JPH09118920A - Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property - Google Patents

Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Info

Publication number
JPH09118920A
JPH09118920A JP27736295A JP27736295A JPH09118920A JP H09118920 A JPH09118920 A JP H09118920A JP 27736295 A JP27736295 A JP 27736295A JP 27736295 A JP27736295 A JP 27736295A JP H09118920 A JPH09118920 A JP H09118920A
Authority
JP
Japan
Prior art keywords
annealing
grain
steel sheet
hot
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27736295A
Other languages
Japanese (ja)
Inventor
Tomoji Kumano
知二 熊野
Katsuro Kuroki
克郎 黒木
Hisakazu Kitagawa
久和 北河
Ikuo Miyamoto
郁雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP27736295A priority Critical patent/JPH09118920A/en
Publication of JPH09118920A publication Critical patent/JPH09118920A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To obtain good magnetic properties even when Ti content is varied in the manufacture of a grain-oriented magnetic steel sheet. SOLUTION: A slab consisting of, by weight, 0.025-0.075% C, 2.5-4.0% Si, 0.020-0.038% acid-sol. Al, 0.0050-0.0095% N, 0.0050-0.0150% at least one kind of S and Se, 0.05-0.8% Mn, 0.002-0.012% Ti and the balance Fe with inevitable impurities is heated at less than 1,280 deg.C and hot-rolled. As necessary, the hot rolled sheet is annealed, made into a prescribed thickness by cold rolling of more than one times, nitriding treatment is executed in the state where the strip is made to run after decarburization annealing and a separation agent for annealing essentially composed of MgO is applied. The content of N in the melting stage is defined as 0.0050+14/48 Ti <=N <=0.0095+14/48 Ti (%), the average grain diameter of a primarily recrystallized grain after completion of decarburization annealing till start of the final finish annealing is defined as 19-26μm. In this way, the range restriction of Ti of an impurity element is expanded, thereby actual production is facilitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トランス等の鉄心
として使用される一方向性電磁鋼板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが、機器の
小型化、エネルギー損失の減少のために要求される。励
磁特性を表す特性値として、磁場の強さ800A/mに
おける磁束密度B8 がJISで規格化されて通常使用さ
れる。又、エネルギー損失を示す特性値としては、周波
数50Hzで1.7テスラー(T)まで磁化したときの鋼
板1kg当たりのエネルギー損失(鉄損)W17/50もJI
Sで規格化されている。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are excellent in magnetic characteristics such as excitation characteristics and iron loss characteristics. Required for reduced energy loss. As a characteristic value representing the excitation characteristics, magnetic flux density B 8 in the strength of 800A / m of the magnetic field standardized by JIS it is normally used. Further, as the characteristic value indicating the energy loss, the energy loss (iron loss) W 17/50 per kg of the steel sheet when magnetized at a frequency of 50 Hz to 1.7 Tesla (T) is also JI.
Standardized by S.

【0003】磁束密度は鉄損の最大支配因子であり、一
般的に磁束密度が高い(大きい)ほど鉄損特性が良好に
なる。又、一般的に磁束密度が高くなると二次再結晶粒
が大きくなり、鉄損が悪化する場合がある。この場合
は、既に広く知られているように、磁区を制御すること
により、二次再結晶の粒径に拘らず鉄損を改善すること
ができる。
[0003] The magnetic flux density is the largest controlling factor of iron loss. Generally, the higher (larger) the magnetic flux density, the better the iron loss characteristics. In general, as the magnetic flux density increases, the size of the secondary recrystallized grains increases, and iron loss may deteriorate. In this case, as already widely known, by controlling the magnetic domain, the iron loss can be improved irrespective of the grain size of the secondary recrystallization.

【0004】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板表面に{110}、圧
延方向に〈001〉軸をもったいわゆるゴス組織を有し
ている。良好な磁気特性を得るためには、磁化容易軸で
ある〈001〉を圧延方向に高度に揃えることが必要で
ある。
This unidirectional electrical steel sheet has a so-called Goss structure having {110} on the surface of the steel sheet and <001> axis in the rolling direction by causing secondary recrystallization in the final finishing annealing step. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction.

【0005】このような高磁束密度一方向性電磁鋼板の
製造技術は古くから開発され、わが国ではいわゆるイン
ヒビターとしてMnS,AlNを用いる方法(特開昭4
0−15644号公報)、MnS,MnSe,Sb等を
用いる方法(特開昭51−13469号公報)等があ
る。これらの場合は、熱延板段階でのインヒビターの完
全固溶が求められ、実際の熱間圧延時は鋼塊(スラブ)
の加熱温度を1350℃以上にすることが必要である。
A technique for producing such a high magnetic flux density unidirectional electrical steel sheet has been developed for a long time, and in Japan, a method of using MnS or AlN as a so-called inhibitor (Japanese Patent Laid-Open No. 4-496).
0-15644), a method using MnS, MnSe, Sb and the like (JP-A-51-13469). In these cases, complete solid solution of the inhibitor at the hot rolled sheet stage is required, and in actual hot rolling, steel ingot (slab)
It is necessary to set the heating temperature of 1350 ° C. or higher.

【0006】この高温度の加熱には数々の不利、不便な
点がある。このため、この熱延時の鋼塊(スラブ)の加
熱温度を下げる試みが行われている。その一つを開示し
たものとして特開昭59−56522号公報がある。こ
の技術の発展として多くの発明がなされ、インヒビター
形成のために脱炭焼鈍から最終仕上焼鈍の昇温過程で窒
化を行う方法(特開昭62−45285号公報、特開昭
60−179855号公報)、更にはストリップを走行
せしめる状態下での水素、窒素、アンモニアの混合ガス
を用いた窒化処理を行う方法(特開平2−77525号
公報、特開平1−82400号公報、特開平3−180
460号公報、特開平1−317592号公報)が開示
された。
There are a number of disadvantages and inconveniences in heating at this high temperature. For this reason, attempts have been made to lower the heating temperature of the steel ingot (slab) during hot rolling. JP-A-59-56522 discloses one of them. A number of inventions have been made as a development of this technology, and a method of performing nitridation in the process of increasing the temperature from decarburizing annealing to final finish annealing to form inhibitors (Japanese Patent Application Laid-Open Nos. 62-45285 and 60-179855). ), And a method of performing a nitriding treatment using a mixed gas of hydrogen, nitrogen and ammonia while the strip is running (JP-A-2-77525, JP-A-1-82400, JP-A-3-180).
No. 460, JP-A-1-317592).

【0007】又、脱炭焼鈍時の一次再結晶完了後から最
終仕上焼鈍時の二次再結晶完了前までの途中段階での一
次再結晶粒径を制御する方法(特開平3−294425
号公報、特開平2−96275号公報、特開平2−59
020号公報、特開平1−82393号公報)も開示さ
れた。しかし、これらの方法においてはTiは不可避不
純物として扱われ、その含有量は0.003%以下、望
ましくは0.0020%以下としている。
Further, a method of controlling the primary recrystallized grain size at an intermediate stage after completion of primary recrystallization during decarburization annealing and before completion of secondary recrystallization during final annealing (JP-A-3-294425).
JP, JP-A-2-96275, JP-A-2-59
No. 020, and Japanese Patent Laid-Open No. 1-82393) are also disclosed. However, in these methods, Ti is treated as an unavoidable impurity, and the content thereof is 0.003% or less, preferably 0.0020% or less.

【0008】Tiを積極的に利用した、低鋼塊加熱温度
による方向性電磁鋼板製造技術を開示したものとして特
公平6−86632号公報がある。この方法においては
Tiを0.0020〜0.0150%含有させ、最終仕
上焼鈍における二次再結晶開始までの間に窒化させて磁
束密度が高い一方向性電磁鋼板の製造方法が開示されて
いる。この場合は良好な磁気特性が得られるが、窒化を
高温仕上焼鈍(箱焼鈍)で行うため窒化が不均一傾向
で、二次再結晶は安定であるが(B8 =1.94T程
度)いわゆるグラス被膜の形成が不安定となる場合があ
る。
Japanese Patent Publication No. 6-86632 discloses a technique for producing grain-oriented electrical steel sheet by using a low ingot heating temperature, which positively utilizes Ti. This method discloses a method for producing a grain-oriented electrical steel sheet having a high magnetic flux density by containing 0.0020 to 0.0150% of Ti and nitriding it before the start of secondary recrystallization in final annealing. . In this case, good magnetic properties can be obtained, but since nitriding is performed by high temperature finish annealing (box annealing), nitriding tends to be non-uniform, and secondary recrystallization is stable (B 8 = 1.94 T). The formation of the glass film may become unstable.

【0009】[0009]

【発明が解決しようとする課題】一方向性電磁鋼板が具
備すべき主たる特性は、良好な磁気特性(低鉄損、高磁
束密度)及び良好な被膜特性(被膜張力、密着性、外
観)である。この点で、特公平6−86632号公報に
開示された技術は更に改善の余地がある。ところで、従
来の一方向性電磁鋼板の製造方法においては、Tiが多
い場合は、既に広く知られている如く二次再結晶が不安
定となる。例えば特開平5−295442号公報の方法
で高Ti材も二次再結晶をさせることは可能であるが、
この場合にも熱延条件の制御を注意深く行うことが必要
であり、かつTi含有量は80ppm が限界である。
The main characteristics that the grain-oriented electrical steel sheet should have are good magnetic properties (low iron loss, high magnetic flux density) and good coating properties (coating tension, adhesion, appearance). is there. In this respect, the technique disclosed in Japanese Patent Publication No. 6-86632 has room for further improvement. By the way, in the conventional method for producing a grain-oriented electrical steel sheet, when a large amount of Ti is present, the secondary recrystallization becomes unstable as is widely known. For example, it is possible to re-crystallize a high Ti material by the method disclosed in Japanese Patent Laid-Open No. 5-295442,
Also in this case, it is necessary to carefully control the hot rolling conditions, and the Ti content is limited to 80 ppm.

【0010】溶鋼のTiの混入原因は、Fe−Si合金
鉄からの不純物として混入、又溶鉱炉の安定操業のため
の砂鉄からの溶銑への混入、スクラップからの混入等が
考えられる。即ち高Tiスラブを熱延加熱温度を128
0℃以下にして加熱し、脱炭焼鈍後に窒化して製造する
本発明は、いずれの場合も従来から製造に大きな困難性
を有している。
The cause of Ti in the molten steel is considered to be contamination as impurities from Fe-Si alloy iron, contamination from sand iron into molten pig iron for stable operation of the blast furnace, contamination from scrap and the like. That is, the hot rolling temperature of the high Ti slab is set to 128
The present invention produced by heating at 0 ° C. or lower and nitriding after decarburization annealing has a great difficulty in the production in any case.

【0011】そもそも、一方向性電磁鋼板は約3%のS
iを含有しており、Fe−Si合金鉄を多量に用いる。
このため従来より、不純物の少ない特にTi含有量の少
ない高品位のFe−Si合金が用いられている。ところ
が本発明を適用すると、磁気特性が向上するとともに、
更に合金鉄の品位を落すことも可能となり、コストダウ
ンも可能となる。
In the first place, the grain-oriented electrical steel sheet has an S of about 3%.
It contains i and uses a large amount of Fe-Si alloy iron.
For this reason, a high-grade Fe-Si alloy containing few impurities, especially containing less Ti, has been used. However, when the present invention is applied, the magnetic characteristics are improved, and
Further, it becomes possible to reduce the quality of the ferroalloy, and the cost can be reduced.

【0012】本発明は、特公平6−86632号公報に
開示された技術を更に発展させて更に良好な磁気特性、
被膜特性を得るとともに、上記のコストダウンを実施可
能な技術を提供することを課題とする。尚、一方向性電
磁鋼板のB8 は、ゴス方位の集積度に強く依存する。更
に、ゴス方位の集積度は一次再結晶時の集合組織に依存
することが知られている(吉冨等,日本金属学会誌,5
8(1994),882)。Ti添加によってはこの一
次再結晶集合組織は変化しないので、インヒビターの効
果のみ考慮すれば良い。
The present invention is a further development of the technique disclosed in Japanese Examined Patent Publication No. 6-86632.
An object of the present invention is to provide a technique capable of obtaining the film characteristics and reducing the above cost. B 8 of the grain-oriented electrical steel sheet strongly depends on the degree of integration of Goss orientation. Furthermore, it is known that the degree of integration of Goss orientation depends on the texture during primary recrystallization (Yoshitomi et al., The Japan Institute of Metals, 5
8 (1994), 882). Since the primary recrystallization texture does not change with the addition of Ti, only the effect of the inhibitor has to be considered.

【0013】本発明者は、これらの課題を解決するため
に特願平7−82984号の出願を行ったが、この技術
による場合は、一次再結晶粒が27μm程度と大きくな
り、ひいては二次再結晶粒が大きくなるので、磁区制御
が必要となる。
The present inventor has filed an application for Japanese Patent Application No. 7-82984 in order to solve these problems. With this technique, the primary recrystallized grains are as large as about 27 μm, and the secondary recrystallized grains are therefore secondary. Since the recrystallized grains become large, magnetic domain control becomes necessary.

【0014】[0014]

【課題を解決するための手段】発明者等は鋭意研究を行
ったところ、特公平6−86632号公報に開示された
技術と脱炭焼鈍までの工程は同様であるが、走行するス
トリップで窒化することを特徴とし、その窒化量及びB
AF(最終仕上焼鈍:一次被膜の形成及び二次再結晶を
行わしめる箱型焼鈍)での雰囲気中の窒素分圧を制御す
ることなく、一次被膜(グラス被膜)も良好な一方向性
電磁鋼板を製造する技術を完成した。
Means for Solving the Problems The inventors of the present invention have made earnest studies and found that the technique disclosed in Japanese Patent Publication No. 6-86632 and the steps up to decarburization annealing are the same, but the nitriding is carried out by running strips. The nitriding amount and B
A unidirectional electrical steel sheet with a good primary coating (glass coating) without controlling the nitrogen partial pressure in the atmosphere in AF (final finish annealing: box-type annealing for forming primary coating and secondary recrystallization) Completed the technology to manufacture.

【0015】具体的には、熱延加熱温度を1280℃以
下とする本発明では、初期のAl,Nの量は脱炭焼鈍時
の一次再結晶粒径を制御するために規定され、二次再結
晶のためのインヒビターとしては脱炭焼鈍後に窒化によ
り行われるので、溶鋼段階でのTiの含有量は二次再結
晶にあまり影響しないことを見い出した。
Specifically, in the present invention in which the hot rolling heating temperature is 1280 ° C. or lower, the initial amounts of Al and N are defined to control the primary recrystallized grain size during decarburization annealing, and Since the inhibitor for recrystallization is performed by nitriding after decarburization annealing, it was found that the Ti content in the molten steel stage has little influence on the secondary recrystallization.

【0016】即ち、Alと結合するNの量を確保するた
めには、Tiと結合したNの量(14/48×Ti)を
溶製段階で添加することが必要であることを知見した。
更にこの場合、鋼板中のTi当量のNは安定的に存在す
るので、余分にNを含有していても一次被膜の形成に悪
影響は与えないことも併せて見い出した。
That is, it was found that it is necessary to add the amount of N combined with Ti (14/48 × Ti) in the melting stage in order to secure the amount of N combined with Al.
Further, in this case, it was also found that the Ti equivalent of N in the steel sheet is stably present, so that even if N is added in excess, it does not adversely affect the formation of the primary coating.

【0017】[0017]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明者等は、Ti含有量が比較的多い電磁鋼スラブを
1280℃以下の低い加熱温度で加熱し、得られた熱延
板を用いて必要に応じて熱延板焼鈍を施し一回以上の冷
間圧延後の脱炭焼鈍後にストリップを走行させる状態下
で窒化処理することによりインヒビターを形成する方法
で製造可能な、磁気特性及び被膜特性ともに優れた一方
向性電磁鋼板を安定的に製造し得るプロセスについて鋭
意研究開発を重ねた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The inventors of the present invention heated an electromagnetic steel slab having a relatively high Ti content at a low heating temperature of 1280 ° C. or lower, and annealed the hot rolled sheet using the obtained hot rolled sheet, if necessary, once or more. Stable production of unidirectional electrical steel sheet with excellent magnetic properties and coating properties, which can be produced by a method of forming an inhibitor by nitriding while running the strip after decarburization annealing after cold rolling. Repeated research and development on possible processes.

【0018】まず、本発明において出発材とする電磁鋼
スラブの成分組成の限定理由は、以下のとおりである。 C:Cは、0.025〜0.075%とした。従来の発
明では、0.025%以下ではいわゆる3%Si−Fe
材(方向性電磁鋼板の基本成分)では、変態相がなくな
る。0.075%を超えると脱炭焼鈍工程での30ppm
以下とするためには、時間が掛かりすぎて生産性が阻害
される。 Si:Siはその含有量が2.5%未満になると、良好
な鉄損が得られない。また4.5%を超えると、脆性の
ために冷間圧延等室温での鋼板処理が困難になる。
First, the reasons for limiting the component composition of the electromagnetic steel slab used as the starting material in the present invention are as follows. C: C was set to 0.025 to 0.075%. In the conventional invention, if 0.025% or less, so-called 3% Si-Fe is used.
The material (basic component of grain-oriented electrical steel sheet) has no transformation phase. If it exceeds 0.075%, 30ppm in the decarburization annealing process
For the following, productivity will be hindered because it takes too much time. Si: If the content of Si is less than 2.5%, good iron loss cannot be obtained. On the other hand, if it exceeds 4.5%, it becomes difficult to perform steel sheet processing such as cold rolling at room temperature due to brittleness.

【0019】S及びSe:S及びSeは、0.015%
以下、望ましくは0.010%以下である。1280℃
以下のスラブ加熱温度で熱延板を製造し、その後熱延板
焼鈍、冷間圧延の後での、ストリップ窒化等による脱炭
焼鈍工程以降のインヒビターの作り込みで製造する一方
向性電磁鋼板では、多量のS,Seは一次再結晶粒の粒
成長を妨げ有害であるためである。0.005%未満で
は、熱延での操業上の不可避的変動要素(スキッド上及
び間の温度履歴差、圧延速度の加速による熱延温度の変
動等)により、一次再結晶粒の粒成長に場所的変動が生
じ易くなり工業的に安定的に製品が製造できない。
S and Se: S and Se are 0.015%
Hereafter, it is preferably 0.010% or less. 1280 ° C
Producing hot-rolled sheet at the following slab heating temperature, then hot-rolled sheet annealing, after cold rolling, in the unidirectional electrical steel sheet produced by the incorporation of inhibitors after the decarburization annealing step such as strip nitriding This is because a large amount of S and Se hinders the grain growth of primary recrystallized grains and is harmful. If it is less than 0.005%, grain growth of primary recrystallized grains may occur due to unavoidable fluctuation factors in operation during hot rolling (temperature history difference on and between skids, fluctuation in hot rolling temperature due to acceleration of rolling speed, etc.). It is difficult to manufacture the product industrially in a stable manner due to local variations.

【0020】Ti及びN:TiとNは熱力学的に安定な
強固な化合物を形成する。本発明は、Tiの含有量をあ
まり厳密に制御することなく一方向性電磁鋼板を製造す
る方法であり、Tiは0.002〜0.012%であ
る。下限の0.002%は、Ti含有量がこれより少な
い場合は14/48×Ti≦0.0006%となり、N
成分制御範囲の工程能力以下であるためである。TiN
はかなり大きな析出物であるが、ある量以上存在すると
インヒビター効果が生じ、またTiNを核として他の元
素Al,S,Mn等が析出して本来のインヒビター効果
が損なわれる。このため二次再結晶が不安定となるの
で、Tiの上限は0.012%とする。
Ti and N: Ti and N form a thermodynamically stable and strong compound. The present invention is a method for producing a grain-oriented electrical steel sheet without controlling the Ti content very strictly, and the Ti content is 0.002 to 0.012%. The lower limit of 0.002% is 14/48 × Ti ≦ 0.0006% when the Ti content is less than this, and N
This is because the process capability is within the component control range. TiN
Is a considerably large precipitate, but when it is present in a certain amount or more, an inhibitor effect occurs, and other elements Al, S, Mn, etc. are precipitated by using TiN as a nucleus, and the original inhibitor effect is impaired. Therefore, secondary recrystallization becomes unstable, so the upper limit of Ti is made 0.012%.

【0021】Nは主にSi,Alと結合し、一次再結晶
粒成長制御及び二次再結晶のためのインヒビターとして
働くので重要である。しかし上述した如くTiと結合す
るので、インヒビター効果を得るためにはTi含有量当
量の追加添加が必要となり、その量は14/48×Ti
(%)である。0.0050%以下ならば二次再結晶不
良が生じ、0.0095%を超えると気泡(ブリスタ
ー:鋼板の表面欠陥)が生じる。しかし、本発明Ti当
量のNの追加量は、このブリスターの発生原因とはなら
ない。その理由は、TiはNと結合して安定なTiNを
形成するため、過剰なNは余剰とならないためである。
N is important because it mainly bonds with Si and Al and acts as an inhibitor for primary recrystallization grain growth control and secondary recrystallization. However, since it binds to Ti as described above, it is necessary to additionally add the Ti content equivalent in order to obtain the inhibitor effect, and the amount is 14/48 × Ti.
(%). If it is 0.0050% or less, secondary recrystallization failure occurs, and if it exceeds 0.0095%, bubbles (blister: surface defect of steel sheet) occur. However, the additional amount of N equivalent to the Ti equivalent of the present invention does not cause this blister. The reason is that Ti combines with N to form stable TiN, so that excess N does not become excess.

【0022】Al:Alは、窒素とともに脱炭焼鈍時の
一次再結晶粒成長を制御するために添加される。128
0℃以下のスラブ加熱でもAlNは適切な溶解度を持
つ。有効なAlN形成のためには0.020〜0.03
8%とすることが必要である。Alが多過ぎると仕上げ
焼鈍中の雰囲気に被膜形成及びインヒビターが影響を受
け磁気特性が劣化するので、0.038%を上限とす
る。下限は二次再結晶の確保のため0.02%以上必要
である。 Mn:Mnは、少ないと二次再結晶は不安定になり、多
いとB8 は高くなるが、一定量以上入れるとコストが高
くなる。従って0.05〜0.8%とする。
Al: Al is added together with nitrogen to control the primary recrystallized grain growth during decarburization annealing. 128
AlN has an appropriate solubility even when the slab is heated below 0 ° C. 0.020-0.03 for effective AlN formation
It is necessary to set it to 8%. If the amount of Al is too large, the film formation and the inhibitor are affected by the atmosphere during finish annealing, and the magnetic properties are deteriorated. Therefore, the upper limit is 0.038%. The lower limit is required to be 0.02% or more to secure secondary recrystallization. Mn: If Mn is small, secondary recrystallization becomes unstable, and if Mn is large, B 8 becomes high, but if a certain amount or more is added, the cost becomes high. Therefore, it is set to 0.05 to 0.8%.

【0023】Sn及びSb:二次再結晶粒のサイズを小
さくするために添加されるのが望ましい。少ないと効果
が少なく、多すぎるとグラス被膜の劣化または脱炭不良
傾向であり望ましくない。このため添加する場合には、
0.03〜0.3%とする。 Cr:Crはグラス被膜を改善するため添加する。範囲
は0.03〜0.3%が良い。
Sn and Sb: Desirably added to reduce the size of secondary recrystallized grains. If the amount is too small, the effect is small, and if the amount is too large, the glass coating is deteriorated or the decarburization tends to be poor, which is not desirable. Therefore, when adding it,
It is set to 0.03 to 0.3%. Cr: Cr is added to improve the glass coating. The range is preferably 0.03 to 0.3%.

【0024】Cu:Cuは0.05〜0.3%とする。
Cuは磁気特性を著しく向上させるために添加するもの
である。その作用は二次再結晶のインヒビターの強化に
ある。添加量は0.05%未満では効果がなく、0.3
%を超えると熱間圧延時に疵が多発する。また理由は定
かでないが、Cuを添加すると一次被膜(グラス被膜)
が改善される傾向にある。 その他、グラス被膜形成を容易化及び集合組織の改善の
ためにP等を添加することも本発明の主旨を損なうもの
ではない。
Cu: Cu is 0.05 to 0.3%.
Cu is added to remarkably improve the magnetic characteristics. Its effect lies in the enhancement of the inhibitor of secondary recrystallization. If the addition amount is less than 0.05%, there is no effect and 0.3
If it exceeds%, defects frequently occur during hot rolling. Although the reason is not clear, if Cu is added, the primary coating (glass coating)
Tend to be improved. In addition, addition of P or the like for facilitating the formation of the glass coating and improving the texture does not impair the gist of the present invention.

【0025】脱炭焼鈍後の一次再結晶粒成長の粒成長制
御するためには、AlN,MnS,MnSe,TiN等
が有効であるが、本発明では、S,Seの含有量が従来
の方向性電磁鋼板より少ないためMnS,MnSeによ
る効果は小さいが、TiN,AlNの効果は大きい。こ
のように、Al,N,Tiの量は一次再結晶粒成長の粒
成長制御及び二次再結晶のためのインヒビターとして働
くので、相互関係が重要となる。
Although AlN, MnS, MnSe, TiN and the like are effective for controlling the grain growth of the primary recrystallized grain growth after decarburization annealing, in the present invention, the contents of S and Se are in the conventional direction. The effect of MnS and MnSe is small because it is less than that of the magnetic electrical steel sheet, but the effect of TiN and AlN is large. As described above, the amounts of Al, N, and Ti act as grain growth control of primary recrystallized grain growth and as an inhibitor for secondary recrystallization, so that the interrelationship is important.

【0026】Tiを含有する場合、上述したように優先
的にTiNが形成されるので、AlNに消費されるNが
減り補償する必要が生じる。この補償する方法として
は、溶製段階でTiN当量分余分に含有させる、ス
トリップ窒化量を増やす、BAFでの窒素分圧を上げ
脱窒を防ぐ等がある。本発明はのNを余分に添加する
場合のその量を規定したものである。
When Ti is contained, TiN is preferentially formed as described above, so that N consumed by AlN is reduced and it becomes necessary to compensate. As a method for compensating for this, there are various methods such as adding TiN equivalent in the melting stage, increasing the strip nitriding amount, and increasing the nitrogen partial pressure in the BAF to prevent denitrification. The present invention defines the amount of N added in excess.

【0027】次に、溶製、鋳造及び熱延等の処理条件に
ついて述べる。本発明に関する溶製及び鋳造は、公知の
通常の方法で行われる。即ち、溶製は転炉又は電気炉等
を用い、溶銑を主原料としても良いしスクラップを用い
ても良い。成分調整は真空脱ガス装置で行うのが通常で
あるが、成分さえ範囲内であればその必要はない。鋳造
は連続鋳造機で行われるが、インゴット法でも良い。
Next, processing conditions such as melting, casting and hot rolling will be described. Melting and casting according to the present invention are carried out by a known ordinary method. That is, for melting, a converter or an electric furnace is used, and hot metal may be used as a main raw material or scrap. The components are usually adjusted with a vacuum degassing device, but this is not necessary as long as the components are within the range. Casting is performed by a continuous casting machine, but an ingot method may also be used.

【0028】その後の分塊圧延は、熱延の仕上厚みと熱
延機の能力(圧下代)のバランスで採用される。熱延は
通常の連続熱延機で行うが、いわゆる可逆のステッケル
ミルでも良い。熱延時のスラブ加熱温度は最大1280
℃である。これは、本発明の如く脱炭焼鈍後に同一ライ
ン又は別のラインにてストリップを走行せしめるので、
溶体化のためにこの温度を超えての加熱は必要はない。
又エネルギーコストの低減及び熱延板の耳割れ等の欠陥
低減の観点からも低い方が良い。
The subsequent slabbing is adopted in consideration of the balance between the finish thickness of hot rolling and the ability of the hot rolling machine (reduction). The hot rolling is performed by a normal continuous hot rolling machine, but a so-called reversible Steckel mill may be used. Maximum slab heating temperature during hot rolling is 1280
° C. This is because the strip is made to run on the same line or another line after decarburization annealing as in the present invention.
Heating above this temperature is not necessary for solutionizing.
Further, the lower the cost, the better from the viewpoint of reducing the energy cost and defects such as edge cracks of the hot rolled sheet.

【0029】熱延後の工程については特に限定されるも
のではないが、最終冷間圧延率は80〜95%が望まし
い。必要に応じて中間焼鈍を挟む一回以上の冷延を行
う。熱延板焼鈍は、熱延の不均一性の緩和、AlNの析
出形態の制御のために必要に応じて行うのであり、処理
条件は特に限定されるものではないが、最高温度は11
60℃として、冷却速度はAlNの量、Si/Cのバラ
ンスにより適正化されるのが望ましい。
The process after hot rolling is not particularly limited, but the final cold rolling rate is preferably 80 to 95%. If necessary, cold rolling is performed once or more with intermediate annealing. The hot-rolled sheet annealing is performed as necessary to alleviate the non-uniformity of hot-rolling and control the precipitation form of AlN, and the treatment conditions are not particularly limited, but the maximum temperature is 11
It is desirable that the cooling rate be 60 ° C., and the cooling rate be optimized depending on the amount of AlN and the balance of Si / C.

【0030】脱炭焼鈍は通常の方法で行われ、炭素レベ
ルを製品の磁気時効防止のために0.0030%以下ま
で脱炭される。又、良好なグラス被膜を形成するために
酸化層を形成せしめる。窒化は脱炭焼鈍設備と同一ライ
ン又は別のラインにてストリップを走行せしめる状態下
で水素、窒素、アンモニアの混合ガス中で窒化処理が行
われる。
Decarburization annealing is carried out by a conventional method, and the carbon level is decarburized to 0.0030% or less in order to prevent magnetic aging of the product. Further, an oxide layer is formed in order to form a good glass film. Nitriding is performed in a mixed gas of hydrogen, nitrogen and ammonia under the condition that the strip is run on the same line as the decarburization annealing equipment or on a different line.

【0031】脱炭焼鈍終了後最終仕上焼鈍開始までの一
次再結晶粒は、二次再結晶後磁区制御を必要とせずに良
好な磁気特性が得られるようにするために、19〜26
μmとする。この粒径にするためには、脱炭焼鈍の温度
を調整する等の方法がある。
The primary recrystallized grains from the end of decarburization annealing to the start of final finish annealing are 19 to 26 in order to obtain good magnetic properties without the need for magnetic domain control after secondary recrystallization.
μm. In order to achieve this grain size, there are methods such as adjusting the temperature of decarburization annealing.

【0032】その後、MgOを主成分とする焼鈍分離剤
を塗布する。続く仕上焼鈍の昇温度時に二次再結晶が起
こる。窒素分圧は5%より少ないと鋼板内のAlNの分
解がたやすく起こり、インヒビターがTiNのみとなり
二次再結晶不良となる。一方、90%を超えると良好な
グラス被膜が形成され難くなるので、雰囲気圧の5〜9
0%とすることが極めて望ましい。
Then, an annealing separator containing MgO as a main component is applied. Secondary recrystallization occurs at the subsequent elevated temperature of finish annealing. If the nitrogen partial pressure is less than 5%, the AlN in the steel sheet is easily decomposed, and TiN is the only inhibitor, resulting in poor secondary recrystallization. On the other hand, if it exceeds 90%, it becomes difficult to form a good glass film, so that the atmospheric pressure is 5 to 9%.
It is extremely desirable to set it to 0%.

【0033】要するに、本発明の最大のポイントは、鋼
塊の加熱温度を低くする方向性電磁鋼板製造方法におい
て、溶製段階のTiの量を考慮してNの含有量を変更し
て、AlNとTiNの複合インヒビター効果、ストリッ
プ窒化による均一なAlNの形成、Ti含有成分系なら
ではの窒化条件の特定、及び仕上焼鈍中のN2 分圧の特
定によるAlNの分解防止及びグラス被膜改善効果、の
4者の有機的な結合によって、良好な磁気特性(B8
1.95T)と被膜特性を得るとともに、Tiの規制範
囲を広げることである。
In summary, the most important point of the present invention is that in the grain-oriented electrical steel sheet manufacturing method for lowering the heating temperature of a steel ingot, the content of N is changed in consideration of the amount of Ti in the melting stage to change the AlN content. The effect of combined inhibitor of TiN and TiN, uniform AlN formation by strip nitriding, specification of nitriding conditions unique to Ti-containing component system, and prevention of AlN decomposition and glass coating improvement effect by specifying N 2 partial pressure during finish annealing. Good magnetic properties (B 8 =
1.95T) and the film properties, and the Ti regulation range is expanded.

【0034】[0034]

【実施例】【Example】

(実施例1)C:0.052%、Si:3.23%、M
n:1.01%、S:0.010%、P:0.025
%、Cr:0.10%、酸可溶性Al:0.028%、
Tiの量を0.002、0.005、0.007、0.
009、0.011、0.015%と変化させ、またN
を0.0085%程度及び14/48×Ti(%)を追
加添加し、残部Fe及び不可避的不純物からなる溶製さ
れた溶鋼を通常の方法で連続鋳造してスラブを得、11
50℃で加熱した後1080℃で熱延を開始して、2.
6mmとして560℃で巻き取った。
(Example 1) C: 0.052%, Si: 3.23%, M
n: 1.01%, S: 0.010%, P: 0.025
%, Cr: 0.10%, acid-soluble Al: 0.028%,
The amount of Ti is 0.002, 0.005, 0.007, 0.
009, 0.011, 0.015%, and N
About 0.0085% and 14/48 × Ti (%) are additionally added, and a molten steel made of the balance Fe and inevitable impurities is continuously cast by a usual method to obtain a slab.
1. After heating at 50 ° C., start hot rolling at 1080 ° C.
It was taken up as 6 mm at 560 ° C.

【0035】その後、1120℃で2分間の熱延板焼鈍
を行い、酸洗後、185〜210℃で温間圧延し0.2
85mmに冷間圧延した。その後、830℃でN2 :25
%、H2 :75%の雰囲気ガス中、露点65℃で150
秒焼鈍し脱炭、一次再結晶及び酸化被膜形成を行った。
更に、ストリップ状態で0.0110〜0.0120%
窒化せしめ、続いてMgOを主成分とする焼鈍分離剤を
塗布した。続く仕上焼鈍で15℃/時間の昇温速度、雰
囲気をN2 :25%、H2 :75%として、1200℃
まで加熱した。
Thereafter, hot-rolled sheet annealing was performed at 1120 ° C. for 2 minutes, pickling, and then warm rolling at 185 to 210 ° C. to 0.2.
Cold rolled to 85 mm. Then, N 2 : 25 at 830 ° C.
%, H 2 : 150% in 75% atmospheric gas with a dew point of 65 ° C.
Second annealing, decarburization, primary recrystallization and oxide film formation were performed.
Furthermore, 0.0110 to 0.0120% in strip state
After nitriding, an annealing separator containing MgO as a main component was applied. In the subsequent finish annealing, the temperature rising rate was 15 ° C./hour, the atmosphere was N 2 : 25%, H 2 : 75%, and 1200 ° C.
Heated up.

【0036】その後、H2 :100%のdry雰囲気中
で、1200℃で30時間の純化焼鈍を行った。最後
に、リン酸アルミ系の張力付与型絶縁コーティングの塗
布及び形状矯正を施し、エプシュタインサイズに剪断
し、歪取り焼鈍を施し、磁気特性を測定した。その結果
を表1に示す。
After that, purification annealing was carried out at 1200 ° C. for 30 hours in a dry atmosphere of H 2 : 100%. Finally, an aluminum phosphate-based tension-imparting insulating coating was applied and the shape was corrected, sheared to Epstein size, strain relief annealing was performed, and the magnetic properties were measured. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】このように、実施例1の各工程の条件で
は、Tiが多い場合その当量分のNを添加しないと二次
再結晶不良が生じる。また No.12では、NをTi当量
分補償し二次再結晶は良好であったにもかかわらず、磁
気特性が良好でなかった理由は、TiNの形成により一
次再結晶粒成長が不十分であったためと考えられる。ま
た No.1、2は、本発明ではないがTi含有量が少ない
ため、良好な磁気特性が得られている。
As described above, under the conditions of each step of Example 1, when the amount of Ti is large, the secondary recrystallization defect occurs unless the equivalent amount of N is added. In No. 12, the magnetic properties were not good even though the N equivalent was compensated by Ti equivalent and the secondary recrystallization was good, because the primary recrystallized grain growth was insufficient due to the formation of TiN. It is thought that it was because there was. In Nos. 1 and 2, although not according to the present invention, the Ti content is small, so that good magnetic properties are obtained.

【0039】(実施例2)C:0.045%、Si:
3.0%、Mn:0.12%、S:0.007%、酸可
溶性Al:0.030%、Tiの量を0.002、0.
006、0.008、0.012、0.015%と変化
させ、またNを0.0065%程度及び14/48×T
i(%)を追加添加、Cr:0.12%、残部Fe及び
不可避的不純物からなる溶製された溶鋼を通常の方法で
連続鋳造してスラブを得、1150℃で加熱した後10
75℃で熱延を開始して、2.8mmとして550℃で巻
き取った。
(Example 2) C: 0.045%, Si:
3.0%, Mn: 0.12%, S: 0.007%, acid-soluble Al: 0.030%, Ti content of 0.002, 0.
006, 0.008, 0.012, 0.015% and N about 0.0065% and 14/48 × T
i (%) is additionally added, and molten steel made of Cr: 0.12%, the balance Fe and inevitable impurities is continuously cast by a usual method to obtain a slab, which is heated at 1150 ° C. and then 10
Hot rolling was started at 75 ° C., and the film was wound at 550 ° C. with 2.8 mm.

【0040】その後、酸洗後タンデム圧延機で0.33
5mmに冷間圧延した。その後、845℃でN2 :25
%、H2 :75%の雰囲気ガス中、露点62℃で200
秒焼鈍し、脱炭、一次再結晶及び酸化被膜形成を行っ
た。更に、ストリップ状態で0.0110〜0.012
0%窒化せしめ、続いてMgOを主成分とする焼鈍分離
剤を塗布した。続く仕上焼鈍で15℃/時間の昇温速
度、雰囲気をN2 :50%、H2 :50%として120
0℃まで加熱した。
Then, after pickling, 0.33 is applied by a tandem rolling mill.
Cold rolled to 5 mm. Then, at 845 ° C., N 2 : 25
%, H 2 : 200% at a dew point of 62 ° C. in an atmosphere gas of 75%
Second annealing, decarburization, primary recrystallization and oxide film formation were performed. Furthermore, 0.0110 to 0.012 in the strip state
Nitriding was performed at 0%, and then an annealing separator containing MgO as a main component was applied. In the subsequent finish annealing, the temperature rising rate was 15 ° C./hour, the atmosphere was N 2 : 50%, H 2 : 50%, and 120
Heated to 0 ° C.

【0041】その後H2 :100%のdry雰囲気中
で、1200℃で30時間の純化焼鈍を行った。最後に
リン酸アルミ系の張力付与型絶縁コーティングの塗布及
び形状矯正を施し、エプシュタインサイズに剪断し、歪
取り焼鈍を施し、磁気特性を測定した。その結果を表2
に示す。表2からわかるように、本発明を用いると、T
i含有量が多くても良好な磁気特性が得られた。
Thereafter, purification annealing was performed at 1200 ° C. for 30 hours in a dry atmosphere of H 2 : 100%. Finally, an aluminum phosphate tension-applying insulating coating was applied and the shape was corrected, sheared to Epstein size, strain relief annealing was performed, and the magnetic properties were measured. Table 2 shows the results.
Shown in As can be seen from Table 2, using the present invention, T
Good magnetic properties were obtained even with a large i content.

【0042】[0042]

【表2】 [Table 2]

【0043】(実施例3)C:0.058%、Si:
3.51%、Mn:0.09%、Se:0.009%、
P:0.05%、Cu:0.10%、Cr:0.11
%、Sn:0.10%、酸可溶性Al:0.029%、
N:0.0082%及び以下のTi含有量分の添加、T
i:0.001、0.005、0.008、0.01
1、0.015%と変化させ、残部Fe及び不可避的不
純物からなる溶製された溶鋼を通常の方法で連続鋳造し
てスラブを得、1150℃で加熱した後1085℃で熱
間圧延を開始し、2.3mmとして560℃で巻き取っ
た。
(Example 3) C: 0.058%, Si:
3.51%, Mn: 0.09%, Se: 0.009%,
P: 0.05%, Cu: 0.10%, Cr: 0.11.
%, Sn: 0.10%, acid-soluble Al: 0.029%,
N: 0.0082% and addition of the following Ti content, T
i: 0.001, 0.005, 0.008, 0.01
1, 0.015%, molten steel made of the balance Fe and unavoidable impurities is continuously cast by a usual method to obtain a slab, which is heated at 1150 ° C. and then hot rolling is started at 1085 ° C. Then, it was rolled up to 2.3 mm at 560 ° C.

【0044】その後、1120℃で30秒保持、引き続
き900℃に30秒保存し、750℃から30℃/秒で
室温まで冷却し、酸洗を行い、185〜220℃で温間
圧延し、0.22mmに冷間圧延した。
Thereafter, the temperature was maintained at 1120 ° C. for 30 seconds, subsequently stored at 900 ° C. for 30 seconds, cooled from 750 ° C. to 30 ° C./second to room temperature, pickled, warm-rolled at 185 to 220 ° C., and 0 Cold rolled to 0.22 mm.

【0045】その後、830℃でN2 :25%、H2
75%の雰囲気ガス中、露点63℃で120秒焼鈍し脱
炭、一次再結晶及び酸化被膜形成を行った。更に、スト
リップ状態で0.110〜0.120%窒化せしめ、続
いてMgOを主成分とする焼鈍分離剤を塗布した。続く
仕上焼鈍で13℃/時間の昇温速度、雰囲気をN2 :4
0%、H2 :60%として、1200℃まで加熱した。
Then, at 830 ° C., N 2 : 25%, H 2 :
Annealing was performed for 120 seconds at a dew point of 63 ° C. in a 75% atmosphere gas to perform decarburization, primary recrystallization, and oxide film formation. Further, 0.110 to 0.120% of nitriding was performed in a strip state, and subsequently, an annealing separator containing MgO as a main component was applied. In the subsequent finish annealing, a temperature rising rate of 13 ° C./hour and an atmosphere of N 2 : 4
The mixture was heated to 1200 ° C. with 0% and H 2 : 60%.

【0046】その後H2 :100%のdry雰囲気中で
1200℃、20時間の純化焼鈍を行った。最後にリン
酸アルミ系の張力付与型絶縁コーティングの塗布及び形
状矯正を施し、エプシュタインサイズに剪断し、歪取り
焼鈍を施し、磁気特性を測定した。その結果を表3に示
す。
Thereafter, purification annealing was carried out at 1200 ° C. for 20 hours in a dry atmosphere of H 2 : 100%. Finally, an aluminum phosphate tension-applying insulating coating was applied and the shape was corrected, sheared to Epstein size, strain relief annealing was performed, and the magnetic properties were measured. Table 3 shows the results.

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【発明の効果】本発明によると、Ti含有量が多くても
良好な磁気特性が安定して得られる。
According to the present invention, good magnetic characteristics can be stably obtained even if the Ti content is large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北河 久和 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 (72)発明者 宮本 郁雄 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hisawa Kitagawa No. 1-1 Tobata-cho, Tobata-ku, Kitakyushu City Inside the Hachiman Works, Nippon Steel Co., Ltd. (72) Ikuo Miyamoto No. 1 Tobita-cho, Tobata-ku, Kitakyushu No. 1 Nippon Steel Yawata Works Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比でC :0.025〜0.075
%、 Si:2.5〜4.0%、 酸可溶性Al:0.020〜0.038%、 N :0.0050〜0.0095%、 S,Seの少なくとも1種を0.0050〜0.015
0%、 Mn:0.05〜0.8%、 Ti:0.002〜0.012%、かつ、 0.0050+14/48 Ti≦N≦0.0095+14/48
Ti(%)、 残部がFe及び不可避不純物からなるスラブを1280
℃未満の温度で加熱し、熱延を行い、熱延板焼鈍を行
い、中間焼鈍を挟む一回以上の冷延を行い、脱炭焼鈍後
ストリップを走行せしめる状態下で水素、窒素、アンモ
ニアの混合ガス中で窒化処理を行い、脱炭焼鈍終了後最
終仕上焼鈍開始までの一次再結晶粒の平均粒径を19〜
26μmとし、MgOを主成分とする焼鈍分離剤を塗布
して、最終仕上焼鈍を施すことを特徴とする磁気特性が
優れた一方向性電磁鋼板の安定製造方法。
1. A weight ratio of C: 0.025 to 0.075.
%, Si: 2.5 to 4.0%, acid-soluble Al: 0.020 to 0.038%, N: 0.0050 to 0.0095%, S, Se at least one kind is 0.0050 to 0. .015
0%, Mn: 0.05 to 0.8%, Ti: 0.002 to 0.012%, and 0.0050 + 14/48 Ti ≦ N ≦ 0.0095 + 14/48
A slab containing Ti (%) and the balance of Fe and inevitable impurities is 1280
Heating at a temperature of less than ℃, hot rolling, hot-rolled sheet annealing, cold rolling at least once with intermediate annealing sandwiched between hydrogen, nitrogen and ammonia under conditions that allow strips to run after decarburization annealing. Nitriding is performed in a mixed gas, and the average grain size of the primary recrystallized grains after the decarburization annealing is finished and before the final finish annealing is 19 to
A stable manufacturing method of a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by applying an annealing separator having a thickness of 26 μm and containing MgO as a main component, and performing final finishing annealing.
【請求項2】 重量比でC :0.025〜0.075
%、 Si:2.5〜4.0%、 酸可溶性Al:0.020〜0.038%、 N :0.0050〜0.0095%、 S,Seの少なくとも1種を0.0050〜0.015
0%、 Mn:0.05〜0.8%、 Ti:0.002〜0.012%、かつ、 0.0050+14/48 Ti≦N≦0.0095+14/48
Ti(%)、 残部がFe及び不可避不純物からなるスラブを1280
℃未満の温度で加熱し、熱延を行い、熱延板焼鈍を行わ
ず、中間焼鈍を挟む一回以上の冷延を行い、脱炭焼鈍後
ストリップを走行せしめる状態下で水素、窒素、アンモ
ニアの混合ガス中で窒化処理を行い、脱炭焼鈍終了後最
終仕上焼鈍開始までの一次再結晶粒の平均粒径を19〜
26μmとし、MgOを主成分とする焼鈍分離剤を塗布
して、最終仕上焼鈍を施すことを特徴とする磁気特性が
優れた一方向性電磁鋼板の安定製造方法。
2. A weight ratio of C: 0.025 to 0.075.
%, Si: 2.5 to 4.0%, acid-soluble Al: 0.020 to 0.038%, N: 0.0050 to 0.0095%, S, Se at least one kind is 0.0050 to 0. .015
0%, Mn: 0.05 to 0.8%, Ti: 0.002 to 0.012%, and 0.0050 + 14/48 Ti ≦ N ≦ 0.0095 + 14/48
A slab containing Ti (%) and the balance of Fe and inevitable impurities is 1280
It is heated at a temperature of less than ℃, hot-rolled, hot-rolled sheet is not annealed, cold-rolling is performed once or more with an intermediate anneal, and hydrogen, nitrogen, and ammonia are run under the conditions that allow the strip to run after decarburization annealing. The average grain size of the primary recrystallized grains after the decarburization annealing is completed until the final finishing annealing is started is 19 to
A stable manufacturing method of a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by applying an annealing separator having a thickness of 26 μm and containing MgO as a main component, and performing final finishing annealing.
【請求項3】 更にSn,Sb,Crの少なくとも1種
を0.03〜0.30%含有させることを特徴とする請
求項1又は2記載の磁気特性が優れた一方向性電磁鋼板
の安定製造方法。
3. Stability of the grain-oriented electrical steel sheet with excellent magnetic properties according to claim 1 or 2, further containing 0.03 to 0.30% of at least one of Sn, Sb and Cr. Production method.
【請求項4】 更にCuを0.05〜0.30%含有さ
せることを特徴とする請求項1、2又は3記載の磁気特
性が優れた一方向性電磁鋼板の安定製造方法。
4. The method for stable production of a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, 2 or 3, further containing Cu in an amount of 0.05 to 0.30%.
JP27736295A 1995-10-25 1995-10-25 Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property Pending JPH09118920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27736295A JPH09118920A (en) 1995-10-25 1995-10-25 Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27736295A JPH09118920A (en) 1995-10-25 1995-10-25 Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH09118920A true JPH09118920A (en) 1997-05-06

Family

ID=17582474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27736295A Pending JPH09118920A (en) 1995-10-25 1995-10-25 Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH09118920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129352A (en) * 1998-10-22 2000-05-09 Nippon Steel Corp Production of grain oriented silicon steel sheet high in magnetic flux density
JP2005226111A (en) * 2004-02-12 2005-08-25 Nippon Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic characteristic
JP4954876B2 (en) * 2005-06-10 2012-06-20 新日本製鐵株式会社 Oriented electrical steel sheet with extremely excellent magnetic properties and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212721A (en) * 1987-10-30 1989-08-25 Sumitomo Metal Ind Ltd Manufacture of grain oriented electrical sheet
JPH01301820A (en) * 1988-02-03 1989-12-06 Nippon Steel Corp Production of grain oriented silicon steel sheet having high magnetic flux density
JPH05295442A (en) * 1992-04-23 1993-11-09 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property and having high magnetic flux density
JPH06228646A (en) * 1992-12-08 1994-08-16 Nippon Steel Corp Stable production of grain-oriented silicon steel sheet excellent in magnetic property

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212721A (en) * 1987-10-30 1989-08-25 Sumitomo Metal Ind Ltd Manufacture of grain oriented electrical sheet
JPH01301820A (en) * 1988-02-03 1989-12-06 Nippon Steel Corp Production of grain oriented silicon steel sheet having high magnetic flux density
JPH05295442A (en) * 1992-04-23 1993-11-09 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property and having high magnetic flux density
JPH06228646A (en) * 1992-12-08 1994-08-16 Nippon Steel Corp Stable production of grain-oriented silicon steel sheet excellent in magnetic property

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129352A (en) * 1998-10-22 2000-05-09 Nippon Steel Corp Production of grain oriented silicon steel sheet high in magnetic flux density
JP4653266B2 (en) * 1998-10-22 2011-03-16 新日本製鐵株式会社 Manufacturing method of unidirectional electrical steel sheet
JP2005226111A (en) * 2004-02-12 2005-08-25 Nippon Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic characteristic
JP4954876B2 (en) * 2005-06-10 2012-06-20 新日本製鐵株式会社 Oriented electrical steel sheet with extremely excellent magnetic properties and method for producing the same

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JP2728112B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
WO1991016462A1 (en) Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
WO1999046416A1 (en) Unidirectional magnetic steel sheet and method of its manufacture
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP3056970B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JP4261633B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030204