JP3169490B2 - Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties - Google Patents

Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Info

Publication number
JP3169490B2
JP3169490B2 JP28118193A JP28118193A JP3169490B2 JP 3169490 B2 JP3169490 B2 JP 3169490B2 JP 28118193 A JP28118193 A JP 28118193A JP 28118193 A JP28118193 A JP 28118193A JP 3169490 B2 JP3169490 B2 JP 3169490B2
Authority
JP
Japan
Prior art keywords
annealing
hot rolling
steel sheet
rolling
finish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28118193A
Other languages
Japanese (ja)
Other versions
JPH07138641A (en
Inventor
希瑞 石橋
康成 吉冨
洋一 美嶋
幸司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28118193A priority Critical patent/JP3169490B2/en
Priority to US08/322,909 priority patent/US5472521A/en
Priority to DE69425406T priority patent/DE69425406T2/en
Priority to EP94116331A priority patent/EP0648847B1/en
Priority to KR1019940026613A priority patent/KR0139247B1/en
Publication of JPH07138641A publication Critical patent/JPH07138641A/en
Application granted granted Critical
Publication of JP3169490B2 publication Critical patent/JP3169490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表わす数値としては、通常磁場の強さ8
00A/m における磁束密度B8が使用される。また、鉄
損特性を表わす数値としては、周波数50Hzで1.7テ
スラー(T)まで磁化した時の1kg当りの鉄損W17/50
を使用している。磁束密度は、鉄損特性の最大支配因子
であり、一般的にいって磁束密度が高いほど鉄損特性が
良好になる。なお、一般的に磁束密度を高くすると二次
再結晶粒が大きくなり、鉄損特性が不良となる場合があ
る。これに対しては、磁区制御により、二次再結晶粒の
粒径に拘らず、鉄損特性の改善をすることができる。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as an iron core material for transformers and other electric equipment, and is required to have excellent magnetic properties such as excitation properties and iron loss properties. Numerical values representing the excitation characteristics include a normal magnetic field strength of 8
A magnetic flux density B 8 at 00 A / m is used. Further, as a numerical value representing the iron loss characteristic, an iron loss W 17/50 per kg when magnetized at a frequency of 50 Hz to 1.7 Tesla (T).
You are using The magnetic flux density is the largest controlling factor of the iron loss characteristics. Generally, the higher the magnetic flux density, the better the iron loss characteristics. In general, when the magnetic flux density is increased, the secondary recrystallized grains become large, and the iron loss characteristics may become poor. In contrast, by controlling the magnetic domain, the iron loss characteristics can be improved regardless of the particle size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持ったいわゆるゴス組織を発達さ
せることにより、製造されている。良好な磁気特性を得
るためには、磁化容易軸である〈001〉を圧延方向に
高度に揃えることが必要である。
[0003] This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finish annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and a <001> axis in the rolling direction. Being manufactured. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction.

【0004】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに特公昭40−15644
号公報及び特公昭51−13469号公報記載の方法が
ある。前者においては主なインヒビターとしてMnS及
びAlNを、後者ではMnS,MnSe,Sb等を用い
ている。従って現在の技術においてはこれらのインヒビ
ターとして機能する析出物の大きさ、形態及び分散状態
を適正に制御することが不可欠である。MnSに関して
いえば、現在の工程では熱延前のスラブ加熱時にMnS
を一旦完全固溶させた後、熱延時に析出する方法がとら
れている。二次再結晶に必要な量のMnSを完全固溶す
るためには1400℃程度の温度が必要である。
[0004] As a typical production technique of such a high magnetic flux density unidirectional magnetic steel sheet, Japanese Patent Publication No. 40-15644 is disclosed.
And JP-B-51-13469. In the former, MnS and AlN are used as main inhibitors, and in the latter, MnS, MnSe, Sb and the like are used. Therefore, it is indispensable in the current technology to appropriately control the size, morphology, and dispersion state of the precipitates functioning as these inhibitors. With regard to MnS, in the current process, MnS is used during slab heating before hot rolling.
Is once dissolved completely and then precipitated during hot rolling. A temperature of about 1400 ° C. is required to completely dissolve the required amount of MnS for secondary recrystallization.

【0005】これは普通鋼のスラブ加熱温度に比べて2
00℃以上も高く、この高温スラブ加熱処理には、1)
方向性電磁鋼専用の高温スラブ加熱炉が必要。2)加熱
炉のエネルギー原単位が高い。3)溶融スケール量が増
大し、いわゆるノロかき出し等に見られるように操業上
の悪影響が大きい。
[0005] This is 2 times lower than the slab heating temperature of ordinary steel.
The temperature is higher than 00 ° C.
A high-temperature slab heating furnace dedicated to grain-oriented electrical steel is required. 2) The unit energy consumption of the heating furnace is high. 3) The amount of the molten scale increases, and the adverse effect on the operation is large as seen in so-called scraping.

【0006】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並に下げればよいわけであるが、こ
のことは同時にインヒビターとして有効なMnSの量を
少なくするかあるいは全く用いないことを意味し、必然
的に二次再結晶の不安定化をもたらす。このため低温ス
ラブ加熱化を実現するためには何らかの形でMnS以外
の析出物等によりインヒビターを強化し、仕上焼鈍時の
正常粒成長の抑制を十分にする必要がある。
In order to avoid such a problem, the slab heating temperature may be reduced to the level of ordinary steel. However, this also requires reducing the amount of MnS effective as an inhibitor or not using it at all. And inevitably leads to instability of secondary recrystallization. For this reason, in order to realize low-temperature slab heating, it is necessary to strengthen the inhibitor with a precipitate other than MnS in some form, and to sufficiently suppress normal grain growth during finish annealing.

【0007】このようなインヒビターとしては、硫化物
の他、窒化物、酸化物及び粒界析出元素等が考えられ、
公知の技術として例えば次のようなものが挙げられる。
特公昭54−24685号公報ではAs,Bi,Sn,
Sb等の粒界偏析元素を鋼中に含有することにより、ス
ラブ加熱温度を1050〜1350℃の範囲にする方法
が開示され、特開昭52−24116号公報ではAlの
他、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の
窒化物生成元素を含有することによりスラブ加熱温度を
1100〜1260℃の範囲にする方法を開示してい
る。また、特開昭57−158322号公報ではMn含
有量を下げ、Mn/Sの比率を2.5以下にすることに
より低温スラブ加熱化を行い、さらにCuの添加により
二次再結晶を安定化する技術を開示している。
As such inhibitors, nitrides, oxides, grain boundary precipitation elements and the like can be considered in addition to sulfides.
Known techniques include, for example, the following.
In Japanese Patent Publication No. 54-24687, As, Bi, Sn,
A method has been disclosed in which a slab heating temperature is set in the range of 1050 to 1350 ° C. by containing a grain boundary segregation element such as Sb in steel. Japanese Patent Application Laid-Open No. 52-24116 discloses a method in which Zr, Ti, A method is disclosed in which a slab heating temperature is set in a range of 1100 to 1260 ° C. by containing a nitride-forming element such as B, Nb, Ta, V, Cr, and Mo. In Japanese Patent Application Laid-Open No. 57-158322, low-temperature slab heating is performed by lowering the Mn content and the Mn / S ratio to 2.5 or less, and further, the secondary recrystallization is stabilized by adding Cu. To disclose the technology.

【0008】これらインヒビターの補強と組み合わせて
金属組織の側から改良を加えた技術も開示された。すな
わち特開昭57−89433号公報ではMnに加えS,
Se,Sb,Bi,Pb,Sn,B等の元素を加え、こ
れにスラブの柱状晶率と二次冷延圧下率を組み合わせる
ことにより、1100〜1250℃の低温スラブ加熱化
を実現している。さらに特開昭59−190324号公
報ではSあるいはSeに加え、Al及びBと窒素を主体
としてインヒビターを構成し、これに冷延後の一次再結
晶焼鈍時にパルス焼鈍を施すことにより二次再結晶を安
定化する技術を公開している。
[0008] Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S,
By adding elements such as Se, Sb, Bi, Pb, Sn, and B, and combining the columnar crystal ratio of the slab and the secondary cold rolling reduction, a low-temperature slab heating of 1100 to 1250 ° C. is realized. . Further, in JP-A-59-190324, an inhibitor is composed mainly of Al, B and nitrogen in addition to S or Se, and this is subjected to pulse annealing at the time of primary recrystallization annealing after cold rolling, thereby performing secondary recrystallization. The technology to stabilize is disclosed.

【0009】このように方向性電磁鋼板製造における低
温スラブ加熱化実現のためには、これまでに多大な努力
が続けられてきている。さらに、特開昭59−5652
2号公報においてはMnを0.08〜0.45%、Sを
0.007%以下にすることにより低温スラブ加熱化を
可能にする技術が開示された。この方法により高温スラ
ブ加熱時のスラブ結晶粒粗大化に起因する製品の線状二
次再結晶不良発生の問題が解消された。
As described above, great efforts have been made so far to realize the low-temperature slab heating in the production of grain-oriented electrical steel sheets. Further, JP-A-59-5652
No. 2 discloses a technology that enables low-temperature slab heating by reducing Mn to 0.08 to 0.45% and S to 0.007% or less. By this method, the problem of occurrence of defective linear secondary recrystallization of a product due to coarsening of slab crystal grains during heating of a high-temperature slab was solved.

【0010】[0010]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としているもの
の、当然のことながら良好な磁気特性を安定して得る技
術でなければ、工業化できない。本発明者らは、低温ス
ラブ加熱の工業化のため、最終仕上焼鈍前の一次再結
晶の平均粒径制御と、熱延後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施すことを柱とす
る技術を構築してきた。この窒化処理により形成される
窒化物は、二次再結晶開始時点では、主にAlNになっ
ている。高温で変化しにくいインヒビターとして、Al
Nを選択しているわけであり、その意味において、スラ
ブ中にAlが含有されることは必須条件となる。
The method using the low-temperature slab heating originally aims at reducing the manufacturing cost, but it cannot be industrialized unless it is a technique to obtain good magnetic properties stably as a matter of course. The present inventors, for industrialization of low-temperature slab heating, control of the average grain size of primary recrystallization before final finish annealing, and nitriding treatment of steel sheet after hot rolling and before the start of secondary recrystallization of final finish annealing. Has been built as a pillar. The nitride formed by this nitriding treatment is mainly AlN at the start of the secondary recrystallization. Al as an inhibitor that does not change easily at high temperatures
N is selected, and in that sense, it is an essential condition that Al is contained in the slab.

【0011】他方、スラブ中にNが必要以上に含有され
ることは、本技術体系からして、再考の余地があった。
つまり、スラブ中に必須のAlと、ある程度以上のN量
があれば、スラブ加熱から脱炭焼鈍までの工程で、Al
Nが形成され、脱炭焼鈍時の一次再結晶粒の粒成長に影
響を与えることとなる。本発明の目的は、この上工程で
のAlNの析出制御方策を検討し、低温スラブ加熱で、
かつ、熱延板焼鈍を省略して、なお、優れた特性を有す
る一方向性電磁鋼板の製造方法を提供することにある。
On the other hand, the fact that the slab contains N more than necessary has room for reconsideration in view of the present technical system.
In other words, if there is essential Al and a certain amount of N in the slab, in the process from slab heating to decarburizing annealing, Al
N is formed and affects the grain growth of primary recrystallized grains during decarburizing annealing. The purpose of the present invention is to examine a control method of AlN precipitation in the above process, and to perform low-temperature slab heating,
Another object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet having excellent properties by omitting hot-rolled sheet annealing.

【0012】[0012]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記の通りである。 (1)重量比でC:0.075%以下、Si:2.2〜
4.5%、酸可溶性Al:0.010〜0.060%、
N:0.0130%以下、S+0.405Se:0.0
14%以下、Mn:0.05〜0.8%を含有し、残部
がFe及び不可避的不純物からなるスラブを1280℃
未満の温度で加熱し、熱延を行い、引き続き熱延板焼鈍
を施すことなく、圧下率80%以上の最終強圧下冷延を
行い、次いで脱炭焼鈍、最終仕上焼鈍を施して一方向性
電磁鋼板を製造する方法において、粗熱延の累積圧下率
を60%以上とし、粗熱延と仕上熱延の間の時間を1秒
以上とし、仕上熱延の開始温度を800〜1100℃と
し、スラブの酸可溶性Al,Nの含有量(重量%)、仕
上熱延の開始温度のコイル内偏差ΔFoT(℃)を下記
(1)式の範囲に制御し、脱炭焼鈍完了後、最終仕上焼
鈍開始までの一次再結晶粒の平均粒径を18〜35μm
とし、脱炭焼鈍後最終仕上焼鈍の二次再結晶開始までの
間に鋼板に0.0010重量%以上の窒素吸収を行わせ
る窒化処理を施すことを特徴とする磁気特性の優れた一
方向性電磁鋼板の製造方法。 ΔFoT(℃)≦15+2500×{Al(%)−(27/14)×N(%)}……(1) 但し、Al:酸可溶性Al
The gist of the present invention is as follows. (1) C: 0.075% or less by weight ratio, Si: 2.2 to
4.5%, acid-soluble Al: 0.010 to 0.060%,
N: 0.0130% or less, S + 0.405Se: 0.0
A slab containing 14% or less, Mn: 0.05 to 0.8%, and the balance being Fe and inevitable impurities is 1280 ° C.
Heating at a temperature less than or equal to, hot-rolling, and subsequently performing cold rolling under final high-pressure reduction of 80% or more without performing hot-rolled sheet annealing, and then performing decarburizing annealing and final finishing annealing to achieve unidirectionality In the method for producing an electrical steel sheet, the cumulative draft of the rough hot rolling is set to 60% or more, the time between the rough hot rolling and the finish hot rolling is set to 1 second or more, and the starting temperature of the finish hot rolling is set to 800 to 1100 ° C. , The content (wt%) of acid-soluble Al and N in the slab, and the deviation ΔFoT (° C) in the coil of the starting temperature of the finishing hot rolling within the range of the following formula (1), and after the completion of the decarburizing annealing, the final finishing The average grain size of primary recrystallized grains before the start of annealing is 18 to 35 μm
The steel sheet is subjected to a nitriding treatment for absorbing at least 0.0010% by weight of nitrogen into the steel sheet after the decarburization annealing and before the start of the secondary recrystallization of the final finish annealing, and has excellent unidirectional magnetic properties. Manufacturing method of electrical steel sheet. ΔFoT (° C.) ≦ 15 + 2500 × {Al (%) − (27/14) × N (%)} (1) where Al: acid-soluble Al

【0013】(2)前項において、スラブの成分として
さらにSn:0.01〜0.15%を含有せしめること
を特徴とする磁気特性の優れた一方向性電磁鋼板の製造
方法。
(2) A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties as described in the preceding paragraph, further comprising 0.01 to 0.15% of Sn as a slab component.

【0014】[0014]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程をはさ
んでスラブとし、引き続き熱間圧延して熱延板とし、熱
延板を焼鈍することなく、次いで圧下率が80%以上と
なる最終冷延を施し、次いで脱炭焼鈍、最終仕上焼鈍を
順次行うことによって製造される。
The grain-oriented electrical steel sheet to which the present invention is directed is:
The molten steel obtained by the conventional steelmaking method is cast by the continuous casting method or ingot making method, and if necessary, the slab is sandwiched by the sizing process, and subsequently hot-rolled to form a hot-rolled sheet. It is manufactured by performing final cold rolling in which the rolling reduction is 80% or more without annealing the rolled sheet, and then sequentially performing decarburizing annealing and final finishing annealing.

【0015】本発明者らは、熱延板焼鈍を省略した1回
冷延法で、低温スラブ加熱材を製造する場合の磁性の変
動の原因と、その解決策について詳細に検討した。その
結果、スラブの酸可溶性Al量,N量に応じて、仕上熱
延開始温度のコイル内偏差を制御し、粗熱延の累積圧下
率、粗熱延と仕上熱延の間の時間、仕上熱延開始温度を
制御することによって、その磁性変動を激減できること
をつきとめた。まず、実験結果を基に、本発明の効果を
説明する。
The present inventors have studied in detail the causes of magnetic fluctuations when manufacturing a low-temperature slab heating material by one-time cold rolling without the hot-rolled sheet annealing, and the solution thereof. As a result, the in-coil deviation of the finish hot rolling start temperature is controlled according to the acid-soluble Al content and N content of the slab, the cumulative draft of the rough hot rolling, the time between the rough hot rolling and the finish hot rolling, and the finish. By controlling the hot rolling start temperature, it was found that the magnetic fluctuation can be drastically reduced. First, effects of the present invention will be described based on experimental results.

【0016】図1に、スラブにおけるAl(%)−(27
/14)×N(%)量(但し、Al:酸可溶性Al)、
仕上熱延開始温度の最高と最低の差ΔFoT(℃)と製
品の磁束密度の変動の関係を示す。この場合、重量比
で、C:0.024〜0.031%、Si:2.5〜
3.0%、酸可溶性Al:0.034〜0.040%、
N:0.0054〜0.0068%、S:0.005〜
0.007%、Mn:0.10〜0.14%を含有し、
残部Fe及び不可避的不純物からなる250mm厚の20
ton スラブを作成した。そして、1050〜1200℃
の温度に約120分保持した後、7パスで粗熱延を行
い、40mm厚とし、次いで、6パスで仕上熱延を行い、
2.3mm厚の熱延板とした。
FIG. 1 shows that Al (%)-(27) in the slab.
/ 14) × N (%) amount (however, Al: acid-soluble Al),
The relationship between the maximum and minimum difference ΔFoT (° C.) of the finish hot rolling start temperature and the variation of the magnetic flux density of the product is shown. In this case, by weight ratio, C: 0.024 to 0.031%, Si: 2.5 to
3.0%, acid-soluble Al: 0.034 to 0.040%,
N: 0.0054 to 0.0068%, S: 0.005 to
0.007%, Mn: 0.10 to 0.14%,
250 mm thick 20 consisting of balance Fe and unavoidable impurities
created a ton slab. And 1,050-1200 ° C
After holding at a temperature of about 120 minutes, rough hot rolling is performed in 7 passes to obtain a thickness of 40 mm, and then finish hot rolling is performed in 6 passes.
A hot-rolled sheet having a thickness of 2.3 mm was obtained.

【0017】この熱延において、粗熱延でのパス間に水
冷を施したり、パス間時間を変更したり、粗熱延と仕上
熱延の間の時間を積極的に変更し、仕上熱延開始温度を
広範囲にとった。かかる熱延板の各コイル内で仕上熱延
開始温度が最高の部分と最低の部分から試料を切り出
し、熱延板焼鈍を施すことなく約85%の圧下率で強圧
下圧延を行って最終板厚0.335mmの冷延板とし、8
35℃に約150秒保持する脱炭焼鈍を施し、次いで、
770℃に30秒保持する焼鈍時、焼鈍雰囲気中にNH
3 ガスを混入させ、鋼板に窒素吸収を生ぜせしめた。
In this hot rolling, water cooling is performed between the passes in the rough hot rolling, the time between passes is changed, or the time between the rough hot rolling and the finish hot rolling is positively changed. The starting temperature was taken over a wide range. In each coil of the hot-rolled sheet, a sample is cut out from a portion where the finish hot-rolling start temperature is highest and a portion where the hot-rolling finish temperature is lowest, and is subjected to strong rolling at a rolling reduction of about 85% without performing hot rolling annealing. Use a cold rolled sheet with a thickness of 0.335 mm.
Decarburization annealing at 35 ° C. for about 150 seconds,
During annealing at 770 ° C. for 30 seconds, NH 3 was introduced in the annealing atmosphere.
Three gases were mixed to cause the steel sheet to absorb nitrogen.

【0018】この窒化処理後のN量は、0.0206〜
0.0237重量%であり、一次再結晶粒の平均粒径
(円相当直径の平均値)は、21〜26μmであった。
かかる窒化処理後の鋼板にMgOを主成分とする焼鈍分
離剤を塗布し、最終仕上焼鈍を行った。しかる後、製品
の磁束密度を測定し、同一成分、同一熱延条件の熱延板
に対してとった2つの試料(仕上熱延開始温度の最高温
度部と最低温度部)でのB8 の差ΔB8 を求めた。
The N content after the nitriding treatment is 0.0206 to
0.0237% by weight, and the average particle size of primary recrystallized grains (average value of equivalent circle diameters) was 21 to 26 μm.
An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed. Thereafter, by measuring the magnetic flux density of the product, the same components, the same hot rolled condition two taken against hot-rolled sheet of the sample at (a maximum temperature portion of the final hot rolling start temperature and the minimum temperature portion) of the B 8 The difference ΔB 8 was determined.

【0019】図1から明らかなように、ΔFoT(℃)
≦15+2500×{Al(%)−(27/14)×N
(%)}の範囲で、ΔB8 ≦0.02Tとなり、安定し
た磁気特性となっている。図1に示したスラブの酸可溶
性Al,Nの量に対応して仕上熱延開始温度の偏差を制
御する効果メカニズムについて、必ずしも明らかではな
いが、本発明者らは、以下のように推定している。
As is clear from FIG. 1, ΔFoT (° C.)
≦ 15 + 2500 × {Al (%) − (27/14) × N
(%)}, ΔB 8 ≦ 0.02T, and stable magnetic characteristics are obtained. Although the effect mechanism for controlling the deviation of the hot rolling start temperature in the finish in accordance with the amounts of the acid-soluble Al and N of the slab shown in FIG. 1 is not necessarily clear, the present inventors presume as follows. ing.

【0020】本発明は、本発明者らが特開平2−182
866号公報で開示した脱炭焼鈍後の結晶組織を適切な
ものにすることを基本とする技術体系に属する。一方、
スラブ加熱完了時に固溶していたNは、熱延中または脱
炭焼鈍時(特に昇温時)微細な窒化物(主にAlN)と
なると考えられる。この微細な窒化物は、脱炭焼鈍時の
わずかの温度変化においても、サイズ、析出量が変動す
ると考えられる。
The present invention relates to a method disclosed by the present inventors in JP-A-2-182.
It belongs to a technical system disclosed in Japanese Patent Publication No. 866 which is based on making the crystal structure after decarburization annealing appropriate. on the other hand,
It is considered that N dissolved in solid solution at the time of completion of slab heating becomes fine nitride (mainly AlN) during hot rolling or during decarburizing annealing (especially during temperature rise). It is considered that the size and the amount of precipitation of this fine nitride fluctuate even with a slight temperature change during decarburization annealing.

【0021】しかしながら、析出物による粒成長抑制効
果(Zener因子)は、析出物のサイズに逆比例し、
その体積分率に比例する。従って、スラブ加熱完了時の
固溶N量を減少しすぎても、析出物の粒成長抑制効果が
小さくなりすぎ、その結果、脱炭焼鈍時の粒成長が顕著
になりすぎ、結晶組織の制御が困難となる。
However, the grain growth suppressing effect (Zener factor) of the precipitate is inversely proportional to the size of the precipitate.
It is proportional to its volume fraction. Therefore, even if the amount of solute N at the time of completion of slab heating is excessively reduced, the effect of suppressing grain growth of precipitates becomes too small, and as a result, the grain growth during decarburization annealing becomes too remarkable, and the control of the crystal structure is performed. Becomes difficult.

【0022】図1におけるΔFoT(℃)≦15+25
00×{Al(%)−(27/14)×N(%)}は、
スラブの酸可溶性Al量,N量に応じて、仕上熱延開始
温度の偏差を規定することを意味する。ここで、Al
(%)−(27/14)×N(%)が大きい程、同一温
度差における仕上熱延開始時の固溶N量の偏差は減少す
るので、固溶N量の偏差が少ない成分系の場合、仕上熱
延開始温度偏差の許容範囲が広いことを意味する。
ΔFot (° C.) ≦ 15 + 25 in FIG.
00 × {Al (%) − (27/14) × N (%)} is
This means that the deviation of the finish hot rolling start temperature is defined according to the acid-soluble Al content and N content of the slab. Where Al
The larger the value of (%)-(27/14) × N (%) is, the smaller the deviation of the amount of solute N at the start of hot rolling at the same temperature difference is. In this case, it means that the allowable range of the temperature deviation at the start of the hot rolling is wide.

【0023】次に本発明の構成要件の限定理由について
述べる。まず、スラブの成分と、スラブ加熱温度に関し
て限定理由を詳細に説明する。Cは、多くなりすぎると
脱炭焼鈍時間が長くなり経済的でないので0.075重
量%(以下単に%と略述)以下とした。なお磁気特性の
面で特に好ましい範囲は、0.020〜0.070%で
ある。Siは4.5%を超えると冷延時の割れが著しく
なるので4.5%以下とした。また、2.2%未満では
素材の固有抵抗が低すぎ、トランス鉄心材料として必要
な低鉄損が得られないので2.2%以上とした。Alは
二次再結晶の安定化に必要なAlNもしくは(Al,S
i)Nを確保するため、酸可溶性Alとして0.010
%以上が必要である。酸可溶性Alが0.060%を超
えると熱延板のAlNが不適切となり二次再結晶が不安
定になるので0.060%以下とした。
Next, the reasons for limiting the constituent elements of the present invention will be described. First, the reasons for limiting the components of the slab and the slab heating temperature will be described in detail. If C is excessively large, the decarburizing annealing time becomes long and it is not economical. A particularly preferable range in terms of magnetic properties is 0.020 to 0.070%. If the content of Si exceeds 4.5%, cracking at the time of cold rolling becomes remarkable. If it is less than 2.2%, the specific resistance of the material is too low, and a low iron loss required as a transformer core material cannot be obtained. Al is AlN or (Al, S) necessary for stabilizing the secondary recrystallization.
i) To secure N, 0.010 as acid-soluble Al
% Or more is required. If the acid-soluble Al content exceeds 0.060%, the AlN of the hot-rolled sheet becomes inappropriate and secondary recrystallization becomes unstable.

【0024】Nについては、0.0130%を超えると
ブリスターと呼ばれる鋼板表面のふくれが発生するので
0.0130%以下とした。MnS,MnSeが鋼中に
存在しても、製造工程の条件を適正に選ぶことによって
磁気特性を良好にすることが可能である。しかしながら
SやSeが高いと線状細粒と呼ばれる二次再結晶不良部
が発生する傾向があり、この二次再結晶不良部の発生を
予防するためには(S+0.405Se)≦0.014
%とすべきである。SあるいはSeが上記値を超える場
合には、製造条件をいかに変更しても二次再結晶不良部
が発生する確率が高くなり好ましくない。また最終仕上
焼鈍で純化するのに要する時間が長くなりすぎて好まし
くなく、このような観点からSあるいはSeを不必要に
増すことは意味がない。
If N exceeds 0.0130%, blisters called "blisters" occur on the surface of the steel sheet. Therefore, N is set to 0.0130% or less. Even if MnS and MnSe are present in steel, it is possible to improve the magnetic properties by properly selecting the conditions of the manufacturing process. However, when S or Se is high, a secondary recrystallization defective portion called linear fine grain tends to occur. To prevent the occurrence of the secondary recrystallization defective portion, (S + 0.405Se) ≦ 0.014
Should be%. If S or Se exceeds the above-mentioned value, the probability of occurrence of a secondary recrystallization defective portion increases, no matter how the manufacturing conditions are changed, which is not preferable. In addition, the time required for purification in the final finish annealing is too long, which is not preferable. From such a viewpoint, it is meaningless to increase S or Se unnecessarily.

【0025】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、つまりストリップの側縁部が波形状となり
製品歩留りを低下させる問題が発生する。一方、Mn量
が0.8%を超えると製品の磁束密度を低下させ好まし
くないので、Mn量の上限を0.8%とした。Snは、
粒界偏析元素として知られており、粒成長を抑制する元
素である。一方スラブ加熱時Snは完全固溶しており、
通常考えられる数10℃の温度差を有する加熱時のスラ
ブ内でも、一様に固溶していると考えられる。従って、
温度差があるにも拘らず加熱時のスラブ内で均一に分布
しているSnは、脱炭焼鈍時の粒成長抑制効果について
も、場所的に均一に作用すると考えられる。
The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, the shape (flatness) of the hot rolled sheet obtained by hot rolling, that is, the side edge portion of the strip becomes corrugated, which causes a problem of lowering the product yield. On the other hand, if the Mn content exceeds 0.8%, the magnetic flux density of the product is lowered, which is not preferable. Therefore, the upper limit of the Mn content is set to 0.8%. Sn is
Known as a grain boundary segregation element, it is an element that suppresses grain growth. On the other hand, when the slab is heated, Sn is completely dissolved.
It is considered that even in the slab at the time of heating having a temperature difference of several tens degrees Celsius which is generally considered, the solid solution is uniformly formed. Therefore,
It is considered that Sn uniformly distributed in the slab at the time of heating, despite the temperature difference, also acts uniformly in place on the grain growth suppressing effect at the time of decarburizing annealing.

【0026】このため、AlNの場所的不均一に起因す
る脱炭焼鈍時の粒成長の場所的不均一を、Snは希釈す
る効果があるものと考えられる。従って、Snを添加す
ることはさらに製品の磁気特性の変動を低減させるのに
有効である。このSnの適正範囲を0.01〜0.15
%とした。この下限値未満では、粒成長抑制効果が少な
すぎて好ましくない。一方、この上限値を超えると鋼板
の窒化が難しくなり、二次再結晶不良の原因となるため
好ましくない。
For this reason, it is considered that Sn has the effect of diluting the spatial nonuniformity of grain growth during decarburization annealing caused by the spatial nonuniformity of AlN. Therefore, the addition of Sn is effective in further reducing the variation in the magnetic properties of the product. The proper range of Sn is 0.01 to 0.15.
%. Below this lower limit, the effect of suppressing grain growth is undesirably too small. On the other hand, if the upper limit is exceeded, nitriding of the steel sheet becomes difficult, which causes secondary recrystallization failure, which is not preferable.

【0027】この他インヒビター構成元素として知られ
ているSb,Cu,Cr,Ni,B,Ti,Nb等を微
量に含有することはさしつかえない。特に、B,Ti,
Nb等の窒化物構成元素は、スラブ加熱時の鋼中の固溶
N量を低減するために積極的に添加してもかまわない。
これらのAlよりNとの親和力の高い元素がある場合に
は、後述する仕上熱延開始温度偏差を規定する式を計算
する際に、全N量から含有するB,Ti,Nbのために
形成される窒化物のN量を差し引きすることは、本発明
における制御効果の精度を高める上で好ましい。
In addition, trace amounts of Sb, Cu, Cr, Ni, B, Ti, Nb and the like, which are known as inhibitor constituent elements, may be contained. In particular, B, Ti,
Nitride constituent elements such as Nb may be positively added to reduce the amount of solute N in steel during slab heating.
When there is an element having a higher affinity for N than Al, when calculating an equation for defining a finish hot rolling start temperature deviation to be described later, it is formed for B, Ti, and Nb contained from the total N amount. Subtracting the N content of the nitride to be performed is preferable for improving the accuracy of the control effect in the present invention.

【0028】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。加熱されたスラ
ブは、引き続き熱延されて熱延板となる。熱延工程は、
通常100〜400mm厚のスラブを加熱した後、いずれ
も複数回のパスで行う粗熱延と仕上熱延よりなる。この
粗熱延の累積圧下率を60%以上とする必要がある。本
発明の如きAlN析出制御技術の場合、AlNの析出核
としての転位を多く導入する必要がある。累積圧下率が
60%未満ではこの転位の導入が不十分であるので、6
0%以上と規定した。この累積圧下率の上限は、特に限
定されるものではなく、99.9%程度まで許容され
る。
The slab heating temperature is limited to less than 1280 ° C. for the purpose of reducing the cost to the level of ordinary steel. Preferably it is 1200 ° C or lower. The heated slab is subsequently hot-rolled into a hot-rolled sheet. The hot rolling process
Usually, after heating a slab having a thickness of 100 to 400 mm, the slab consists of rough hot rolling and finish hot rolling performed in a plurality of passes. The cumulative rolling reduction of the rough hot rolling needs to be 60% or more. In the case of the AlN precipitation control technique as in the present invention, it is necessary to introduce many dislocations as precipitation nuclei of AlN. If the cumulative rolling reduction is less than 60%, the introduction of the dislocations is insufficient.
It was defined as 0% or more. The upper limit of the cumulative rolling reduction is not particularly limited, and is allowed up to about 99.9%.

【0029】粗熱延と仕上熱延のパス間時間を1秒以上
と規定した。これは、このパス間でのAlNの析出を生
ぜしめるためであり、1秒未満では、その効果が少な
い。パス間時間の上限については、特に限定するもので
はないが、1時間以上もパス間時間をとることは、生産
性の点で好ましくない。
The time between passes of the rough hot rolling and the finish hot rolling was specified to be 1 second or more. This is to cause the precipitation of AlN between the passes, and less than 1 second has little effect. The upper limit of the inter-pass time is not particularly limited, but taking an inter-pass time of 1 hour or more is not preferable in terms of productivity.

【0030】仕上熱延開始温度を800〜1100℃と
規定した。1100℃超では、熱延におけるAlNの析
出が不十分となり好ましくない。また800℃未満で
は、仕上熱延での再結晶が不十分となり、好ましくな
い。
The finish hot rolling starting temperature was specified to be 800 to 1100 ° C. If it exceeds 1100 ° C., precipitation of AlN in hot rolling becomes insufficient, which is not preferable. On the other hand, if the temperature is lower than 800 ° C., recrystallization by hot rolling in the finish becomes insufficient, which is not preferable.

【0031】仕上熱延開始温度偏差ΔFoT(℃)をΔ
FoT(℃)≦15+2500×{Al(%)−(27
/14)×N(%}と規定した。これは、図1に示す通
り、この範囲にすることが、磁気特性を安定化するため
に必要なためである。仕上熱延開始温度偏差を上記範囲
にする方策については特に限定するものではない。スラ
ブ温度を温度傾斜等で調整する方法、粗熱延終了時の板
厚を圧延方向位置で変える方法、粗熱延のパス間時間の
調整、粗熱延と仕上熱延のパス間時間の調整、粗熱延及
びそのパス間のコイル内場所ごとの冷却制御、粗熱延と
仕上熱延の間の保温または水冷等によるコイル内場所ご
との温度制御等を実施することができる。
The final hot-rolling start temperature deviation ΔFoT (° C.)
FoT (° C.) ≦ 15 + 2500 × ΔAl (%) − (27
/ 14) × N (%}) because it is necessary to stabilize the magnetic characteristics as shown in FIG. There is no particular limitation on the method of setting the range, a method of adjusting the slab temperature by a temperature gradient or the like, a method of changing the sheet thickness at the end of the rough hot rolling in the rolling direction position, an adjustment of the time between passes of the rough hot rolling, Adjustment of the time between passes of rough hot rolling and finish hot rolling, cooling control for each location in the coil between the rough hot rolling and the pass, and maintenance of the temperature between the rough hot rolling and the finish hot rolling or water cooling for each location in the coil Temperature control and the like can be performed.

【0032】引き続く仕上熱延は、通常4〜10パスの
高速連続圧延で行われる。通常仕上熱延の圧下配分は、
前段が圧下率が高く後段に行くほど圧下率を下げて形状
を良好なものとしている。圧延速度は通常100〜30
0m/minとなっており、パス間の時間は0.01〜10
0秒となっている。本発明では、仕上熱延条件を限定し
ているものではないが、AlN析出を行わしめるため、
本発明の特徴の1つである仕上熱延開始温度偏差の制御
に加え、仕上熱延終了温度を調整したり、圧下配分を調
整することは積極的に行うべきである。
The subsequent finishing hot rolling is usually performed by high-speed continuous rolling of 4 to 10 passes. Normally, the rolling distribution of hot rolled finish is
The rolling reduction is higher in the former stage and the rolling reduction is lower in the latter stage, so that the shape is good. Rolling speed is usually 100-30
0m / min and the time between passes is 0.01-10
0 seconds. In the present invention, the conditions for the finish hot rolling are not limited, but in order to perform AlN precipitation,
In addition to controlling the deviation of the finish hot rolling start temperature, which is one of the features of the present invention, it is necessary to actively adjust the finish hot rolling end temperature and adjust the rolling reduction.

【0033】AlNの析出しやすい温度域(800〜9
50℃)、またはその近傍で、積極的に圧下率を高め、
加工誘起析出を生ぜしめることも、AlN析出量制御に
有効な手段となる。熱延の最終パス後、鋼板は通常0.
1〜100秒程度空冷された後水冷され300〜700
℃の温度で巻取られ、徐冷される。この冷却プロセスに
ついては特に限定されるものではないが、熱延後1秒以
上空冷等を行い、鋼板をAlNの析出温度域にできるだ
け長時間保持する等の方法を、AlN析出量制御に利用
することは好ましい。
The temperature range where AlN is easily deposited (800 to 9)
50 ° C) or around it, actively increase the draft,
Producing the work-induced precipitation is also an effective means for controlling the amount of AlN precipitation. After the final pass of hot rolling, the steel sheet is usually 0.1 mm.
Air-cooled for about 1-100 seconds, then water-cooled 300-700
It is wound at a temperature of ° C. and slowly cooled. The cooling process is not particularly limited, but a method of performing air cooling or the like for 1 second or more after hot rolling and keeping the steel sheet in the AlN precipitation temperature range as long as possible is used for controlling the amount of AlN precipitation. Is preferred.

【0034】この熱延板は次いで、熱延板焼鈍を施すこ
となく圧下率80%以上の最終冷延を行う。最終冷延の
圧下率を80%以上としたのは、圧下率を上記範囲とす
ることによって、脱炭板において尖鋭な{110}〈0
01〉方位粒と、これに蚕食されやすい対応方位粒
({111}〈112〉方位粒等)を適正量得ることが
でき、磁束密度を高める上で好ましいためである。かか
る冷延後の鋼板は、通常の方法で脱炭焼鈍、焼鈍分離剤
塗布、最終仕上焼鈍を施されて最終製品となる。ここで
脱炭焼鈍完了後、最終仕上焼鈍開始までの間の一次再結
晶粒の平均粒径を、18〜35μmに制御することは必
要である。その理由はこの平均粒径の範囲で良好な磁束
密度が得られやすく、かつ粒径変動に対する磁束密度の
変化が少ないからである。
This hot rolled sheet is then subjected to final cold rolling at a rolling reduction of 80% or more without performing hot rolled sheet annealing. The reason why the rolling reduction of the final cold rolling is set to 80% or more is that the sharpening {110} <0 in the decarburized plate is achieved by setting the rolling reduction within the above range.
This is because an appropriate amount of <01> orientation grains and corresponding orientation grains (e.g., {111} <112> orientation grains) easily susceptible to silkworm can be obtained, which is preferable in increasing the magnetic flux density. The steel sheet after such cold rolling is subjected to decarburizing annealing, application of an annealing separating agent, and final finish annealing by a usual method, and becomes a final product. Here, it is necessary to control the average particle size of the primary recrystallized grains from the completion of the decarburization annealing to the start of the final finish annealing to 18 to 35 μm. The reason is that a good magnetic flux density is easily obtained in the range of the average particle diameter, and the change of the magnetic flux density with respect to the fluctuation of the particle diameter is small.

【0035】そして脱炭焼鈍後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施すと規定したの
は、本発明の如き低温スラブ加熱を前提とするプロセス
では、二次再結晶に必要なインヒビター強度が不足がち
になるからである。窒化の方法としては特に限定するも
のではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3
スを混入させ窒化する方法、プラズマを用いる方法、焼
鈍分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒
化物が分離してできた窒素を鋼板に吸収させる方法、最
終仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化
する方法等いずれの方法でもよい。窒化量については二
次再結晶を安定して発現させるために10ppm 以上は必
要である。
The reason that the steel sheet is subjected to the nitriding treatment after the decarburizing annealing and before the start of the secondary recrystallization of the final finishing annealing is that the process premised on the low-temperature slab heating as in the present invention is performed by the secondary heating. This is because the inhibitor strength required for recrystallization tends to be insufficient. The method of nitriding is not particularly limited, but may be a method of nitriding by mixing NH 3 gas in the annealing atmosphere after decarburizing annealing, a method using plasma, adding a nitride to the annealing separator, and increasing the final finish annealing. Any method may be used, such as a method of absorbing nitrogen formed by separating nitrides in a temperature into a steel sheet, or a method of nitriding a steel sheet by increasing the N 2 partial pressure in an atmosphere of final finish annealing. The amount of nitriding is required to be 10 ppm or more in order to stably develop secondary recrystallization.

【0036】[0036]

【実施例】【Example】

実施例1 重量%で、Si:3.25%、C:0.046%、酸可
溶性Al:0.034%、N:0.0062%、Mn:
0.14%、S:0.007%を含有する250mm厚の
20ton スラブに対して、Z(℃)=15+2500×
{Al(%)−(27/14)×N(%)}を計算した
ところ、70であった。(1)式より、仕上熱延開始温
度のコイル内偏差を70℃以下にすることが良好な磁気
特性を得るために必要なことが予測できた。このスラブ
を1150℃に約90分保持した後、7パスで40mm厚
まで粗熱延し(累積圧下率:84%)、しかる後、6パ
スで仕上熱延を行い、2.3mm厚の熱延板とした。この
時、(A)仕上熱延開始まで、圧延方向の後半部に保熱
カバーをかぶせ、15秒空冷、(B)仕上熱延開始ま
で、15秒空冷、なる2通りの熱延を行った。この場
合、仕上熱延開始温度は、各々、(A)1054〜10
90℃、(B)1010〜1089℃であった。
Example 1 By weight%, Si: 3.25%, C: 0.046%, acid-soluble Al: 0.034%, N: 0.0062%, Mn:
For a 250 mm thick 20 ton slab containing 0.14%, S: 0.007%, Z (° C) = 15 + 2500 ×
{Al (%) − (27/14) × N (%)} was calculated to be 70. From the equation (1), it was predicted that it is necessary to set the deviation in the coil of the hot-rolling start temperature in the coil to 70 ° C. or less in order to obtain good magnetic properties. After holding the slab at 1150 ° C. for about 90 minutes, it was roughly hot-rolled in 7 passes to a thickness of 40 mm (cumulative rolling reduction: 84%), and then finished hot-rolled in 6 passes to obtain a 2.3 mm thick hot roll. It was a rolled sheet. At this time, two types of hot rolling were performed: (A) a heat retaining cover was placed over the latter half of the rolling direction until the start of finish hot rolling, and air cooling for 15 seconds, and (B) air cooling for 15 seconds until the start of finish hot rolling. . In this case, the finish hot rolling start temperature is (A) 1054-10
90C and (B) 1010 to 1089C.

【0037】これらの熱延コイルを、酸洗し、約85%
の圧下率で冷延して、0.335mm厚の冷延コイルと
し、845℃に150秒保持する脱炭焼鈍(25%N2
+75%H2 、露点62℃)を施し、しかる後、770
℃で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3
ガスを混入させ鋼板に窒素を吸収せしめた。窒化後の鋼
板のN量は0.0204〜0.0230%であり、鋼板
の一次再結晶粒の平均粒径は、23〜30μmであっ
た。次いで、この鋼板にMgOを主成分とする焼鈍分離
剤を塗布し、公知の方法で、最終仕上焼鈍を施した。実
験条件と磁気特性の結果を表1に示す。
These hot-rolled coils were pickled, and about 85%
To a 0.335 mm thick cold-rolled coil, and kept at 845 ° C. for 150 seconds by decarburizing annealing (25% N 2
+ 75% H 2 , dew point 62 ° C) and then 770
Annealing at 30 ° C. for 30 seconds, and NH 3 in an annealing atmosphere.
Gas was mixed to absorb nitrogen into the steel sheet. The N content of the steel sheet after nitriding was 0.0204 to 0.0230%, and the average particle size of the primary recrystallized grains of the steel sheet was 23 to 30 μm. Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and final finish annealing was performed by a known method. Table 1 shows the experimental conditions and the results of the magnetic characteristics.

【0038】[0038]

【表1】 [Table 1]

【0039】実施例2 重量%で、Si:3.07%、C:0.031%、酸可
溶性Al:0.026%、N:0.0070%、Mn:
0.13%、S:0.006%を含有する250mm厚の
10ton スラブに対して、Z(℃)=15+2500×
{Al(%)−(27/14)×N(%)}を計算した
ところ、46であった。(1)式より、仕上熱延開始温
度のコイル内偏差を46℃以下にすることが良好な磁気
特性を得るために必要なことが予測できた。このスラブ
を1180℃に約60分保持した後、7パスで30mm厚
まで粗熱延し(累積圧下率:88%)、しかる後、6パ
スで仕上熱延を行い、2.3mm厚の熱延板とした。この
時、(A)仕上熱延開始まで、圧延方向の前半部を15
秒水冷、(B)仕上熱延開始まで、15秒空冷、なる2
通りの熱延を行った。この場合、仕上熱延開始温度は、
各々、(A)1025〜1052℃、(B)1030〜
1091℃であった。
Example 2 By weight%, Si: 3.07%, C: 0.031%, acid-soluble Al: 0.026%, N: 0.0070%, Mn:
For a 250 mm thick 10 ton slab containing 0.13%, S: 0.006%, Z (° C.) = 15 + 2500 ×
{Al (%) − (27/14) × N (%)} was calculated to be 46. From the equation (1), it could be predicted that it is necessary to make the deviation in the coil of the hot rolling start temperature in the coil equal to or less than 46 ° C. in order to obtain good magnetic properties. After holding this slab at 1180 ° C. for about 60 minutes, it was roughly hot-rolled in 30 passes to a thickness of 30 mm (cumulative rolling reduction: 88%), and then finished hot-rolled in 6 passes to obtain a 2.3 mm thick hot roll. It was a rolled sheet. At this time, (A) the first half of the rolling direction was 15
2 seconds water cooling, (B) 15 seconds air cooling until the start of finishing hot rolling
Hot rolling was performed as follows. In this case, the finish hot rolling start temperature is
(A) 1025-1052 ° C, (B) 1030
It was 1091 degreeC.

【0040】これらの熱延コイルを、酸洗し、約85%
の圧下率で冷延して、0.335mm厚の冷延コイルと
し、840℃に150秒保持する脱炭焼鈍(25%N2
+75%H2 、露点64℃)を施し、しかる後、770
℃で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3
ガスを混入させ鋼板に窒素を吸収せしめた。窒化後の鋼
板のN量は0.0221〜0.0242%であり、鋼板
の一次再結晶粒の平均粒径は、20〜26μmであっ
た。次いで、この鋼板にMgOを主成分とする焼鈍分離
剤を塗布し、公知の方法で、最終仕上焼鈍を施した。実
験条件と磁気特性の結果を表2に示す。
These hot-rolled coils were pickled, and about 85%
To a 0.335 mm thick cold-rolled coil and decarburized annealing (25% N 2) maintained at 840 ° C. for 150 seconds.
+ 75% H 2 , dew point 64 ° C) and then 770
Annealing at 30 ° C. for 30 seconds, and NH 3 in an annealing atmosphere.
Gas was mixed to absorb nitrogen into the steel sheet. The N content of the steel sheet after nitriding was 0.0221 to 0.0242%, and the average particle size of the primary recrystallized grains of the steel sheet was 20 to 26 μm. Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and final finish annealing was performed by a known method. Table 2 shows the experimental conditions and the results of the magnetic properties.

【0041】[0041]

【表2】 [Table 2]

【0042】実施例3 重量%で、Si:2.85%、C:0.029%、酸可
溶性Al:0.024%、N:0.0065%、Mn:
0.14%、S:0.007%を含有する250mm厚の
20ton スラブに対して、Z(℃)=15+2500×
{Al(%)−(27/14)×N(%)}を計算した
ところ、44であった。(1)式より、仕上熱延開始温
度のコイル内偏差を44℃以下にすることが良好な磁気
特性を得るために必要なことが予測できた。このスラブ
を、(A)圧延方向の先頭部1100℃、後尾部112
0℃となるよう約60分温度傾斜保持、(B)1100
℃に約60分保持なる2通りのスラブ加熱を行った後、
7パスで40mm厚まで粗熱延し(累積圧下率:84
%)、しかる後、5秒空冷して、6パスで仕上熱延を行
い、2.6mm厚の熱延板とした。この場合、仕上熱延開
始温度は、各々、(A)1020〜1057℃、(B)
1001〜1056℃であった。
Example 3 Si: 2.85%, C: 0.029%, acid-soluble Al: 0.024%, N: 0.0065%, Mn:
For a 250 mm thick 20 ton slab containing 0.14%, S: 0.007%, Z (° C) = 15 + 2500 ×
{Al (%) − (27/14) × N (%)} was calculated to be 44. From the equation (1), it was predicted that it is necessary to set the deviation in the coil of the hot rolling start temperature in the coil to 44 ° C. or less in order to obtain good magnetic properties. This slab is subjected to (A) the leading portion 1100 ° C. in the rolling direction,
Maintain a temperature gradient for about 60 minutes to reach 0 ° C, (B) 1100
After performing two types of slab heating at about 60 ° C. for about 60 minutes,
Rough hot rolling to 40 mm thickness in 7 passes (cumulative rolling reduction: 84
%), And then air-cooled for 5 seconds and hot-rolled for finish in 6 passes to obtain a hot-rolled sheet having a thickness of 2.6 mm. In this case, the finish hot rolling start temperatures are (A) 1020 to 1057 ° C., and (B)
1001 to 1056 ° C.

【0043】これらの熱延コイルを、酸洗し、約87%
の圧下率で冷延して、0.335mm厚の冷延コイルと
し、845℃に150秒保持する脱炭焼鈍(25%N2
+75%H2 、露点60℃)を施し、しかる後、770
℃で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3
ガスを混入させ鋼板に窒素を吸収せしめた。窒化後の鋼
板のN量は0.0215〜0.0237%であり、鋼板
の一次再結晶粒の平均粒径は、25〜30μmであっ
た。次いで、この鋼板にMgOを主成分とする焼鈍分離
剤を塗布し、公知の方法で、最終仕上焼鈍を施した。実
験条件と磁気特性の結果を表3に示す。
These hot-rolled coils were pickled, and about 87%
To a 0.335 mm thick cold-rolled coil, and kept at 845 ° C. for 150 seconds by decarburizing annealing (25% N 2
+ 75% H 2 , dew point 60 ° C) and then 770
Annealing at 30 ° C. for 30 seconds, and NH 3 in an annealing atmosphere.
Gas was mixed to absorb nitrogen into the steel sheet. The N content of the steel sheet after nitriding was 0.0215 to 0.0237%, and the average grain size of the primary recrystallized grains of the steel sheet was 25 to 30 μm. Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and final finish annealing was performed by a known method. Table 3 shows the experimental conditions and the results of the magnetic characteristics.

【0044】[0044]

【表3】 [Table 3]

【0045】実施例4 重量%で、Si:2.82%、C:0.029%、酸可
溶性Al:0.034%、N:0.0065%、Mn:
0.14%、S:0.006%を含有し、さらに、
(1)Sn<0.005%、(2)Sn:0.06%を
含有する150mm厚の2種類の10ton スラブに対し
て、Z(℃)=15+2500×{Al(%)−(27
/14)×N(%)}を計算したところ、69であっ
た。(1)式より、仕上熱延開始温度のコイル内偏差を
69℃以下にすることが良好な磁気特性を得るために必
要なことが予測できた。
Example 4 By weight%, Si: 2.82%, C: 0.029%, acid-soluble Al: 0.034%, N: 0.0065%, Mn:
0.14%, S: 0.006%,
(2) Z (° C.) = 15 + 2500 × ΔAl (%) − (27) For two kinds of 150 mm thick 10 ton slabs containing Sn <0.005% and (2) Sn: 0.06%.
/ 14) × N (%)} was 69. From the equation (1), it was predicted that it is necessary to make the deviation of the finish hot rolling start temperature in the coil equal to or less than 69 ° C. in order to obtain good magnetic properties.

【0046】そこで、(A)スラブを1000℃に約6
0分保持した後、7パスで粗熱延し、圧延方向先頭部4
0mm厚から圧延方向後尾部50mm厚まで板厚傾斜し(累
積圧下率:73〜67%)、しかる後、仕上熱延開始ま
で、15秒空冷した後、6パスで仕上熱延を行い、2.
3mm厚の熱延板とした。この時の仕上熱延開始温度は、
865〜899℃であった。また比較のため、(B)同
一成分のスラブを1000℃に60分保持した後、5パ
スで65mm厚まで粗熱延し(累積圧下率:57%)、し
かる後、仕上熱延開始まで、15秒空冷した後、6パス
で仕上熱延を行い、2.3mm厚の熱延板とした。この時
の仕上熱延開始温度は、875〜920℃であった。さ
らに、比較のため、(C)同一成分のスラブを1000
℃に60分保持した後、7パスで30mm厚まで粗熱延し
(累積圧下率:80%)、しかる後、仕上熱延開始ま
で、25秒水冷した後、6パスで仕上熱延を行い、2.
3mm厚の熱延板とした。この時の仕上熱延開始温度は、
755〜799℃であった。
Then, (A) the slab is heated to 1000 ° C. for about 6 hours.
After holding for 0 minutes, rough hot rolling was performed in 7 passes, and the top 4
The sheet thickness was inclined from 0 mm thickness to 50 mm thickness at the rear end in the rolling direction (cumulative rolling reduction: 73 to 67%). Thereafter, the sample was air-cooled for 15 seconds until the start of finishing hot rolling. .
It was a hot-rolled sheet having a thickness of 3 mm. The finish hot rolling start temperature at this time is
865-899 ° C. For comparison, (B) a slab of the same component was held at 1000 ° C. for 60 minutes, and then roughly hot-rolled to a thickness of 65 mm in five passes (cumulative rolling reduction: 57%). After air cooling for 15 seconds, finish hot rolling was performed in 6 passes to obtain a 2.3 mm thick hot rolled sheet. The hot rolling start temperature at this time was 875 to 920 ° C. Further, for comparison, a slab of the same component (C)
After holding at 60 ° C. for 60 minutes, the sheet was roughly hot-rolled to a thickness of 30 mm in 7 passes (cumulative rolling reduction: 80%). Thereafter, it was cooled with water for 25 seconds until the start of the finish hot rolling, followed by finishing hot rolling in 6 passes. 2.
It was a hot-rolled sheet having a thickness of 3 mm. The finish hot rolling start temperature at this time is
755-799 ° C.

【0047】これらの熱延コイルを、酸洗し、約88%
の圧下率で冷延して、0.285mm厚の冷延コイルと
し、840℃に150秒保持する脱炭焼鈍(25%N2
+75%H2 、露点60℃)を施し、しかる後、750
℃で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3
ガスを混入させ鋼板に窒素を吸収せしめた。窒化後の鋼
板のN量は0.0225〜0.0241%であり、鋼板
の一次再結晶粒の平均粒径は、20〜31μmであっ
た。次いで、この鋼板にMgOを主成分とする焼鈍分離
剤を塗布し、公知の方法で、最終仕上焼鈍を施した。実
験条件と磁気特性の結果を表4に示す。
The hot-rolled coils were pickled, and about 88%
To a cold rolled coil having a thickness of 0.285 mm, and kept at 840 ° C. for 150 seconds by decarburizing annealing (25% N 2
+ 75% H 2 , dew point 60 ° C) and then 750
Annealing at 30 ° C. for 30 seconds, and NH 3 in an annealing atmosphere.
Gas was mixed to absorb nitrogen into the steel sheet. The N content of the steel sheet after nitriding was 0.0225 to 0.0241%, and the average grain size of the primary recrystallized grains of the steel sheet was 20 to 31 μm. Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and final finish annealing was performed by a known method. Table 4 shows the experimental conditions and the results of the magnetic characteristics.

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【発明の効果】本発明においては、粗熱延の累積圧下
率、粗熱延と仕上熱延間の時間を制御し、仕上熱延の開
始温度を制御し、酸可溶性Al量,N量を基に、仕上熱
延の開始温度のコイル内偏差を制御し、一次再結晶粒の
平均粒径を制御し、脱炭焼鈍後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施し、さらにはS
n添加を行うことにより、低温スラブ加熱でかつ熱延板
焼鈍を省略しても、なお良好な磁気特性を安定して得る
ことができるので、その工業的効果は大である。
In the present invention, the cumulative draft of the rough hot rolling, the time between the rough hot rolling and the finishing hot rolling are controlled, the starting temperature of the finishing hot rolling is controlled, and the amounts of the acid-soluble Al and N are reduced. Based on this, control the in-coil deviation of the start temperature of the finish hot rolling, control the average grain size of the primary recrystallized grains, and after decarburizing annealing , nitridize the steel sheet until the start of the secondary recrystallization in the final finish annealing. Processing, and then S
By adding n, even if the low-temperature slab heating is performed and the hot-rolled sheet annealing is omitted, good magnetic properties can be stably obtained, so that the industrial effect is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸可溶性Al量,N量、仕上熱延開始温度のコ
イル内偏差と磁束密度の変動の関係を表すグラフであ
る。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing a relationship between an in-coil deviation of an acid-soluble Al amount and an N amount and a finish hot rolling start temperature in a coil and a change in magnetic flux density.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 幸司 北九州市戸畑区飛幡町1番1号 新日本 製鐵株式会社 八幡製鐵所内 (56)参考文献 特開 平5−125445(JP,A) 特開 平5−9580(JP,A) 特開 平4−297525(JP,A) 特公 平5−67683(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 H01F 1/16 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Koji Yamazaki 1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi Nippon Steel Corporation Yawata Works (56) References JP-A-5-125445 (JP, A) JP-A-5-9580 (JP, A) JP-A-4-297525 (JP, A) JP-B 5-67683 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 H01F 1/16 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で C :0.075%以下、 Si:2.2〜4.5%、 酸可溶性Al:0.010〜0.060%、 N :0.0130%以下、 S+0.405Se:0.014%以下、 Mn:0.05〜0.8% 残部がFe及び不可避的不純物からなるスラブを128
0℃未満の温度で加熱し、熱延を行い、引き続き熱延板
焼鈍を施すことなく、圧下率80%以上の最終強圧下冷
延を行い、次いで脱炭焼鈍、最終仕上焼鈍を施して一方
向性電磁鋼板を製造する方法において、粗熱延の累積圧
下率を60%以上とし、粗熱延と仕上熱延の間の時間を
1秒以上とし、仕上熱延の開始温度を800〜1100
℃とし、スラブの酸可溶性Al,Nの含有量(重量
%)、仕上熱延の開始温度のコイル内偏差ΔFoT
(℃)を下記(1)式の範囲に制御し、脱炭焼鈍完了
後、最終仕上焼鈍開始までの一次再結晶粒の平均粒径を
18〜35μmとし、脱炭焼鈍後最終仕上焼鈍の二次再
結晶開始までの間に鋼板に0.0010重量%以上の窒
素吸収を行わせる窒化処理を施すことを特徴とする磁気
特性の優れた一方向性電磁鋼板の製造方法。 ΔFoT(℃)≦15+2500×{Al(%)−(27/14)×N(%)}……(1) 但し、Al:酸可溶性Al
1. C: 0.075% or less by weight, Si: 2.2 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: 0.0130% or less, S + 0. 405Se: 0.014% or less, Mn: 0.05 to 0.8% 128 slabs with the balance being Fe and unavoidable impurities
Heating is performed at a temperature of less than 0 ° C., hot rolling is performed, followed by final high-pressure cold rolling at a rolling reduction of 80% or more without performing hot-rolled sheet annealing, followed by decarburizing annealing and final finishing annealing. In the method for producing a grain-oriented electrical steel sheet, the cumulative draft of the rough hot rolling is set to 60% or more, the time between the rough hot rolling and the finish hot rolling is set to 1 second or more, and the starting temperature of the finish hot rolling is set to 800 to 1100.
℃, acid-soluble Al and N content (% by weight) of the slab, deviation in the coil ΔFoT of the starting temperature of the finish hot rolling
Controls (℃) in the following ranges (1), after completion of the decarburization annealing, the average particle size of the primary recrystallized grains to a final finish annealing started and 18~35Myuemu, the decarburization annealing after the final finish annealing two A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, comprising subjecting a steel sheet to a nitriding treatment for absorbing at least 0.0010% by weight of nitrogen before the start of the next recrystallization. ΔFoT (° C.) ≦ 15 + 2500 × {Al (%) − (27/14) × N (%)} (1) where Al: acid-soluble Al
【請求項2】 スラブの成分としてSn:0.01〜
0.15%を含有せしめることを特徴とする請求項1記
載の磁気特性の優れた一方向性電磁鋼板の製造方法。
2. Sn: 0.01 to as a component of the slab.
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein 0.15% is contained.
JP28118193A 1933-10-19 1993-11-10 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JP3169490B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP28118193A JP3169490B2 (en) 1993-11-10 1993-11-10 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
US08/322,909 US5472521A (en) 1933-10-19 1994-10-13 Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
DE69425406T DE69425406T2 (en) 1993-10-19 1994-10-17 Process for producing grain-oriented electrical steel sheet with excellent magnetic properties
EP94116331A EP0648847B1 (en) 1993-10-19 1994-10-17 Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
KR1019940026613A KR0139247B1 (en) 1993-10-19 1994-10-18 Production method of grain oriented electrical steel sheet having excellent magnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28118193A JP3169490B2 (en) 1993-11-10 1993-11-10 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH07138641A JPH07138641A (en) 1995-05-30
JP3169490B2 true JP3169490B2 (en) 2001-05-28

Family

ID=17635476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28118193A Expired - Lifetime JP3169490B2 (en) 1933-10-19 1993-11-10 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3169490B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW476790B (en) 1998-05-18 2002-02-21 Kawasaki Steel Co Electrical sheet of excellent magnetic characteristics and its manufacturing method
JP2009190278A (en) * 2008-02-14 2009-08-27 Seiko Epson Corp Liquid jet head and method for manufacturing the same, and liquid jet device
KR102405173B1 (en) * 2019-12-20 2022-06-02 주식회사 포스코 Grain oriented electrical steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JPH07138641A (en) 1995-05-30

Similar Documents

Publication Publication Date Title
EP0648847B1 (en) Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH08269571A (en) Production of grain-oriented silicon steel strip
JPH0443981B2 (en)
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3348217B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH0450380B2 (en)
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP2878501B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH07138643A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 13

EXPY Cancellation because of completion of term