100 to 1250 ° C. is realized. Further, in JP-A-59-190324, an inhibitor is constituted mainly of Al, B and nitrogen in addition to S or Se, and this is subjected to pulse annealing at the time of primary recrystallization annealing after cold rolling to perform secondary recrystallization. The technology to stabilize is disclosed. As described above, great efforts have been made so far to realize low-temperature slab heating in the production of grain-oriented electrical steel sheets.

【0008】さて、特開昭59−56522号公報にお
いてはMnを0.08〜0.45%、Sを0.007%
以下にすることにより低温スラブ加熱化を可能にする技
術が開示された。この方法により高温スラブ加熱時のス
ラブ結晶粒粗大化に起因する製品の線状二次再結晶不良
発生の問題が解消された。
In Japanese Patent Application Laid-Open No. 59-56522, Mn is 0.08 to 0.45% and S is 0.007%.
A technique that enables low-temperature slab heating by the following has been disclosed. By this method, the problem of occurrence of defective linear secondary recrystallization of a product due to coarsening of slab crystal grains during heating of a high-temperature slab was solved.

【0009】[0009]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としているもの
の、当然のことながら良好な磁気特性を安定して得る技
術でなければ、工業化できない。本発明者らは、低温ス
ラブ加熱の工業化のため、最終仕上焼鈍前の一次再結
晶の平均粒径制御と、熱延後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施すことを柱とす
る技術を構築してきた。この窒化処理により形成される
窒化物は、二次再結晶開始時点では、主にAlNになっ
ている。高温で変化しにくいインヒビターとして、Al
Nを選択しているわけであり、その意味において、スラ
ブ中にAlが含有されることは必須条件となる。他方、
スラブ中にNが必要以上に含有されることは、本技術体
系からして、再考の余地があった。つまり、スラブ中に
必須のAlと、ある程度以上のN量があれば、スラブ加
熱から脱炭焼鈍までの工程で、AlNが形成され、脱炭
焼鈍時の一次再結晶粒の粒成長に影響を与えることとな
る。
The method using the low-temperature slab heating originally aims at reducing the manufacturing cost, but it cannot be industrialized unless it is a technique to obtain good magnetic properties stably as a matter of course. The present inventors, for industrialization of low-temperature slab heating, control of the average grain size of primary recrystallization before final finish annealing, and nitriding treatment of steel sheet after hot rolling and before the start of secondary recrystallization of final finish annealing. Has been built as a pillar. The nitride formed by this nitriding treatment is mainly AlN at the start of the secondary recrystallization. Al as an inhibitor that does not change easily at high temperatures
N is selected, and in that sense, it is an essential condition that Al is contained in the slab. On the other hand,
Excessive N content in the slab has room for reconsideration from the technical system. In other words, if there is essential Al in the slab and a certain amount of N or more, AlN is formed in the steps from slab heating to decarburizing annealing, which affects the grain growth of primary recrystallized grains during decarburizing annealing. Will give.

【0010】本発明の目的は、この上工程でのAlNの
低減と、それに代わる安定なインヒビターを検討し、低
温スラブ加熱での磁性変動のない優れた特性を有する一
方向性電磁鋼板の安定製造方法を提供することである。
An object of the present invention is to reduce AlN in the above process and to examine a stable inhibitor instead of the AlN, and to stably produce a grain-oriented electrical steel sheet having excellent characteristics without magnetic fluctuations due to low-temperature slab heating. Is to provide a way.

【0011】[0011]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。すなわち、 (1)重量%でC :0.025〜0.075%、S
i:2.5〜4.5%、酸可溶性Al:0.010〜
0.060%、N :0.0030%未満、S :0.
01〜0.05%、Mn:0.02〜0.8%を含有
し、残部がFe及び不可避的不純物からなるスラブを1
280℃未満の温度で加熱し、熱延し、圧下率80%以
上の最終冷延を含む1回または中間焼鈍をはさむ回以
上の冷延を施し、次いで、脱炭焼鈍、最終仕上焼鈍を施
して一方向性電磁鋼板を製造する方法において、スラブ
のTi,Zr,Nの含有量(重量%)を、下記の式に制
御し、 0.5×N(%)<0.292 ×Ti(%)+0.154 ×Zr
(%)<0.0050 熱延後、最終仕上焼鈍開始までの間に鋼板に窒化処理を
施すことを特徴とする磁気特性の優れた一方向性電磁鋼
板の安定製造方法であり、 (2)重量%でC :0.025〜0.075%、S
i:2.5〜4.5%、酸可溶性Al:0.010〜
0.060%、N :0.0030%未満、S :0.
01〜0.05%、Cu:0.01〜0.40%を含有
し、残部がFe及び不可避的不純物からなるスラブを1
280℃未満の温度で加熱し、熱延し、圧下率80%以
上の最終冷延を含む1回または中間焼鈍をはさむ回以
上の冷延を施し、次いで、脱炭焼鈍、最終仕上焼鈍を施
して一方向性電磁鋼板を製造する方法において、スラブ
のTi,Zr,Nの含有量(重量%)を、下記の式に制
御し、 0.5×N(%)<0.292 ×Ti(%)+0.154 ×Zr
(%)<0.0050 熱延後、最終仕上焼鈍開始までの間に鋼板に窒化処理を
施すことを特徴とする磁気特性の優れた一方向性電磁鋼
板の安定製造方法、 (3)重量%でC :0.025〜0.075%、S
i:2.5〜4.5%、酸可溶性Al:0.010〜
0.060%、N :0.0030%未満、S :0.
01〜0.05%、Cu:0.01〜0.40%、M
n:0.02〜0.8%を含有し、残部がFe及び不可
避的不純物からなるスラブを1280℃未満の温度で加
熱し、熱延し、圧下率80%以上の最終冷延を含む1回
または中間焼鈍をはさむ回以上の冷延を施し、次い
で、脱炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板
を製造する方法において、スラブのTi,Zr,Nの含
有量(重量%)を、下記の式に制御し、 0.5×N(%)<0.292 ×Ti(%)+0.154 ×Zr
(%)<0.0050 熱延後、最終仕上焼鈍開始までの間に鋼板に窒化処理を
施すことを特徴とする磁気特性の優れた一方向性電磁鋼
板の安定製造方法、及び (4)スラブの成分としてがさらにSn:0.01〜
0.15%を含有せしめることを特徴とする前各項に記
載の磁気特性の優れた一方向性電磁鋼板の安定製造方
法、さらに (5)熱延後850〜1250℃の熱延板焼鈍を施すこ
とを特徴とする前各項に記載の磁気特性の優れた一方向
性電磁鋼板の安定製造方法であり、 (6)脱炭焼鈍完了後、最終仕上焼鈍開始までの一次再
結晶粒の平均粒径を18〜35μmとすることを特徴と
する前各項に記載の磁気特性の優れた一方向性電磁鋼板
の安定製造方法である。
The gist of the present invention is as follows. That is, (1) C: 0.025 to 0.075% by weight%, S
i: 2.5 to 4.5%, acid-soluble Al: 0.010
0.060%, N: less than 0.0030%, S: 0.
1 to 0.05%, Mn: 0.02 to 0.8%, and the balance is 1 slab composed of Fe and unavoidable impurities.
280 was heated at a temperature below ° C., heat rolled, the final cold rolling at least a reduction ratio of 80% applied twice or more cold rolling sandwiching the including one or intermediate annealing, then decarburization annealing, final annealing In the method of producing a grain-oriented electrical steel sheet by subjecting the slab to Ti, Zr, and N contents (% by weight), the following formula is used to control the content of 0.5 × N (%) <0.292 × Ti (%) +0.154 x Zr
(%) <0.0050 This is a stable production method of a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by subjecting the steel sheet to nitriding treatment after hot rolling and before the start of final finishing annealing. (2) Weight% At C: 0.025-0.075%, S
i: 2.5 to 4.5%, acid-soluble Al: 0.010
0.060%, N: less than 0.0030%, S: 0.
1 to 0.05%, Cu: 0.01 to 0.40%, and the balance is 1 slab composed of Fe and unavoidable impurities.
280 was heated at a temperature below ° C., heat rolled, the final cold rolling at least a reduction ratio of 80% applied twice or more cold rolling sandwiching the including one or intermediate annealing, then decarburization annealing, final annealing In the method of producing a grain-oriented electrical steel sheet by subjecting the slab to Ti, Zr, and N contents (% by weight), the following formula is used to control the content of 0.5 × N (%) <0.292 × Ti (%) +0.154 x Zr
(%) <0.0050 Stable production method of unidirectional electrical steel sheet with excellent magnetic properties, characterized by subjecting steel sheet to nitriding treatment after hot rolling and before the start of final finishing annealing. (3) C in weight% : 0.025 to 0.075%, S
i: 2.5 to 4.5%, acid-soluble Al: 0.010
0.060%, N: less than 0.0030%, S: 0.
01-0.05%, Cu: 0.01-0.40%, M
n: contains 0.02 to 0.8%, the balance being heated at a temperature below slab 1280 ° C. of Fe and unavoidable impurities, hot rolled, including a final cold rolling at least a reduction ratio of 80% Once
Or subjected to two or more cold rolling sandwiching the intermediate annealing, then decarburization annealing, the method by performing final annealing for manufacturing a grain-oriented electrical steel sheet, Ti slab, Zr, the content of N (wt% ) Is controlled by the following formula, and 0.5 × N (%) <0.292 × Ti (%) + 0.154 × Zr
(%) <0.0050 Stable manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties, characterized by subjecting steel sheet to nitriding treatment after hot rolling and before the start of final annealing, and (4) Slab components And Sn: 0.01 to
0.15% is contained, the method for stable production of a grain-oriented electrical steel sheet having excellent magnetic properties as described in the preceding paragraphs, and (5) hot rolling at 850 to 1250 ° C. after hot rolling. (6) An average of primary recrystallized grains from the completion of decarburizing annealing to the start of final finishing annealing. A stable production method of a grain-oriented electrical steel sheet having excellent magnetic properties as described in the preceding items, wherein the grain size is 18 to 35 μm.

【0012】[0012]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程をはさ
んでスラブとし、引き続き熱間圧延して熱延板とし、次
いで圧下率80%以上の最終冷延を含み、必要に応じて
中間焼鈍をはさむ1回以上の冷延を施し、次いで、脱炭
焼鈍、最終仕上焼鈍を順次行うことによって製造され
る。
The grain-oriented electrical steel sheet to which the present invention is directed is:
Molten steel obtained by a conventional steelmaking method is cast by a continuous casting method or an ingot-making method, and if necessary, a slab is sandwiched by a sizing process, and subsequently hot-rolled into a hot-rolled sheet, and then It is produced by performing one or more times of cold rolling including intermediate annealing as necessary, including final cold rolling with a rolling reduction of 80% or more, and then sequentially performing decarburizing annealing and final finish annealing.

【0013】本発明者らは、低温スラブ加熱材を製造し
た場合の磁性の変動原因とその解消策について詳細に検
討した。そしてその結果、この現象がスラブ加熱時のス
ラブ内の温度差に基づく、AlNの析出のバラツキに起
因しているという新知見を得た。そして、その課題の解
決策として、N量を低めることと、Ti量,Zr量,
N量を3つの量の関係式で規定される所定の範囲に抑え
ること、さらに、S量,Cu量を所定量添加するこ
と、Mn量を所定量添加すること、脱炭焼鈍完了後
最終仕上焼鈍開始までの一次再結晶粒の平均粒径を制御
すること、Snを添加すること、所定の温度範囲で
の熱延板焼鈍を施すことが有効であることがわかった。
The present inventors have studied in detail the causes of fluctuations in magnetism in the case of manufacturing a low-temperature slab heating material and measures for solving the problems. As a result, the present inventors have obtained a new finding that this phenomenon is caused by variation in precipitation of AlN based on a temperature difference in the slab during slab heating. Then, as a solution to the problem, lowering the amount of N, the amount of Ti, the amount of Zr,
The N amount is suppressed to a predetermined range defined by the relational expression of the three amounts, the S amount and the Cu amount are added in the predetermined amounts, the Mn amount is added in the predetermined amounts, and the final finish after the decarburizing annealing is completed. It was found that it is effective to control the average grain size of the primary recrystallized grains until the start of annealing, to add Sn, and to perform hot-rolled sheet annealing in a predetermined temperature range.

【0014】以下これらの点について詳細に説明する。
本発明者らは、スラブ加熱時のAlNの固溶、析出に着
目した。本発明の前提としている1280℃未満の温度
では、本発明のAl,N,Siの成分範囲では、α相で
のAlNの完全固溶は保障されていない。一方、スラブ
加熱の方式は種々あるが、スラブを炉に装入後、プッシ
ャーで移動させながら出口から出す方式やスキッド上に
スラブを置き、スキッドを動かしてスラブを入口から出
口方向へ移動させる方式等が一般的に行われている。そ
してスラブの中でスキッドや炉の下面に接する部分は、
温度が低めとなることが多い。従って、このスラブ内の
温度差に起因するAlNの析出量、固溶N量の差が生じ
ることが考えられた。そして、熱延から脱炭焼鈍までの
工程で、スラブ加熱時に固溶していたNは、大部分Al
Nとして微細析出し、その程度がスラブ加熱時の固溶N
量に依存することが考えられた。実際、工場で実験を行
った際、磁気特性の変動が生じたコイルの、脱炭焼鈍後
の一次再結晶粒の平均粒径を光学顕微鏡と画像解析機を
用いて測定したところ、その平均粒径が変動しているこ
とが判明した。そして、そのバラツキの程度は、Al,
N量によって異なっていた。
Hereinafter, these points will be described in detail.
The present inventors have focused on solid solution and precipitation of AlN during slab heating. At a temperature lower than 1280 ° C., which is a premise of the present invention, complete solid solution of AlN in the α phase is not guaranteed in the component range of Al, N, and Si of the present invention. On the other hand, there are various methods of slab heating, but after charging the slab into the furnace, moving the slab from the outlet while moving it with a pusher, or placing the slab on the skid, moving the skid to move the slab from the inlet to the outlet Etc. are generally performed. And the part of the slab that contacts the skid and the bottom of the furnace,
Often the temperature is lower. Therefore, it was considered that the difference in the amount of precipitated AlN and the amount of dissolved N caused by the temperature difference in the slab. In the process from hot rolling to decarburizing annealing, N dissolved in the slab during heating was mostly Al
Precipitates finely as N, and its degree is solute N during slab heating.
It was considered to be dependent on the amount. In fact, when an experiment was conducted at a factory, the average grain size of primary recrystallized grains after decarburization annealing was measured using an optical microscope and an image analyzer. It was found that the diameter fluctuated. And the degree of the variation is Al,
It varied with the amount of N.

【0015】そこで本発明者らは、変動するAlN量を
減らすことを考えた。そのためには、AlまたはN量を
減らすことが有効であるが、二次再結晶時のインヒビ
ターとしてのAlN量を確保する必要がある点、Nは
鋼板に窒化で導入することが可能であるが、Alは、鋼
板に導入することが困難である点を考慮し、N量を減ら
すことを検討した。そして、N量を製鋼段階で減らすこ
とは技術的に制約があるかもしくはコストアップにつな
がることも考慮し、Nとの親和力がAlより強く固溶す
るN量と強い相関があると予想される元素の原子当量か
ら計算されるY(%)=0.292×Ti(%)+0.
154×Zr(%)(Ti(%):スラブのTi含有
量、Zr(%):スラブのZr含有量、何れも重量%)
という量を定義しY(%)と磁気特性の変動との関係を
以下の2つの実験に基づいて調査した。
Therefore, the present inventors have considered reducing the amount of fluctuating AlN. For that purpose, it is effective to reduce the amount of Al or N, but it is necessary to secure the amount of AlN as an inhibitor at the time of secondary recrystallization, and N can be introduced into a steel sheet by nitriding. In consideration of the fact that it is difficult to introduce Al into a steel sheet, reduction in the amount of N was studied. Considering that reducing the amount of N in the steelmaking stage is technically restrictive or leads to an increase in cost, it is expected that the affinity with N is strongly correlated with the amount of N that forms a solid solution with Al. Y (%) calculated from the atomic equivalents of the elements = 0.292 x Ti (%) + 0.
154 x Zr (%) (Ti (%): Ti content of slab, Zr (%): Zr content of slab, all are wt%)
And the relationship between Y (%) and the variation in magnetic properties was investigated based on the following two experiments.

【0016】第1の実験及び結果は以下の通りであっ
た。すなわち、重量で、C=0.045%、Si=3.
20%、酸可溶性Al=0.018〜0.040%、N
=0.0006〜0.0098%、S=0.015%、
Mn=0.16%、Ti=0.0007〜0.0211
%、Zr=0.0005〜0.0414%を含有し、残
部Fe及び不可避的不純物からなる250mm厚のスラブ
を作成した。そして1100℃、1200℃の2水
準の温度で各スラブを60分均熱後11パスの熱延で
2.3mm厚とし、約3秒後に水冷し、550℃まで冷却
した後、550℃の温度に1時間保持した。かかる熱延
板に熱延板焼鈍を施すことなく約88%の強圧下圧延を
行って最終板厚0.285mmの冷延板とした。この冷延
板を835℃に150秒保持する脱炭焼鈍を施し、次い
で、750℃に30秒保持する焼鈍時、焼鈍雰囲気中に
NH3 ガスを混入させ、鋼板に窒素を吸収せしめた。こ
の窒化処理後のN量は、0.0187〜0.0214重
量%であった。かかる窒化処理後の鋼板にMgOを主成
分とする焼鈍分離剤を塗布し、最終仕上焼鈍を行った。
しかる後、製品の磁束密度B8 を測定し、同一成分のス
ラブに対してとった2つのスラブ均熱条件でのB8 の差
ΔB8 〔スラブ加熱温度1100℃におけるB8 (T)
−同温度1200℃におけるB8 (T)〕を求め、鉄損
値W 17/50 (w/kg)の平均値と共に図1に示した。図
1から明らかなように、N(%)<0.0030、0.
5×N(%)<Y(%)<0.0050の範囲で、スラ
ブ加熱温度差に起因する製品の磁束密度の差ΔB
8 (T)が0.02T未満におさまり、かつ、 17/50
(平均値)<1.00w/kgなる良好な鉄損特性を示し
た。
The first experiment and the results were as follows. That is, C = 0.045% by weight, Si = 3.
20%, acid-soluble Al = 0.018 to 0.040%, N
= 0.0006-0.0098%, S = 0.015%,
Mn = 0.16%, Ti = 0.0007 to 0.0211
%, Zr = 0.0005 to 0.0414%, and a slab having a thickness of 250 mm was prepared, the balance being Fe and unavoidable impurities. Then, each slab was soaked for 60 minutes at two temperatures of 1100 ° C. and 1200 ° C. to be 2.3 mm thick by hot rolling of 11 passes, water cooled after about 3 seconds, cooled to 550 ° C., and then cooled to 550 ° C. For one hour. Without subjecting the hot-rolled sheet to annealing, the hot-rolled sheet was rolled under high pressure of about 88% to obtain a cold-rolled sheet having a final sheet thickness of 0.285 mm. This cold-rolled sheet was subjected to decarburizing annealing at 835 ° C. for 150 seconds, and then, at the time of annealing at 750 ° C. for 30 seconds, NH 3 gas was mixed in the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N amount after this nitriding treatment was 0.0187 to 0.0214% by weight. An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed.
Thereafter, the magnetic flux density B 8 of the product was measured, and the difference ΔB 8 of B 8 between two slabs with the same component under uniform heating conditions [B 8 (T) at a slab heating temperature of 1100 ° C.]
- determine the B 8 (T)] in the same temperature 1200 ° C., the iron loss
The results are shown in FIG. 1 together with the average value of W 17/50 (w / kg) . As is clear from FIG. 1, N (%) <0.0030, 0.
In the range of 5 × N (%) <Y (%) <0.0050, the difference ΔB in the magnetic flux density of the product caused by the difference in the slab heating temperature
8 (T) is less than 0.02T, and W 17/50
(Average value) Good iron loss characteristics of <1.00 w / kg were exhibited.

【0017】第2の実験及び結果は以下の通りであっ
た。すなわち、重量で、C=0.041%、Si=3.
05%、酸可溶性Al=0.019〜0.045%、N
=0.0004〜0.0092%、S=0.014%、
Cu=0.18%、Ti=0.0008〜0.0204
%、Zr=0.0004〜0.0409%を含有し、残
部Fe及び不可避的不純物からなる250mm厚のスラブ
を作成した。そして1100℃、1200℃の2水
準の温度で各スラブを60分均熱後11パスの熱延で
2.3mm厚とし、約3秒後に水冷し、550℃まで冷却
した後、550℃の温度に1時間保持した。かかる熱延
板に熱延板焼鈍を施すことなく約88%の強圧下圧延を
行って最終板厚0.285mmの冷延板とした。この冷延
板を835℃に150秒保持する脱炭焼鈍を施し、次い
で、750℃に30秒保持する焼鈍時、焼鈍雰囲気中に
NH3 ガスを混入させ、鋼板に窒素を吸収せしめた。こ
の窒化処理後のN量は、0.0196〜0.0209重
量%であった。かかる窒化処理後の鋼板にMgOを主成
分とする焼鈍分離剤を塗布し、最終仕上焼鈍を行った。
しかる後、製品の磁束密度B8 を測定し、同一成分のス
ラブに対してとった2つのスラブ均熱条件でのB8 の差
ΔB8 〔スラブ加熱温度1100℃におけるB8 (T)
−同温度1200℃におけるB8 (T)〕を求め、鉄損
値W 17/50 (w/kg)の平均値と共に図2に示した。図
2から明らかなように、第2の実験の場合も第1の実験
と同様にN(%)<0.0030、0.5×N(%)<
Y(%)<0.0050の範囲で、スラブ加熱温度差に
起因する製品の磁束密度の差ΔB8 (T)が0.02T
未満におさまり、かつ、 17/50 (平均値)<1.00
w/kgなる良好な鉄損特性を示した。また、Mn,C
u,Sを複合して添加した場合にも、上記第1の実験及
び第2の実験と同様の効果が得られた。
The second experiment and the results were as follows. That is, C = 0.041% and Si = 3.
05%, acid-soluble Al = 0.019 to 0.045%, N
= 0.0004-0.0092%, S = 0.014%,
Cu = 0.18%, Ti = 0.0008-0.0204
%, Zr = 0.004 to 0.0409%, and a slab having a thickness of 250 mm was prepared, the balance being Fe and unavoidable impurities. Then, each slab was soaked for 60 minutes at two temperatures of 1100 ° C. and 1200 ° C. to be 2.3 mm thick by hot rolling of 11 passes, water cooled after about 3 seconds, cooled to 550 ° C., and then cooled to 550 ° C. For one hour. Without subjecting the hot-rolled sheet to annealing, the hot-rolled sheet was rolled under high pressure of about 88% to obtain a cold-rolled sheet having a final sheet thickness of 0.285 mm. This cold-rolled sheet was subjected to decarburizing annealing at 835 ° C. for 150 seconds, and then, during annealing at 750 ° C. for 30 seconds, NH3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N amount after this nitriding treatment was 0.0196 to 0.0209% by weight. An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed.
Thereafter, the magnetic flux density B 8 of the product was measured, and the difference ΔB 8 of B 8 between two slabs with the same component under uniform heating conditions [B 8 (T) at a slab heating temperature of 1100 ° C.]
- determine the B 8 (T)] in the same temperature 1200 ° C., the iron loss
The results are shown in FIG. 2 together with the average value of W 17/50 (w / kg) . As is clear from FIG. 2, in the case of the second experiment, similarly to the first experiment, N (%) <0.0030, 0.5 × N (%) <
In the range of Y (%) <0.0050, the difference ΔB 8 (T) in the magnetic flux density of the product caused by the difference in the slab heating temperature is 0.02T.
And W 17/50 (average value) <1.00
Excellent iron loss characteristics of w / kg were exhibited. Mn, C
Even when u and S were added in combination, the same effects as those of the first and second experiments were obtained.

【0018】図1及び図2で示された現象のメカニズム
について、本発明者らは、次のように考えている。本実
験では、加熱炉内でのスラブ内の温度差により生じてい
る現象を、スラブ加熱温度を変えてシュミレートした。
それによると、本発明のAl,Nの成分範囲では128
0℃未満のスラブ加熱温度条件の場合、スラブの高温部
と低温部でAlNの固溶、析出量に差が生じる。すなわ
ち、スラブ加熱時のスラブ高温部では固溶Nが多く、引
き続く熱延及び脱炭焼鈍時に、この固溶Nは、AlNの
形で微細析出する。他方スラブ加熱時のスラブ低温部で
は固溶Nが少なく、引き続く熱延及び脱炭焼鈍時に微細
に析出するAlN量は少ない。このようなAlNの析出
の場所的不均一は、脱炭焼鈍時の一次再結晶粒の粒成長
の場所的不均一を生じさせる。つまり、スラブ加熱時の
スラブ内高温部に相当する部分では、脱炭焼鈍時微細な
AlNが多いため、一次再結晶粒の粒成長は抑制され
る。一方、スラブ加熱時のスラブ内低温部に相当する部
分では、脱炭焼鈍時微細なAlNが少ないため、一次再
結晶粒は粒成長しやすい。このため、脱炭焼鈍完了時、
コイル内に、スラブ加熱時のスラブ内の温度差に起因す
る一次再結晶粒径の場所的不均一が生じる。本発明者ら
が、特開平2−182866号公報で開示したように、
この脱炭焼鈍完了時の一次再結晶粒径は、製品の磁束密
度と極めて強い相関がある。従って、この一次再結晶粒
径の場所的不均一は、製品での磁束密度の場所的不均一
を生ぜしめることとなる。それゆえ、その磁束密度のバ
ラツキの原因となっているスラブ加熱時におけるスラブ
内の固溶N量のバラツキを所定の範囲に入れれば、製品
の磁束密度のバラツキが低減されるものと考えられる。
The present inventors consider the mechanism of the phenomenon shown in FIGS. 1 and 2 as follows. In this experiment, the phenomenon caused by the temperature difference in the slab in the heating furnace was simulated by changing the slab heating temperature.
According to this, in the Al and N component ranges of the present invention, 128
In the case of a slab heating temperature condition of less than 0 ° C., a difference occurs in the amount of AlN dissolved and precipitated between a high temperature part and a low temperature part of the slab. That is, in the high temperature part of the slab at the time of slab heating, a large amount of solid solution N is present, and during the subsequent hot rolling and decarburizing annealing, this solid solution N is finely precipitated in the form of AlN. On the other hand, in the low temperature part of the slab at the time of slab heating, the amount of solid solution N is small, and the amount of AlN finely precipitated during the subsequent hot rolling and decarburizing annealing is small. Such spatial nonuniformity of AlN precipitation causes spatial nonuniformity in the growth of primary recrystallized grains during decarburizing annealing. That is, in the portion corresponding to the high temperature portion in the slab at the time of slab heating, fine AlN is large during decarburization annealing, so that the growth of primary recrystallized grains is suppressed. On the other hand, in a portion corresponding to a low-temperature portion in the slab at the time of slab heating, primary recrystallized grains are likely to grow because there is little fine AlN during decarburization annealing. Therefore, when decarburization annealing is completed,
In the coil, the locational unevenness of the primary recrystallized grain size occurs due to the temperature difference in the slab during slab heating. As disclosed by the present inventors in JP-A-2-182866,
The primary recrystallized grain size at the completion of the decarburization annealing has a very strong correlation with the magnetic flux density of the product. Therefore, the spatial non-uniformity of the primary recrystallized grain size causes the magnetic flux density in the product to be non-uniform. Therefore, if the variation in the amount of solute N in the slab during heating of the slab, which causes the variation in the magnetic flux density, falls within a predetermined range, the variation in the magnetic flux density of the product is considered to be reduced.

【0019】このため、本発明では、Ti,Zrを必要
量添加することにより、TiN,ZrNを形成せしめ、
スラブ内の固溶N量の低減を行ったものであり、このT
iN,ZrNは最終製品にも残留し、鉄損特性を劣化さ
せるため、必要以上に添加することは意味がない。
Therefore, in the present invention, TiN and ZrN are formed by adding necessary amounts of Ti and Zr,
The amount of dissolved N in the slab was reduced.
Since iN and ZrN remain in the final product and degrade iron loss characteristics, it is meaningless to add more than necessary.

【0020】次に本発明の構成要件を限定した理由につ
いて述べる。先ず、スラブ成分とスラブ加熱温度に関し
て限定理由を詳細に説明する。Cは0.025重量%
(以下単に%と略述)未満になると二次再結晶が不安定
になり、かつ二次再結晶した場合でもB8 >1.80
(T)が得がたいので0.025%以上とした。一方、
Cが多くなり過ぎると脱炭焼鈍時間が長くなり経済的で
ないので0.075%以下とした。
Next, the reasons for limiting the constituent elements of the present invention will be described. First, the reasons for limiting the slab components and the slab heating temperature will be described in detail. C is 0.025% by weight
(Hereinafter simply abbreviated as%), the secondary recrystallization becomes unstable, and even when secondary recrystallization occurs, B 8 > 1.80.
Since (T) is difficult to obtain, the content is set to 0.025% or more. on the other hand,
If C becomes too large, the decarburization annealing time becomes long and it is not economical, so the content was made 0.075% or less.

【0021】Siは4.5%を超えると冷延時の割れが
著しくなるので4.5%以下とした。また、2.5%未
満では素材の固有抵抗が低すぎ、トランス鉄心材料とし
て必要な低鉄損が得られないので2.5%以上とした。
望ましくは3.2%以上である。
If the content of Si exceeds 4.5%, cracking at the time of cold rolling becomes remarkable, so the content is set to 4.5% or less. On the other hand, if it is less than 2.5%, the specific resistance of the material is too low, and a low iron loss required as a transformer core material cannot be obtained.
Desirably, it is at least 3.2%.

【0022】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)Nを確保するため、酸可溶性A
lとして0.010%以上が必要である。酸可溶性Al
が0.060%を超えると熱延板のAlNが不適切とな
り二次再結晶が不安定となるので0.060%以下とし
た。
Al is AlN required for stabilizing secondary recrystallization.
Alternatively, to secure (Al, Si) N, acid-soluble A
l must be 0.010% or more. Acid soluble Al
Exceeds 0.060%, the AlN of the hot-rolled sheet becomes inappropriate and secondary recrystallization becomes unstable.

【0023】N量については、図1に示した如く、0.
0030%未満にすることが必要である。そして、これ
がスラブ加熱時の温度偏差に起因する磁性の変動を低減
するのに有効である。N量の下限については特に限定す
るものではないが、製鋼段階でNを0.0001%以下
にすることは工業的には難しい。
As shown in FIG.
It is necessary to make it less than 0030%. This is effective for reducing fluctuations in magnetism caused by temperature deviation during slab heating. The lower limit of the amount of N is not particularly limited, but it is industrially difficult to reduce N to 0.0001% or less at the steel making stage.

【0024】Ti,Zrは、AlよりもNとの親和力が
強く、TiN,ZrNを形成させ、スラブ加熱時の固溶
N量を低減させる効果がある。このため、スラブ加熱時
のスラブ温度偏差に起因するAlNの析出の不均一性を
低減する効果がある。しかし、TiN,ZrNは製品に
も残留し、鉄損特性を劣化させるため、図1に示す如
く、N量に応じて適正範囲があり、0.5×N(%)<
0.292×Ti(%)+0.154×Zr(%)<
0.0050としなければならない。
Ti and Zr have a stronger affinity for N than Al and have the effect of forming TiN and ZrN and reducing the amount of dissolved N during slab heating. For this reason, there is an effect of reducing the non-uniformity of AlN precipitation caused by the slab temperature deviation during slab heating. However, TiN and ZrN remain in the product and deteriorate iron loss characteristics. Therefore, as shown in FIG. 1, there is an appropriate range according to the amount of N, and 0.5 × N (%) <
0.292 × Ti (%) + 0.154 × Zr (%) <
Must be 0.0050.

【0025】Sの範囲は0.01〜0.05%と規定し
た。本発明の如く、スラブのN量を少なくしている場合
は、一次再結晶粒の粒成長を、所定の範囲に平均粒径が
なるように制御するためには、AlN以外のインヒビタ
ーを利用する必要がある。このためには、Cu2 Sまた
はMnSを所定量形成させる必要がある。この意味にお
いて、Sの範囲は、0.01〜0.05%でなければな
らない。
The range of S is defined as 0.01 to 0.05%. When the amount of N in the slab is reduced as in the present invention, an inhibitor other than AlN is used to control the growth of the primary recrystallized grains so that the average grain size falls within a predetermined range. There is a need. For this purpose, it is necessary to form a predetermined amount of Cu 2 S or MnS. In this sense, the range of S must be between 0.01 and 0.05%.

【0026】Cu,Mnはどちらか1つまたは両方を下
記の範囲とする必要がある。CuはMnSより小さいサ
イズのCu2 Sを形成し、一次再結晶粒の粒成長のコン
トロールに有効に利用できる。微細なCu2 Sを適正量
形成させるためには、Cu:0.01〜0.40%とし
なければならない。MnはMnSを形成し、一次再結晶
粒の粒成長のコントロールに利用できる。従ってMnS
を適正量形成させるために、Mn:0.02〜0.8%
添加することは、磁気特性を良好ならしめるために必要
である。
One or both of Cu and Mn must be in the following range. Cu forms Cu 2 S having a smaller size than MnS, and can be effectively used for controlling the growth of primary recrystallized grains. In order to form an appropriate amount of fine Cu 2 S, Cu must be 0.01 to 0.40%. Mn forms MnS and can be used to control the growth of primary recrystallized grains. Therefore MnS
To form an appropriate amount of Mn: 0.02 to 0.8%
The addition is necessary to improve the magnetic properties.

【0027】Snは、粒界偏析元素として知られてお
り、粒成長を抑制する元素である。一方、スラブ加熱時
Snは完全固溶しており、通常考えられる数10℃の温
度差を有する加熱時のスラブ内でも、一様に固溶してい
ると考えられる。従って、温度差があるにも拘らず加熱
時のスラブ内で均一に分布しているSnは、脱炭焼鈍時
の粒成長抑制効果についても、場所的に均一に作用する
と考えられる。このため、AlNの場所的不均一に起因
する脱炭焼鈍時の粒成長の場所的不均一を、Snは希釈
する効果があるものと考えられる。従って、本発明のN
量,Ti量,Zr量を制限する技術及び、後述する一次
再結晶粒径の制御に加え、Snを添加することはさらに
製品の磁気特性の場所的バラツキを低減させるのに有効
である。このSnの適正範囲を0.01〜0.15%と
した。この下限値未満では、粒成長抑制効果が少な過ぎ
て好ましくない。一方、この上限値を超えると鋼板の窒
化が難しくなり、二次再結晶不良の原因となるため好ま
しくない。
Sn is known as a grain boundary segregation element and is an element that suppresses grain growth. On the other hand, Sn at the time of slab heating is considered to be completely solid-dissolved, and even in a slab at the time of heating having a temperature difference of several tens of degrees, which is normally considered, a solid solution is considered. Therefore, it is considered that Sn uniformly distributed in the slab at the time of heating, despite the temperature difference, has a uniform effect on the grain growth at the time of decarburizing annealing. For this reason, it is considered that Sn has the effect of diluting the spatial nonuniformity of the grain growth during the decarburizing annealing caused by the spatial nonuniformity of the AlN. Therefore, the N
The addition of Sn, in addition to the technique for limiting the amount of Ti, the amount of Ti, and the amount of Zr, and the control of the primary recrystallized grain size, which will be described later, are effective in further reducing the variation in the magnetic properties of the product. The appropriate range of Sn is set to 0.01 to 0.15%. Below this lower limit, the effect of suppressing grain growth is undesirably too small. On the other hand, if the upper limit is exceeded, nitriding of the steel sheet becomes difficult, which causes secondary recrystallization failure, which is not preferable.

【0028】この他インヒビター構成元素として知られ
ているSb,Cr,Ni,B,Nb等を微量に含有する
ことは差し支えない。特に、B,Nb等窒化物構成元素
は、スラブ内の温度差に起因するAlNの場所的差を低
減するために積極的に添加しても構わない。
In addition, a small amount of Sb, Cr, Ni, B, Nb, etc., which are known as inhibitor constituent elements, may be contained. In particular, nitride constituent elements such as B and Nb may be positively added in order to reduce the positional difference in AlN caused by the temperature difference in the slab.

【0029】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。加熱されたスラ
ブは、引き続き熱延されて熱延板となる。この熱延方法
については、特に限定されるものではないが、熱延の終
了温度を850〜1050℃とし、熱延の最終了パスの
累積圧下率を40%以上とすることは、製品の磁性の場
所的バラツキを低減し、かつ磁性を向上させる上でさら
に好ましい。
The slab heating temperature is limited to less than 1280 ° C. for the purpose of reducing the cost to the level of ordinary steel. Preferably it is 1200 ° C or lower. The heated slab is subsequently hot-rolled into a hot-rolled sheet. The hot rolling method is not particularly limited, but the hot rolling end temperature is set to 850 to 1050 ° C. and the cumulative rolling reduction of the last hot rolling pass is set to 40% or more. Is more preferable in reducing the variation in location and improving the magnetism.

【0030】この熱延板は次いで、圧下率80%以上の
最終冷延を含む1回または中間焼鈍をはさむ回以上の
冷延を施す。最終冷延の圧下率を80%以上としたの
は、圧下率を上記範囲とすることによって、脱炭板にお
いて尖鋭な{110}〈001〉方位粒と、これに蚕食
されやすい対応方位粒({111}〈112〉方位粒
等)を適正量得ることができ、磁束密度を高める上で好
ましいためである。
[0030] The hot-rolled sheet is then final cold rolling over reduction of 80% applied twice or more cold rolling sandwiching the including one or intermediate annealing. The reason why the rolling reduction of the final cold rolling is set to 80% or more is that, by setting the rolling reduction within the above range, sharp {110} <001> oriented grains and corresponding oriented grains ( This is because an appropriate amount of {111} <112> orientation grains) can be obtained, which is preferable in increasing the magnetic flux density.

【0031】前記熱延後、850〜1250℃の熱延板
焼鈍を施すことは、磁気特性を高位安定化する上で、さ
らに好ましい。この温度域で熱処理することは、Al
N,Cu2 S,MnSの熱延板の場所的不均一性を低減
する効果がある。
After the hot rolling, it is more preferable to perform hot rolling annealing at 850 to 1250 ° C. in order to stabilize the magnetic properties at a high level. Heat treatment in this temperature range is caused by Al
N, Cu 2 S, and MnS have an effect of reducing the spatial nonuniformity of the hot-rolled sheet.

【0032】最終冷延後の鋼板は、通常の方法で脱炭焼
鈍、焼鈍分離剤塗布、最終仕上焼鈍を施されて最終製品
となる。ここで脱炭焼鈍完了後、最終仕上焼鈍開始まで
の間の一次再結晶粒の平均粒径を18〜35μmに制御
することは、N,Ti,Zr量の制御に加え、さらに好
ましい。その理由はこの平均粒径の範囲で良好な磁束密
度が得られやすく、かつ粒径変動に対する磁束密度の変
化が少ないからである。
The steel sheet after the final cold rolling is subjected to decarburizing annealing, application of an annealing separating agent, and final finishing annealing in a usual manner to be a final product. Here, it is more preferable to control the average grain size of the primary recrystallized grains from 18 to 35 μm after the completion of the decarburizing annealing until the start of the final finish annealing, in addition to the control of the amounts of N, Ti, and Zr. The reason is that a good magnetic flux density is easily obtained in the range of the average particle diameter, and the change of the magnetic flux density with respect to the fluctuation of the particle diameter is small.

【0033】そして、熱延後最終仕上焼鈍の二次再結晶
開始までの間に鋼板に窒化処理を施すと規定したのは、
本発明の如き低温スラブ加熱を前提とするプロセスで
は、二次再結晶に必要なインヒビター強度が不足がちに
なるからである。窒化の方法としては特に限定するもの
ではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3 ガス
を混入させ窒化する方法、プラズマを用いる方法、焼鈍
分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒化
物が分解してできた窒素を鋼板に吸収させる方法、最終
仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化す
る方法等何れの方法でも良い。窒化量については特に限
定するものではないが、1ppm 以上は必要である。
The reason that the steel sheet is subjected to a nitriding treatment before the secondary recrystallization of the final finish annealing after hot rolling is defined as follows:
This is because in the process based on low-temperature slab heating as in the present invention, the inhibitor strength required for secondary recrystallization tends to be insufficient. The method of nitriding is not particularly limited, but may be a method of nitriding by mixing NH 3 gas in the annealing atmosphere after decarburizing annealing, a method using plasma, adding a nitride to the annealing separator, and increasing the final finish annealing. Any method may be used, such as a method in which nitrogen generated by the decomposition of nitrides in a temperature is absorbed in a steel sheet, a method in which the N 2 partial pressure in the atmosphere of final finish annealing is increased, and the steel sheet is nitrided. The amount of nitriding is not particularly limited, but 1 ppm or more is required.

【0034】[0034]

【実施例】以下実施例を説明する。 〔実施例1〕C:0.042重量%、Si:3.00重
量%、Mn:0.18重量%、S:0.016重量%、
酸可溶性Al:0.024重量%を基本成分とし、N量
を0.0083重量%、0.0012重量%の2水
準とし、Ti量を0.0002重量%、0.004
1重量%なる2水準で添加した4種類の250mm厚のス
ラブを作成した。かかるスラブをa:1180℃、b:
1110℃の2水準の温度で60分均熱した後、直ちに
熱延を開始し、5パスで40mm厚とした後、6パスで
2.3mm厚の熱延板とした。次いで、熱延終了後は、秒
間空冷後550℃まで水冷し、550℃に1時間保持し
た後炉冷する巻取りシュミレーションを行った。
Embodiments will be described below. Example 1 C: 0.042% by weight, Si: 3.00% by weight, Mn: 0.18% by weight, S: 0.016% by weight,
Acid-soluble Al: 0.024% by weight as a basic component, N content at two levels of 0.0083% by weight and 0.0012% by weight, and Ti content at 0.0002% by weight and 0.004% by weight.
Four 250 mm thick slabs were added at two levels of 1% by weight. The slab was a: 1180 ° C., b:
After soaking at two temperatures of 1110 ° C. for 60 minutes, hot rolling was started immediately, the thickness was increased to 40 mm by 5 passes, and then the hot rolled sheet was 2.3 mm thick by 6 passes. Next, after the hot rolling was completed, a winding simulation was performed in which air cooling was performed for 2 seconds, water cooling was performed to 550 ° C., the temperature was maintained at 550 ° C. for 1 hour, and the furnace was cooled.

【0035】この熱延板を酸洗して圧下率約88%で
0.285mmの冷延板とし、835℃で150秒保持す
る脱炭焼鈍を施した。しかる後、750℃で30秒保持
する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ
鋼板に窒素を吸収せしめた。窒化後のこの鋼板のN量は
0.0190〜0.0217重量%であった。次いで、
この鋼板にMgOを主成分とする焼鈍分離剤を塗布し、
2 25%、H2 75%の雰囲気ガス中で15℃/時の
速度で1200℃まで昇温し、引き続きH2 100%雰
囲気ガス中で1200℃で20時間保持する最終仕上焼
鈍を行った。実験条件と磁気特性の結果を表1に示す。
The hot-rolled sheet was pickled to obtain a cold-rolled sheet having a rolling reduction of about 88% and a thickness of 0.285 mm, and was subjected to decarburizing annealing at 835 ° C. for 150 seconds. Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed in the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of this steel sheet after nitriding was 0.0190 to 0.0217% by weight. Then
This steel sheet is coated with an annealing separator containing MgO as a main component,
The temperature was raised to 1200 ° C. at a rate of 15 ° C./hour in an atmosphere gas of 25% N 2 and 75% H 2 , and then a final finish annealing was performed at 1200 ° C. for 20 hours in a 100% H 2 atmosphere gas. . Table 1 shows the experimental conditions and the results of the magnetic characteristics.

【0036】[0036]

【表1】 [Table 1]

【0037】〔実施例2〕C:0.048重量%、S
i:3.24重量%、Mn:0.14重量%、S:0.
015重量%、N:0.0010重量%、酸可溶性A
l:0.024重量%を基本成分とし、Tiを0.0
003重量%、0.0041重量%、Zrを0.0
004重量%、0.0054重量%の各2水準のレベ
ルで添加し、残部Fe及び不可避的不純物からなる4種
類の250mm厚のスラブを作成した。かかるスラブを
a:1180℃、b:1110℃の2水準の温度で60
分均熱した後、直ちに熱延を開始し、5パスで40mm厚
とした後、6パスで2.3mm厚の熱延板とした。次い
で、この熱延板を最終仕上焼鈍まで実施例1の条件で処
理した。窒化後のN量は0.0195〜0.0208重
量%であった。実験条件と製品の磁気特性を表2に示
す。
Example 2 C: 0.048% by weight, S
i: 3.24% by weight, Mn: 0.14% by weight, S: 0.
015% by weight, N: 0.0010% by weight, acid soluble A
l: 0.024% by weight as a basic component, and
003% by weight, 0.0041% by weight and Zr of 0.0
004 wt% and 0.0054 wt% were added at two levels to prepare four types of 250 mm thick slabs consisting of the balance of Fe and inevitable impurities. The slab was heated at two levels of a: 1180 ° C. and b: 1110 ° C. for 60 hours.
Immediately after the heat was soaked, hot rolling was started immediately, the thickness was increased to 40 mm in 5 passes, and then the hot rolled sheet was 2.3 mm thick in 6 passes. Next, this hot-rolled sheet was treated under the conditions of Example 1 until final finish annealing. The N content after nitriding was 0.0195 to 0.0208% by weight. Table 2 shows the experimental conditions and the magnetic properties of the product.

【0038】[0038]

【表2】 [Table 2]

【0039】〔実施例3〕C:0.045重量%、S
i:3.28重量%、Mn:0.21重量%、S:0.
018重量%、酸可溶性Al:0.025重量%、N:
0.0018重量%、Ti:0.0045重量%を添加
し、残部Fe及び不可避的不純物からなる250mm厚ス
ラブを作成した。かかるスラブをa:1150℃、b:
1080℃の2水準の温度で60分均熱した後、直ちに
熱延を開始し、5パスで40mm厚とした後、6パスで
2.3mm厚の熱延板とした。
Example 3 C: 0.045% by weight, S
i: 3.28% by weight, Mn: 0.21% by weight, S: 0.
018% by weight, acid-soluble Al: 0.025% by weight, N:
0.0018% by weight and 0.0045% by weight of Ti were added to prepare a 250 mm thick slab composed of the balance of Fe and unavoidable impurities. The slab was a: 1150 ° C., b:
After soaking for 60 minutes at two temperatures of 1080 ° C., hot rolling was started immediately, the thickness was increased to 40 mm in five passes, and the hot-rolled sheet was 2.3 mm thick in six passes.

【0040】次いで、かかる熱延板を酸洗して圧下率約
88%で0.285mmの冷延板とし、820℃、8
40℃、860℃、870℃の各温度で150秒保
持する脱炭焼鈍を施した。しかる後、750℃で30秒
保持する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入
させ鋼板に窒素吸収を生ぜしめた。窒化後のこの鋼板の
N量は0.0198〜0.0237重量%であった。そ
してこの鋼板の平均結晶粒径を、光学顕微鏡と画像解析
機を用いて測定した。次いで、この鋼板にMgOを主成
分とする焼鈍分離剤を塗布し、N2 50%、H2 50%
の雰囲気ガス中で20℃/時の速度で1200℃まで昇
温し、引き続きH2 100%雰囲気ガス中で1200℃
で20時間保持する最終仕上焼鈍を行った。実験条件と
製品の磁気特性を表3に示す。
Next, the hot-rolled sheet was pickled to obtain a cold-rolled sheet having a rolling reduction of about 88% and a thickness of 0.285 mm.
Decarburization annealing was performed at each of 40 ° C., 860 ° C., and 870 ° C. for 150 seconds. Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to cause nitrogen absorption in the steel sheet. The N content of this steel sheet after nitriding was 0.0198 to 0.0237% by weight. Then, the average crystal grain size of the steel sheet was measured using an optical microscope and an image analyzer. Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and N 2 50% and H 2 50%
The temperature was increased to 1200 ° C. at a rate of 20 ° C./hour in an atmosphere gas of 1,200 ° C. in a 100% H 2 atmosphere gas.
For 20 hours. Table 3 shows the experimental conditions and the magnetic properties of the product.

【0041】[0041]

【表3】 [Table 3]

【0042】〔実施例4〕C:0.056重量%、S
i:3.34重量%、Mn:0.24重量%、S:0.
016重量%、酸可溶性Al:0.024重量%、N:
0.0008重量%、Zr:0.0041重量%を基本
成分とし、Sn量を添加なし(<0.01重量%)、
0.05重量%、0.11重量%なる3水準で添加
し、残部Fe及び不可避的不純物からなる3種類の25
0mm厚のスラブを作成した。かかるスラブをa:117
0℃、b:1100℃の2水準の温度で60分均熱した
後、直ちに熱延を開始し、5パスで40mm厚とした後、
6パスで2.3mm厚の熱延板とした。次いでこの熱延板
を最終仕上焼鈍まで実施例3の条件で処理した。ただ
し、脱炭焼鈍条件については、840℃×150秒
(均熱)、860℃×150秒(均熱)のみ行った。
窒化後のN量は、0.0198〜0.0226重量%で
あった。実験条件と製品の磁気特性を表4に示す。
Example 4 C: 0.056% by weight, S
i: 3.34% by weight, Mn: 0.24% by weight, S: 0.3% by weight.
016% by weight, acid-soluble Al: 0.024% by weight, N:
0.0008% by weight, 0.0041% by weight of Zr as a basic component, and no addition of Sn (<0.01% by weight);
It is added at three levels of 0.05% by weight and 0.11% by weight.
A 0 mm thick slab was made. This slab is a: 117
0 ° C., b: After soaking for 60 minutes at two levels of temperature of 1100 ° C., immediately start hot rolling, and after making 5 passes to a thickness of 40 mm,
The hot-rolled sheet was 2.3 mm thick with 6 passes. Next, this hot-rolled sheet was treated under the conditions of Example 3 until final finish annealing. However, regarding the decarburizing annealing conditions, only 840 ° C. × 150 seconds (soaking) and 860 ° C. × 150 seconds (soaking) were performed.
The N content after nitriding was 0.0198 to 0.0226% by weight. Table 4 shows the experimental conditions and the magnetic properties of the product.

【0043】[0043]

【表4】 [Table 4]

【0044】〔実施例5〕C:0.053重量%、S
i:3.44重量%、Mn:0.31重量%、S:0.
018重量%、N:0.0014重量%、酸可溶性A
l:0.026重量%を基本成分とし、酸可溶性Tiを
0.0006重量%、0.0037重量%なる2水
準のレベルで添加し、さらには、Snを(a)添加なし
(<0.01重量%)、(b)0.06重量%なる2水
準とし、残部Fe及び不可避的不純物からなる4種類の
250mm厚のスラブを作成した。かかるスラブをa:1
160℃、b:1090℃の2水準の温度で60分均熱
した後、直ちに熱延を開始し、5パスで40mm厚とした
後、6パスで2.3mm厚の熱延板とした。次いで、熱延
板を1100℃に30秒保持し引き続き900℃に30
秒保持した後急冷する熱延板焼鈍を施した。
Example 5 C: 0.053% by weight, S
i: 3.44% by weight, Mn: 0.31% by weight, S: 0.
018% by weight, N: 0.0014% by weight, acid soluble A
l: 0.026% by weight as a basic component, acid-soluble Ti is added at two levels of 0.0006% by weight and 0.0037% by weight, and Sn is not added (a) (<0. (01% by weight) and (b) two levels of 0.06% by weight, and four types of slabs each having a thickness of 250 mm and comprising the balance of Fe and unavoidable impurities were prepared. This slab is a: 1
After soaking at two temperatures of 160 ° C. and b: 1090 ° C. for 60 minutes, hot rolling was started immediately, the thickness was increased to 40 mm in 5 passes, and then a 2.3 mm thick hot rolled plate was passed in 6 passes. Next, the hot-rolled sheet is kept at 1100 ° C. for 30 seconds and then kept at 900 ° C. for 30 seconds.
After holding for 2 seconds, the hot rolled sheet was quenched and then annealed.

【0045】しかる後、圧下率約90%で0.220mm
まで冷間圧延し、次いで、825℃×90秒(均熱)な
る脱炭焼鈍を施した。その後、750℃で30秒保持す
る焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ鋼
板に窒素吸収を生ぜしめた。窒化後の鋼板のN量は、
0.0215〜0.0223重量%であった。次いで、
この鋼板にMgOを主成分とする焼鈍分離剤を塗布し、
2 50%、H2 50%の雰囲気ガス中で10℃/時の
速度で1200℃まで昇温し、引き続きH2 100%雰
囲気ガス中で1200℃で20時間保持する最終仕上焼
鈍を行った。実験条件と製品の磁気特性を表5に示す。
Thereafter, at a rolling reduction of about 90%, 0.220 mm
The steel sheet was then cold-rolled, and then subjected to decarburizing annealing at 825 ° C. × 90 seconds (soaking). Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to cause the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding is
0.0215 to 0.0223% by weight. Then
This steel sheet is coated with an annealing separator containing MgO as a main component,
The temperature was raised to 1200 ° C. at a rate of 10 ° C./hour in an atmosphere gas of 50% N 2 and 50% H 2 , and then a final finish annealing was performed in which the atmosphere was maintained at 1200 ° C. for 20 hours in a 100% H 2 atmosphere gas. . Table 5 shows the experimental conditions and the magnetic properties of the product.

【0046】[0046]

【表5】 [Table 5]

【0047】〔実施例6〕実施例5に記載の2.3mm厚
の熱延板を1.8mmまで冷間圧延し、次いで、1100
℃に30秒保持し、引き続き900℃に30秒保持した
後急冷する焼鈍を施した。しかる後、圧下率約91%で
0.170mmまで、冷間圧延し、引き続き、脱炭焼鈍か
ら最終仕上焼鈍までの工程を実施例5記載の条件で処理
した。窒化後の鋼板のN量は、0.0190〜0.02
43重量%であった。実験条件と製品の磁気特性を表6
に示す。
Example 6 The hot-rolled 2.3 mm thick sheet described in Example 5 was cold-rolled to 1.8 mm, and then 1100
C. for 30 seconds, followed by annealing at 900.degree. C. for 30 seconds followed by rapid cooling. Thereafter, cold rolling was performed to 0.170 mm at a rolling reduction of about 91%, and then the steps from decarburizing annealing to final finish annealing were processed under the conditions described in Example 5. The N content of the steel sheet after nitriding is 0.0190 to 0.02.
43% by weight. Table 6 shows the experimental conditions and the magnetic properties of the products.
Shown in

【0048】[0048]

【表6】 [Table 6]

【0049】〔実施例7〕C:0.040重量%、S
i:3.02重量%、Cu:0.08重量%、S:0.
012重量%、酸可溶性Al:0.025重量%を基本
成分とし、N量を0.0080重量%、0.001
0重量%の2水準とし、Ti量を0.0003重量
%、0.0043重量%なる2水準で添加した4種類
の250mm厚のスラブを作成した。かかるスラブをa:
1180℃、b:1110℃の2水準の温度で60分均
熱した後、直ちに熱延を開始し、5パスで40mm厚とし
た後、6パスで2.3mm厚の熱延板とした。次いで、熱
延終了後は、秒間空冷後550℃まで水冷し、550℃
に1時間保持した後炉冷する巻取りシュミレーションを
行った。
Example 7 C: 0.040% by weight, S
i: 3.02% by weight, Cu: 0.08% by weight, S: 0.
012% by weight, acid-soluble Al: 0.025% by weight as a basic component, and N content of 0.0080% by weight, 0.001%
Four types of 250 mm thick slabs were prepared by adding two levels of 0% by weight and adding Ti at two levels of 0.0003% by weight and 0.0043% by weight. Such a slab is a:
After soaking at two temperatures of 1180 ° C. and b: 1110 ° C. for 60 minutes, hot rolling was started immediately, the thickness was reduced to 40 mm by 5 passes, and then a 2.3 mm thick hot rolled plate was passed by 6 passes. Next, after the hot rolling is completed, air-cooling is performed for 2 seconds and then water-cooled to 550 ° C.
, And the furnace was cooled for 1 hour, and a winding simulation was performed.

【0050】この熱延板を酸洗して圧下率約88%で
0.285mmの冷延板とし、830℃で150秒保持す
る脱炭焼鈍を施した。しかる後、750℃で30秒保持
する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ
鋼板に窒素を吸収せしめた。窒化後のこの鋼板のN量は
0.0184〜0.0204重量%であった。次いで、
この鋼板にMgOを主成分とする焼鈍分離剤を塗布し、
2 50%、H2 50%の雰囲気ガス中で15℃/時の
速度で1200℃まで昇温し、引き続きH2 100%雰
囲気ガス中で1200℃で20時間保持する最終仕上焼
鈍を行った。実験条件と磁気特性の結果を表7に示す。
The hot-rolled sheet was pickled to obtain a 0.285-mm cold-rolled sheet at a rolling reduction of about 88%, and was subjected to decarburization annealing at 830 ° C. for 150 seconds. Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed in the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding was 0.0184 to 0.0204% by weight. Then
This steel sheet is coated with an annealing separator containing MgO as a main component,
The temperature was raised to 1200 ° C. at a rate of 15 ° C./hour in an atmosphere gas of 50% N 2 and 50% H 2 , and then a final finish annealing was performed at 1200 ° C. for 20 hours in a 100% H 2 atmosphere gas. . Table 7 shows the experimental conditions and the results of the magnetic properties.

【0051】[0051]

【表7】 [Table 7]

【0052】〔実施例8〕 C:0.045重量%、Si:3.28重量%、Cu:
0.11重量%、S:0.014重量%、N:0.00
12重量%、酸可溶性Al:0.026重量%を基本成
分とし、Tiを0.0004重量%、0.0039
重量%、Zrを0.0005重量%、0.0050
重量%の各2水準のレベルで添加し、残部Fe及び不可
避的不純物からなる4種類の250mm厚のスラブを作成
した。かかるスラブをa:1180℃、b:1110℃
の2水準の温度で60分均熱した後、直ちに熱延を開始
し、5パスで40mm厚とした後、6パスで2.3mm厚の
熱延板とした。次いで、この熱延板を最終仕上焼鈍まで
実施例7の条件で処理した。窒化後のN量は0.018
9〜0.0206重量%であった。実験条件と製品の磁
気特性を表8に示す。
Example 8 C: 0.045% by weight, Si: 3.28% by weight, Cu:
0.11% by weight, S: 0.014% by weight, N: 0.00
12% by weight, acid-soluble Al: 0.026% by weight as a basic component, 0.0004% by weight of Ti, 0.0039%
Wt%, Zr 0.0005 wt%, 0.0050
By weight of each of two levels, four types of 250 mm thick slabs each consisting of the balance of Fe and unavoidable impurities were prepared. Such a slab is a: 1180 ° C., b: 1110 ° C.
After the soaking at 60 ° C. for 60 minutes, hot rolling was started immediately, the thickness was reduced to 40 mm in 5 passes, and the hot rolled sheet was 2.3 mm thick in 6 passes. Next, this hot rolled sheet is subjected to final finish annealing.
Processing was performed under the conditions of Example 7 . N content after nitriding is 0.018
9 to 0.0206% by weight. Table 8 shows the experimental conditions and the magnetic properties of the product.

【0053】[0053]

【表8】 [Table 8]

【0054】〔実施例9〕C:0.047重量%、S
i:3.29重量%、Cu:0.11重量%、S:0.
015重量%、酸可溶性Al:0.024重量%、N:
0.0015重量%、Ti:0.0041重量%を添加
し、残部Fe及び不可避的不純物からなる250mm厚ス
ラブを作成した。かかるスラブをa:1150℃、b:
1080℃の2水準の温度で60分均熱した後、直ちに
熱延を開始し、5パスで40mm厚とした後、6パスで
2.3mm厚の熱延板とした。
Example 9 C: 0.047% by weight, S
i: 3.29% by weight, Cu: 0.11% by weight, S: 0.
015% by weight, acid-soluble Al: 0.024% by weight, N:
0.0015% by weight and 0.0041% by weight of Ti were added to prepare a 250 mm thick slab composed of the balance of Fe and unavoidable impurities. The slab was a: 1150 ° C., b:
After soaking for 60 minutes at two temperatures of 1080 ° C., hot rolling was started immediately, the thickness was increased to 40 mm in five passes, and the hot-rolled sheet was 2.3 mm thick in six passes.

【0055】次いで、かかる熱延板を酸洗して圧下率約
88%で0.285mmの冷延板とし、820℃、8
40℃、860℃、870℃の各温度で150秒保
持する脱炭焼鈍を施した。しかる後、750℃で30秒
保持する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入
させ鋼板に窒素吸収を生ぜしめた。窒化後のこの鋼板の
N量は0.0194〜0.0240重量%であった。そ
してこの鋼板の平均結晶粒径を、光学顕微鏡と画像解析
機を用いて測定した。次いで、この鋼板にMgOを主成
分とする焼鈍分離剤を塗布し、N2 50%、H2 50%
の雰囲気ガス中で15℃/時の速度で1200℃まで昇
温し、引き続きH2 100%雰囲気ガス中で1200℃
で20時間保持する最終仕上焼鈍を行った。実験条件と
製品の磁気特性を表9に示す。
Next, the hot-rolled sheet was pickled to obtain a cold-rolled sheet having a rolling reduction of about 88% and a thickness of 0.285 mm.
Decarburization annealing was performed at each of 40 ° C., 860 ° C., and 870 ° C. for 150 seconds. Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to cause nitrogen absorption in the steel sheet. The N content of this steel sheet after nitriding was 0.0194 to 0.0240% by weight. Then, the average crystal grain size of the steel sheet was measured using an optical microscope and an image analyzer. Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and N 2 50% and H 2 50%
The temperature was increased to 1200 ° C. at a rate of 15 ° C./hour in an atmosphere gas of 1,200 ° C. in a 100% H 2 atmosphere gas.
For 20 hours. Table 9 shows the experimental conditions and the magnetic properties of the product.

【0056】[0056]

【表9】 [Table 9]

【0057】〔実施例10〕 C:0.054重量%、Si:3.30重量%、Cu:
0.20重量%、S:0.013重量%、酸可溶性A
l:0.025重量%、N:0.0009重量%、Z
r:0.0036重量%を基本成分とし、Sn量を添
加なし(<0.01重量%)、0.06重量%、
0.12重量%なる3水準で添加し、残部Fe及び不可
避的不純物からなる3種類の250mm厚のスラブを作成
した。かかるスラブをa:1180℃、b:1110℃
の2水準の温度で60分均熱した後、直ちに熱延を開始
し、5パスで40mm厚とした後、6パスで2.3mm厚の
熱延板とした。次いでこの熱延板を最終仕上焼鈍まで
施例9の条件で処理した。ただし、脱炭焼鈍条件につい
ては、840℃×150秒(均熱)、860℃×1
50秒(均熱)のみ行った。窒化後のN量は、0.01
90〜0.0221重量%であった。実験条件と製品の
磁気特性を表10に示す。
Example 10 C: 0.054% by weight, Si: 3.30% by weight, Cu:
0.20% by weight, S: 0.013% by weight, acid soluble A
l: 0.025% by weight, N: 0.0009% by weight, Z
r: 0.0036% by weight as a basic component, no addition of Sn (<0.01% by weight), 0.06% by weight,
Three types of slabs each containing 0.1% by weight of 0.12% by weight were added to form a 250 mm-thick slab consisting of a balance of Fe and unavoidable impurities. Such a slab is a: 1180 ° C., b: 1110 ° C.
After the soaking at 60 ° C. for 60 minutes, hot rolling was started immediately, the thickness was reduced to 40 mm in 5 passes, and the hot rolled sheet was 2.3 mm thick in 6 passes. Then the real to the final finish annealing the hot-rolled sheet
Processing was performed under the conditions of Example 9 . However, regarding the decarburization annealing conditions, 840 ° C. × 150 seconds (soaking), 860 ° C. × 1
Only 50 seconds (soaking). The N content after nitriding is 0.01
90 to 0.0221% by weight. Table 10 shows the experimental conditions and the magnetic properties of the product.

【0058】[0058]

【表10】 [Table 10]

【0059】〔実施例11〕C:0.052重量%、S
i:3.41重量%、Cu:0.26重量%、S:0.
016重量%、N:0.0013重量%、酸可溶性A
l:0.026重量%を基本成分とし、酸可溶性Tiを
0.0008重量%、0.0035重量%なる2水
準のレベルで添加し、さらには、Snを(a)添加なし
(<0.01重量%)、(b)0.07重量%なる2水
準とし、残部Fe及び不可避的不純物からなる4種類の
250mm厚のスラブを作成した。かかるスラブをa:1
160℃、b:1090℃の2水準の温度で60分均熱
した後、直ちに熱延を開始し、5パスで40mm厚とした
後、6パスで2.3mm厚の熱延板とした。次いで、熱延
板を1120℃に30秒保持し引き続き900℃に30
秒保持した後急冷する熱延板焼鈍を施した。
Example 11 C: 0.052% by weight, S
i: 3.41% by weight, Cu: 0.26% by weight, S: 0.
016% by weight, N: 0.0013% by weight, acid soluble A
l: 0.026% by weight as a basic component, acid-soluble Ti is added at two levels of 0.0008% by weight and 0.0035% by weight, and Sn is not added (a) (<0. 01% by weight) and (b) two levels of 0.07% by weight, and four types of slabs each having a thickness of 250 mm and comprising the balance of Fe and unavoidable impurities were prepared. This slab is a: 1
After soaking at two temperatures of 160 ° C. and b: 1090 ° C. for 60 minutes, hot rolling was started immediately, the thickness was increased to 40 mm in 5 passes, and then a 2.3 mm thick hot rolled plate was passed in 6 passes. Next, the hot rolled sheet is kept at 1120 ° C. for 30 seconds,
After holding for 2 seconds, the hot rolled sheet was quenched and then annealed.

【0060】しかる後、圧下率約90%で0.220mm
まで冷間圧延し、次いで、830℃×90秒(均熱)な
る脱炭焼鈍を施した。その後、750℃で30秒保持す
る焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ鋼
板に窒素吸収を生ぜしめた。窒化後の鋼板のN量は、
0.0219〜0.0228重量%であった。次いで、
この鋼板にMgOを主成分とする焼鈍分離剤を塗布し、
2 50%、H2 50%の雰囲気ガス中で10℃/時の
速度で1200℃まで昇温し、引き続きH2 100%雰
囲気ガス中で1200℃で20時間保持する最終仕上焼
鈍を行った。実験条件と製品の磁気特性を表11に示
す。
Thereafter, at a rolling reduction of about 90%, 0.220 mm
The steel sheet was then cold-rolled, and then subjected to decarburizing annealing at 830 ° C. × 90 seconds (soaking). Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to cause the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding is
It was 0.0219 to 0.0228% by weight. Then
This steel sheet is coated with an annealing separator containing MgO as a main component,
The temperature was raised to 1200 ° C. at a rate of 10 ° C./hour in an atmosphere gas of 50% N 2 and 50% H 2 , and then a final finish annealing was performed in which the atmosphere was maintained at 1200 ° C. for 20 hours in a 100% H 2 atmosphere gas. . Table 11 shows the experimental conditions and the magnetic properties of the product.

【0061】[0061]

【表11】 [Table 11]

【0062】〔実施例12〕実施例11 に記載の2.3mm厚の熱延板を1.8mmまで
冷間圧延し、次いで、1130℃に30秒保持し、引き
続き900℃に30秒保持した後急冷する焼鈍を施し
た。しかる後、圧下率約91%で0.170mmまで、冷
間圧延し、引き続き、脱炭焼鈍から最終仕上焼鈍までの
工程を実施例11記載の条件で処理した。窒化後の鋼板
のN量は、0.0190〜0.0220重量%であっ
た。実験条件と製品の磁気特性を表12に示す。
Example 12 The 2.3 mm-thick hot-rolled sheet described in Example 11 was cold-rolled to 1.8 mm, then kept at 1130 ° C. for 30 seconds, and then kept at 900 ° C. for 30 seconds. After that, it was subjected to annealing for rapid cooling. Thereafter, cold rolling was performed at a rolling reduction of about 91% to 0.170 mm, and then the steps from decarburizing annealing to final finishing annealing were processed under the conditions described in Example 11 . The N content of the steel sheet after nitriding was 0.0190 to 0.0220% by weight. Table 12 shows the experimental conditions and the magnetic properties of the product.

【0063】[0063]

【表12】 [Table 12]

【0064】〔実施例13〕C:0.040重量%、S
i:3.04重量%、Cu:0.12重量%、Mn:
0.21重量%、S:0.014重量%、酸可溶性A
l:0.025重量%を基本成分とし、N量を0.0
081重量%、0.0013重量%の2水準とし、T
i量を0.0003重量%、0.0038重量%な
る2水準で添加した4種類の250mm厚のスラブを作成
した。かかるスラブをa:1180℃、b:1110℃
の2水準の温度で60分均熱した後、直ちに熱延を開始
し、5パスで40mm厚とした後、6パスで2.3mm厚の
熱延板とした。次いで、熱延終了後は、秒間空冷後55
0℃まで水冷し、550℃に1時間保持した後炉冷する
巻取りシュミレーションを行った。
Example 13 C: 0.040% by weight, S
i: 3.04% by weight, Cu: 0.12% by weight, Mn:
0.21% by weight, S: 0.014% by weight, acid soluble A
l: 0.025% by weight as a basic component and N content of 0.0
081% by weight and 0.0013% by weight.
Four types of slabs having a thickness of 250 mm were prepared by adding two amounts of i of 0.0003% by weight and 0.0038% by weight. Such a slab is a: 1180 ° C., b: 1110 ° C.
After the soaking at 60 ° C. for 60 minutes, hot rolling was started immediately, the thickness was reduced to 40 mm in 5 passes, and the hot rolled sheet was 2.3 mm thick in 6 passes. Next, after the end of hot rolling, after air cooling for 55 seconds,
Winding simulation was performed in which the mixture was cooled with water to 0 ° C., held at 550 ° C. for 1 hour, and then cooled in a furnace.

【0065】この熱延板を酸洗して圧下率約88%で
0.285mmの冷延板とし、830℃で150秒保持す
る脱炭焼鈍を施した。しかる後、750℃で30秒保持
する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ
鋼板に窒素を吸収せしめた。窒化後のこの鋼板のN量は
0.0192〜0.0209重量%であった。次いで、
この鋼板にMgOを主成分とする焼鈍分離剤を塗布し、
2 25%、H2 75%の雰囲気ガス中で20℃/時の
速度で1200℃まで昇温し、引き続きH2 100%雰
囲気ガス中で1200℃で20時間保持する最終仕上焼
鈍を行った。実験条件と磁気特性の結果を表13に示
す。
The hot rolled sheet was pickled to form a 0.285 mm cold rolled sheet at a reduction of about 88%, and was subjected to decarburizing annealing at 830 ° C. for 150 seconds. Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed in the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of this steel sheet after nitriding was 0.0192 to 0.0209% by weight. Then
This steel sheet is coated with an annealing separator containing MgO as a main component,
The temperature was raised to 1200 ° C. at a rate of 20 ° C./hour in an atmosphere gas of 25% N 2 and 75% H 2 , and then a final finish annealing was performed at 1200 ° C. for 20 hours in a 100% H 2 atmosphere gas. . Table 13 shows the experimental conditions and the results of the magnetic characteristics.

【0066】[0066]

【表13】 [Table 13]

【0067】〔実施例14〕 C:0.045重量%、Si:3.21重量%、Cu:
0.13重量%、Mn:0.10重量%、S:0.01
2重量%、N:0.0011重量%、酸可溶性Al:
0.026重量%を基本成分とし、Tiを0.000
4重量%、0.0038重量%、Zrを0.000
3重量%、0.0052重量%の各2水準のレベルで
添加し、残部Fe及び不可避的不純物からなる4種類の
250mm厚のスラブを作成した。かかるスラブをa:1
190℃、b:1120℃の2水準の温度で60分均熱
した後、直ちに熱延を開始し、5パスで40mm厚とした
後、6パスで2.3mm厚の熱延板とした。次いで、この
熱延板を最終仕上焼鈍まで実施例13の条件で処理し
た。窒化後のN量は0.0198〜0.0209重量%
であった。実験条件と製品の磁気特性を表14に示す。
Example 14 C: 0.045% by weight, Si: 3.21% by weight, Cu:
0.13% by weight, Mn: 0.10% by weight, S: 0.01
2% by weight, N: 0.0011% by weight, acid-soluble Al:
0.026% by weight as a basic component and 0.000% by weight of Ti
4% by weight, 0.0038% by weight, 0.000% of Zr
Four types of slabs each containing 3% by weight and 0.0052% by weight were added at each of two levels, and four types of 250 mm thick slabs comprising the balance of Fe and unavoidable impurities were prepared. This slab is a: 1
After being soaked at two temperatures of 190 ° C. and b: 1120 ° C. for 60 minutes, hot rolling was started immediately, the thickness was reduced to 40 mm by 5 passes, and the hot rolled sheet was 2.3 mm thick by 6 passes. Next, this hot-rolled sheet was treated under the conditions of Example 13 until final finish annealing. N content after nitriding is 0.0198 to 0.0209% by weight
Met. Table 14 shows the experimental conditions and the magnetic properties of the product.

【0068】[0068]

【表14】 [Table 14]

【0069】〔実施例15〕C:0.040重量%、S
i:3.20重量%、Cu:0.13重量%、Mn:
0.20重量%、S:0.017重量%、酸可溶性A
l:0.026重量%、N:0.0013重量%、T
i:0.0040重量%を添加し、残部Fe及び不可避
的不純物からなる250mm厚スラブを作成した。かかる
スラブをa:1150℃、b:1070℃の2水準の温
度で60分均熱した後、直ちに熱延を開始し、5パスで
40mm厚とした後、6パスで2.3mm厚の熱延板とし
た。
Example 15 C: 0.040% by weight, S
i: 3.20% by weight, Cu: 0.13% by weight, Mn:
0.20% by weight, S: 0.017% by weight, acid soluble A
l: 0.026% by weight, N: 0.0013% by weight, T
i: 0.0040% by weight was added, and a 250 mm thick slab containing the balance of Fe and inevitable impurities was prepared. After the slab was soaked at two levels of temperature of a: 1150 ° C. and b: 1070 ° C. for 60 minutes, hot rolling was started immediately, the thickness was increased to 40 mm in 5 passes, and then increased to 2.3 mm in 6 passes. It was a rolled sheet.

【0070】次いで、かかる熱延板を酸洗して圧下率約
88%で0.285mmの冷延板とし、820℃、8
40℃、860℃、870℃の各温度で150秒保
持する脱炭焼鈍を施した。しかる後、750℃で30秒
保持する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入
させ鋼板に窒素吸収を生ぜしめた。窒化後のこの鋼板の
N量は0.0197〜0.0206重量%であった。そ
してこの鋼板の平均結晶粒径を、光学顕微鏡と画像解析
機を用いて測定した。次いで、この鋼板にMgOを主成
分とする焼鈍分離剤を塗布し、N2 25%、H2 75%
の雰囲気ガス中で20℃/時の速度で1200℃まで昇
温し、引き続きH2 100%雰囲気ガス中で1200℃
で20時間保持する最終仕上焼鈍を行った。実験条件と
製品の磁気特性を表15に示す。
Then, the hot-rolled sheet was pickled to obtain a cold-rolled sheet having a rolling reduction of about 88% and a thickness of 0.285 mm.
Decarburization annealing was performed at each of 40 ° C., 860 ° C., and 870 ° C. for 150 seconds. Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to cause nitrogen absorption in the steel sheet. The N content of this steel sheet after nitriding was 0.0197 to 0.0206% by weight. Then, the average crystal grain size of the steel sheet was measured using an optical microscope and an image analyzer. Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and N 2 25% and H 2 75%
The temperature was increased to 1200 ° C. at a rate of 20 ° C./hour in an atmosphere gas of 1,200 ° C. in a 100% H 2 atmosphere gas.
For 20 hours. Table 15 shows the experimental conditions and the magnetic properties of the product.

【0071】[0071]

【表15】 [Table 15]

【0072】〔実施例16〕 C:0.053重量%、Si:3.32重量%、Cu:
0.09重量%、S:0.017重量%、酸可溶性A
l:0.024重量%、N:0.0008重量%、Z
r:0.0041重量%を基本成分とし、Mn量を添
加なし(<0.01重量%)、0.08重量%、
0.18重量%なる3水準で添加し、残部Fe及び不可
避的不純物からなる3種類の250mm厚のスラブを作成
した。かかるスラブをa:1170℃、b:1100℃
の2水準の温度で60分均熱した後、直ちに熱延を開始
し、5パスで40mm厚とした後、6パスで2.3mm厚の
熱延板とした。次いでこの熱延板を最終仕上焼鈍まで
施例15の条件で処理した。ただし、脱炭焼鈍条件につ
いては、840℃×150秒(均熱)、860℃×
150秒(均熱)のみ行った。窒化後のN量は、0.0
189〜0.0208重量%であった。実験条件と製品
の磁気特性を表16に示す。
Example 16 C: 0.053% by weight, Si: 3.32% by weight, Cu:
0.09% by weight, S: 0.017% by weight, acid soluble A
l: 0.024% by weight, N: 0.0008% by weight, Z
r: 0.0041% by weight as a basic component, no Mn added (<0.01% by weight), 0.08% by weight,
Three types were added at three levels of 0.18% by weight to prepare three types of slabs having a thickness of 250 mm and consisting of a balance of Fe and unavoidable impurities. Such a slab is a: 1170 ° C., b: 1100 ° C.
After the soaking at 60 ° C. for 60 minutes, hot rolling was started immediately, the thickness was reduced to 40 mm in 5 passes, and the hot rolled sheet was 2.3 mm thick in 6 passes. Then the real to the final finish annealing the hot-rolled sheet
Processing was performed under the conditions of Example 15 . However, regarding the decarburizing annealing conditions, 840 ° C. × 150 seconds (soaking), 860 ° C. ×
Only 150 seconds (soaking). The N content after nitriding is 0.0
189 to 0.0208% by weight. Table 16 shows the experimental conditions and the magnetic properties of the product.

【0073】[0073]

【表16】 [Table 16]

【0074】〔実施例17〕C:0.050重量%、S
i:3.47重量%、Cu:0.23重量%、Mn:
0.35重量%、S:0.019重量%、N:0.00
10重量%、酸可溶性Al:0.025重量%を基本成
分とし、酸可溶性Tiを0.0005重量%、0.
0035重量%なる2水準のレベルで添加し、さらに
は、Snを(a)添加なし(<0.01重量%)、
(b)0.06重量%なる2水準とし、残部Fe及び不
可避的不純物からなる4種類の250mm厚のスラブを作
成した。かかるスラブをa:1160℃、b:1090
℃の2水準の温度で60分均熱した後、直ちに熱延を開
始し、5パスで40mm厚とした後、6パスで2.3mm厚
の熱延板とした。次いで、熱延板を1090℃に30秒
保持し引き続き920℃に30秒保持した後急冷する熱
延板焼鈍を施した。
Example 17 C: 0.050% by weight, S
i: 3.47% by weight, Cu: 0.23% by weight, Mn:
0.35% by weight, S: 0.019% by weight, N: 0.00
10% by weight, acid-soluble Al: 0.025% by weight as a basic component, and 0.0005% by weight of acid-soluble Ti, 0.1% by weight.
0035% by weight, and Sn was added (a) without addition (<0.01% by weight),
(B) Four types of slabs each having a thickness of 0.06% by weight and having a thickness of 250 mm and consisting of a balance of Fe and unavoidable impurities were prepared. The slab was subjected to a: 1160 ° C., b: 1090
After soaking at 60 ° C. for two minutes at two levels of temperature, hot rolling was started immediately, the thickness was reduced to 40 mm in five passes, and the hot rolled sheet was 2.3 mm thick in six passes. Next, the hot-rolled sheet was kept at 1090 ° C. for 30 seconds, then kept at 920 ° C. for 30 seconds, and then rapidly cooled to perform hot-rolled sheet annealing.

【0075】しかる後、圧下率約90%で0.220mm
まで冷間圧延し、次いで、835℃×90秒(均熱)な
る脱炭焼鈍を施した。その後、750℃で30秒保持す
る焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ鋼
板に窒素吸収を生ぜしめた。窒化後の鋼板のN量は、
0.0204〜0.0219重量%であった。次いで、
この鋼板にMgOを主成分とする焼鈍分離剤を塗布し、
2 50%、H2 50%の雰囲気ガス中で15℃/時の
速度で1200℃まで昇温し、引き続きH2 100%雰
囲気ガス中で1200℃で20時間保持する最終仕上焼
鈍を行った。実験条件と製品の磁気特性を表17に示
す。
After that, a reduction ratio of about 90% and 0.220 mm
The steel sheet was then cold-rolled, and then subjected to decarburizing annealing at 835 ° C. × 90 seconds (soaking). Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to cause the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding is
0.0204 to 0.0219% by weight. Then
This steel sheet is coated with an annealing separator containing MgO as a main component,
The temperature was raised to 1200 ° C. at a rate of 15 ° C./hour in an atmosphere gas of 50% N 2 and 50% H 2 , and then a final finish annealing was performed at 1200 ° C. for 20 hours in a 100% H 2 atmosphere gas. . Table 17 shows the experimental conditions and the magnetic properties of the product.

【0076】[0076]

【表17】 [Table 17]

【0077】〔実施例18〕実施例17 に記載の2.3mm厚の熱延板を1.8mmまで
冷間圧延し、次いで、1090℃に30秒保持し、引き
続き910℃に30秒保持した後急冷する焼鈍を施し
た。しかる後、圧下率約91%で0.170mmまで、冷
間圧延し、引き続き、脱炭焼鈍から最終仕上焼鈍までの
工程を実施例17記載の条件で処理した。窒化後の鋼板
のN量は、0.0195〜0.0219重量%であっ
た。実験条件と製品の磁気特性を表18に示す。
Example 18 The hot-rolled 2.3 mm thick sheet described in Example 17 was cold-rolled to 1.8 mm, then kept at 1090 ° C. for 30 seconds, and then kept at 910 ° C. for 30 seconds. After that, it was subjected to annealing for rapid cooling. Thereafter, cold rolling was performed at a rolling reduction of about 91% to 0.170 mm, and then the steps from decarburizing annealing to final finishing annealing were processed under the conditions described in Example 17 . The N content of the steel sheet after nitriding was 0.0195 to 0.0219% by weight. Table 18 shows the experimental conditions and the magnetic properties of the product.

【0078】[0078]

【表18】 [Table 18]

【0079】[0079]

【発明の効果】以上説明したように、本発明において
は、N量,Ti量,Zr量,S量,Mn量,Cu量を制
御し、さらには脱炭焼鈍完了後、最終仕上焼鈍開始まで
の間での一次再結晶粒の平均粒径を制御し、さらにはS
n添加し、さらには、所定の温度で熱延板焼鈍を施すこ
とにより、良好な磁気特性をスラブ加熱時のスラブの温
度偏差に起因する場所的バラツキなく安定して得ること
ができるので、その工業的効果は極めて大である。
As described above, according to the present invention, the amount of N, the amount of Ti, the amount of Zr, the amount of S, the amount of Mn, and the amount of Cu are controlled. Control the average grain size of the primary recrystallized grains between
By adding n, and further performing hot-rolled sheet annealing at a predetermined temperature, it is possible to obtain good magnetic properties stably without spatial variation due to temperature deviation of the slab during slab heating. The industrial effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における、Mn及びSを所定量添加し、
Cuを添加しない場合(すなわち第1の実験の場合)の
N量、Y(%)=0.292×Ti(%)+0.154
×Zr(%)とスラブ加熱温度差起因の磁気特性差、鉄
損特性との関係を表すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 In the present invention, Mn and S are added in predetermined amounts,
N amount without adding Cu (that is, in the case of the first experiment), Y (%) = 0.292 × Ti (%) + 0.154
5 is a graph showing a relationship between × Zr (%), a magnetic property difference caused by a slab heating temperature difference, and an iron loss property.

【図2】本発明における、Cu及びSを所定量添加し、
Mnを添加しない場合(すなわち第2の実験の場合)の
N量、Y(%)=0.292×Ti(%)+0.154
×Zr(%)とスラブ加熱温度差起因の磁気特性差、鉄
損特性との関係を表すグラフである。
FIG. 2 is a graph showing the addition of Cu and S in a predetermined amount according to the present invention;
N amount without adding Mn (that is, in the case of the second experiment), Y (%) = 0.292 × Ti (%) + 0.154
5 is a graph showing a relationship between × Zr (%), a magnetic property difference caused by a slab heating temperature difference, and an iron loss property.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C23C 8/26 H01F 1/16 C22C 38/00 303 C22C 38/14 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/12 C23C 8/26 H01F 1/16 C22C 38/00 303 C22C 38/14

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で C :0.025〜0.075%、 Si:2.5〜4.5%、 酸可溶性Al:0.010〜0.060%、 N :0.0030%未満、 S :0.01〜0.05%、 Mn:0.02〜0.8% を含有し、残部がFe及び不可避的不純物からなるスラ
ブを1280℃未満の温度で加熱し、熱延し、圧下率8
0%以上の最終冷延を含む1回または中間焼鈍をはさむ
回以上の冷延を施し、次いで、脱炭焼鈍、最終仕上焼
鈍を施して一方向性電磁鋼板を製造する方法において、
スラブのTi,Zr,Nの含有量(重量%)を、下記の
式に制御し、 0.5×N(%)<0.292 ×Ti(%)+0.154 ×Zr
(%)<0.0050 熱延後、最終仕上焼鈍開始までの間に鋼板に窒化処理を
施すことを特徴とする磁気特性の優れた一方向性電磁鋼
板の安定製造方法。
1. C: 0.025 to 0.075% by weight, Si: 2.5 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: less than 0.0030% by weight% , S: 0.01 to 0.05%, Mn: 0.02 to 0.8%, the remainder being Fe and unavoidable impurities, the slab is heated at a temperature lower than 1280 ° C, hot rolled, Reduction rate 8
Sandwich including one or intermediate annealing at least 0% of the final cold rolling
In a method of producing a grain-oriented electrical steel sheet by performing cold rolling two or more times, and then performing decarburizing annealing and final finishing annealing,
The content (% by weight) of Ti, Zr, and N in the slab is controlled according to the following equation: 0.5 × N (%) <0.292 × Ti (%) + 0.154 × Zr
(%) <0.0050 A stable production method of a grain-oriented electrical steel sheet having excellent magnetic properties, wherein the steel sheet is subjected to a nitriding treatment after hot rolling and before the start of final finish annealing.
【請求項2】 重量%で C :0.025〜0.075%、 Si:2.5〜4.5%、 酸可溶性Al:0.010〜0.060%、 N :0.0030%未満、 S :0.01〜0.05%、 Cu:0.01〜0.40% を含有し、残部がFe及び不可避的不純物からなるスラ
ブを1280℃未満の温度で加熱し、熱延し、圧下率8
0%以上の最終冷延を含む1回または中間焼鈍をはさむ
回以上の冷延を施し、次いで、脱炭焼鈍、最終仕上焼
鈍を施して一方向性電磁鋼板を製造する方法において、
スラブのTi,Zr,Nの含有量(重量%)を、下記の
式に制御し、 0.5×N(%)<0.292 ×Ti(%)+0.154 ×Zr
(%)<0.0050 熱延後、最終仕上焼鈍開始までの間に鋼板に窒化処理を
施すことを特徴とする磁気特性の優れた一方向性電磁鋼
板の安定製造方法。
2. C: 0.025 to 0.075% by weight, Si: 2.5 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: less than 0.0030% by weight% , S: 0.01 to 0.05%, Cu: 0.01 to 0.40%, the balance being Fe and unavoidable impurities, the slab is heated at a temperature of less than 1280 ° C., hot rolled, Reduction rate 8
Sandwich including one or intermediate annealing at least 0% of the final cold rolling
In a method of producing a grain-oriented electrical steel sheet by performing cold rolling two or more times, and then performing decarburizing annealing and final finishing annealing,
The content (% by weight) of Ti, Zr, and N in the slab is controlled according to the following equation: 0.5 × N (%) <0.292 × Ti (%) + 0.154 × Zr
(%) <0.0050 A stable production method of a grain-oriented electrical steel sheet having excellent magnetic properties, wherein the steel sheet is subjected to a nitriding treatment after hot rolling and before the start of final finish annealing.
【請求項3】 重量%で C :0.025〜0.075%、 Si:2.5〜4.5%、 酸可溶性Al:0.010〜0.060%、 N :0.0030%未満、 S :0.01〜0.05%、 Cu:0.01〜0.40%、 Mn:0.02〜0.8% を含有し、残部がFe及び不可避的不純物からなるスラ
ブを1280℃未満の温度で加熱し、熱延し、圧下率8
0%以上の最終冷延を含む1回または中間焼鈍をはさむ
回以上の冷延を施し、次いで、脱炭焼鈍、最終仕上焼
鈍を施して一方向性電磁鋼板を製造する方法において、
スラブのTi,Zr,Nの含有量(重量%)を、下記の
式に制御し、 0.5×N(%)<0.292 ×Ti(%)+0.154 ×Zr
(%)<0.0050 熱延後、最終仕上焼鈍開始までの間に鋼板に窒化処理を
施すことを特徴とする磁気特性の優れた一方向性電磁鋼
板の安定製造方法。
3. In% by weight, C: 0.025 to 0.075%, Si: 2.5 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: less than 0.0030% , S: 0.01 to 0.05%, Cu: 0.01 to 0.40%, Mn: 0.02 to 0.8%, the balance being 1280 ° C. Heated at a temperature of less than, hot rolled and reduced at a rate of 8
Sandwich including one or intermediate annealing at least 0% of the final cold rolling
In a method of producing a grain-oriented electrical steel sheet by performing cold rolling two or more times, and then performing decarburizing annealing and final finishing annealing,
The content (% by weight) of Ti, Zr, and N in the slab is controlled according to the following equation: 0.5 × N (%) <0.292 × Ti (%) + 0.154 × Zr
(%) <0.0050 A stable production method of a grain-oriented electrical steel sheet having excellent magnetic properties, wherein the steel sheet is subjected to a nitriding treatment after hot rolling and before the start of final finish annealing.
【請求項4】 スラブの成分としてがさらにSn:0.
01〜0.15%を含有せしめることを特徴とする請求
項1または2または3記載の磁気特性の優れた一方向性
電磁鋼板の安定製造方法。
4. The slab component further comprises Sn: 0.
4. The method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the content is in the range of 0.1 to 0.15%.
【請求項5】 熱延後850〜1250℃の熱延板焼鈍
を施すことを特徴とする請求項1または2または3また
は4記載の磁気特性の優れた一方向性電磁鋼板の安定製
造方法。
5. The method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the hot-rolled sheet is annealed at 850 to 1250 ° C. after the hot rolling.
【請求項6】 脱炭焼鈍完了後、最終仕上焼鈍開始まで
の一次再結晶粒の平均粒径を18〜35μmとすること
を特徴とする請求項1または2または3または4または
5記載の磁気特性の優れた一方向性電磁鋼板の安定製造
方法。
6. The magnet according to claim 1, wherein the average grain size of the primary recrystallized grains after completion of the decarburization annealing until the start of the final finishing annealing is 18 to 35 μm. A stable production method for unidirectional electrical steel sheets with excellent properties.
JP5115033A 1992-12-08 1993-05-17 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties Expired - Fee Related JP3065853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5115033A JP3065853B2 (en) 1992-12-08 1993-05-17 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32816892 1992-12-08
JP4-328168 1992-12-08
JP5115033A JP3065853B2 (en) 1992-12-08 1993-05-17 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH06228646A JPH06228646A (en) 1994-08-16
JP3065853B2 true JP3065853B2 (en) 2000-07-17

Family

ID=26453647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5115033A Expired - Fee Related JP3065853B2 (en) 1992-12-08 1993-05-17 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3065853B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118920A (en) * 1995-10-25 1997-05-06 Nippon Steel Corp Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP4598702B2 (en) * 2006-03-23 2010-12-15 新日本製鐵株式会社 Manufacturing method of high Si content grain-oriented electrical steel sheet with excellent magnetic properties
KR101322505B1 (en) * 2010-02-18 2013-10-28 신닛테츠스미킨 카부시키카이샤 Manufacturing method for grain-oriented electromagnetic steel sheet
KR101389248B1 (en) * 2010-02-18 2014-04-24 신닛테츠스미킨 카부시키카이샤 Manufacturing method for grain-oriented electromagnetic steel sheet
KR102079771B1 (en) * 2017-12-26 2020-02-20 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
JP7160181B2 (en) * 2019-09-06 2022-10-25 Jfeスチール株式会社 Grain-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH06228646A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
JPH0567683B2 (en)
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2878501B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH06145802A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH06145803A (en) Stable manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees