JPH07310124A - Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic - Google Patents

Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic

Info

Publication number
JPH07310124A
JPH07310124A JP6101014A JP10101494A JPH07310124A JP H07310124 A JPH07310124 A JP H07310124A JP 6101014 A JP6101014 A JP 6101014A JP 10101494 A JP10101494 A JP 10101494A JP H07310124 A JPH07310124 A JP H07310124A
Authority
JP
Japan
Prior art keywords
annealing
finish annealing
final
final finish
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6101014A
Other languages
Japanese (ja)
Inventor
Yasunari Yoshitomi
康成 吉冨
Osamu Tanaka
収 田中
Youichi Mishima
洋一 美嶋
Maremizu Ishibashi
希瑞 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6101014A priority Critical patent/JPH07310124A/en
Publication of JPH07310124A publication Critical patent/JPH07310124A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Abstract

PURPOSE:To produce a thick grain-oriented silicon steel plate excellent in magnetic characteristics and film coating characteristics by executing final finish annealing under specified conditions at the time of producing a thick grain-oriented silicon steel plate from a silicon steel slab having a specified componental compsn. CONSTITUTION:A thick grain-oriented silicon steel plate having 0.36 to 1.00 mm thickness is produced from a silicon steel slab having a compsn. contg., by weight, 0.021 to 0.075% C, 2.5 to 9.5% Si, 0.010 to 0.060% acid soluble Al, 0.0010 to 0.0130% N, S+0.405Se; <=0.014%, 0.05 to 0.8% Mn, and the balance Fe with inevitable impurities. At this time, the average grain size of primarily recrystallized grains till the start of final finish annealing after the completion of decarburizing annealing is regulated to 18 to 35mum, nitriding treatment is executed to the steel plate till the start of hot rolling-final finish annealing, and in the case the content of N at the start of the final finish annealing for the steel plate after the nitriding treatment is defined as N(%) and the plate thickness of the product as (t) (mm), the N and (t) are controlled by the inequality, and the dew point in the temp. range of <=800 deg.C at the time of temp. rising in the final finish annealing is regulated to 0 to 30 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性、被膜特性の優れた厚い板厚の一
方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick unidirectional electrical steel sheet having excellent magnetic properties and coating properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、磁場の強さ800A
/mにおける磁束密度B8 が通常使用される。又、鉄損
特性を表す数値としては、周波数50Hzで1.7テスラ
ー(T)まで磁化した時の1kg当りの鉄損W17/50 を使
用している。磁束密度は、鉄損特性の最大支配因子であ
り、一般的にいって磁束密度が高いほど鉄損特性が良好
になる。なお、一般的に磁束密度を高くすると二次再結
晶粒が大きくなり、鉄損特性が不良となる場合がある。
これに対しては、磁区制御により、二次再結晶粒の粒径
に拘らず、鉄損特性を改善することができる。
2. Description of the Related Art Unidirectional magnetic steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. The magnetic field strength is 800A as a numerical value showing the excitation characteristics.
The magnetic flux density B 8 at / m is usually used. As the numerical value showing the iron loss characteristic, the iron loss W 17/50 per 1 kg when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz is used. The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics.
On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸をもったいわゆるゴス組織を発達さ
せることにより製造されている。良好な磁気特性を得る
ためには、磁化容易軸である〈001〉軸を圧延方向に
高度に揃えることが必要である。このような高磁束密度
一方向性電磁鋼板の製造技術として代表的なものに田口
悟等による特公昭40−15644号公報及び今中拓一
等による特公昭51−13469号公報記載の方法があ
る。前者においてはMnS及びAlNを、後者ではMn
S,MnSe,Sb等を主なインヒビターとして用いて
いる。
This unidirectional electrical steel sheet is manufactured by causing secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} axis on the steel sheet surface and <001> axis in the rolling direction. Has been done. In order to obtain good magnetic properties, it is necessary to highly align the <001> axis, which is the easy magnetization axis, with the rolling direction. Typical methods for producing such a high magnetic flux density unidirectional electrical steel sheet are methods described in Japanese Patent Publication No. 40-15644 by Satoru Taguchi et al. And Japanese Patent Publication No. 51-13469 by Takuichi Imanaka. . MnS and AlN are used in the former and Mn are used in the latter.
S, MnSe, Sb, etc. are used as main inhibitors.

【0004】従って現在の技術においてはこれらインヒ
ビターとして機能する析出物の大きさ、形態及び分散状
態を適正制御することが不可欠である。MnSに関して
いえば、現在の工程では熱延前のスラブ加熱時にMnS
を一旦完全固溶させた後、熱延時に析出させる方法がと
られている。二次再結晶に必要な量のMnSを完全固溶
するためには1400℃程度の温度が必要である。これ
は普通鋼のスラブ加熱温度に比べて200℃以上も高
く、この高温スラブ加熱処理には以下に述べるような不
利な点がある。即ち、1)方向性電磁鋼専用の高温スラ
ブ加熱炉が必要である。2)加熱炉のエネルギー原単位
が高い。3)溶融スケール量が増大し、いわゆるノロか
き出し等に見られるように操業上の悪影響が大きい。
Therefore, in the present technology, it is indispensable to appropriately control the size, morphology and dispersion state of the precipitates functioning as these inhibitors. Speaking of MnS, in the current process, MnS is generated when the slab is heated before hot rolling.
A method is used in which the above is completely solid-solved and then precipitated during hot rolling. A temperature of about 1400 ° C. is necessary to completely form a solid solution of the required amount of MnS for secondary recrystallization. This is higher than the slab heating temperature of ordinary steel by 200 ° C. or more, and this high-temperature slab heating treatment has the following disadvantages. That is, 1) A high temperature slab heating furnace dedicated to grain-oriented electrical steel is required. 2) The energy intensity of the heating furnace is high. 3) The amount of molten scale increases, and the adverse effect on operation is large, as seen in so-called shaving.

【0005】このような問題点を回避するためには、ス
ラブ加熱温度を普通鋼並みに下げればよいわけである
が、このことは同時にインヒビターとして有効なMnS
の量を少なくするかあるいは全く用いないことを意味
し、必然的に二次再結晶の不安定化をもたらす。このた
め低温スラブ加熱化を実現するためには何らかの形でM
nS以外の析出物等によりインヒビターを強化し、仕上
焼鈍時の正常粒成長の抑制を十分にする必要がある。こ
のようなインヒビターとしては硫化物の他、窒化物、酸
化物及び粒界析出元素等が考えられ、公知の技術として
例えば次のようなものがあげられる。
In order to avoid such a problem, the slab heating temperature should be lowered to the level of ordinary steel, but this is also effective as an inhibitor of MnS.
It means that the amount of is reduced or is not used at all, which necessarily causes destabilization of secondary recrystallization. Therefore, in order to realize low temperature slab heating, M
It is necessary to strengthen the inhibitor with precipitates other than nS to sufficiently suppress normal grain growth during finish annealing. Such inhibitors include sulfides, nitrides, oxides, grain boundary precipitation elements, and the like, and known techniques include, for example, the following.

【0006】特公昭54−24685号公報では、A
s,Bi,Sn,Sb等の粒界偏析元素を鋼中に含有す
ることにより、スラブ加熱温度を1050〜1350℃
の範囲にする方法が開示された。特開昭52−2411
6号公報では、Alの他、Zr,Ti,B,Nb,T
a,V,Cr,Mo等の窒化物生成元素を含有すること
により、スラブ加熱温度を1100〜1260℃の範囲
にする方法が開示された。又、特開昭57−15832
2号公報ではMn含有量を下げ、Mn/Sの比率を2.
5以下にすることにより低温スラブ加熱化を行い、さら
にCuの添加により二次再結晶を安定化する技術が開示
された。
In Japanese Patent Publication No. 54-24685, A
By containing grain boundary segregation elements such as s, Bi, Sn, and Sb in the steel, the slab heating temperature is increased to 1050 to 1350 ° C.
The method of making into the range was disclosed. JP-A-52-2411
No. 6, in addition to Al, Zr, Ti, B, Nb, T
A method has been disclosed in which the slab heating temperature is set in the range of 1100 to 1260 ° C. by containing a nitride forming element such as a, V, Cr and Mo. Also, JP-A-57-15832
No. 2, the Mn content is reduced and the Mn / S ratio is set to 2.
A technique has been disclosed in which the slab is heated at a low temperature by setting the ratio to 5 or less, and the secondary recrystallization is stabilized by adding Cu.

【0007】一方、これらインヒビターの補強と組み合
わせて金属組織の側から改良を加えた技術も開示され
た。即ち特開昭57−89433号公報ではMnに加
え、S,Se,Sb,Bi,Pb,Sn,B等の元素を
加え、これにスラブの柱状晶率と二次冷延圧下率を組み
合わせることにより、1100〜1250℃の低温スラ
ブ加熱化を実現している。さらに特開昭59−1903
24号公報ではSあるいはSeに加え、Al及びBと窒
素を主体としてインヒビターを構成し、これに冷延後の
一次再結晶焼鈍時にパルス焼鈍を施すことにより二次再
結晶を安定化する技術が公開された。このように方向性
電磁鋼板製造における低温スラブ加熱化実現のために
は、これまでに多大な努力が続けられてきている。
On the other hand, a technique has also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, elements such as S, Se, Sb, Bi, Pb, Sn, and B are added to Mn, and the columnar crystal ratio of the slab and the secondary cold rolling reduction are combined with this. As a result, low temperature slab heating of 1100 to 1250 ° C is realized. Further, JP-A-59-1903
In JP-A-24-24, there is disclosed a technique in which, in addition to S or Se, an inhibitor is mainly composed of Al and B and nitrogen, and the secondary recrystallization is stabilized by performing pulse annealing during primary recrystallization annealing after cold rolling. It was published. Thus, in order to realize low temperature slab heating in the production of grain-oriented electrical steel sheets, great efforts have been made so far.

【0008】さて、先に特開昭59−56522号公報
において、Mnを0.08〜0.45%、Sを0.00
7%以下にすることにより低温スラブ加熱化を可能にす
る技術が開示された。この方法により高温スラブ加熱時
のスラブ結晶粒粗大化に起因する製品の線状二次再結晶
不良発生の問題が解消された。
[0008] First, in JP-A-59-56522, Mn is 0.08 to 0.45% and S is 0.00.
A technique has been disclosed which enables low temperature slab heating by making the content 7% or less. By this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.

【0009】一方、近年のトランスメーカーの省力化、
コストダウンの観点から特に、積鉄心の分野で、積回数
を減らすため、板厚の厚い方向性電磁鋼板のニーズが高
まってきた。又、大型回転器の分野において、以前から
方向性電磁鋼板を使用したいとの要望があり、この分野
においても、積回数を減らすため、板厚の厚い方向性電
磁鋼板のニーズは高い。他方、板厚を厚くすることは、
一般的には、鉄損特性の劣化につながるため、この課題
を解決する磁気特性の優れた厚い板厚の方向性電磁鋼板
の開発の期待が高まってきた。
On the other hand, labor saving of transformer manufacturers in recent years,
From the viewpoint of cost reduction, particularly in the field of laminated iron cores, there is an increasing need for grain-oriented electrical steel sheets having a large thickness in order to reduce the number of laminations. In the field of large rotators, there has been a long-standing desire to use grain-oriented electrical steel sheets. In this field as well, there is a strong need for grain-oriented electrical steel sheets with a large thickness in order to reduce the number of stacks. On the other hand, increasing the plate thickness
In general, since it leads to deterioration of iron loss characteristics, there is an increasing expectation for development of thick grain-oriented electrical steel sheets with excellent magnetic characteristics that can solve this problem.

【0010】[0010]

【発明が解決しようとする課題】本発明は、板厚を厚く
し、かつ、優良な磁気特性、被膜特性を有する方向性電
磁鋼板の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a method for manufacturing a grain-oriented electrical steel sheet which has a large thickness and has excellent magnetic characteristics and coating characteristics.

【0011】[0011]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量比でC:0.021〜0.075%、Si:
2.5〜4.5%、酸可溶性Al:0.010〜0.0
60%、N:0.0010〜0.0130%、S+0.
405Se:0.014%以下、Mn:0.05〜0.
8%、残部がFeと不可避の不純物からなるスラブを1
280℃未満の温度で加熱した後、熱延し、熱延板焼鈍
を施し、引続き圧下率80%以上の最終冷延を含み、必
要に応じて、中間焼鈍を挟む1回以上の冷延を行い、次
いで脱炭焼鈍し、焼鈍分離剤を塗布し、仕上焼鈍をし、
絶縁被膜剤を塗布する0.36〜1.00mm厚の厚手一
方向性電磁鋼板の製造方法において、脱炭焼鈍完了後、
最終仕上焼鈍開始までの間の一次再結晶粒の平均粒径を
18〜35μmとし、熱延後最終仕上焼鈍開始までの間
に鋼板に窒化処理を施し、窒化処理後の鋼板の最終仕上
焼鈍開始時のN量を重量比でN(%)とし、製品板厚を
t(mm)とした時に、N(%),t(mm)を下記の式の
範囲に制御し、 −0.0078×t+0.0148≦N≦−0.0156×t+0.0406 最終仕上焼鈍の昇温時800℃以下の温度域での露点を
0〜30℃とすることを特徴とする磁気特性、被膜特性
の優れた厚い板厚の一方向性電磁鋼板の製造方法であ
る。
The gist of the present invention is that C: 0.021 to 0.075% by weight and Si:
2.5-4.5%, acid-soluble Al: 0.010-0.0
60%, N: 0.0010 to 0.0130%, S + 0.
405 Se: 0.014% or less, Mn: 0.05-0.
1% slab consisting of 8% and the balance Fe and unavoidable impurities
After heating at a temperature of less than 280 ° C., hot rolling, hot-rolled sheet annealing is performed, and final cold rolling with a rolling reduction of 80% or more is continuously performed. If necessary, one or more cold rollings with intermediate annealing are performed. Performed, then decarburized and annealed, annealed separator is applied, and finish annealed,
In a method of manufacturing a thick unidirectional electrical steel sheet having a thickness of 0.36 to 1.00 mm, which is applied with an insulating coating agent, after decarburization annealing is completed,
The average grain size of the primary recrystallized grains until the start of the final finish annealing is set to 18 to 35 μm, and the steel sheet is nitrided before the start of the final finish annealing after hot rolling, and the final finish annealing of the steel sheet after the nitriding treatment is started. When the amount of N at that time is N (%) by weight and the product plate thickness is t (mm), N (%) and t (mm) are controlled within the range of the following formula, and -0.0078 × t + 0. [0148] ≤N≤-0.0156 × t + 0.0406 A thick plate having excellent magnetic properties and coating properties, which has a dew point of 0 to 30 ° C. in a temperature range of 800 ° C. or less at the time of temperature increase in final finishing annealing. It is a method for manufacturing a unidirectional electrical steel sheet.

【0012】[0012]

【作用】本発明が対象としている方向性電磁鋼板は、従
来用いられている製鋼法で得られた溶鋼を連続鋳造法あ
るいは造塊法で鋳造し、必要に応じて分塊工程を挟んで
スラブとし、引続き熱間圧延して熱延板とし、次いでこ
の熱延板に必要に応じて焼鈍を施し、必要に応じて中間
焼鈍を挟む1回以上の冷延、脱炭焼鈍、最終仕上焼鈍を
順次行うことによって製造される。
The grain-oriented electrical steel sheet targeted by the present invention is a slab obtained by casting a molten steel obtained by a conventional steelmaking method by a continuous casting method or an ingot-making method, and optionally sandwiching a slabbing step. Then, hot rolling is carried out to form a hot-rolled sheet, and then this hot-rolled sheet is annealed as required, and if necessary, one or more cold rollings with intermediate annealing, decarburization annealing, and final finishing annealing are performed. It is manufactured by sequentially performing.

【0013】本発明者等は、厚い板厚の方向性電磁鋼板
の製造工程において、磁気特性、被膜特性を良好ならし
めるための必要条件について広範囲にわたって検討し、
板厚に応じて窒化量を制御し、かつ仕上焼鈍の昇温時の
露点を制御することが有効であることを見い出した。
The inventors of the present invention have extensively studied the necessary conditions for obtaining good magnetic properties and coating properties in the manufacturing process of thick grain-oriented electrical steel sheets,
It was found that it is effective to control the amount of nitriding according to the plate thickness and to control the dew point at the time of temperature rise during finish annealing.

【0014】以下実験結果を基に詳細に説明する。図1
は、最終冷延後の板厚と最終仕上焼鈍開始時のN量が製
品の磁気特性、被膜特性に与える影響を表したグラフで
ある。ここでは、C:0.050重量%(以下%と略記
する)、Si:3.34%、酸可溶性Al:0.029
%、N:0.0060%、S:0.007%、Mn:
0.10%を含有し、残部Fe及び不可避の不純物から
なる40mm厚のスラブを1150℃に加熱し、2.8〜
5.0mm厚の熱延板とした。
A detailed description will be given below based on the experimental results. Figure 1
FIG. 4 is a graph showing the influence of the sheet thickness after final cold rolling and the N content at the start of final finish annealing on the magnetic properties and coating properties of the product. Here, C: 0.050 wt% (hereinafter abbreviated as%), Si: 3.34%, acid-soluble Al: 0.029.
%, N: 0.0060%, S: 0.007%, Mn:
A slab of 40 mm thickness containing 0.10% and the balance Fe and unavoidable impurities is heated to 1150 ° C.
A hot rolled sheet having a thickness of 5.0 mm was used.

【0015】この熱延板に、1100℃に30秒保持
後、900℃に30秒保持した後、急冷する熱延板焼鈍
を施し、次いで、圧下率80〜88%で冷延し、次いで
830℃に400秒保持し、850℃×20秒保持する
脱炭焼鈍を施した。しかる後、750℃に30秒保持す
る熱処理中、雰囲気ガス中にNH3 ガスを種々の量混入
させ、鋼板に窒素吸収を生ぜしめた。この時鋼板のN量
は0.0061〜0.0357%であった。この鋼板の
板厚全厚での一次再結晶粒の平均粒径を光学顕微鏡と画
像解析機を用いて測定したところ23〜28μmであっ
た。次いで、この窒化処理後の板にMgOを主成分とす
る焼鈍分離剤を塗布し、最終仕上焼鈍を行った。
This hot-rolled sheet was kept at 1100 ° C. for 30 seconds, then kept at 900 ° C. for 30 seconds, then subjected to rapid hot-rolled sheet annealing, then cold-rolled at a rolling reduction of 80 to 88%, and then 830. Decarburization annealing was performed at 400 ° C. for 400 seconds and at 850 ° C. for 20 seconds. Then, during the heat treatment of holding at 750 ° C. for 30 seconds, various amounts of NH 3 gas were mixed into the atmosphere gas to cause the steel sheet to absorb nitrogen. At this time, the N content of the steel sheet was 0.0061 to 0.0357%. The average grain size of the primary recrystallized grains in the entire thickness of this steel sheet was measured using an optical microscope and an image analyzer, and it was 23 to 28 μm. Then, an annealing separator containing MgO as a main component was applied to the plate after the nitriding treatment, and final finish annealing was performed.

【0016】最終仕上焼鈍は、昇温時N2 :25%、H
2 :75%の雰囲気中で、室温から800℃まで露点を
10℃とし、800℃から1200℃まで露点をDry
(−30℃)とした。昇温速度は15℃/時とした。1
200℃ではH2 :100%、Dry(−30℃)雰囲
気中で、鋼板を20時間保持した。最終仕上焼鈍後に絶
縁被膜を塗布焼付けで形成させ、0.36〜1.00mm
厚の製品とした。
The final finish annealing is carried out at a temperature rise of N 2 : 25%, H
2 : In a 75% atmosphere, the dew point is 10 ° C from room temperature to 800 ° C, and the dew point is Dry from 800 ° C to 1200 ° C.
(-30 ° C). The heating rate was 15 ° C./hour. 1
At 200 ° C., H 2 was 100%, and the steel sheet was kept in a Dry (−30 ° C.) atmosphere for 20 hours. After final finishing annealing, an insulating coating is applied and baked to form 0.36 to 1.00 mm
It was a thick product.

【0017】図1から明らかなように、最終仕上焼鈍開
始時のN量をN(%)とし、最終製品の板厚をt(mm)
とした時に、N(%),t(mm)を下記の式の範囲に制
御した時に、 −0.0078×t+0.0148≦N≦−0.0156×t+0.0406 良好な磁気特性、良好な被膜特性が同時に得られた。
As is apparent from FIG. 1, the N amount at the start of final finish annealing is N (%), and the plate thickness of the final product is t (mm).
When N (%) and t (mm) are controlled within the range of the following formula, -0.0078 × t + 0.0148 ≦ N ≦ −0.0156 × t + 0.0406 good magnetic properties and good coating properties are simultaneously obtained. Was obtained.

【0018】本発明者らは、図1に示した現象と関連し
て、この現象に対する最終仕上焼鈍の雰囲気の影響を検
討した。図2に、最終仕上焼鈍の昇温時800℃以下の
露点が製品の磁気特性、被膜特性に与える影響を示し
た。この場合、図1で結果を示した実験材の内、熱延板
厚2.8mmの材料を用い、製品板厚を0.46mm(圧下
率:約84%)とした。
The present inventors examined the influence of the atmosphere of final finish annealing on this phenomenon in relation to the phenomenon shown in FIG. FIG. 2 shows the influence of the dew point of 800 ° C. or lower at the time of temperature rise in final annealing on the magnetic properties and coating properties of the product. In this case, among the experimental materials whose results are shown in FIG. 1, a material having a hot-rolled plate thickness of 2.8 mm was used, and the product plate thickness was 0.46 mm (reduction ratio: about 84%).

【0019】この時、NH3 ガスを用いた窒化処理後の
鋼板の窒素量は、0.0215%であり、その鋼板の一
次再結晶粒の平均粒径は、25μmであった。又、最終
仕上焼鈍時の室温から800℃までの露点は、−35〜
55℃の範囲で、種々の条件で実験した。その他の工程
条件は、図1で結果を示した実験と同じ条件で行った。
At this time, the nitrogen content of the steel sheet after the nitriding treatment using NH 3 gas was 0.0215%, and the average grain size of the primary recrystallized grains of the steel sheet was 25 μm. In addition, the dew point from room temperature to 800 ° C during the final finish annealing is -35 to
Experiments were carried out under various conditions in the range of 55 ° C. Other process conditions were the same as those of the experiment whose results are shown in FIG.

【0020】図2から明らかなように、最終仕上焼鈍の
昇温時800℃以下の露点が、0〜30℃の場合に、良
好な磁気特性、良好な被膜特性が同時に得られた。図
1,図2に示した如き現象が生じる理由については、必
ずしも明らかではないが、本発明者らは、次のように推
察している。
As is apparent from FIG. 2, when the dew point of 800 ° C. or lower at the time of temperature rise in the final annealing is 0 to 30 ° C., good magnetic properties and good coating properties were obtained at the same time. The reason why the phenomenon as shown in FIGS. 1 and 2 occurs is not necessarily clear, but the present inventors presume as follows.

【0021】本発明では、熱延終了後最終仕上焼鈍開始
までの間に、鋼板に窒化処理を施すことを前提としてい
る。この窒化処理で、鋼板中に窒化物が形成され、最終
仕上焼鈍の昇温時に、この窒化物は、AlN,(Al,
Si)Nの状態になり、二次再結晶時、粒界移動の粒界
性格依存性を強調するインヒビターとして機能する。
In the present invention, it is premised that the steel sheet is subjected to a nitriding treatment after the hot rolling is completed and before the final finish annealing is started. By this nitriding treatment, a nitride is formed in the steel sheet, and when the temperature of the final finish annealing is increased, the nitride is AlN, (Al,
It becomes a state of Si) N and functions as an inhibitor that emphasizes the grain boundary character dependence of grain boundary migration during secondary recrystallization.

【0022】この窒化物は、最終仕上焼鈍の昇温中(1
000℃以上)、及び高温保持(〜1200℃)におけ
る純化時に分解し、鋼中から外に窒素が出ていく。この
窒素は、表面に形成されたフォルステライトを通過して
いくため、フォルステライトに窒素通過起因の欠陥が生
じ、これが目視できる程のサイズとなると、被膜不良部
となる。従って最終仕上焼鈍開始時の鋼中窒素量が多い
程、この被膜不良部の割合が増加すると考えられる。
This nitride is produced during the temperature increase of the final annealing (1
(000 ° C or higher) and decomposes during purification at high temperature (up to 1200 ° C), and nitrogen is released from the steel. Since this nitrogen passes through the forsterite formed on the surface, a defect due to the passage of nitrogen is generated in the forsterite, and when the size is such that it can be visually observed, it becomes a defective film portion. Therefore, it is considered that the higher the nitrogen content in the steel at the start of the final finish annealing, the higher the proportion of the coating defect portion.

【0023】一方、二次再結晶時の粒界移動の粒界性格
依存性は、インヒビター強度(析出物の体積分率÷析出
物サイズ)が高い程強まる。この粒界移動の粒界性格依
存性が強まる程、一次再結晶組織に対してさらに対応粒
界密度の最も高い{110}〈001〉方位粒が二次再
結晶する割合が高まり、尖鋭な{110}〈001〉二
次再結晶集合組織が得られる。
On the other hand, the grain boundary character dependence of the grain boundary migration during the secondary recrystallization increases as the inhibitor strength (precipitate volume fraction / precipitate size) increases. As the dependence of the grain boundary movement on the grain boundary character becomes stronger, the proportion of the {110} <001> oriented grains having the highest corresponding grain boundary density to the secondary recrystallization becomes higher, and the sharp { 110} <001> secondary recrystallization texture is obtained.

【0024】従って、二次再結晶時のインヒビター量を
増すことは、磁束密度の向上につながり、この意味にお
いては、二次再結晶時の窒素量が多い程好ましい。この
ため、最終仕上焼鈍開始時の窒素量は、多すぎると被膜
不良が増加し、少なすぎると磁束密度が低下するという
性格をもつ。
Therefore, increasing the amount of inhibitor at the time of secondary recrystallization leads to improvement of the magnetic flux density, and in this sense, the larger the amount of nitrogen at the time of secondary recrystallization, the more preferable. For this reason, if the amount of nitrogen at the start of final finish annealing is too large, film defects increase, and if it is too small, the magnetic flux density decreases.

【0025】一方、板厚が厚くなると、最終仕上焼鈍時
に、鋼中から出ていく窒素量の単位面積あたりの量が増
し、被膜欠陥は生じやすくなる。他方、板厚が厚い程、
この窒素の鋼中からの放出に時間を要する。このため、
二次再結晶時のインヒビター強度の減少を緩和させるの
で、板厚が厚い方が、磁束密度を高位にする点では有利
である。この2つの現象と板厚との関係からすると、良
好な磁気特性と良好な被膜特性を両立させる最終仕上焼
鈍時の鋼中窒素量の適正範囲は、板厚が厚い程、低くな
ると考えられる。図1の結果は、この現象のためと考え
られる。
On the other hand, when the plate thickness is large, the amount of nitrogen per unit area that emerges from the steel during final finish annealing increases, and film defects are likely to occur. On the other hand, the thicker the plate,
It takes time to release this nitrogen from the steel. For this reason,
Since the decrease in the inhibitor strength at the time of secondary recrystallization is relieved, a thicker plate is advantageous in that the magnetic flux density is increased. From the relationship between these two phenomena and the plate thickness, it is considered that the appropriate range of the amount of nitrogen in the steel at the time of final finish annealing that achieves both good magnetic properties and good coating properties becomes lower as the plate thickness increases. The results in FIG. 1 are believed to be due to this phenomenon.

【0026】又、最終仕上焼鈍の昇温時800℃以下の
露点は、その時の表面酸化に影響する。この時形成する
酸化物は、主にSiO2 であるが、この酸化物が表面に
形成すると、最終仕上焼鈍の昇温中の鋼板への窒素吸収
を抑制する。この意味においては、800℃以下の露点
を高めることは、被膜欠陥の発生頻度を低下させると考
えられる。一方、露点が高いと表面でのAlの酸化が生
じやすくなり、AlNと固溶Al、固溶Nとの平衡反応
からすると、実質的には、Al量が低下した時と同じ状
況となり、AlNが分解し、固溶N量が増す現象が生じ
る。
Further, the dew point of 800 ° C. or lower at the time of temperature rise in the final finish annealing affects the surface oxidation at that time. The oxide formed at this time is mainly SiO 2. However, when this oxide is formed on the surface, it suppresses the absorption of nitrogen into the steel sheet during the temperature rise of the final finish annealing. In this sense, increasing the dew point of 800 ° C. or lower is considered to reduce the frequency of occurrence of film defects. On the other hand, when the dew point is high, oxidation of Al on the surface is likely to occur, and from the equilibrium reaction of AlN with solid solution Al and solid solution N, the situation is substantially the same as when the amount of Al is reduced. Is decomposed to increase the amount of solid solution N.

【0027】この点では、最終仕上焼鈍昇温時800℃
以下の露点が高い程、二次再結晶時のインヒビターの体
積分率が低下し、二次再結晶集合組織の{110}〈0
01〉集積度が低下することとなる。従って、磁気特性
と被膜特性を両立させるための最終仕上焼鈍昇温時の露
点の適正範囲が存在することとなる。
At this point, the temperature during the final finishing annealing is 800 ° C.
The higher the dew point below, the lower the volume fraction of the inhibitor during secondary recrystallization, and the {110} <0 of the secondary recrystallization texture.
01> The degree of integration is reduced. Therefore, there is an appropriate range of the dew point at the time of the final finish annealing temperature rise in order to achieve both the magnetic properties and the film properties.

【0028】この現象に対しても、板厚は影響し、板厚
が厚い程、磁気特性の点では有利であるが、被膜欠陥の
点では不利となるので、この最終仕上焼鈍昇温時の適正
範囲も板厚の影響を受け、本発明の如く、0.36〜
1.00mm厚の製品の場合には、図2で示した範囲とな
るものと推定される。
The sheet thickness also influences this phenomenon, and the thicker the sheet thickness, the more advantageous it is in terms of magnetic properties, but it is disadvantageous in terms of film defects. The appropriate range is also affected by the plate thickness, and as in the present invention, 0.36 to
In the case of a product with a thickness of 1.00 mm, it is estimated that the range shown in FIG.

【0029】次に本発明の構成要件の限定理由について
述べる。先ず、スラブの成分と、スラブ加熱温度に関し
て限定理由を詳細に説明する。Cは0.021%未満に
なると二次再結晶が不安定になり、かつ二次再結晶した
場合でもB8 >1.80(T)が得がたいので0.02
1%以上とした。一方、Cが多くなりすぎると脱炭焼鈍
時間が長くなり経済的でないので0.075%以下とし
た。Siは4.5%を超えると冷延時の割れが著しくな
るので4.5%以下とした。又2.5%未満では素材の
固有抵抗が低すぎ、トランス鉄心材料として必要な低鉄
損が得られないので2.5%以上とした。望ましくは
3.2%以上である。
Next, the reasons for limiting the constituent features of the present invention will be described. First, the reasons for limiting the components of the slab and the slab heating temperature will be described in detail. When C is less than 0.021%, the secondary recrystallization becomes unstable, and even when secondary recrystallization is performed, it is difficult to obtain B 8 > 1.80 (T).
It was set to 1% or more. On the other hand, if the amount of C is too large, the decarburization annealing time becomes long and it is not economical, so the content was made 0.075% or less. When Si exceeds 4.5%, cracking during cold rolling becomes significant, so the content of Si is set to 4.5% or less. If it is less than 2.5%, the specific resistance of the material is too low, and the low iron loss required for the transformer core material cannot be obtained. It is preferably 3.2% or more.

【0030】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)nitridesを確保するた
め、酸可溶性Alとして0.010%以上が必要であ
る。酸可溶性Alが0.060%を超えると熱延板のA
lNが不適切となり、二次再結晶が不安定になるので
0.060%以下とした。Nについては通常の製鋼作業
では0.0010%未満にすることが困難であり、かつ
経済的に好ましくないので0.0010%以上とし、一
方、0.0130%を超えるとブリスターと呼ばれる鋼
板表面ふくれが発生するので0.0130%以下とし
た。
Al is AlN necessary for stabilizing the secondary recrystallization.
Alternatively, in order to secure (Al, Si) nitrides, 0.010% or more is required as acid-soluble Al. When acid-soluble Al exceeds 0.060%, A of hot rolled sheet
Since 1N becomes unsuitable and the secondary recrystallization becomes unstable, the content was made 0.060% or less. Regarding N, it is difficult to make it less than 0.0010% in ordinary steelmaking work, and it is economically unfavorable, so it is 0.0010% or more, while when it exceeds 0.0130%, the steel plate surface blistering called blister Therefore, 0.0130% or less is set.

【0031】MnS,MnSeが鋼中に存在しても、製
造工程の条件を適正に選ぶことによって磁気特性を良好
にすることが可能である。しかしながらSやSeが高い
と線状細粒と呼ばれる二次再結晶不良部が発生する傾向
があり、この二次再結晶不良部の発生を予防するために
は(S+0.405Se)≦0.014%であることが
望ましい。SあるいはSeが上記値を超える場合には製
造条件をいかに変更しても二次再結晶不良部が発生する
確率が高くなり好ましくない。又最終仕上焼鈍で純化す
るのに要する時間が長くなりすぎて好ましくなく、この
ような観点からSあるいはSeを不必要に増すことは意
味がない。
Even if MnS and MnSe are present in the steel, it is possible to improve the magnetic characteristics by properly selecting the manufacturing process conditions. However, if S or Se is high, secondary recrystallization defective portions called linear fine grains tend to be generated, and in order to prevent the generation of this secondary recrystallization defective portion, (S + 0.405Se) ≦ 0.014 % Is desirable. If S or Se exceeds the above value, the probability of occurrence of defective secondary recrystallization is increased no matter how the manufacturing conditions are changed, which is not preferable. In addition, the time required for purification in the final finish annealing becomes too long, which is not preferable, and it is meaningless to increase S or Se unnecessarily from this viewpoint.

【0032】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、就中、ストリップの側縁部が波形状となり
製品歩留りを低下させる問題が発生する。一方、Mn量
が0.8%を超えると製品の磁束密度を低下させ、好ま
しくないので、Mn量の上限を0.8%とした。この
他、インヒビター構成元素として知られているSn,S
b,Cr,Cu,Ni,B,Ti等を微量に含有するこ
とはさしつかえない。
The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, the shape (flatness) of the hot-rolled sheet obtained by hot rolling, especially the side edge portion of the strip becomes corrugated, which causes a problem of lowering the product yield. On the other hand, when the Mn content exceeds 0.8%, the magnetic flux density of the product is lowered, which is not preferable, so the upper limit of the Mn content was set to 0.8%. In addition, Sn and S, which are known as inhibitor constituent elements,
It is permissible to contain a trace amount of b, Cr, Cu, Ni, B, Ti and the like.

【0033】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。引続く熱延工程
は、通常100〜400mm厚のスラブを加熱した後、い
ずれも複数回のパスで行う粗熱延と仕上熱延よりなる。
粗熱延、仕上熱延の方法については特に限定するもので
はなく通常の方法で行われる。熱延後、熱延板焼鈍を施
し、引続き圧下率80%以上の最終冷延を含み、必要に
応じて中間焼鈍を挟む1回以上の冷延を行い、0.36
〜1.00mm厚の冷延板とする。
The slab heating temperature is limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower. The subsequent hot-rolling step usually comprises rough hot-rolling and finish hot-rolling, in which a slab having a thickness of 100 to 400 mm is heated, and then each is performed in a plurality of passes.
The methods of rough hot rolling and finish hot rolling are not particularly limited, and ordinary methods are used. After hot rolling, hot-rolled sheet is annealed, and subsequently, final cold rolling with a rolling reduction of 80% or more is performed, and if necessary, one or more cold rollings with an intermediate annealing are performed to obtain 0.36.
A cold-rolled sheet with a thickness of up to 1.00 mm is used.

【0034】冷延板の板厚を0.36〜1.00mmと規
定したのは、厚手一方向性電磁鋼板を得る本発明の目的
のためである。又1.0mm超では、脱炭焼鈍に時間がか
かりすぎて好ましくない。最終冷延の圧下率を80%以
上としたのは、この範囲で、一次再結晶集合組織中に、
適正量の{110}〈001〉方位粒と、その{11
0}〈001〉方位粒が二次再結晶する時に蚕食されや
すい適正量の対応方位粒({111}〈112〉等)が
得られるからである。
The thickness of the cold rolled sheet is defined to be 0.36 to 1.00 mm for the purpose of the present invention to obtain a thick unidirectional electrical steel sheet. If it exceeds 1.0 mm, decarburization annealing takes too long, which is not preferable. The reduction ratio of the final cold rolling is set to 80% or more in this range in the primary recrystallization texture,
An appropriate amount of {110} <001> oriented grains and its {11}
This is because an appropriate amount of corresponding oriented grains ({111} <112>, etc.) that are easily silkworm eroded when the 0} <001> oriented grains undergo secondary recrystallization is obtained.

【0035】最終冷延後の鋼板に脱炭焼鈍を施し、Mg
Oを主成分とする焼鈍分離剤を塗布し、最終仕上焼鈍を
施す。ここで、脱炭焼鈍後、最終仕上焼鈍開始までの間
の一次再結晶粒の平均粒径を18〜35μmとしたの
は、この範囲で、B8 ≧1.88Tなる良好な磁束密度
が得られるからである。熱延後最終仕上焼鈍の開始まで
の間に鋼板に窒化処理を施すと規定したのは、本発明の
如き低温スラブ加熱を前提とするプロセスでは、二次再
結晶に必要なインヒビター強度が不足がちになるからで
ある。
The steel sheet after the final cold rolling was subjected to decarburization annealing to obtain Mg.
An annealing separator containing O as a main component is applied, and final finishing annealing is performed. Here, the average grain size of the primary recrystallized grains after decarburization annealing until the start of final finish annealing is set to 18 to 35 μm, in this range, a good magnetic flux density of B 8 ≧ 1.88 T is obtained. Because it will be done. It is defined that the steel sheet is subjected to the nitriding treatment after the hot rolling and before the start of the final finish annealing, in the process premised on the low temperature slab heating as in the present invention, the inhibitor strength necessary for the secondary recrystallization tends to be insufficient. Because.

【0036】窒化の方法としては特に限定するものでは
なく、脱炭焼鈍後引続き焼鈍雰囲気にNH3 ガスを混入
させ窒化する方法、プラズマを用いる方法等いずれの方
法でもよい。この窒化処理後の鋼板の最終仕上焼鈍開始
時のN量を重量比でN(%)とし、鋼板の製品板厚をt
(mm)とした時、N(%),t(mm)を下記の式の範囲
に制御する必要がある。 −0.0078×t+0.0148≦N≦−0.0156×t+0.0406 これは、図1に示したとおり、この範囲で、良好な磁気
特性と被膜特性が得られるからである。
The method of nitriding is not particularly limited, and any method such as a method of mixing NH 3 gas in an annealing atmosphere after decarburization annealing and nitriding or a method of using plasma may be used. The N content at the start of final finishing annealing of the steel sheet after the nitriding treatment is N (%) in weight ratio, and the product thickness of the steel sheet is t.
(Mm), it is necessary to control N (%) and t (mm) within the range of the following formula. −0.0078 × t + 0.0148 ≦ N ≦ −0.0156 × t + 0.0406 This is because good magnetic characteristics and film characteristics can be obtained in this range as shown in FIG.

【0037】最終仕上焼鈍は通常、3〜50TON のコイ
ル状で施され、この最終仕上焼鈍で、二次再結晶、グラ
ス被膜形成、純化が生じる。二次再結晶は、通常800
〜1200℃で生じ、グラス被膜形成は、通常800〜
1200℃で生じ、純化は主に、1000〜1300℃
の温度域で生じる。この最終仕上焼鈍の昇温時800℃
までの温度域での露点を規定した。
The final finish annealing is usually performed in the form of a coil of 3 to 50 TON, and this final finish annealing causes secondary recrystallization, glass film formation and purification. Secondary recrystallization is usually 800
~ 1200 ℃, the glass film formation is usually 800 ~
It occurs at 1200 ℃, purification is mainly 1000 ~ 1300 ℃
Occurs in the temperature range of. The temperature of this final finish annealing is 800 ℃
The dew point in the temperature range up to is specified.

【0038】最終仕上焼鈍の昇温時800℃以下の温度
域での露点を0〜30℃とする必要がある。これは図2
に示したとおり、この範囲で、良好な磁気特性と被膜特
性が得られるからである。室温から800℃までの温度
域で、少くとも1時期露点が0〜30℃になれば、磁気
特性と被膜特性を向上させる効果がある。800℃超の
温度域での露点については、特に限定しない。
It is necessary to set the dew point in the temperature range of 800 ° C. or less at the time of temperature rise of the final finish annealing to 0 to 30 ° C. This is Figure 2
This is because good magnetic properties and film properties can be obtained in this range, as shown in FIG. In the temperature range from room temperature to 800 ° C., if the dew point for one period is 0 to 30 ° C. at least, it is effective in improving the magnetic properties and the film properties. The dew point in the temperature range over 800 ° C is not particularly limited.

【0039】室温から800℃までの温度域での露点を
制御する方法については、特に限定するものではない。
焼鈍分離剤中の水分を調整する方法、最終仕上焼鈍時の
雰囲気ガスの流量を調整する方法、コイルのまき方を調
整する方法、最終仕上焼鈍時雰囲気ガス中に水分を添加
する方法等いずれの方法でもかまわない。
The method of controlling the dew point in the temperature range from room temperature to 800 ° C. is not particularly limited.
Any of the method of adjusting the water content in the annealing separator, the method of adjusting the flow rate of the atmosphere gas at the time of final finishing annealing, the method of adjusting the coil winding method, the method of adding water to the atmosphere gas at the time of final finishing annealing, etc. The method does not matter.

【0040】[0040]

【実施例】【Example】

実施例1 重量でC:0.054%、Si:3.26%、Mn:
0.13%、S:0.006%、酸可溶性Al:0.0
29%、N:0.0078%を含有するスラブを、11
50℃の温度に加熱した後、熱延して、2.8mmの熱延
板とした。この熱延板を1120℃に30秒保持し引続
き900℃に30秒保持する熱延板焼鈍を施した後、圧
下率約86%で最終板厚まで冷延して0.38mmの冷延
板とし、830℃で150秒保持する脱炭焼鈍(25%
2 +75%H2 、露点65℃)を施し、次いで、75
0℃に30秒保持する焼鈍時に焼鈍雰囲気中にNH3
スを3水準の量混入せしめ鋼板に窒化を生ぜしめた。
Example 1 C: 0.054% by weight, Si: 3.26%, Mn:
0.13%, S: 0.006%, acid-soluble Al: 0.0
Slab containing 29%, N: 0.0078%, 11
After heating to a temperature of 50 ° C., hot rolling was performed to obtain a hot rolled plate of 2.8 mm. After this hot rolled sheet is annealed at 1120 ° C. for 30 seconds and subsequently kept at 900 ° C. for 30 seconds, it is cold rolled to a final thickness of 0.38 mm at a reduction rate of 86%. And hold it at 830 ° C for 150 seconds for decarburization annealing (25%
N 2 + 75% H 2 , dew point 65 ° C.), then 75
At the time of annealing for holding at 0 ° C. for 30 seconds, NH 3 gas was mixed into the annealing atmosphere in three levels to cause nitriding of the steel sheet.

【0041】この窒化後のN量は、0.0101重量
%、0.0240重量%、0.0370重量%であ
った。この鋼板の一次再結晶粒の平均粒径は24μmで
あった。しかる後、この鋼板にMgOを主成分とする焼
鈍分離剤を塗布し、15℃/hrで1200℃まで昇温
し、1200℃で20時間保持する最終仕上焼鈍を施し
た。この時、昇温中の雰囲気ガスを25%N2 +75%
2 とし、室温から800℃までは、露点10%とし、
それ以降はDry(−30℃)とした。1200℃で保
持中の雰囲気ガスを100%H2 とした。次いで、公知
の方法で絶縁被膜を塗布焼付けで形成させた。最終製品
の板厚は、0.40mmであった。窒化後のN量番号と、
製品の磁気特性、被膜特性を表1に示す。
The amount of N after nitriding was 0.0101% by weight, 0.0240% by weight and 0.0370% by weight. The average grain size of the primary recrystallized grains of this steel sheet was 24 μm. After that, an annealing separator containing MgO as a main component was applied to the steel sheet, the temperature was raised to 1200 ° C. at 15 ° C./hr, and final finishing annealing was performed at 1200 ° C. for 20 hours. At this time, the atmosphere gas during temperature increase is 25% N 2 + 75%
And H 2, to 800 ° C. from room temperature is set to 10% dew point,
After that, it was set to Dry (-30 ° C). The atmosphere gas held at 1200 ° C. was set to 100% H 2 . Then, an insulating film was formed by coating and baking by a known method. The plate thickness of the final product was 0.40 mm. N amount number after nitriding,
Table 1 shows the magnetic properties and coating properties of the products.

【0042】[0042]

【表1】 [Table 1]

【0043】実施例2 重量でC:0.040%、Si:3.01%、Mn:
0.12%、S:0.008%、酸可溶性Al:0.0
34%、N:0.0064%、残部Fe及び不可避の不
純物からなるスラブを、1150℃の温度に加熱し、
3.0mm厚の熱延板とした。この熱延板に焼鈍を施すこ
となく、圧下率84%で最終板厚まで冷延して0.48
mmの冷延板とした。かかる冷延板に830℃×300秒
(25%N2+75%H2 、露点62℃)なる脱炭焼鈍
を施し、その後の工程は、実施例1記載の条件で処理し
た。窒化後のN量は、0.0105重量%、0.0
218重量%、0.0401重量%であった。又、こ
の鋼板の一次再結晶粒の平均粒径は25μmであった。
最終製品の板厚は、0.50mmであった。工程条件と製
品板の磁気特性、被膜特性を表2に示す。
Example 2 C: 0.040% by weight, Si: 3.01%, Mn:
0.12%, S: 0.008%, acid-soluble Al: 0.0
A slab consisting of 34%, N: 0.0064%, the balance Fe and unavoidable impurities is heated to a temperature of 1150 ° C.,
The hot rolled sheet had a thickness of 3.0 mm. This hot-rolled sheet was cold-rolled to a final sheet thickness of 0.48 at a reduction rate of 84% without annealing.
mm cold rolled sheet. The cold-rolled sheet was subjected to decarburization annealing at 830 ° C. for 300 seconds (25% N 2 + 75% H 2 , dew point 62 ° C.), and the subsequent steps were processed under the conditions described in Example 1. The amount of N after nitriding is 0.0105% by weight, 0.0
It was 218% by weight and 0.0401% by weight. The average grain size of the primary recrystallized grains of this steel sheet was 25 μm.
The plate thickness of the final product was 0.50 mm. Table 2 shows the process conditions and the magnetic properties and coating properties of the product plate.

【0044】[0044]

【表2】 [Table 2]

【0045】実施例3 重量でC:0.043%、Si:3.21%、Mn:
0.12%、S:0.009%、酸可溶性Al:0.0
30%、N:0.0080%、残部Fe及び不可避の不
純物からなるスラブを、1200℃の温度に加熱し、
3.0mm厚の熱延板とした。この熱延板に1000℃×
3分の熱延板焼鈍を施し、圧下率約81%で最終板厚ま
で冷延して0.58mmの冷延板とした。かかる冷延板に
830℃×450秒(25%N2 +75%H2 、露点6
2℃)なる脱炭焼鈍を施し、次いで、770℃に30秒
保持する焼鈍時、焼鈍雰囲気中にNH3 ガスを混入せし
め、鋼板に窒素吸収を生ぜしめた。
Example 3 C: 0.043% by weight, Si: 3.21%, Mn:
0.12%, S: 0.009%, acid-soluble Al: 0.0
A slab consisting of 30%, N: 0.0080%, balance Fe and unavoidable impurities is heated to a temperature of 1200 ° C.,
The hot rolled sheet had a thickness of 3.0 mm. 1000 ° C on this hot rolled sheet
The hot rolled sheet was annealed for 3 minutes and cold rolled to a final sheet thickness at a rolling reduction of about 81% to obtain a cold rolled sheet of 0.58 mm. The cold-rolled sheet was subjected to 830 ° C. × 450 seconds (25% N 2 + 75% H 2 , dew point 6
(2 ° C.) decarburization annealing, and then, during annealing at 770 ° C. for 30 seconds, NH 3 gas was mixed in the annealing atmosphere to cause nitrogen absorption in the steel sheet.

【0046】この窒化後のN量は0.0218%であ
り、この鋼板の一次再結晶粒の平均粒径は、26μmで
あった。この鋼板にMgOを主成分とする焼鈍分離剤を
塗布し、20℃/hrで1200℃まで昇温し、1200
℃で20時間保持する最終仕上焼鈍を施した。この時昇
温時、25%N2 +75%H2 の割合で作成した雰囲気
ガスを用い、1200℃での保持では100%H2 ガス
を雰囲気ガスとした。
The amount of N after nitriding was 0.0218%, and the average grain size of primary recrystallized grains of this steel sheet was 26 μm. An annealing separator containing MgO as a main component was applied to this steel sheet, and the temperature was raised to 1200 ° C. at 20 ° C./hr, and 1200
Final finishing annealing was carried out at 20 ° C. for 20 hours. At this time, when the temperature was raised, an atmosphere gas prepared with a ratio of 25% N 2 + 75% H 2 was used, and 100% H 2 gas was used as the atmosphere gas when held at 1200 ° C.

【0047】そして、昇温時の露点条件として、室温
から1200℃までDry(露点:−30℃)、室温
から700℃まで露点10℃、700℃から1200℃
までDry(露点:−30℃)、室温から900℃ま
で露点5℃、900℃から1200℃までDry(露
点:−30℃)、室温から600℃まで露点10℃、
600℃から1200℃までDry(露点:−30
℃)、室温から800℃まで露点20℃、800℃か
ら1200℃までDry(露点:−30℃)、室温か
ら800℃まで露点40℃、800℃から1200℃ま
でDry(露点:−30℃)の6条件で最終仕上焼鈍を
行った。
As the dew point condition at the time of temperature rise, Dry (dew point: -30 ° C.) from room temperature to 1200 ° C., dew point 10 ° C. from room temperature to 700 ° C., 700 ° C. to 1200 ° C.
Dry (dew point: -30 ° C), dew point 5 ° C from room temperature to 900 ° C, Dry (dew point: -30 ° C) from 900 ° C to 1200 ° C, dew point 10 ° C from room temperature to 600 ° C,
Dry (dew point: -30 from 600 ° C to 1200 ° C)
Dew point 20 ° C from room temperature to 800 ° C, Dry (dew point -30 ° C) from 800 ° C to 1200 ° C, dew point 40 ° C from room temperature to 800 ° C, Dry (dew point -30 ° C) from 800 ° C to 1200 ° C The final finish annealing was performed under the following six conditions.

【0048】次いで、公知の方法で、絶縁被膜を塗布焼
付けで形成させた。最終製品の板厚は、0.60mmであ
った。工程条件と製品の磁気特性、被膜特性を表3に示
す。
Then, an insulating coating was formed by coating and baking by a known method. The plate thickness of the final product was 0.60 mm. Table 3 shows the process conditions and the magnetic properties and coating properties of the product.

【表3】 [Table 3]

【0049】[0049]

【発明の効果】本発明において、脱炭焼鈍完了後、最終
仕上焼鈍開始までの間の一次再結晶粒の平均粒径を制御
し、熱延後最終仕上焼鈍開始までに鋼板に窒化処理を施
し、最終製品の板厚と、最終仕上焼鈍開始時のN量を所
定の関係範囲に保ち、最終仕上焼鈍の昇温時の露点を制
御することにより、良好な磁気特性、被膜特性を有する
厚い板厚の一方向性電磁鋼板を得ることができるので、
その工業的効果は極めて大である。
INDUSTRIAL APPLICABILITY In the present invention, the average grain size of primary recrystallized grains is controlled after the completion of decarburization annealing and before the start of final finish annealing, and the steel sheet is subjected to nitriding treatment after hot rolling and before the start of final finish annealing. By maintaining the thickness of the final product and the amount of N at the start of final finishing annealing within a predetermined relation range and controlling the dew point at the time of temperature increase in final finishing annealing, a thick plate having good magnetic properties and coating properties Since a thick grain-oriented electrical steel sheet can be obtained,
Its industrial effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】最終製品の板厚と最終仕上焼鈍開始時のN量が
製品の磁気特性、被膜特性に与える影響を表したグラフ
である。
FIG. 1 is a graph showing the influence of the plate thickness of the final product and the N content at the start of final finish annealing on the magnetic properties and coating properties of the product.

【図2】最終仕上焼鈍の昇温時800℃以下の露点が製
品の磁気特性、被膜特性に与える影響を表したグラフで
ある。
FIG. 2 is a graph showing the influence of a dew point of 800 ° C. or lower at the time of temperature increase in final finish annealing on the magnetic properties and coating properties of products.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石橋 希瑞 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nozomi Ishibashi 1-1 Tobahata-cho, Tobata-ku, Kitakyushu City Nippon Steel Co., Ltd. Yawata Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.021〜0.075%、 Si:2.5〜4.5%、 酸可溶性Al:0.010〜0.060%、 N :0.0010〜0.0130%、 S+0.405Se:0.014%以下、 Mn:0.05〜0.8%、 残部がFeと不可避の不純物からなるスラブを1280
℃未満の温度で加熱した後、熱延し、熱延板焼鈍を施
し、引続き圧下率80%以上の最終冷延を含み、必要に
応じて中間焼鈍を挟む1回以上の冷延を行い、次いで脱
炭焼鈍し、焼鈍分離剤を塗布し、仕上焼鈍をし、絶縁被
膜剤を塗布する0.36〜1.00mm厚の厚手一方向性
電磁鋼板の製造方法において、脱炭焼鈍完了後、最終仕
上焼鈍開始までの間の一次再結晶粒の平均粒径を18〜
35μmとし、熱延後最終仕上焼鈍開始までの間に鋼板
に窒化処理を施し、窒化処理後の鋼板の最終仕上焼鈍開
始時のN量を重量比でN(%)とし、製品板厚をt(m
m)とした時に、N(%),t(mm)を下記の式の範囲
に制御し、 −0.0078×t+0.0148≦N≦−0.0156×t+0.0406 最終仕上焼鈍の昇温時800℃以下の温度域での露点を
0〜30℃とすることを特徴とする磁気特性、被膜特性
の優れた厚い板厚の一方向性電磁鋼板の製造方法。
1. By weight ratio, C: 0.021 to 0.075%, Si: 2.5 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: 0.0010 to 0. 0.0130%, S + 0.405Se: 0.014% or less, Mn: 0.05 to 0.8%, and a balance of 1280 with a slab consisting of Fe and inevitable impurities.
After heating at a temperature of less than ℃, hot-rolled, subjected to hot-rolled sheet annealing, including final cold rolling of 80% or more rolling reduction, if necessary perform one or more cold rolling with intermediate annealing sandwiched, Next, in the method for producing a thick unidirectional electrical steel sheet having a thickness of 0.36 to 1.00 mm, in which decarburization annealing is performed, an annealing separator is applied, finish annealing is performed, and an insulating coating agent is applied. The average grain size of the primary recrystallized grains until the start of the final finish annealing is 18 to
35 μm, the steel sheet is subjected to nitriding treatment after hot rolling until the start of final finish annealing, and the N amount at the start of final finish annealing of the steel sheet after the nitriding treatment is defined as N (%) by weight ratio, and the product sheet thickness is t. (M
m), N (%) and t (mm) are controlled within the range of the following formula, and -0.0078 × t + 0.0148 ≦ N ≦ −0.0156 × t + 0.0406 800 ° C. or less at the time of temperature rise in final annealing. The dew point in the temperature range of 0 to 30 ° C. is set, and the method for producing a thick unidirectional electrical steel sheet having excellent magnetic properties and coating properties.
JP6101014A 1994-05-16 1994-05-16 Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic Withdrawn JPH07310124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6101014A JPH07310124A (en) 1994-05-16 1994-05-16 Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6101014A JPH07310124A (en) 1994-05-16 1994-05-16 Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic

Publications (1)

Publication Number Publication Date
JPH07310124A true JPH07310124A (en) 1995-11-28

Family

ID=14289369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6101014A Withdrawn JPH07310124A (en) 1994-05-16 1994-05-16 Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic

Country Status (1)

Country Link
JP (1) JPH07310124A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046416A1 (en) * 1998-03-11 1999-09-16 Nippon Steel Corporation Unidirectional magnetic steel sheet and method of its manufacture
KR100650554B1 (en) * 2005-07-29 2006-11-29 주식회사 포스코 A method for manufacturing thick gauge grain-oriented electrical steel sheet
WO2019096735A1 (en) * 2017-11-20 2019-05-23 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel strip and method for the production of such an electrical steel strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046416A1 (en) * 1998-03-11 1999-09-16 Nippon Steel Corporation Unidirectional magnetic steel sheet and method of its manufacture
US6159309A (en) * 1998-03-11 2000-12-12 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing same
KR100650554B1 (en) * 2005-07-29 2006-11-29 주식회사 포스코 A method for manufacturing thick gauge grain-oriented electrical steel sheet
WO2019096735A1 (en) * 2017-11-20 2019-05-23 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel strip and method for the production of such an electrical steel strip

Similar Documents

Publication Publication Date Title
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP2003166019A (en) Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor
JPH07118750A (en) Production of mirror finished grain oriented silicon steel sheet with low iron loss
JPH0730397B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH11269544A (en) Manufacture of high flux density low core loss grain oriented silicon steel sheet
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07138643A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH11269543A (en) Production of grain oriented electric steel sheet
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07300620A (en) Production of grain oriented magnetic steel thick sheet excellent in magnetic property and film characteristic
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731