JP3314844B2 - Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties - Google Patents
Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating propertiesInfo
- Publication number
- JP3314844B2 JP3314844B2 JP08298795A JP8298795A JP3314844B2 JP 3314844 B2 JP3314844 B2 JP 3314844B2 JP 08298795 A JP08298795 A JP 08298795A JP 8298795 A JP8298795 A JP 8298795A JP 3314844 B2 JP3314844 B2 JP 3314844B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- temperature
- steel sheet
- amount
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and used as an iron core of a transformer or the like.
【0002】[0002]
【従来の技術】一方向性電磁鋼板は主にトランスその他
の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表わす数値としては、通常磁場の強さ8
00A/m における磁束密度B8 が使用される。又、鉄損
特性を表わす数値としては、周波数50Hzで1.7テス
ラー(T)まで磁化した時の1kg当りの鉄損W17/50 を
使用している。2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as a core material for transformers and other electric equipment, and is required to have excellent magnetic properties such as excitation properties and iron loss properties. Numerical values representing the excitation characteristics include a normal magnetic field strength of 8
A magnetic flux density B 8 at 00 A / m is used. As the numerical value representing the iron loss characteristic, the iron loss W 17/50 per kg when magnetized at a frequency of 50 Hz to 1.7 Tesla (T) is used.
【0003】磁束密度は、鉄損特性の最大支配因子であ
り、一般的にいって磁束密度が高いほど鉄損特性が良好
になる。なお、一般的に磁束密度を高くすると二次再結
晶粒が大きくなり、鉄損特性が不良となる場合がある。
これに対しては、磁区制御により、二次再結晶粒の粒径
に拘らず、鉄損特性の改善をすることができる。[0003] The magnetic flux density is the largest controlling factor of iron loss characteristics. Generally, the higher the magnetic flux density, the better the iron loss characteristics. In general, when the magnetic flux density is increased, the secondary recrystallized grains become large, and the iron loss characteristics may become poor.
In contrast, by controlling the magnetic domain, the iron loss characteristics can be improved regardless of the particle size of the secondary recrystallized grains.
【0004】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持ったいわゆるゴス組織を発達さ
せることにより製造されている。良好な磁気特性を得る
ためには、磁化容易軸である〈001〉を圧延方向に高
度に揃えることが必要である。このような高磁束密度一
方向性電磁鋼板の製造技術として代表的なものに、特公
昭40−15644号公報、及び特公昭51−1346
9号公報記載の方法がある。[0004] This grain-oriented electrical steel sheet is produced by causing secondary recrystallization in the final finish annealing step to develop a so-called goss structure having {110} on the steel sheet surface and a <001> axis in the rolling direction. Have been. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction. Typical examples of the manufacturing technique of such high magnetic flux density unidirectional magnetic steel sheet include Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-1346.
No. 9 discloses a method.
【0005】前者においては主なインヒビターとしてM
nS及びAlNを、後者ではMnS,MnSe,Sb等
を用いている。従って現在の技術においてはこれらのイ
ンヒビターとして機能する析出物の大きさ、形態及び分
散状態を適正に制御することが不可欠である。[0005] In the former, M is the main inhibitor.
nS and AlN are used, and the latter uses MnS, MnSe, Sb, and the like. Therefore, it is indispensable in the current technology to appropriately control the size, morphology, and dispersion state of the precipitates functioning as these inhibitors.
【0006】MnSに関して言えば、現在の工程では熱
延前のスラブ加熱時にMnSを一旦完全固溶させた後、
熱延時に析出する方法がとられている。二次再結晶に必
要な量のMnSを完全固溶するためには1400℃程度
の温度が必要である。これは普通鋼のスラブ加熱温度に
比べて200℃以上も高く、この高温スラブ加熱処理に
は以下に述べるような不利な点がある。1)方向性電磁
鋼専用の高温スラブ加熱炉が必要。2)加熱炉のエネル
ギー原単位が高い。3)溶融スケール量が増大し、いわ
ゆるノロかき出し等に見られるように操業上の悪影響が
大きい。With regard to MnS, in the present process, after the MnS is completely dissolved once during slab heating before hot rolling,
A method of precipitation during hot rolling is employed. A temperature of about 1400 ° C. is required to completely dissolve the required amount of MnS for secondary recrystallization. This is more than 200 ° C. higher than the slab heating temperature of ordinary steel, and this high-temperature slab heating treatment has the following disadvantages. 1) A high-temperature slab heating furnace dedicated to directional magnetic steel is required. 2) The unit energy consumption of the heating furnace is high. 3) The amount of the molten scale increases, and the adverse effect on the operation is large as seen in so-called scraping.
【0007】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並に下げれば良いわけであるが、こ
のことは同時にインヒビターとして有効なMnSの量を
少なくするか、あるいは全く用いないことを意味し、必
然的に二次再結晶の不安定化をもたらす。このため低温
スラブ加熱化を実現するためには、何らかの形でMnS
以外の析出物等によりインヒビターを強化し、仕上焼鈍
時の正常粒成長の抑制を充分にする必要がある。In order to avoid such a problem, the slab heating temperature may be reduced to the level of ordinary steel. However, this is at the same time reducing the amount of MnS effective as an inhibitor or not using it at all. This means that secondary recrystallization is inevitably destabilized. Therefore, in order to realize low-temperature slab heating, MnS
It is necessary to strengthen the inhibitor with other precipitates and the like to sufficiently suppress the normal grain growth during the finish annealing.
【0008】このようなインヒビターとしては、硫化物
の他、窒化物、酸化物及び粒界析出元素等が考えられ、
公知の技術として例えば次のようなものがあげられる。
特公昭54−24685号公報ではAs,Bi,Sn,
Sb等の粒界偏析元素を鋼中に含有することにより、ス
ラブ加熱温度を1050〜1350℃の範囲にする方法
が開示され、特開昭52−24116号公報ではAlの
他、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の
窒化物生成元素を含有することによりスラブ加熱温度を
1100〜1260℃の範囲にする方法を開示してい
る。[0008] Such inhibitors include nitrides, oxides, and intergranular precipitation elements in addition to sulfides.
Known techniques include, for example, the following.
In Japanese Patent Publication No. 54-24687, As, Bi, Sn,
A method is disclosed in which a slab heating temperature is controlled to be in a range of 1050 to 1350 ° C. by containing a grain boundary segregation element such as Sb in steel. Japanese Patent Application Laid-Open No. 52-24116 discloses a method in which Zr, Ti, A method is disclosed in which a slab heating temperature is set in a range of 1100 to 1260 ° C. by containing a nitride-forming element such as B, Nb, Ta, V, Cr, and Mo.
【0009】又、特開昭57−158322号公報では
Mn含有量を下げ、Mn/Sの比率を2.5以下にする
ことにより低温スラブ加熱化を行い、さらにCuの添加
により二次再結晶を安定化する技術を開示している。In Japanese Patent Application Laid-Open No. 57-158322, low-temperature slab heating is performed by lowering the Mn content and the Mn / S ratio to 2.5 or less, and secondary recrystallization is performed by adding Cu. Discloses a technique for stabilizing the
【0010】これらインヒビターの補強と組み合わせて
金属組織の側から改良を加えた技術も開示された。すな
わち特開昭57−89433号公報ではMnに加えS,
Se,Sb,Bi,Pb,Sn,B等の元素を加え、こ
れにスラブの柱状晶率と二次冷延圧下率を組み合わせる
ことにより1100〜1250℃の低温スラブ加熱化を
実現している。[0010] Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S,
By adding elements such as Se, Sb, Bi, Pb, Sn, and B, and combining the columnar crystal ratio of the slab and the secondary cold rolling reduction, a low-temperature slab heating of 1100 to 1250 ° C. is realized.
【0011】さらに特開昭59−1990324号公報
ではSあるいはSeに加え、Al及びBと窒素を主体と
してインヒビターを構成し、これに冷延後の一次再結晶
焼鈍時にパルス焼鈍を施すことにより二次再結晶を安定
化する技術を公開している。Further, in Japanese Patent Application Laid-Open No. 59-1990324, an inhibitor is composed mainly of Al, B and nitrogen in addition to S or Se, and this is subjected to pulse annealing at the time of primary recrystallization annealing after cold rolling. The technology to stabilize the secondary recrystallization is disclosed.
【0012】このように方向性電磁鋼板製造における低
温スラブ加熱化実現のためには、これまでに多大な努力
が続けられてきている。さらに、特開昭59−5652
2号公報においてはMnを0.08〜0.45%、Sを
0.007%以下にすることにより、低温スラブ加熱化
を可能にする技術が開示された。この方法により高温ス
ラブ加熱時のスラブ結晶粒粗大化に起因する製品の線状
二次再結晶不良発生の問題が解消された。[0012] As described above, great efforts have been made to achieve low-temperature slab heating in the production of grain-oriented electrical steel sheets. Further, JP-A-59-5652
No. 2 discloses a technology that enables low-temperature slab heating by setting Mn to 0.08 to 0.45% and S to 0.007% or less. By this method, the problem of occurrence of defective linear secondary recrystallization of a product due to coarsening of slab crystal grains during heating of a high-temperature slab was solved.
【0013】この低温スラブ加熱を前提とする技術開発
において、本発明者らは、Cuを添加した技術を開発し
てきた。特開平6−145803号公報においては、ス
ラブでのN量,Mn量を極力低め、CuとSを添加し
て、一次再結晶粒粒成長のインヒビターとしてAlNの
代わりに、Cu−Sを用いる技術を提示した。又、特開
平6−145801号公報においては、スラブでのN量
を極力低め、Mn,Cu,Sを添加して、一次再結晶粒
粒成長のインヒビターとして、AlNの代わりに、Cu
−S,MnSを用いる技術を提示した。In the technical development on the premise of this low-temperature slab heating, the present inventors have developed a technique to which Cu is added. JP-A-6-145803 discloses a technique in which the amounts of N and Mn in a slab are minimized, Cu and S are added, and Cu-S is used instead of AlN as an inhibitor for primary recrystallized grain growth. Was presented. In Japanese Patent Application Laid-Open No. Hei 6-145801, the amount of N in a slab is reduced as much as possible, and Mn, Cu, and S are added, and Cu is used as an inhibitor of primary recrystallized grain growth instead of AlN.
A technique using -S, MnS was presented.
【0014】又、特願平5−115033号において
は、特開平6−145803号及び特開平6−1458
01号公報の技術をさらに改善する手段として、Ti,
Zrも加えて添加し、一次再結晶粒粒成長を制御する技
術を提示した。これらの技術により、磁気特性を高位安
定化することは可能であったが、被膜性状と磁気特性を
両立させることは困難であった。Further, Japanese Patent Application Nos. 5-115033 and 6-158033 disclose JP-A-6-145803 and 6-1458.
As means for further improving the technology of JP-A-01, Ti,
A technique for controlling the growth of primary recrystallized grains by adding Zr was also proposed. With these techniques, it was possible to stabilize the magnetic properties at a high level, but it was difficult to achieve both film properties and magnetic properties.
【0015】[0015]
【発明が解決しようとする課題】一方向性電磁鋼板の品
質向上のためには、通常、磁束密度を向上させる方策が
試みられる。低温スラブ加熱を行うプロセスにおいても
同様である。本発明者らは、低温スラブ加熱の工業化の
ため、最終仕上焼鈍前の一次再結晶の平均粒径制御
と、熱延後、最終仕上焼鈍の二次再結晶開始までの間
に鋼板に窒化処理を施すことを柱とする技術を構築して
きた。In order to improve the quality of a grain-oriented electrical steel sheet, measures for increasing the magnetic flux density are usually attempted. The same applies to the process of performing low-temperature slab heating. The present inventors, for industrialization of low-temperature slab heating, control of the average grain size of primary recrystallization before final finish annealing, and nitriding treatment of steel sheet after hot rolling and before the start of secondary recrystallization of final finish annealing. Has been built as a pillar.
【0016】この窒化処理において形成される窒化物
は、SiやMnが多く含有されるものであり、この窒化
物が最終仕上焼鈍の昇温段階の約900〜1000℃の
温度範囲で分解して、AlN又は(Al,Si)Nが析
出する。二次再結晶は、通常1000〜1150℃で生
じるので、二次再結晶時のインヒビターは、AlN又は
(Al,Si)Nとなる。The nitride formed in this nitriding treatment contains a large amount of Si or Mn, and this nitride is decomposed in a temperature range of about 900 to 1000 ° C. in a temperature rise stage of final finish annealing. , AlN or (Al, Si) N is deposited. Since secondary recrystallization usually occurs at 1000 to 1150 ° C., the inhibitor at the time of secondary recrystallization is AlN or (Al, Si) N.
【0017】一方、一次再結晶板における対応粒界密度
が高い方位粒が二次再結晶することが知られており、イ
ンヒビター強度(Zener因子)が高い程、二次再結
晶するに必要な対応粒界密度の臨界値が高まり、その結
果、二次再結晶集合組織の集積度が向上する。On the other hand, it is known that grains having a high corresponding grain boundary density in the primary recrystallized sheet undergo secondary recrystallization. The higher the inhibitor strength (Zener factor), the more necessary the secondary recrystallization is. The critical value of the grain boundary density is increased, and as a result, the degree of integration of the secondary recrystallization texture is improved.
【0018】この意味においては本発明における二次再
結晶時のインヒビターAlN,(Al,Si)Nの強度
(Zener因子)を高めることが、{110}〈00
1〉二次再結晶集合組織を尖鋭にする効果を持つ。Ze
ner因子は、析出物のサイズに反比例し、体積分率に
比例する。体積分率に関して言えば、本技術の如く、窒
化物をインヒビターに用いる場合、体積分率を高めるこ
とは、鋼中の窒素量(製鋼で入れる窒素量と窒化で入れ
る窒素量の和)を高めることにつながる。In this sense, increasing the intensity (Zener factor) of the inhibitors AlN and (Al, Si) N at the time of secondary recrystallization in the present invention can be achieved by {110} <00
1) It has the effect of sharpening the secondary recrystallization texture. Ze
The ner factor is inversely proportional to the size of the precipitate and proportional to the volume fraction. As for the volume fraction, when a nitride is used for an inhibitor as in the present technology, increasing the volume fraction increases the amount of nitrogen in the steel (the sum of the amount of nitrogen added in steelmaking and the amount of nitrogen added in nitriding). Leads to things.
【0019】この鋼中窒素は最終仕上焼鈍中に鋼の外に
放出される。この放出の過程で窒素が表面酸化層及びフ
ォルステライトを通過するため、この鋼中窒素量が多く
なるほど、酸化層及びフォルステライトに欠陥部、欠落
部が生じやすくなる。従って、Zener因子を高める
方法として、体積分率を高めることには限界がある。そ
こで本発明者らは、析出物のサイズを小さくする方法を
検討した。This nitrogen in the steel is released out of the steel during the final annealing. Since nitrogen passes through the surface oxide layer and the forsterite in the course of this release, as the amount of nitrogen in the steel increases, the oxide layer and the forsterite are more likely to have defects and missing parts. Therefore, there is a limit to increasing the volume fraction as a method for increasing the Zener factor. Therefore, the present inventors have studied a method for reducing the size of the precipitate.
【0020】[0020]
【課題を解決するための手段】本発明の要旨は次の通り
である。 (1)重量比で、C:0.025〜0.075%、S
i:2.2〜5.0%、酸可溶性Al:0.010〜
0.060%、N:0.0040〜0.0130%、S
+0.405Se:0.005〜0.020%、Mn:
0.01%未満、Cu:0.05〜0.50%、残部が
Fe及び不可避的不純物からなるスラブを1280℃未
満の温度で加熱し、熱延を行い、引き続き必要に応じて
熱延板焼鈍を行い、次いで圧下率80%以上の最終冷延
を含み中間焼鈍を挟む1回以上の冷延を行い、次いで脱
炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板を製造
する方法において、仕上熱延を700〜1100℃の温
度範囲で施し、脱炭焼鈍完了後、最終仕上焼鈍開始まで
の一次再結晶粒の平均粒径を18〜35μmとし、熱延
後、最終仕上焼鈍の二次再結晶開始までの間に鋼板に
0.0010重量%以上の窒素吸収を行わせる窒化処理
を施し、脱炭焼鈍後の表面酸化膜中の全SiO2 量(S
IO2(g/m2 ))とスラブのCu量(Cu(%))
を下記(1)式の範囲に制御し、最終仕上焼鈍の昇温過
程における鋼板の温度が1000〜1150℃の範囲に
おいて、昇温速度を20℃/時以下とすることを特徴と
する磁気特性と被膜性状の優れた一方向性電磁鋼板の製
造方法。 0.7 −0.6 ×Cu(%)≦SIO2≦1.6 +0.3 ×Cu(%) ……(1) (2)重量比で0.01〜0.15%のSnをスラブに
含有することを特徴とする(1)記載の一方向性電磁鋼
板の製造方法。The gist of the present invention is as follows. (1) C: 0.025 to 0.075% by weight, S
i: 2.2 to 5.0%, acid-soluble Al: 0.010
0.060%, N: 0.0040 to 0.0130%, S
+ 0.405Se: 0.005 to 0.020%, Mn:
A slab composed of less than 0.01%, Cu: 0.05 to 0.50%, and the balance being Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., hot rolled, and subsequently, if necessary, a hot rolled sheet. A method for producing a grain-oriented electrical steel sheet by performing annealing, followed by one or more times of cold rolling including intermediate cold annealing including final cold rolling with a rolling reduction of 80% or more, followed by decarburizing annealing and final finishing annealing. Hot-rolling in a temperature range of 700 to 1100 ° C., after the completion of decarburizing annealing, the average particle size of primary recrystallized grains until the start of final finishing annealing is 18 to 35 μm. Before the start of the next recrystallization, the steel sheet is subjected to a nitriding treatment for absorbing at least 0.0010% by weight of nitrogen, and the total amount of SiO 2 in the surface oxide film after decarburizing annealing (S
IO2 (g / m 2 )) and Cu amount of slab (Cu (%))
Is controlled within the range of the following equation (1), and the temperature is raised at a rate of 20 ° C./hour or less in a temperature range of 1000 to 1150 ° C. in the final finish annealing. For producing unidirectional electrical steel sheets with excellent coating properties. 0.7−0.6 × Cu (%) ≦ SIO2 ≦ 1.6 + 0.3 × Cu (%) (1) (2) The slab contains 0.01 to 0.15% of Sn by weight. (1) The method for producing a grain-oriented electrical steel sheet according to (1).
【0021】[0021]
【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程を挟ん
でスラブとし、引き続き熱間圧延して熱延板とし、必要
に応じて熱延板を焼鈍し、次いで圧下率が80%以上と
なる最終冷延を含み、必要に応じて中間焼鈍を挟む1回
以上の冷延を施し、次いで、脱炭焼鈍、最終仕上焼鈍を
順次行うことによって製造される。The grain-oriented electrical steel sheet to which the present invention is directed is:
Molten steel obtained by the conventional steelmaking method is cast by continuous casting method or ingot making method, if necessary, into a slab with a lumping step, and then hot-rolled into a hot-rolled sheet. Anneal the hot-rolled sheet accordingly, and then apply one or more cold-rolling steps including intermediate annealing as necessary, including final cold-rolling with a reduction ratio of 80% or more, then decarburizing annealing, final finish annealing Are sequentially performed.
【0022】本発明者らは、低温スラブ加熱材を製造し
た場合の被膜性状を良好として、かつ、磁気特性の向上
できる方策ついて詳細に検討した。そしてこの方策とし
て、 Cuを添加し、Mn量を極端に低めること、仕上熱
延温度を制御すること、脱炭焼鈍完了後最終仕上焼鈍
開始までの一次再結晶粒の平均粒径を制御すること、
熱延後最終仕上焼鈍の二次再結晶開始までの間に鋼板に
所定量の窒化処理を施すこと、最終仕上焼鈍の昇温過
程の所定の温度域での昇温速度を低めにすること、脱
炭焼鈍後の表面酸化膜中の全SiO2 量をスラブのCu
量に応じて制御すること、が有効であることがわかっ
た。The present inventors have studied in detail how to improve the film properties and improve the magnetic properties when a low-temperature slab heating material is manufactured. As a measure, adding Cu to extremely lower the amount of Mn, controlling the finishing hot rolling temperature, and controlling the average grain size of primary recrystallized grains from the completion of decarburizing annealing to the start of final finishing annealing. ,
Applying a predetermined amount of nitriding treatment to the steel sheet before the start of the secondary recrystallization of the final finish annealing after hot rolling, lowering the rate of temperature rise in a predetermined temperature range in the temperature rise process of the final finish annealing, The total amount of SiO 2 in the surface oxide film after the decarburizing annealing was
Controlling according to the amount was found to be effective.
【0023】以下実験結果を基に詳細に説明する。図1
に、スラブのCu量と脱炭焼鈍後の表面酸化膜中の全S
iO2 量(SIO2(g/m2 ))が磁気特性、被膜特
性に及ぼす影響を示した。この場合、重量で、C=0.
054%、Si=3.40%、酸可溶性Al=0.02
9%、N=0.0079%、S=0.008%、Mn<
0.01%、Cu=0〜0.67%を含有し、残余Fe
及び不可避的不純物からなる250mm厚のスラブを作成
した。The details will be described below based on the experimental results. FIG.
Next, the Cu content of the slab and the total S in the surface oxide film after decarburization annealing
The effect of the amount of iO 2 (SIO2 (g / m 2 )) on the magnetic properties and coating properties was shown. In this case, by weight, C = 0.
054%, Si = 3.40%, acid-soluble Al = 0.02
9%, N = 0.0079%, S = 0.008%, Mn <
0.01%, Cu = 0-0.67%, and the remaining Fe
A slab having a thickness of 250 mm made of unavoidable impurities was prepared.
【0024】そして、1100℃で60分均熱後5パス
の粗熱延後、6パスの仕上熱延を行って2.3mm厚の熱
延板とした。この時、仕上熱延温度は835〜1013
℃であった。かかる熱延板に1100℃に30秒保持
し、900℃に30秒保持した後に急冷する熱延板焼鈍
を施した。しかる後、圧下率約90%で強圧下圧延を行
って最終板厚0.22mmの冷延板とした。After soaking at 1100 ° C. for 60 minutes, five passes of rough hot rolling and six passes of finish hot rolling were carried out to obtain a 2.3 mm thick hot rolled sheet. At this time, the finishing hot rolling temperature is 835 to 1013.
° C. The hot-rolled sheet was kept at 1100 ° C. for 30 seconds, kept at 900 ° C. for 30 seconds, and then subjected to rapid cooling annealing. Thereafter, a high rolling was performed at a rolling reduction of about 90% to obtain a cold-rolled sheet having a final sheet thickness of 0.22 mm.
【0025】この冷延板を820〜860℃に90秒保
持する脱炭焼鈍(N2 :25%、H2 :75%、D.
P.=55〜72℃)を施し、次いで750℃に30秒
保持する焼鈍時、焼鈍雰囲気中にNH3 ガスを混入さ
せ、鋼板に窒素を吸収せしめた。この窒化処理後のN量
は、0.0186〜0.0213重量%であった。これ
らの窒化板の一次再結晶平均粒径は、21〜26μmで
あった。The cold rolled sheet is kept at 820 to 860 ° C. for 90 seconds by decarburizing annealing (N 2 : 25%, H 2 : 75%, D.C.
P. = 55 to 72 ° C), and then, at the time of annealing at 750 ° C for 30 seconds, NH 3 gas was mixed in the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N amount after this nitriding treatment was 0.0186 to 0.0213% by weight. The average primary recrystallized grain size of these nitrided plates was 21 to 26 μm.
【0026】かかる窒化処理後の鋼板にMgOを主成分
とする焼鈍分離剤を塗布し、最終仕上焼鈍を施した。こ
の最終仕上焼鈍は、N2 :25%、H2 :75%の雰囲
気中で1200℃まで10℃/時で昇温し、引き続き、
H2 :100%焼鈍雰囲気中で、20時間保持する条件
で行った。製品の磁束密度、被膜性状と実験条件との関
係を図1に示す。The steel sheet after the nitriding treatment was coated with an annealing separator containing MgO as a main component, and was subjected to final finish annealing. In this final finish annealing, the temperature is raised to 1200 ° C. at a rate of 10 ° C./hour in an atmosphere of N 2 : 25% and H 2 : 75%,
H 2 : This was performed in a 100% annealing atmosphere under the condition of holding for 20 hours. FIG. 1 shows the relationship between the magnetic flux density and film properties of the product and the experimental conditions.
【0027】図1から明らかなように、Cu=0.05
〜0.50%、かつ、0.7−0.6×Cu(%)≦S
IO2≦1.6+0.3×Cu(%)の場合に、B8 ≧
1.93Tでかつ被膜性状が良好な結果が得られた。図
1で示された現象のメカニズムについて必ずしも明らか
ではないが、本発明者らは、次のように推定している。As is clear from FIG. 1, Cu = 0.05
~ 0.50%, and 0.7-0.6xCu (%) ≤S
When IO2 ≦ 1.6 + 0.3 × Cu (%), B 8 ≧
1.93 T and good film properties were obtained. Although the mechanism of the phenomenon shown in FIG. 1 is not necessarily clear, the present inventors presume as follows.
【0028】本発明者らは、低温スラブ加熱の工業化の
ため、最終仕上焼鈍前の一次再結晶粒の平均粒径制御
と、熱延後、最終仕上焼鈍の二次再結晶開始までに鋼
板に窒化処理を施すことを柱とする技術を構築してき
た。この窒化処理において形成される窒化物は、Siや
Mnが多く含有されるものであり、この窒化物が最終仕
上焼鈍の昇温段階の約900〜1000℃の温度範囲で
分解して、AlN又は(Al,Si)Nが析出する。二
次再結晶は、通常1000〜1150℃で生じるので、
二次再結晶時のインヒビターは、AlN又は(Al,S
i)Nとなる。For the industrialization of low-temperature slab heating, the present inventors controlled the average grain size of primary recrystallized grains before final annealing, and after hot rolling, formed steel sheets by the start of secondary recrystallization in final annealing. We have built a technology that makes nitriding a pillar. The nitride formed in this nitriding treatment contains a large amount of Si or Mn, and this nitride is decomposed in the temperature range of about 900 to 1000 ° C. in the temperature rise stage of the final finish annealing to form AlN or (Al, Si) N precipitates. Since secondary recrystallization usually occurs at 1000 to 1150 ° C,
The inhibitor during secondary recrystallization is AlN or (Al, S
i) N.
【0029】一方、一次再結晶板における対応粒界密度
が高い方位粒が二次再結晶することが知られており、イ
ンヒビター強度(Zener因子)が高いほど、二次再
結晶するに必要な対応粒界密度の臨界値が高まり、その
結果、二次再結晶集合組織の集積度が向上する。On the other hand, it is known that grains having a high corresponding grain boundary density in the primary recrystallized plate undergo secondary recrystallization. The higher the inhibitor strength (Zener factor), the more necessary the secondary recrystallization. The critical value of the grain boundary density is increased, and as a result, the degree of integration of the secondary recrystallization texture is improved.
【0030】この意味において本発明における二次再結
晶時のインヒビターAlN,(Al,Si)Nの強度
(Zener因子)を高めることが、{110}〈00
1〉二次再結晶集合組織を尖鋭にする効果を持つ。Ze
ner因子は、析出物のサイズに反比例し、体積分率に
比例する。体積分率に関して言えば、本技術の如く、窒
化物をインヒビターに用いる場合、体積分率を高めるこ
とは、鋼中の窒素量(製鋼で入れる窒素量と窒化で入れ
る窒素量の和)を高めることにつながる。In this sense, increasing the intensity (Zener factor) of the inhibitors AlN and (Al, Si) N at the time of secondary recrystallization in the present invention can be achieved by {110} <00
1) It has the effect of sharpening the secondary recrystallization texture. Ze
The ner factor is inversely proportional to the size of the precipitate and proportional to the volume fraction. As for the volume fraction, when a nitride is used for an inhibitor as in the present technology, increasing the volume fraction increases the amount of nitrogen in the steel (the sum of the amount of nitrogen added in steelmaking and the amount of nitrogen added in nitriding). Leads to things.
【0031】この鋼中窒素は最終仕上焼鈍中に鋼の外に
放出される。この放出の過程で窒素が表面酸化層及びフ
ォルステライトを通過するため、この鋼中窒素量が多く
なるほど、酸化層及びフォルステライトに欠陥部、欠落
部が生じやすくなる。従って、Zener因子を高める
方法として、体積分率を高めることには限界がある。そ
こで本発明者らは、析出物のサイズを小さくする方法を
検討した。本発明の核心は、この析出物サイズを小さく
することにある。This nitrogen in the steel is released out of the steel during the final finish annealing. Since nitrogen passes through the surface oxide layer and the forsterite in the course of this release, as the amount of nitrogen in the steel increases, the oxide layer and the forsterite are more likely to have defects and missing parts. Therefore, there is a limit to increasing the volume fraction as a method for increasing the Zener factor. Therefore, the present inventors have studied a method for reducing the size of the precipitate. The core of the present invention is to reduce the size of the precipitate.
【0032】この方法として、Cu−S(Cu2 S又は
Cu1.6 S)をAlNや(Al,Si)Nの析出核とし
て用いる方法を試みた。ここで、MnSがCu−Sより
安定な硫化物であり、かつ、サイズが大きい傾向がある
ので、MnSの析出を生ぜしめないようMn量を低めて
実験を行った。Cu−Sは約1000℃に析出ノーズが
あるので、本実験の場合には、仕上熱延で主にCu−S
の析出が生じる。As this method, an attempt was made to use Cu-S (Cu 2 S or Cu 1.6 S) as a precipitation nucleus of AlN or (Al, Si) N. Here, since MnS is a sulfide that is more stable than Cu-S and tends to be larger in size, an experiment was performed with the amount of Mn reduced so as not to cause precipitation of MnS. Since Cu-S has a precipitation nose at about 1000 ° C., in the case of this experiment, Cu—S
Precipitates.
【0033】一方、本実験では窒化時表面近傍部分にM
n−N,Si−N,(Mn,Si)Nの窒化物が析出す
る。この窒化物は、最終仕上焼鈍昇温時の約900〜1
000℃の温度範囲で分解して、AlN又は(Al,S
i)Nが析出する。On the other hand, in this experiment, M
A nitride of n-N, Si-N, (Mn, Si) N precipitates. This nitride has a final finish annealing temperature of about 900 to 1
Decomposes in the temperature range of 000 ° C. to form AlN or (Al, S
i) N precipitates.
【0034】このAlN,(Al,Si)Nの析出時、
Cu−Sが析出核として作用しており、Cuを適正量添
加した場合に、AlN,(Al,Si)Nの微細で均一
な析出分散相が得られた。そして、この微細で均一な析
出分散相を得られた条件範囲の場合に、高い磁束密度が
得られた。At the time of the precipitation of AlN and (Al, Si) N,
Cu-S acts as a precipitation nucleus, and when a proper amount of Cu was added, a fine and uniform precipitation-dispersed phase of AlN and (Al, Si) N was obtained. Then, in the condition range in which the fine and uniform precipitation-dispersed phase was obtained, a high magnetic flux density was obtained.
【0035】これは、インヒビター強度(Zener因
子)が高い状態で二次再結晶が進行したために、一次再
結晶板において、Σ9対応粒界密度が高い{110}
〈001〉方位に近い方位粒だけが、二次再結晶したこ
とによると考えられる。This is because the secondary recrystallization progressed in a state where the inhibitor strength (Zener factor) was high, so that the {9} corresponding grain boundary density was high {110} in the primary recrystallized plate.
It is considered that only orientation grains close to the <001> orientation were due to secondary recrystallization.
【0036】一方、表面酸化膜中のSiO2 量に、Cu
量に応じた適正範囲が存在する理由については、次のよ
うに考えている。Cuは、表面に濃化する元素であり、
脱炭焼鈍時及び最終仕上焼鈍時の酸化を抑制する。他
方、脱炭焼鈍時に形成される表面酸化層及び内部酸化層
におけるSiO2 と焼鈍分離剤の主成分であるMgO
は、最終仕上焼鈍昇温時(800〜1100℃)反応し
て、Mg2 SiO4 を形成する。On the other hand, the amount of SiO 2 in the surface oxide film
The reason why the appropriate range according to the amount exists is considered as follows. Cu is an element that concentrates on the surface,
Suppresses oxidation during decarburizing annealing and final finishing annealing. On the other hand, in the surface oxide layer and the internal oxide layer formed during the decarburization annealing, SiO 2 and MgO which is a main component of the annealing separator are used.
Reacts at the time of raising the final finish annealing temperature (800 to 1100 ° C.) to form Mg 2 SiO 4 .
【0037】Cuを添加した場合、脱炭焼鈍時、このS
iO2 が形成しにくいので、SiO2 量を確保すべく、
焼鈍雰囲気中の酸素ポテンシャルを高めにする必要があ
る。被膜を良好とするために、SiO2 量を所定量確保
する必要があることから、図1のSiO2 量の下限値の
存在が理解できる。一方、Cu量が多いほどこのSiO
2 量の下限値が下がることについては、次のように考え
ている。When Cu is added, this S
Since it is difficult to form iO 2, in order to secure the amount of SiO 2 ,
It is necessary to increase the oxygen potential in the annealing atmosphere. Since it is necessary to secure a predetermined amount of SiO 2 in order to make the coating good, the existence of the lower limit of the amount of SiO 2 in FIG. 1 can be understood. On the other hand, the higher the Cu content, the more this SiO
We believe that the lower limit of the two quantities will decrease as follows.
【0038】最終仕上焼鈍の昇温時のMg2 SiO4 形
成反応を詳細に解析した結果、Cu量が多いほど、この
Mg2 SiO4 形成反応がより低温から生じており、M
g2SiO4 が形成しやすくなったことがわかった。こ
のため、Mg2 SiO4 の必要量を確保するためのSi
O2 量の下限値が図1に示した如くCu量が多いほど低
下するものと考えられる。As a result of a detailed analysis of the reaction for forming Mg 2 SiO 4 at the time of raising the temperature of the final finish annealing, as the amount of Cu increases, the reaction for forming Mg 2 SiO 4 occurs from a lower temperature.
It was found that g 2 SiO 4 was easily formed. For this reason, Si for securing the required amount of Mg 2 SiO 4
It is considered that the lower limit of the O 2 amount decreases as the Cu amount increases as shown in FIG.
【0039】他方、良好な磁束密度を得るためのSiO
2 量の上限値が存在する理由については、次のように考
えている。本発明における二次再結晶のための主インヒ
ビターは、AlN又は(Al,Si)Nであり、表面酸
化膜のSiO2 の量が多いほど、表面近傍のAlの酸化
に伴うAlN,(Al,Si)Nの分解が生じやすくな
る。他方、Cu量が多いほど、Cu−Sが大きくなる傾
向があった。On the other hand, SiO 2 for obtaining a good magnetic flux density
We consider the reason why there is an upper limit of two quantities as follows. The main inhibitor for the secondary recrystallization in the present invention is AlN or (Al, Si) N. As the amount of SiO 2 in the surface oxide film increases, AlN, (Al, Decomposition of Si) N is likely to occur. On the other hand, there was a tendency that the larger the amount of Cu, the larger the Cu-S.
【0040】その結果、AlN,(Al,Si)Nの析
出後のCu−S+AlN又はCu−S+(Al,Si)
NのサイズはCu量が多いほど、大きくなる傾向が観察
された。このため、Cu−S+AlN又はCu−S+
(Al,Si)Nの仕上焼鈍昇温中の分解は、Cu量が
高いほど高温から生じた。そして、その結果、Cu量が
多いほど、二次再結晶が生じる温度が高まった。As a result, Cu—S + AlN or Cu—S + (Al, Si) after precipitation of AlN, (Al, Si) N
It was observed that the size of N tended to increase as the amount of Cu increased. Therefore, Cu-S + AlN or Cu-S +
The decomposition of (Al, Si) N during the final annealing temperature increase occurred at higher temperatures as the Cu content was higher. As a result, the temperature at which secondary recrystallization occurs increases as the amount of Cu increases.
【0041】この場合、表面酸化膜のSiO2 の量が多
いほど、表面近傍のAlの酸化に伴うAlN,(Al,
Si)Nの分解が生じやすくなるため、SiO2 の量が
多いほど、Cu量が多い場合の析出物が分解しにくいと
いう現象を、結果的には、緩和させるものと考えられ
る。このため、Cu量が多いほど高磁束密度を得るのに
適正な表面酸化膜のSiO2 量の範囲が高めにシフトす
るものと考えられる。In this case, as the amount of SiO 2 in the surface oxide film increases, AlN, (Al,
Since the decomposition of Si) N is likely to occur, it is considered that as the amount of SiO 2 increases, the phenomenon that the precipitate is less likely to decompose when the amount of Cu is higher is eventually reduced. For this reason, it is considered that the larger the amount of Cu, the higher the range of the amount of SiO 2 of the surface oxide film which is appropriate for obtaining a high magnetic flux density is shifted.
【0042】これら高磁束密度を得るための具備条件
は、適正な二次再結晶とその時の析出物の分解挙動の制
御という観点から理解できる。つまり、二次再結晶は、
粒界移動の粒界性格依存性に起因する現象と考えられ、
{110}〈001〉方位粒の二次再結晶の場合、一般
粒界とΣ9粒界の粒界移動速度差が大きい温度域で二次
再結晶を生ぜしめた場合に、{110}〈001〉方位
の集積度が高いと考えられる。The conditions for obtaining these high magnetic flux densities can be understood from the viewpoint of proper secondary recrystallization and control of the decomposition behavior of precipitates at that time. In other words, secondary recrystallization
This phenomenon is considered to be caused by the dependence of grain boundary movement on the grain boundary character.
In the case of secondary recrystallization of {110} <001> oriented grains, when secondary recrystallization occurs in a temperature range where the difference in the grain boundary moving speed between the general grain boundary and the {9} grain boundary is large, {110} <001 It is considered that the degree of integration of the orientation is high.
【0043】Cu量を増すと二次再結晶が生じる温度が
高まるため、二次再結晶温度を適切な範囲に保つため、
表面酸化膜のSiO2 量を高める必要が生じるものと考
えられる。When the amount of Cu is increased, the temperature at which secondary recrystallization occurs is increased. Therefore, in order to maintain the secondary recrystallization temperature in an appropriate range,
It is considered that it is necessary to increase the amount of SiO 2 in the surface oxide film.
【0044】次に本発明の構成要件を限定した理由につ
いて述べる。まず、スラブの成分について、限定理由を
説明する。Cは0.025重量%(以下単に%と略述)
未満になると二次再結晶が不安定になり、かつ二次再結
晶した場合でもB8 >1.80(T)が得がたいので
0.025%以上と限定した。一方、Cが多くなりすぎ
ると脱炭焼鈍時間が長くなり経済的でないので0.07
5%以下と規定した。Siは5.0%を超えると冷延時
の割れが著しくなるので5.0%以下とした。又、2.
2%未満では素材の固有抵抗が低すぎ、トランス鉄心材
料として必要な低鉄損が得られないので2.2%以上と
した。望ましくは3.2%以上である。Next, the reasons for limiting the constituent elements of the present invention will be described. First, the reasons for limiting the components of the slab will be described. C is 0.025% by weight (hereinafter simply referred to as%)
If it is less than 2, secondary recrystallization becomes unstable, and even when secondary recrystallization occurs, it is difficult to obtain B 8 > 1.80 (T), so the content was limited to 0.025% or more. On the other hand, if the C content is too large, the decarburization annealing time becomes long and it is not economical.
It was specified as 5% or less. If the content of Si exceeds 5.0%, cracks during cold rolling become remarkable, so the content was made 5.0% or less. Also, 2.
If it is less than 2%, the specific resistance of the material is too low, and a low iron loss required as a transformer core material cannot be obtained. Desirably, it is at least 3.2%.
【0045】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)Nを確保するため、酸可溶性A
lとして0.010%以上とする必要がある。酸可溶性
Alが0.060%を超えると熱延板のAlNが不適切
となり二次再結晶が不安定となるので、0.060%以
下とする必要がある。Al is AlN necessary for stabilizing secondary recrystallization.
Alternatively, to secure (Al, Si) N, acid-soluble A
l needs to be 0.010% or more. If the acid-soluble Al content exceeds 0.060%, the AlN of the hot-rolled sheet becomes inappropriate and secondary recrystallization becomes unstable. Therefore, the content needs to be 0.060% or less.
【0046】Nは0.0040〜0.0130%とする
ことが好ましい。この範囲にすることによって、後述す
る一次再結晶粒径制御と窒化時にフリーなAl量の確保
の両立が可能となる。さらに、加えて、Nが0.013
0%を超えるとブリスターと呼ばれるフクレが鋼板に発
生して好ましくない。N is preferably set to 0.0040 to 0.0130%. By setting the content in this range, it is possible to achieve both the control of the primary recrystallization grain size, which will be described later, and the securing of a free Al amount during nitriding. Further, in addition, N is 0.013.
If it exceeds 0%, blisters called blisters are undesirably generated on the steel sheet.
【0047】S+0.405Seの範囲は、0.005
〜0.020%と規定した。0.005%未満では、本
発明の本質であるCu−S(又はCu−Se)の量が不
十分となり好ましくない。又、0.020%超では、圧
延方向に列状に生じる二次再結晶不良現象が生じて好ま
しくない。The range of S + 0.405Se is 0.005
0.00.020%. If it is less than 0.005%, the amount of Cu-S (or Cu-Se), which is the essence of the present invention, becomes insufficient, which is not preferable. On the other hand, if it exceeds 0.020%, a secondary recrystallization failure phenomenon that occurs in a row in the rolling direction occurs, which is not preferable.
【0048】Mn量,Cu量の範囲は、各々0.01%
未満、0.05〜0.50%とした。Mn量について
は、0.01%以上の場合、MnS又はMnSeが析出
してしまい、本発明の主眼であるCu−S又はCu−S
eの析出が不十分となり、結果的には、最終仕上焼鈍時
のインヒビターが不適切に粗大化してしまい好ましくな
い。The ranges of the Mn content and the Cu content are each 0.01%.
, Less than 0.05 to 0.50%. When the amount of Mn is 0.01% or more, MnS or MnSe is precipitated, and Cu—S or Cu—S which is the main object of the present invention is used.
The precipitation of e becomes insufficient, and as a result, the inhibitor during the final finish annealing is undesirably coarsened.
【0049】Cu量については、図1に示した如く、
0.05〜0.50%の範囲で良好な磁気特性が得られ
るので、この範囲を規定した。0.05%未満では、C
u−Sの析出が不十分となり好ましくない。0.50%
超では、Cu−Sが粗大化しすぎて、結果的には、最終
仕上焼鈍時のインヒビターが不適切に粗大化してしまい
好ましくない。Regarding the amount of Cu, as shown in FIG.
Since good magnetic properties can be obtained in the range of 0.05 to 0.50%, this range is defined. If less than 0.05%, C
Undesirably, the precipitation of u-S becomes insufficient. 0.50%
If it is excessive, Cu-S is excessively coarsened, and as a result, the inhibitor during the final finish annealing is undesirably coarsened, which is not preferable.
【0050】Snの範囲は、0.01〜0.15%とす
ることはさらに好ましい。Snは、一次再結晶集合組織
において、{110}〈001〉方位粒を増加させ、そ
の結果として、二次再結晶粒径を小さくさせる効果があ
るとともに、硫化物の析出を均一化する効果がある。従
って、本発明の如き硫化物析出制御の効果を一増助長す
る。このSnの量は、0.01%未満では上記効果が不
十分であり、0.15%を超えると鋼板の窒化が難しく
なり、二次再結晶不良の原因となるため好ましくない。
この他インヒビター構成元素として知られているSb,
Cr,Ni,B,Ti,Nb等を微量に含有することは
差し支えない。More preferably, the range of Sn is 0.01 to 0.15%. Sn increases the {110} <001> orientation grain in the primary recrystallization texture, and as a result, has the effect of reducing the secondary recrystallization grain size and the effect of uniformizing the precipitation of sulfide. is there. Therefore, the effect of controlling sulfide precipitation as in the present invention is further promoted. If the amount of Sn is less than 0.01%, the above effect is insufficient, and if it exceeds 0.15%, it is not preferable because nitriding of the steel sheet becomes difficult and causes secondary recrystallization failure.
In addition, Sb, which is known as an inhibitor constituent element,
A small amount of Cr, Ni, B, Ti, Nb, etc. may be contained.
【0051】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。加熱されたスラ
ブは、引き続き熱延されて熱延板となる。The heating temperature of the slab was limited to less than 1280 ° C. for the purpose of reducing the cost as compared with ordinary steel. Preferably it is 1200 ° C or lower. The heated slab is subsequently hot-rolled into a hot-rolled sheet.
【0052】この熱延は、リバース又はタンデムで低速
で行われる粗圧延と、タンデムで行われる高速の仕上熱
延からなる。この仕上熱延の温度を700〜1100℃
とすることが好ましい。これは、この温度範囲で仕上熱
延を行うことにより、熱延で導入された転位を核とした
Cu−Sの析出が生じやすく、Cu−Sの微細析出分散
相が得やすいためである。This hot rolling includes rough rolling performed at low speed in reverse or tandem, and high-speed finishing hot rolling performed in tandem. The temperature of this finishing hot rolling is 700 to 1100 ° C.
It is preferable that This is because by performing the finish hot rolling in this temperature range, the precipitation of Cu-S with the dislocations introduced by the hot rolling as nuclei easily occurs, and a finely dispersed dispersed phase of Cu-S is easily obtained.
【0053】この熱延板は次いで、1回又は中間焼鈍を
挟む2回以上の冷延を施される。この際の最終冷延の圧
下率を80%以上とする。最終冷延の圧下率を80%以
上としたのは、圧下率を上記範囲とすることによって、
脱炭板において尖鋭な{110}〈001〉方位粒と、
これに蚕食されやすい対応方位粒({111}〈11
2〉方位粒等)を適正量得ることができ、磁束密度を高
める上で好ましいためである。特に限定するものではな
いが、前記熱延の後、必要により800〜1200℃の
熱延板焼鈍を施すことは、磁気特性を高位安定化する上
でさらに好ましい。この温度域で熱処理することは、A
lN,Cu−Sの熱延板の場所的不均一性を低減する効
果がある。The hot-rolled sheet is then subjected to one or two or more cold-rolling steps with intermediate annealing. At this time, the rolling reduction of the final cold rolling is set to 80% or more. The reason why the rolling reduction of the final cold rolling is set to 80% or more is that the rolling reduction is within the above range,
Sharp {110} <001> orientation grains in the decarburized plate,
The corresponding orientation grains ({111} <11
2> orientation grains) can be obtained in an appropriate amount, which is preferable in increasing the magnetic flux density. Although not particularly limited, it is more preferable to perform hot-rolled sheet annealing at 800 to 1200 ° C. as necessary after the hot-rolling in order to stabilize magnetic properties to a high degree. Heat treatment in this temperature range is caused by A
This has the effect of reducing the spatial nonuniformity of the hot rolled 1N, Cu-S sheet.
【0054】最終冷延後の鋼板は、脱炭焼鈍、焼鈍分離
剤塗布、最終仕上焼鈍を施されて最終製品となる。ここ
で脱炭焼鈍完了後、最終仕上焼鈍開始までの間の一次再
結晶粒の平均粒径を18〜35μmに制御することは、
さらに好ましい。その理由は平均粒径の範囲で良好な磁
束密度が得られやすく、かつ粒径変動に対する磁束密度
の変化が少ないからである。The steel sheet after the final cold rolling is subjected to decarburizing annealing, application of an annealing separator, and final finishing annealing to become a final product. Here, after the decarburizing annealing is completed, controlling the average grain size of the primary recrystallized grains to 18 to 35 μm until the start of the final finish annealing,
More preferred. The reason is that a good magnetic flux density is easily obtained in the range of the average particle diameter, and the change of the magnetic flux density with respect to the fluctuation of the particle diameter is small.
【0055】そして、熱延後最終仕上焼鈍の二次再結晶
開始までの間に鋼板に窒化処理を施すと規定したのは、
本発明の如き低温スラブ加熱を前提とするプロセスで
は、二次再結晶に必要なインヒビター強度が不足がちに
なるからである。窒化の方法としては特に限定するもの
ではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3 ガス
を混入させ窒化する方法、プラズマを用いる方法、焼鈍
分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒化
物が分解してできた窒素を鋼板に吸収させる方法、最終
仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化す
る方法等いずれの方法でも良い。The reason that the steel sheet is subjected to the nitriding treatment before the secondary recrystallization of the final finish annealing after the hot rolling is defined as follows:
This is because in the process based on low-temperature slab heating as in the present invention, the inhibitor strength required for secondary recrystallization tends to be insufficient. The method of nitriding is not particularly limited, but may be a method of nitriding by mixing NH 3 gas in the annealing atmosphere after decarburizing annealing, a method using plasma, adding a nitride to the annealing separator, and increasing the final finish annealing. Any method may be used, such as a method of absorbing nitrogen formed by the decomposition of nitrides in a temperature into a steel sheet, or a method of nitriding the steel sheet by increasing the N 2 partial pressure in an atmosphere of final finish annealing.
【0056】窒化量は、増窒素量として、0.0010
%以上は必要である。0.0010%未満では、本発明
の本質である最終仕上焼鈍昇温過程でのSi又はMnを
多く含有する窒化物からAlN又は(Al,Si)Nへ
の置換現象が十分生じないので好ましくない。増窒素量
の上限は、特に規定するものではないが、フォルステラ
イト被膜の欠陥を少なく抑えるには、0.1000%以
下にすることが好ましい。The amount of nitriding is 0.0010
% Or more is necessary. If the content is less than 0.0010%, the phenomenon of substitution of AlN or (Al, Si) N from a nitride containing a large amount of Si or Mn in the final finish annealing temperature raising process, which is the essence of the present invention, is not sufficient, which is not preferable. . The upper limit of the nitrogen increase amount is not particularly specified, but is preferably 0.1000% or less in order to reduce the defects of the forsterite film.
【0057】又、脱炭焼鈍後の鋼板の表面酸化膜中の全
SiO2 量(SIO2(g/m2 ))とスラブのCu量
(Cu(%))の関係を 0.7−0.6×Cu(%)≦SIO2≦1.6+0.3×Cu(%) とする必要がある。図1に示した如く、この範囲にする
ことによって、良好な磁気特性と良好な被膜性状が得ら
れる。SIO2の上記下限値未満では、被膜形成不良と
なり好ましくない。SIO2の上記上限値を超えると、
磁束密度が低下して好ましくない。The relationship between the total amount of SiO 2 (SIO2 (g / m 2 )) in the surface oxide film of the steel sheet after the decarburizing annealing and the Cu amount (Cu (%)) of the slab is 0.7-0. 6 × Cu (%) ≦ SIO2 ≦ 1.6 + 0.3 × Cu (%) As shown in FIG. 1, by setting the content in this range, good magnetic properties and good film properties can be obtained. If the SIO2 is less than the lower limit, film formation is poor, which is not preferable. If the upper limit of SIO2 is exceeded,
The magnetic flux density is undesirably reduced.
【0058】上記条件を満すための手段については特に
限定しない。脱炭焼鈍時の温度、露点を制御することに
よって上記関係を満足させることができる。酸化挙動
は、鋼への添加元素及びその量の影響を受ける。従っ
て、上記関係を満すためには材料に応じた条件設定が必
要となる。Sn,Cuは酸化を抑制する元素なので、特
に注意する必要がある。Means for satisfying the above conditions are not particularly limited. The above relationship can be satisfied by controlling the temperature and dew point during decarburization annealing. The oxidation behavior is affected by the elements added to the steel and their amounts. Therefore, in order to satisfy the above relation, it is necessary to set conditions according to the material. Since Sn and Cu are elements that suppress oxidation, special care must be taken.
【0059】脱炭焼鈍に引き続いて連続的に窒化処理を
施したり、別途窒化処理を行う場合には、この脱炭焼鈍
後の鋼板のSiO2 量の規定は、最終仕上焼鈍直前の鋼
板に対する規定と解される。When the nitriding treatment is continuously performed after the decarburizing annealing or the nitriding treatment is performed separately, the amount of SiO 2 in the steel sheet after the decarburizing annealing is defined for the steel sheet immediately before the final finish annealing. Is understood.
【0060】脱炭焼鈍時の露点、雰囲気ガス、熱サイク
ルについては特に限定しない。露点としては、30〜8
0℃、雰囲気ガスとしては通常N2 とH2 の混合ガスが
用いられる。熱サイクルについては、800〜900℃
まで鋼板は加熱される。露点、雰囲気ガス、熱サイクル
をMn,Cu等に応じて制御することは、図1に示され
た如き本発明の効果を実現するために、好ましい。The dew point, atmosphere gas, and thermal cycle during decarburization annealing are not particularly limited. The dew point is 30-8
At 0 ° C., a mixed gas of N 2 and H 2 is usually used as an atmosphere gas. 800-900 ° C for thermal cycle
Until the steel sheet is heated. It is preferable to control the dew point, the atmosphere gas, and the thermal cycle according to Mn, Cu, and the like, in order to realize the effects of the present invention as shown in FIG.
【0061】さらに、最終仕上焼鈍昇温時の1000〜
1150℃の間を20℃/時以下の昇温速度で加熱する
と規定した。これは、本発明の如く微細な析出物をイン
ヒビターとして二次再結晶を生ぜしめる場合、二次再結
晶温度が高くなりすぎると、析出物の急激な分解が生じ
て、好ましくない。このため、上記昇温速度を超える
と、二次再結晶温度が高くなりすぎて好ましくない。こ
の昇温速度の下限値については特に限定しないが、0.
1℃/時以下にすることは、コストの点で好ましくな
い。Further, when the final finish annealing temperature was raised to 1000 to 1000
It was specified that heating was performed between 1150 ° C at a heating rate of 20 ° C / hour or less. This is not preferable when secondary recrystallization is caused by using a fine precipitate as an inhibitor as in the present invention, and when the secondary recrystallization temperature is too high, the precipitate is rapidly decomposed. For this reason, if the temperature rise rate is exceeded, the secondary recrystallization temperature becomes too high, which is not preferable. The lower limit of the heating rate is not particularly limited.
It is not preferable to set the temperature to 1 ° C./hour or less in terms of cost.
【0062】最終仕上焼鈍時の雰囲気については、特に
限定するものではないが、酸化ポテンシャルを確保する
点においては、昇温時は、N2 ガスを含む雰囲気で焼鈍
を行うことが好ましい。最終仕上焼鈍後は、形状矯正と
張力コーティングを兼ねた焼鈍を施される。この焼鈍は
鋼板を800〜900℃に加熱して行われ、リン酸等を
含むコーティングも施される。The atmosphere during the final finish annealing is not particularly limited. However, in terms of securing an oxidation potential, it is preferable to perform annealing in an atmosphere containing N 2 gas at the time of raising the temperature. After the final finish annealing, annealing is performed for both shape correction and tension coating. This annealing is performed by heating the steel sheet to 800 to 900 ° C., and a coating containing phosphoric acid or the like is also applied.
【0063】[0063]
〔実施例1〕C:0.050%(%は重量%、以下同
じ)、Si:3.29%、Mn:0.005%、S:
0.008%、酸可溶性Al:0.029%、N:0.
0080%を基本成分とし、Cu量を、<0.001
%、0.10%、0.36%、0.61%なる4
水準で添加した4種類の250mm厚のスラブを作成し
た。[Example 1] C: 0.050% (% is% by weight, the same applies hereinafter), Si: 3.29%, Mn: 0.005%, S:
0.008%, acid-soluble Al: 0.029%, N: 0.
0080% as a basic component, and the Cu content is <0.001
%, 0.10%, 0.36%, 0.61% 4
Four 250 mm thick slabs were added at the standard level.
【0064】かかるスラブを1100℃で60分均熱し
た後、直ちに熱延を開始し、5パスの粗熱延で40mm厚
とした後、6パスの仕上熱延で2.3mm厚の熱延板とし
た。この時、仕上熱延の開始から終了温度までの温度
(仕上熱延温度)は、850〜1035℃であった。After the slab was soaked at 1100 ° C. for 60 minutes, hot rolling was started immediately. The thickness of the slab was increased to 40 mm by 5 passes of coarse hot rolling, and then 2.3 mm by hot finishing of 6 passes. Board. At this time, the temperature from the start of finishing hot rolling to the end temperature (finishing hot rolling temperature) was 850 to 1035 ° C.
【0065】次いで、熱延終了後は2秒間空冷後550
℃まで水冷し、550℃に1時間保持した後炉冷する巻
取りシミュレーションを行った。この熱延板を1100
℃に3分間保持する熱延板焼鈍を施し、次いで圧下率約
88%で0.285mmの冷延板とし、840℃で150
秒保持する脱炭焼鈍を施した。この時の焼鈍雰囲気を
(a)N2 :25%、H2 :75%、露点65℃、
(b)N2 :25%、H2 :75%、露点40℃の2条
件とした。Next, after the hot-rolling is completed, the air-cooling is performed for 550 seconds for 2 seconds.
A cooling simulation was performed in which water was cooled to 550 ° C., the temperature was maintained at 550 ° C. for 1 hour, and then the furnace was cooled. 1100
C. for 3 minutes, then a 0.285 mm cold-rolled sheet with a reduction of about 88%, and a 150.degree.
A decarburizing anneal for 2 seconds was performed. The annealing atmosphere at this time was (a) N 2 : 25%, H 2 : 75%, dew point 65 ° C.
(B) Two conditions were set: N 2 : 25%, H 2 : 75%, and dew point 40 ° C.
【0066】しかる後、750℃で30秒間保持する焼
鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ鋼板に
窒素を吸収せしめた。窒化後のこの鋼板のN量は0.0
185〜0.0210%であった。又、この窒化処理後
の鋼板の一次再結晶粒の平均粒径は、22〜26μmで
あった。Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to absorb nitrogen into the steel sheet. The N content of this steel sheet after nitriding is 0.0
185-0.0210%. The average grain size of the primary recrystallized grains of the steel sheet after the nitriding treatment was 22 to 26 μm.
【0067】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、N2 :25%、H2 :75%の雰
囲気ガス中で15℃/時の速度で1200℃まで昇温
し、引き続きH2 :100%雰囲気ガス中で1200℃
で20時間保持する最終仕上焼鈍を行った。実験条件と
磁気特性、被膜性状の結果を表1に示す。Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and the temperature was increased to 1200 ° C. at a rate of 15 ° C./hour in an atmosphere gas of N 2 : 25% and H 2 : 75%. Followed by 1200 ° C. in a 100% atmosphere of H 2 gas.
For 20 hours. Table 1 shows the results of the experimental conditions, magnetic properties, and film properties.
【0068】[0068]
【表1】 [Table 1]
【0069】〔実施例2〕C:0.060%、Si:
3.47%、S:0.012%、Cu:0.20%、酸
可溶性Al:0.026%、N:0.0060%を基本
成分とし、Mnを、 0.006%、0.019%、0.031%、な
る3水準のレベルで添加し、残部Fe及び不可避的不純
物からなる3種類の250mm厚のスラブを作成した。か
かるスラブを1120℃で60分均熱した後、直ちに熱
延を開始し、5パスの粗熱延で40mm厚とした後、6パ
スの仕上熱延で2.3mm厚の熱延板とした。この時、仕
上熱延温度は、905〜1007℃であった。Example 2 C: 0.060%, Si:
3.47%, S: 0.012%, Cu: 0.20%, acid-soluble Al: 0.026%, N: 0.0060% as basic components, Mn is 0.006%, 0.019 %, 0.031%, and three levels, and three types of slabs having a thickness of 250 mm and comprising the balance of Fe and unavoidable impurities were prepared. After the slab was soaked at 1120 ° C. for 60 minutes, hot rolling was immediately started, and the hot-rolled sheet having a thickness of 40 mm was obtained by rough-rolling in five passes, and then a 2.3-mm thick sheet was formed by finishing hot-rolling in six passes. . At this time, the finishing hot rolling temperature was 905 to 1007 ° C.
【0070】この熱延板を1100℃に30秒保持し、
引き続き900℃に30秒保持した後急冷する熱延板焼
鈍を施した。次いで、圧下率約90%で0.220mmの
冷延板とし、845℃で90秒保持する脱炭焼鈍を施し
た。This hot rolled sheet was kept at 1100 ° C. for 30 seconds,
Subsequently, the sheet was held at 900 ° C. for 30 seconds and then subjected to quenched hot-rolled sheet annealing. Subsequently, a cold rolled sheet of 0.220 mm was formed at a rolling reduction of about 90%, and decarburizing annealing was performed at 845 ° C. for 90 seconds.
【0071】この脱炭焼鈍時の焼鈍雰囲気を(a)
N2 :25%、H2 :75%、露点58℃、(b)
N2 :75%、H2 :25%、露点75℃、なる2条件
とした。しかる後、770℃で30秒保持する焼鈍を行
い、焼鈍中にNH3 ガスを混入させ鋼板に窒素を吸収せ
しめた。窒化後のこの鋼板のN量は、0.0185〜
0.0210%であった。The annealing atmosphere during the decarburizing annealing is shown in FIG.
N 2 : 25%, H 2 : 75%, dew point 58 ° C, (b)
N 2 : 75%, H 2 : 25%, dew point 75 ° C. Two conditions were set. Thereafter, annealing was performed at 770 ° C. for 30 seconds, and NH 3 gas was mixed during annealing to allow the steel sheet to absorb nitrogen. The N content of this steel sheet after nitriding is 0.0185 to
0.0210%.
【0072】次いで、この鋼板にMgOを主成分とし、
TiO2 を3%添加した焼鈍分離剤を塗布し、N2 :5
0%、H2 :50%の雰囲気ガス中で15℃/時の速度
で1200℃まで昇温し、引き続きH2 :100%雰囲
気ガス中で1200℃で20時間保持する最終仕上焼鈍
を行った。実験条件と磁気特性、被膜性状の関係を表2
に示す。Next, this steel sheet contains MgO as a main component,
An annealing separator containing 3% TiO 2 was applied, and N 2 : 5
The temperature was raised to 1200 ° C. at a rate of 15 ° C./hour in an atmosphere gas of 0% and H 2 : 50%, and then a final finish annealing was performed at 1200 ° C. for 20 hours in a 100% H 2 atmosphere gas. . Table 2 shows the relationship between the experimental conditions, magnetic properties, and film properties.
Shown in
【0073】[0073]
【表2】 [Table 2]
【0074】〔実施例3〕C:0.057%、Si:
3.55%、Mn:0.12%、S:0.010%、酸
可溶性Al:0.030%、Cu:0.23%を添加
し、さらに、Nを0.0018%、0.0079%
を添加し、残部Fe及び不可避的不純物からなる2種類
の250mm厚のスラブを作成した。かかるスラブをa:
1250℃、b:1100℃の2水準の温度で各60分
均熱した後、直ちに熱延を開始し、5パスの粗熱延で4
0mm厚とした後、6パスの仕上熱延で1.8mm厚の熱延
板とした。この時、仕上熱延温度は加熱条件a,bに対
して、各々a:1008〜1151℃、b:875〜1
016℃であった。Example 3 C: 0.057%, Si:
3.55%, Mn: 0.12%, S: 0.010%, acid-soluble Al: 0.030%, Cu: 0.23%, and further N is 0.0018%, 0.0079 %
Was added to produce two types of slabs each having a thickness of 250 mm and consisting of the balance of Fe and unavoidable impurities. Such a slab is a:
1250 ° C., b: After soaking for 60 minutes each at two levels of temperature of 1100 ° C., immediately start hot rolling, and perform 4 passes by rough hot rolling of 5 passes.
After the thickness was reduced to 0 mm, a hot-rolled sheet having a thickness of 1.8 mm was formed by finishing hot rolling in 6 passes. At this time, the finishing hot rolling temperature was a: 1008 to 1151 ° C. and b: 875 to 1 with respect to the heating conditions a and b, respectively.
016 ° C.
【0075】次いで、この熱延板を1100℃に30秒
保持後直ちに850℃に保持して急冷する熱延板焼鈍を
施し、次いで、圧下率約91%で0.170mmの冷延板
とし、830℃に90秒保持する脱炭焼鈍を施した。こ
の時の焼鈍雰囲気をN2 :30%、H2 :70%、露点
60℃とした。しかる後、750℃で30秒保持する焼
鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ鋼板に
窒素吸収を生ぜしめた。窒化後のこの鋼板のN量は0.
0210〜0.0241%であり、SIO2量は、0.
9〜1.1g/m2 であった。又、この窒化処理後の鋼
板の一次再結晶粒の平均粒径は、21〜28μmであっ
た。Then, the hot-rolled sheet was kept at 1100 ° C. for 30 seconds, immediately subjected to hot-rolled sheet annealing at 850 ° C. and rapidly cooled, and then formed into a cold-rolled sheet of 0.170 mm at a rolling reduction of about 91%. Decarburization annealing was performed at 830 ° C. for 90 seconds. The annealing atmosphere when the N 2: 30%, H 2 : 70%, and dew point 60 ° C.. Thereafter, annealing was performed at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to cause nitrogen absorption in the steel sheet. The N content of this steel sheet after nitriding is 0.1.
0210 to 0.0241%, and the amount of SIO2 is 0.1%.
9 to 1.1 g / m 2 . The average grain size of the primary recrystallized grains of the steel sheet after the nitriding treatment was 21 to 28 μm.
【0076】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、N2 :50%、H2 :50%の雰
囲気ガス中でA:25℃/時、B:10℃/時の2水準
の速度で1200℃まで昇温し、引き続きH2 :100
%雰囲気ガス中で1200℃で20時間保持する最終仕
上焼鈍を行った。実験条件と磁気特性の結果を表3に示
す。Then, an annealing separator containing MgO as a main component was applied to the steel sheet, and A: 25 ° C./hour and B: 10 ° C./hour in an atmosphere gas of N 2 : 50%, H 2 : 50%. The temperature was raised to 1200 ° C. at two levels of speed, followed by H 2 : 100
A final finish annealing was performed in an atmosphere gas at 1200 ° C. for 20 hours. Table 3 shows the experimental conditions and the results of the magnetic characteristics.
【0077】[0077]
【表3】 [Table 3]
【0078】〔実施例4〕C:0.049%、Si:
3.26%、Mn:0.008%、S:0.014%、
Cu:0.17%、酸可溶性Al:0.027%、N:
0.0081%を添加し、残部Fe及び不可避的不純物
からなる250mm厚のスラブを作成した。かかるスラブ
を1100℃で各60分均熱した後、直ちに熱延を開始
し、5パスの粗熱延で40mm厚とした後、6パスの仕上
熱延で2.6mm厚の熱延板とした。この時、仕上熱延温
度は895〜1044℃であった。Example 4 C: 0.049%, Si:
3.26%, Mn: 0.008%, S: 0.014%,
Cu: 0.17%, acid-soluble Al: 0.027%, N:
A slab having a thickness of 250 mm was prepared by adding 0.0081% and the balance being Fe and unavoidable impurities. After the slabs were soaked at 1100 ° C. for 60 minutes each, hot rolling was started immediately, and after 5 passes of coarse hot rolling to a thickness of 40 mm, a hot rolled sheet of 6 passes finishing hot rolling and 2.6 mm thick was rolled. did. At this time, the finishing hot rolling temperature was 895 to 1044 ° C.
【0079】次いで、かかる熱延板を酸洗して圧下率約
87%で0.335mmの冷延板とし840℃で150秒
保持する脱炭焼鈍を施した。この時の焼鈍雰囲気を
N2 :25%、H2 :75%、露点64℃とした。しか
る後、この鋼板に750℃で30秒保持する焼鈍を行
い、焼鈍雰囲気中にNH3 ガスを混入させ鋼板に窒素吸
収を生ぜしめた。窒化後のこの鋼板のN量は0.021
9%であった。そしてこの鋼板の平均結晶粒径は、24
μmであり、SIO2は1.1g/m2 であった。Next, the hot-rolled sheet was pickled to obtain a 0.335-mm cold-rolled sheet at a rolling reduction of about 87%, and subjected to decarburization annealing at 840 ° C. for 150 seconds. The annealing atmosphere when the N 2: 25%, H 2 : 75%, and dew point 64 ° C.. Thereafter, the steel sheet was annealed at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to cause the steel sheet to absorb nitrogen. The N content of this steel sheet after nitriding is 0.021.
9%. The average crystal grain size of this steel sheet is 24
μm, and SIO2 was 1.1 g / m 2 .
【0080】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、N2 :50%、H2 :50%の雰
囲気ガス中で15℃/時、30℃/時の速度で12
00℃まで昇温し、引き続きH2 :100%雰囲気ガス
中で1200℃で20時間保持する最終仕上焼鈍を行っ
た。実験条件と磁気特性、被膜性状との関係を表4に示
す。Then, an annealing separator containing MgO as a main component was applied to the steel sheet, and the steel sheet was heated at a rate of 15 ° C./hour and 30 ° C./hour in an atmosphere gas of N 2 : 50% and H 2 : 50%.
The temperature was raised to 00 ° C., followed by final finish annealing in which the temperature was kept at 1200 ° C. for 20 hours in a 100% atmosphere of H 2 gas. Table 4 shows the relationship between the experimental conditions, magnetic properties, and film properties.
【0081】[0081]
【表4】 [Table 4]
【0082】〔実施例5〕C:0.056%、Si:
3.45%、Mn:0.09%、S:0.007%、C
u:0.20%、酸可溶性Al:0.029%、N:
0.0075%を基本成分とし、Sn量を添加なし
(<0.01%)、0.05%、0.10%なる3
水準で添加し、残部Fe及び不可避的不純物からなる3
種類の250mm厚のスラブを作成した。かかるスラブを
1050℃で60分均熱した後、直ちに熱延を開始し、
5パスの粗熱延で40mm厚とした後、6パスの仕上熱延
で2.3mm厚の熱延板とした。この時、仕上熱延温度
は、840〜975℃であった。Example 5 C: 0.056%, Si:
3.45%, Mn: 0.09%, S: 0.007%, C
u: 0.20%, acid-soluble Al: 0.029%, N:
0.0075% as a basic component, without addition of Sn (<0.01%), 0.05%, 0.10% 3
Added at a level, the balance consisting of Fe and unavoidable impurities 3
250 mm thick slabs of various types were made. After soaking the slab at 1050 ° C. for 60 minutes, immediately start hot rolling,
After a rough hot rolling of 5 passes and a thickness of 40 mm, a hot rolled sheet of 2.3 mm thick was formed by finishing hot rolling of 6 passes. At this time, the finishing hot rolling temperature was 840 to 975 ° C.
【0083】次いで、この熱延板を1100℃に30秒
保持後直ちに900℃に保持して急冷する熱延板焼鈍を
施し、次いで、圧下率約90%で0.220mmの冷延板
とし、835℃に90秒保持する脱炭焼鈍を施した。こ
の時の焼鈍雰囲気をN2 :50%、H2 :50%、露点
50℃とした。しかる後、この鋼板に750℃で30秒
保持する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入
させ、鋼板に窒素吸収を生ぜしめた。窒化後のこの鋼板
のN量は0.0206〜0.0230%であり、SIO
2量は、0.9〜1.2g/m2 であった。又、この窒
化処理後の鋼板の一次再結晶粒の平均粒径は、24〜2
7μmであった。Then, the hot-rolled sheet was held at 1100 ° C. for 30 seconds, immediately subjected to hot-rolled sheet annealing at 900 ° C. and rapidly cooled, and then a cold-rolled sheet having a rolling reduction of about 90% and a 0.220 mm thickness was obtained. Decarburization annealing was performed at 835 ° C. for 90 seconds. The annealing atmosphere when the N 2: 50%, H 2 : 50%, and a dew point of 50 ° C.. Thereafter, the steel sheet was annealed at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to cause nitrogen absorption in the steel sheet. The N content of this steel sheet after nitriding is 0.0206-0.0230%,
2 weight was 0.9~1.2g / m 2. The average grain size of the primary recrystallized grains of the steel sheet after the nitriding treatment is from 24 to 2
It was 7 μm.
【0084】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、N2 :25%、H2 :75%の雰
囲気ガス中でa.10℃/時で1200℃まで昇温、
b.90℃まで10℃/時で昇温し、900℃から12
00℃まで50℃/時で昇温する2水準の条件で昇温し
た後、a,bとも、100%H2 中で、1200℃で2
0時間保持する最終仕上焼鈍を施した。実験条件と磁気
特性の結果を表5に示す。[0084] Then, an annealing separator composed mainly of MgO was applied to this steel sheet, N 2: 25%, H 2: 75% a in an atmospheric gas. Heat up to 1200 ° C at 10 ° C / hour,
b. The temperature is raised to 90 ° C at a rate of 10 ° C / hour, and from 900 ° C to 12 ° C.
After the temperature was raised to 200 ° C. at two levels of 50 ° C./hour, both a and b were heated at 1200 ° C. in 100% H 2 at 1200 ° C.
A final finish annealing of 0 hours was performed. Table 5 shows the experimental conditions and the results of the magnetic properties.
【0085】[0085]
【表5】 [Table 5]
【0086】[0086]
【発明の効果】本発明においては、Cuを添加し、Mn
量を極端に下げること、仕上熱延温度を制御すること、
脱炭焼鈍完了後最終仕上焼鈍開始までの一次再結晶粒の
平均粒径を制御すること、熱延後最終仕上焼鈍の二次再
結晶開始までの間に鋼板に所定量の窒化処理を施すこ
と、脱炭焼鈍後の鋼板のSiO2 量をスラブのCu量に
応じて制御すること、最終仕上焼鈍の昇温過程の特定の
温度域で昇温速度を低めることにより、良好な磁気特性
を安定して得られるので、その工業的効果が極めて大で
ある。According to the present invention, Cu is added and Mn is added.
Controlling the hot rolling temperature,
Controlling the average grain size of the primary recrystallized grains from the completion of decarburizing annealing to the start of final finish annealing, and subjecting the steel sheet to a predetermined amount of nitriding before the start of secondary recrystallization of final finish annealing after hot rolling. Stable good magnetic properties by controlling the amount of SiO 2 in the steel sheet after decarburizing annealing according to the amount of Cu in the slab, and by lowering the heating rate in a specific temperature range during the final finishing annealing Therefore, the industrial effect is extremely large.
【図1】スラブのCu量と脱炭焼鈍後の表面酸化膜中の
全SiO2 量が磁気特性、被膜特性に及ぼす影響を表わ
すグラフである。FIG. 1 is a graph showing the influence of the Cu content of a slab and the total SiO 2 content in a surface oxide film after decarburizing annealing on magnetic properties and coating properties.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−158322(JP,A) 特開 平6−145803(JP,A) 特開 平6−145801(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C22C 38/00 303 C22C 38/60 H01F 1/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-158322 (JP, A) JP-A-6-145803 (JP, A) JP-A-6-145801 (JP, A) (58) Field (Int.Cl. 7 , DB name) C21D 8/12 C22C 38/00 303 C22C 38/60 H01F 1/16
Claims (2)
0℃未満の温度で加熱し、熱延を行い、引き続き必要に
応じて熱延板焼鈍を行い、次いで圧下率80%以上の最
終冷延を含み中間焼鈍を挟む1回以上の冷延を行い、次
いで脱炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板
を製造する方法において、仕上熱延を700〜1100
℃の温度範囲で施し、脱炭焼鈍完了後、最終仕上焼鈍開
始までの一次再結晶粒の平均粒径を18〜35μmと
し、熱延後、最終仕上焼鈍の二次再結晶開始までの間に
鋼板に0.0010重量%以上の窒素吸収を行わせる窒
化処理を施し、脱炭焼鈍後の表面酸化膜中の全SiO2
量(SIO2(g/m2 ))とスラブのCu量(Cu
(%))を下記(1)式の範囲に制御し、最終仕上焼鈍
の昇温過程における鋼板の温度が1000〜1150℃
の範囲において、昇温速度を20℃/時以下とすること
を特徴とする磁気特性と被膜性状の優れた一方向性電磁
鋼板の製造方法。 0.7 −0.6 ×Cu(%)≦SIO2≦1.6 +0.3 ×Cu(%) ……(1)1. A weight ratio of C: 0.025 to 0.075%, Si: 2.2 to 5.0%, acid-soluble Al: 0.010 to 0.060%, N: 0.0040 to 0.0130%, S + 0.405Se: 0.005 to 0.020%, Mn: less than 0.01%, Cu: 0.05 to 0.50%, The balance is 128 slabs composed of Fe and unavoidable impurities.
Heating is performed at a temperature of less than 0 ° C., hot rolling is performed, and then, if necessary, hot-rolled sheet annealing is performed, and then, one or more times of cold rolling including intermediate annealing, including final rolling at a reduction of 80% or more, is performed. Then, in a method for producing a grain-oriented electrical steel sheet by performing decarburization annealing and final finish annealing, the finish hot rolling is performed at 700 to 1100.
° C., after the completion of decarburizing annealing, the average particle size of the primary recrystallized grains until the start of the final finish annealing is 18 to 35 μm, after hot rolling, until the start of the secondary recrystallization of the final finish annealing The steel sheet is subjected to a nitriding treatment for absorbing 0.0010% by weight or more of nitrogen, and the total SiO 2 in the surface oxide film after the decarburizing annealing is performed.
Amount (SIO2 (g / m 2 )) and the slab Cu amount (Cu
(%)) Is controlled within the range of the following expression (1), and the temperature of the steel sheet in the temperature rising process of the final finish annealing is 1000 to 1150 ° C.
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties, wherein the temperature is raised at a rate of 20 ° C./hour or less in the range of (1). 0.7−0.6 × Cu (%) ≦ SIO2 ≦ 1.6 + 0.3 × Cu (%) (1)
スラブに含有することを特徴とする請求項1記載の一方
向性電磁鋼板の製造方法。2. The method according to claim 1, wherein the slab contains 0.01 to 0.15% by weight of Sn in the slab.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08298795A JP3314844B2 (en) | 1995-04-07 | 1995-04-07 | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08298795A JP3314844B2 (en) | 1995-04-07 | 1995-04-07 | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08277421A JPH08277421A (en) | 1996-10-22 |
JP3314844B2 true JP3314844B2 (en) | 2002-08-19 |
Family
ID=13789576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08298795A Expired - Fee Related JP3314844B2 (en) | 1995-04-07 | 1995-04-07 | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3314844B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6485554B2 (en) * | 2015-10-26 | 2019-03-20 | 新日鐵住金株式会社 | Directional electrical steel sheet and method for producing the same, and method for producing decarburized steel sheet for directionally oriented electrical steel sheet |
JP7517472B2 (en) * | 2021-05-28 | 2024-07-17 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
-
1995
- 1995-04-07 JP JP08298795A patent/JP3314844B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08277421A (en) | 1996-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2983128B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3359449B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JPH07252532A (en) | Production of grain oriented electrical steel sheet having excellent magnetic characteristic | |
JP3008003B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP3065853B2 (en) | Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties | |
JP3314844B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties | |
JP2607331B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP3056970B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties | |
JPH06306473A (en) | Production of grain-oriented magnetic steel sheet excellent in magnetic property | |
JP3169490B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2521585B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JP2709549B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2948454B2 (en) | Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties | |
JP2948455B2 (en) | Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties | |
JP2521586B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JPH07138643A (en) | Production of grain-oriented electrical steel sheet excellent in magnetic property | |
JP3498978B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH06306474A (en) | Production of grain-oriented magnetic steel sheet excellent in magnetic property | |
JPH07118746A (en) | Stable production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP3474594B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness | |
JPH07310124A (en) | Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic | |
JP3061515B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH05156361A (en) | Manufacture of grain-oriented electric steel sheet excellent in magnetic property | |
JP3348217B2 (en) | Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties | |
JP3287488B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020423 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080607 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090607 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090607 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100607 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100607 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110607 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110607 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120607 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130607 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130607 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130607 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130607 Year of fee payment: 11 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130607 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |