JP2948454B2 - Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties - Google Patents

Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties

Info

Publication number
JP2948454B2
JP2948454B2 JP5261343A JP26134393A JP2948454B2 JP 2948454 B2 JP2948454 B2 JP 2948454B2 JP 5261343 A JP5261343 A JP 5261343A JP 26134393 A JP26134393 A JP 26134393A JP 2948454 B2 JP2948454 B2 JP 2948454B2
Authority
JP
Japan
Prior art keywords
annealing
hot
aln
steel sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5261343A
Other languages
Japanese (ja)
Other versions
JPH07118744A (en
Inventor
希瑞 石橋
康成 吉冨
洋一 美嶋
幸司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5261343A priority Critical patent/JP2948454B2/en
Priority to US08/322,909 priority patent/US5472521A/en
Priority to DE69425406T priority patent/DE69425406T2/en
Priority to EP94116331A priority patent/EP0648847B1/en
Priority to KR1019940026613A priority patent/KR0139247B1/en
Publication of JPH07118744A publication Critical patent/JPH07118744A/en
Application granted granted Critical
Publication of JP2948454B2 publication Critical patent/JP2948454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表わす数値としては、通常磁場の強さ8
00A/m における磁束密度B8が使用される。また、鉄
損特性を表わす数値としては、周波数50Hzで1.7テ
スラー(T)まで磁化した時の1kg当りの鉄損W17/50
を使用している。磁束密度は、鉄損特性の最大支配因子
であり、一般的にいって磁束密度が高いほど鉄損特性が
良好になる。なお、一般的に磁束密度を高くすると二次
再結晶粒が大きくなり、鉄損特性が不良となる場合があ
る。これに対しては、磁区制御により、二次再結晶粒の
粒径に拘らず、鉄損特性の改善をすることができる。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as an iron core material for transformers and other electric equipment, and is required to have excellent magnetic properties such as excitation properties and iron loss properties. Numerical values representing the excitation characteristics include a normal magnetic field strength of 8
A magnetic flux density B 8 at 00 A / m is used. Further, as a numerical value representing the iron loss characteristic, an iron loss W 17/50 per kg when magnetized at a frequency of 50 Hz to 1.7 Tesla (T).
You are using The magnetic flux density is the largest controlling factor of the iron loss characteristics. Generally, the higher the magnetic flux density, the better the iron loss characteristics. In general, when the magnetic flux density is increased, the secondary recrystallized grains become large, and the iron loss characteristics may become poor. In contrast, by controlling the magnetic domain, the iron loss characteristics can be improved regardless of the particle size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持ったいわゆるゴス組織を発達さ
せることにより、製造されている。良好な磁気特性を得
るためには、磁化容易軸である〈001〉を圧延方向に
高度に揃えることが必要である。
[0003] This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finish annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and a <001> axis in the rolling direction. Being manufactured. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction.

【0004】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに特公昭40−15644
号公報及び特公昭51−13469号公報記載の方法が
ある。前者においては主なインヒビターとしてMnS及
びAlNを、後者ではMnS,MnSe,Sb等を用い
ている。従って現在の技術においてはこれらのインヒビ
ターとして機能する析出物の大きさ、形態及び分散状態
を適正に制御することが不可欠である。MnSに関して
言えば、現在の工程では熱延前のスラブ加熱時にMnS
を一旦完全固溶させた後、熱延時に析出する方法がとら
れている。二次再結晶に必要な量のMnSを完全固溶す
るためには1400℃程度の温度が必要である。
[0004] As a typical production technique of such a high magnetic flux density unidirectional magnetic steel sheet, Japanese Patent Publication No. 40-15644 is disclosed.
And JP-B-51-13469. In the former, MnS and AlN are used as main inhibitors, and in the latter, MnS, MnSe, Sb and the like are used. Therefore, it is indispensable in the current technology to appropriately control the size, morphology, and dispersion state of the precipitates functioning as these inhibitors. With regard to MnS, in the current process, MnS is used during slab heating before hot rolling.
Is once dissolved completely and then precipitated during hot rolling. A temperature of about 1400 ° C. is required to completely dissolve the required amount of MnS for secondary recrystallization.

【0005】これは普通鋼のスラブ加熱温度に比べて2
00℃以上も高く、この高温スラブ加熱処理には以下に
述べるような不利な点がある。1)方向性電磁鋼専用の
高温スラブ加熱炉が必要。2)加熱炉のエネルギー原単
位が高い。3)溶融スケール量が増大し、いわゆるノロ
かき出し等に見られるように操業上の悪影響が大きい。
[0005] This is 2 times lower than the slab heating temperature of ordinary steel.
Since the temperature is higher than 00 ° C., this high-temperature slab heat treatment has the following disadvantages. 1) A high-temperature slab heating furnace dedicated to directional magnetic steel is required. 2) The unit energy consumption of the heating furnace is high. 3) The amount of the molten scale increases, and the adverse effect on the operation is large as seen in so-called scraping.

【0006】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並みに下げれば良いわけであるが、
このことは同時にインヒビターとして有効なMnSの量
を少なくするかあるいは全く用いないことを意味し、必
然的に二次再結晶の不安定化をもたらす。このため低温
スラブ加熱化を実現するためには何らかの形でMnS以
外の析出物等によりインヒビターを強化し、仕上焼鈍時
の正常粒成長の抑制を充分にする必要がある。
In order to avoid such a problem, the heating temperature of the slab may be reduced to the level of ordinary steel.
This means at the same time that the amount of MnS effective as an inhibitor is reduced or not used at all, which necessarily leads to instability of secondary recrystallization. Therefore, in order to realize low-temperature slab heating, it is necessary to reinforce the inhibitor with a precipitate other than MnS in some form, and to sufficiently suppress normal grain growth during finish annealing.

【0007】このようなインヒビターとしては、硫化物
の他、窒化物、酸化物及び粒界析出元素等が考えられ、
公知の技術として例えば次のようなものがあげられる。
特公昭54−24685号公報ではAs,Bi,Sn,
Sb等の粒界偏析元素を鋼中に含有することにより、ス
ラブ加熱温度を1050〜1350℃の範囲にする方法
が開示され、特開昭52−24116号公報ではAlの
他、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の
窒化物生成元素を含有することによりスラブ加熱温度を
1100〜1260℃の範囲にする方法を開示してい
る。また、特開昭57−158322号公報ではMn含
有量を下げ、Mn/Sの比率を2.5以下にすることに
より低温スラブ加熱化を行い、さらにCuの添加により
二次再結晶を安定化する技術を開示している。
As such inhibitors, nitrides, oxides, grain boundary precipitation elements and the like can be considered in addition to sulfides.
Known techniques include, for example, the following.
In Japanese Patent Publication No. 54-24687, As, Bi, Sn,
A method is disclosed in which a slab heating temperature is controlled to be in a range of 1050 to 1350 ° C. by containing a grain boundary segregation element such as Sb in steel. Japanese Patent Application Laid-Open No. 52-24116 discloses a method in which Zr, Ti, A method is disclosed in which a slab heating temperature is set in a range of 1100 to 1260 ° C. by containing a nitride-forming element such as B, Nb, Ta, V, Cr, and Mo. In Japanese Patent Application Laid-Open No. 57-158322, low-temperature slab heating is performed by lowering the Mn content and the Mn / S ratio to 2.5 or less, and further, the secondary recrystallization is stabilized by adding Cu. To disclose the technology.

【0008】これらインヒビターの補強と組み合わせて
金属組織の側から改良を加えた技術も開示された。すな
わち特開昭57−89433号公報ではMnに加えS,
Se,Sb,Bi,Pb,Sn,B等の元素を加え、こ
れにスラブの柱状晶率と二次冷延圧下率を組み合わせる
ことにより1100〜1250℃の低温スラブ加熱化を
実現している。さらに特開昭59−190324号公報
ではSあるいはSeに加え、Al及びBと窒素を主体と
してインヒビターを構成し、これに冷延後の一次再結晶
焼鈍時にパルス焼鈍を施すことにより二次再結晶を安定
化する技術を公開している。
[0008] Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S,
By adding elements such as Se, Sb, Bi, Pb, Sn, and B, and combining the columnar crystal ratio of the slab and the secondary cold rolling reduction, a low-temperature slab heating of 1100 to 1250 ° C. is realized. Further, in JP-A-59-190324, an inhibitor is constituted mainly of Al, B and nitrogen in addition to S or Se, and this is subjected to pulse annealing at the time of primary recrystallization annealing after cold rolling to perform secondary recrystallization. The technology to stabilize is disclosed.

【0009】このように方向性電磁鋼板製造における低
温スラブ加熱化実現のためには、これまでに多大な努力
が続けられてきている。さらに、特開昭59−5652
2号公報においてはMnを0.08〜0.45%、Sを
0.007%以下にすることにより低温スラブ加熱化を
可能にする技術が開示された。この方法により高温スラ
ブ加熱時のスラブ結晶粒粗大化に起因する製品の線状二
次再結晶不良発生の問題が解消された。
As described above, great efforts have been made so far to realize the low-temperature slab heating in the production of grain-oriented electrical steel sheets. Further, JP-A-59-5652
No. 2 discloses a technology that enables low-temperature slab heating by reducing Mn to 0.08 to 0.45% and S to 0.007% or less. By this method, the problem of occurrence of defective linear secondary recrystallization of a product due to coarsening of slab crystal grains during heating of a high-temperature slab was solved.

【0010】[0010]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としているもの
の、当然のことながら良好な磁気特性を安定して得る技
術でなければ、工業化できない。本発明者らは、低温ス
ラブ加熱の工業化のため、最終仕上焼鈍前の一次再結
晶の平均粒径制御と、熱延後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施すことを柱とす
る技術を構築してきた。この窒化処理により形成される
窒化物は、二次再結晶開始時点では、主にAlNになっ
ている。高温で変化しにくいインヒビターとして、Al
Nを選択しているわけであり、その意味において、スラ
ブ中にAlが含有されることは必須条件となる。
The method using the low-temperature slab heating originally aims at reducing the manufacturing cost, but it cannot be industrialized unless it is a technique to obtain good magnetic properties stably as a matter of course. The present inventors, for industrialization of low-temperature slab heating, control of the average grain size of primary recrystallization before final finish annealing, and nitriding treatment of steel sheet after hot rolling and before the start of secondary recrystallization of final finish annealing. Has been built as a pillar. The nitride formed by this nitriding treatment is mainly AlN at the start of the secondary recrystallization. Al as an inhibitor that does not change easily at high temperatures
N is selected, and in that sense, it is an essential condition that Al is contained in the slab.

【0011】他方、スラブ中にNが必要以上に含有され
ることは、本技術体系からして、再考の余地があった。
つまり、スラブ中に必須のAlと、ある程度以上のN量
があれば、スラブ加熱から脱炭焼鈍までの工程で、Al
Nが形成され、脱炭焼鈍時の一次再結晶粒の粒成長に影
響を与えることとなる。本発明の目的は、この上工程で
のAlNの析出制御方策を検討し、低温スラブ加熱で、
かつ、熱延板焼鈍を省略してもなお磁性変動のない優れ
た特性を有する一方向性電磁鋼板の製造方法を提供する
ことにある。
On the other hand, the fact that the slab contains N more than necessary has room for reconsideration in view of the present technical system.
In other words, if there is essential Al and a certain amount of N in the slab, in the process from slab heating to decarburizing annealing, Al
N is formed and affects the grain growth of primary recrystallized grains during decarburizing annealing. The purpose of the present invention is to examine a control method of AlN precipitation in the above process, and to perform low-temperature slab heating,
It is another object of the present invention to provide a method for producing a grain-oriented electrical steel sheet having excellent characteristics with no magnetic fluctuation even when the hot-rolled sheet annealing is omitted.

【0012】[0012]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。 (1)重量比で、C:0.075%以下、Si:2.2
〜4.5%、酸可溶性Al:0.010〜0.060%、
N:0.0130%以下、S+0.405Se:0.0
14%以下、Mn:0.05〜0.8%を含有し、残部
がFe及び不可避的不純物からなるスラブを1280℃
未満の温度で加熱し、熱延を行い、引き続き熱延板焼鈍
を施すことなく、圧下率80%以上の最終強圧下冷延を
行い、次いで脱炭焼鈍、最終仕上焼鈍を施して一方向性
電磁鋼板を製造する方法において、熱延板でのAlNと
してのN量(重量比)をN as AlNとした時N−N a
sAlN≦0.0030%、かつ(N as AlN)/N
≧0.55とし、脱炭焼鈍完了後、最終仕上焼鈍開始ま
での一次再結晶粒の平均粒径を18〜35μmとし、
炭焼鈍後、最終仕上焼鈍の二次再結晶開始までの間に鋼
板に0.0010重量%以上の窒素吸収を行わせる窒化
処理を施すことを特徴とする磁気特性の優れた一方向性
電磁鋼板の安定製造方法。 (2)前項において、スラブの成分としてさらにSn:
0.01〜0.15%を含有せしめることを特徴とする
磁気特性の優れた一方向性電磁鋼板の安定製造方法。
The gist of the present invention is as follows. (1) By weight ratio, C: 0.075% or less, Si: 2.2
~ 4.5%, acid soluble Al: 0.010-0.060%,
N: 0.0130% or less, S + 0.405Se: 0.0
A slab containing 14% or less, Mn: 0.05 to 0.8%, and the balance being Fe and inevitable impurities is 1280 ° C.
Heating at a temperature less than or equal to, hot-rolling, and subsequently performing cold rolling under final high-pressure reduction of 80% or more without performing hot-rolled sheet annealing, and then performing decarburizing annealing and final finishing annealing to achieve unidirectionality In the method for producing an electromagnetic steel sheet, when the amount (weight ratio) of N as AlN in a hot-rolled sheet is defined as N as AlN, N-Na
sAlN ≦ 0.0030% and (N as AlN) / N
≧ 0.55, after completion decarburization annealing, an average particle size of the primary recrystallized grains to a final finish annealing started and 18~35Myuemu, de
A unidirectional electrical steel sheet having excellent magnetic properties, characterized in that the steel sheet is subjected to a nitriding treatment for absorbing 0.0010% by weight or more of nitrogen after the charcoal annealing and before the second recrystallization of the final finish annealing is started. Stable production method. (2) In the preceding paragraph, Sn:
A stable production method for a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by containing 0.01 to 0.15%.

【0013】[0013]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程をはさ
んでスラブとし、引き続き熱間圧延して熱延板とし、熱
延板を焼鈍することなく、次いで圧下率が80%以上と
なる最終冷延を施し、次いで、脱炭焼鈍、最終仕上焼鈍
を順次行うことによって製造される。
The grain-oriented electrical steel sheet to which the present invention is directed is:
The molten steel obtained by the conventional steelmaking method is cast by the continuous casting method or the ingot-making method, and if necessary, the slab is sandwiched by the sizing process, and subsequently hot-rolled to form a hot-rolled sheet. It is manufactured by performing final cold rolling in which the rolling reduction becomes 80% or more without annealing the rolled sheet, and then sequentially performing decarburizing annealing and final finishing annealing.

【0014】本発明者らは、熱延板焼鈍を省略した1回
冷延法で低温スラブ加熱材を製造する場合の磁性の変動
の原因とその解決策について詳細に検討した。そしてそ
の結果、熱延板でのAlN析出量を制御することによっ
て、その磁性変動を激減できることをつきとめた。
The present inventors have studied in detail the causes of magnetic fluctuations and the solutions to the problem when a low-temperature slab heating material is manufactured by a single cold rolling method omitting hot-rolled sheet annealing. As a result, it has been found that the magnetic fluctuation can be drastically reduced by controlling the amount of AlN precipitation on the hot-rolled sheet.

【0015】まず、実験結果を基に、本発明の効果を説
明する。図1に、熱延板のAlN析出量と製品の磁束密
度の変動との関係を示す。この場合、重量比でC:0.
025〜0.051%、Si:2.6〜3.1%、酸可
溶性Al:0.021〜0.041%、N:0.001
8〜0.0095%、S:0.005〜0.007%、
Mn:0.09〜0.17%を含有し、残部Fe及び不
可避的不純物からなる250mm厚のスラブを作成した。
そして1000〜1250℃の温度に約90分保持した
後、7パスで粗熱延を行い、40mm厚とし、次いで、6
パスで仕上熱延を行い、2.3mm厚の熱延板とした。
First, the effects of the present invention will be described based on experimental results. FIG. 1 shows the relationship between the amount of AlN deposited on the hot-rolled sheet and the fluctuation of the magnetic flux density of the product. In this case, C: 0.
025-0.051%, Si: 2.6-3.1%, acid-soluble Al: 0.021-0.041%, N: 0.001
8-0.0095%, S: 0.005-0.007%,
A 250 mm thick slab containing Mn: 0.09 to 0.17%, the balance being Fe and unavoidable impurities was prepared.
Then, after holding at a temperature of 1000 to 1250 ° C. for about 90 minutes, rough hot rolling is performed in 7 passes to obtain a thickness of 40 mm, and then 6
Finish hot rolling was performed by a pass to obtain a 2.3 mm thick hot rolled sheet.

【0016】かかる熱延板に熱延板焼鈍を施すことなく
約85%の圧下率で強圧下圧延を行って最終板厚0.3
35mmの冷延板とし、810℃、820℃、83
0℃、840℃の各温度に150秒保持する4条件の
脱炭焼鈍を施し、次いで、750℃に30秒保持する焼
鈍時、焼鈍雰囲気中にNH3 ガスを混入させ、鋼板に窒
素を吸収せしめた。
The hot-rolled sheet is subjected to strong rolling at a rolling reduction of about 85% without subjecting the hot-rolled sheet to annealing to obtain a final sheet thickness of 0.3.
35 mm cold rolled sheet, 810 ° C, 820 ° C, 83
Four conditions of decarburizing annealing at 150 ° C. and 150 ° C. for 150 seconds, and then annealing at 750 ° C. for 30 seconds, mixing NH 3 gas into the annealing atmosphere to absorb nitrogen into the steel sheet I was sorry.

【0017】この窒化処理後のN量は、0.0198〜
0.0253重量%であり、一次再結晶粒の平均粒径
(円相当直径の平均値)は、19〜28μmであった。
かかる窒化処理後の鋼板にMgOを主成分とする焼鈍分
離剤を塗布し、最終仕上焼鈍を行った。しかる後、製品
の磁束密度を測定し、同一成分、同一熱延条件の熱延板
に対してとった4つの脱炭焼鈍条件でのB8 の最高値と
最低値の差ΔB8 を求めた。また、本実験における熱延
板において、AlNとして存在するNの量(重量比)
(N as AlN)を化学分析で求め、N−N as Al
N,(N as AlN)/Nの量を各試料に対して計算し
た。
The amount of N after the nitriding treatment is 0.0198 to
0.0253% by weight, and the average particle size of primary recrystallized grains (average value of equivalent circle diameters) was 19 to 28 µm.
An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed. Thereafter, the magnetic flux density of the product was measured, and the difference ΔB 8 between the highest value and the lowest value of B 8 under the four conditions of decarburization annealing obtained for the hot-rolled sheet having the same components and the same hot-rolling conditions was determined. . In addition, in the hot-rolled sheet in this experiment, the amount of N present as AlN (weight ratio)
(N as AlN) is determined by chemical analysis, and N-N as Al
The amount of N, (N as AlN) / N was calculated for each sample.

【0018】図1から明らかなように、熱延板におい
て、N−N as AlN≦0.0030%かつ(N as A
lN)/N≧0.55の時にΔB8 が0.02以下と
なり、安定した磁気特性となっている。図1に示した熱
延板でのAlN析出量を制御する効果のメカニズムにつ
いて、必ずしも明らかではないが、本発明者らは、以下
のように推定している。
As is apparent from FIG. 1, in the hot-rolled sheet, NN as AlN ≦ 0.0030% and (N as A
When 1N) /N≧0.55, ΔB 8 becomes 0.02 T or less, and stable magnetic characteristics are obtained. The mechanism of the effect of controlling the amount of AlN precipitation in the hot-rolled sheet shown in FIG. 1 is not necessarily clear, but the present inventors presume as follows.

【0019】本発明は、本発明者らが特開平2−182
866号公報で開示した脱炭焼鈍後の結晶組織を適切な
ものにすることを基本とする技術体系に属する。一方、
スラブ加熱完了時に固溶していたNは、熱延中、または
脱炭焼鈍時(特に昇温時)微細な窒化物(主にAlN)
となると考えられる。この微細な窒化物は、脱炭焼鈍時
のわずかの温度変化においても、サイズ、析出量が変動
すると考えられる。
The present invention has been disclosed by the present inventors in Japanese Patent Laid-Open No. 2-182.
It belongs to a technical system disclosed in Japanese Patent Publication No. 866 which is based on making the crystal structure after decarburization annealing appropriate. on the other hand,
N dissolved in the slab at the time of completion of slab heating is fine nitride (mainly AlN) during hot rolling or during decarburizing annealing (especially during heating).
It is thought that it becomes. It is considered that the size and the amount of precipitation of this fine nitride fluctuate even with a slight temperature change during decarburization annealing.

【0020】しかしながら、析出物による粒成長抑制効
果(Zener因子)は、析出物のサイズに逆比例し、
その体積分率に比例する。従って、スラブ加熱完了時の
固溶N量を減少しすぎても、析出物の粒成長抑制効果が
小さくなりすぎ、その結果、脱炭焼鈍時の粒成長が顕著
になりすぎ、結晶組織の制御が困難となる。
However, the grain growth suppressing effect (Zener factor) of the precipitate is inversely proportional to the size of the precipitate.
It is proportional to its volume fraction. Therefore, even if the amount of solute N at the time of completion of slab heating is excessively reduced, the effect of suppressing grain growth of precipitates becomes too small, and as a result, the grain growth during decarburization annealing becomes too remarkable, and the control of the crystal structure Becomes difficult.

【0021】このように、上工程でのAlNの析出制御
は重要であるが、成分、熱延等の工程条件調整では、そ
の制御が容易でなく、本発明の如く、熱延板焼鈍を省略
した場合には、特に、AlN析出制御の新しい規範が必
要となる。この点において、本発明者らは広範な実験、
解析の結果、図1の知見を得た。
As described above, it is important to control the precipitation of AlN in the above process, but it is not easy to control the process conditions such as the components and hot rolling, and the annealing of the hot rolled sheet is omitted as in the present invention. In such a case, a new norm for controlling AlN precipitation is required. In this regard, we have performed extensive experiments,
As a result of the analysis, the knowledge shown in FIG. 1 was obtained.

【0022】つまり熱延板において、N as AlNの量
とN量に対する比率を制御することによって、低温スラ
ブ加熱において熱延板焼鈍を省略してもなお良好な磁気
特性が安定して得られる。この結果は、脱炭焼鈍時結晶
組織制御を容易ならしめるAlNの析出状況があること
を示しており、それを、熱延板の状態でチェックできる
ということを示唆していると考えられる。
That is, by controlling the amount of N as AlN and the ratio to the amount of N in the hot-rolled sheet, good magnetic properties can be stably obtained even if the hot-rolled sheet annealing is omitted in low-temperature slab heating. This result indicates that there is a precipitation state of AlN that facilitates the control of the crystal structure during the decarburizing annealing, and is considered to suggest that it can be checked in the state of the hot-rolled sheet.

【0023】次に本発明の構成要件の限定理由について
述べる。先ず、スラブの成分と、スラブ加熱温度に関し
て限定理由を詳細に説明する。Cは、多くなりすぎると
脱炭焼鈍時間が長くなり経済的でないので0.075重
量%(以下単に%と略述)以下とした。なお磁気特性の
面で特に好ましい範囲は0.020〜0.070%であ
る。Siは4.5%を超えると冷延時の割れが著しくな
るので4.5%以下とした。又、2.2%未満では素材
の固有抵抗が低すぎ、トランス鉄心材料として必要な低
鉄損が得られないので2.2%以上とした。
Next, the reasons for limiting the constituent elements of the present invention will be described. First, the reasons for limiting the components of the slab and the slab heating temperature will be described in detail. If C is excessively large, the decarburizing annealing time becomes long and it is not economical. A particularly preferable range in terms of magnetic properties is 0.020 to 0.070%. If the content of Si exceeds 4.5%, cracking at the time of cold rolling becomes remarkable, so the content is set to 4.5% or less. If it is less than 2.2%, the specific resistance of the material is too low, and a low iron loss required as a transformer core material cannot be obtained.

【0024】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)Nを確保するため、酸可溶性A
lとして0.010%以上が必要である。酸可溶性Al
が0.060%を超えると熱延板のAlNが不適切とな
り二次再結晶が不安定になるので0.060%以下とし
た。Nについては、0.0130%を超えるとブリスタ
ーと呼ばれる鋼板表面のふくれが発生するので0.01
30%以下とした。
Al is AlN necessary for stabilizing secondary recrystallization.
Alternatively, to secure (Al, Si) N, acid-soluble A
l must be 0.010% or more. Acid soluble Al
Exceeds 0.060%, the AlN of the hot-rolled sheet becomes inappropriate and secondary recrystallization becomes unstable. When N exceeds 0.0130%, blisters on the surface of the steel plate called blisters are generated.
30% or less.

【0025】MnS,MnSeが鋼中に存在しても、製
造工程の条件を適正に選ぶことによって磁気特性を良好
にすることが可能である。しかしながらSやSeが高い
と線状細粒と呼ばれる二次再結晶不良部が発生する傾向
があり、この二次再結晶不良部の発生を予防するために
は(S+0.405Se)≦0.014%とすべきであ
る。SあるいはSeが上限値を超える場合には、製造条
件をいかに変更しても二次再結晶不良部が発生する確率
が高くなり好ましくない。また最終仕上焼鈍で純化する
のに要する時間が長くなりすぎて好ましくなく、このよ
うな観点からSあるいはSeを不必要に増すことは意味
がない。
Even if MnS and MnSe are present in the steel, it is possible to improve the magnetic properties by properly selecting the conditions of the manufacturing process. However, when S or Se is high, a secondary recrystallization defective portion called linear fine grain tends to occur. To prevent the occurrence of the secondary recrystallization defective portion, (S + 0.405Se) ≦ 0.014 Should be%. If S or Se exceeds the upper limit, the probability of occurrence of a secondary recrystallization defective portion increases, no matter how the manufacturing conditions are changed, which is not preferable. In addition, the time required for purification in the final finish annealing is too long, which is not preferable. From such a viewpoint, it is meaningless to increase S or Se unnecessarily.

【0026】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、つまりストリップの側縁部が波形状となり
製品歩留りを低下させる問題が発生する。一方、Mn量
が0.8%を超えると製品の磁束密度を低下させ、好ま
しくないので、Mn量の上限を0.8%とした。
The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, the shape (flatness) of the hot rolled sheet obtained by hot rolling, that is, the side edge portion of the strip becomes corrugated, which causes a problem of lowering the product yield. On the other hand, if the Mn content exceeds 0.8%, the magnetic flux density of the product is lowered, which is not preferable. Therefore, the upper limit of the Mn content is set to 0.8%.

【0027】Snは、粒界偏析元素として知られてお
り、粒成長を抑制する元素である。一方、スラブ加熱時
Snは完全固溶しており、通常考えられる数10℃の温
度差を有する加熱時のスラブ内でも一様に固溶している
と考えられる。従って、温度差があるにもかかわらず加
熱時のスラブ内で均一に分布しているSnは、脱炭焼鈍
時の粒成長抑制効果についても場所的に均一に作用する
と考えられる。このため、AlNの場所的不均一に起因
する脱炭焼鈍時の粒成長の場所的不均一を、Snは希釈
する効果があるものと考えられる。従って、Snを添加
することはさらに製品の磁気特性の変動を低減させるの
に有効である。このSnの適正範囲を0.01〜0.1
5%とした。この下限値未満では、粒成長抑制効果が少
なすぎて好ましくない。一方、この上限値を超えると鋼
板の窒化が難しくなり、二次再結晶不良の原因となるた
め好ましくない。
Sn is known as a grain boundary segregation element and is an element that suppresses grain growth. On the other hand, it is considered that Sn is completely dissolved in the slab when heated, and is uniformly dissolved in the slab during heating having a temperature difference of several tens degrees Celsius which is normally considered. Therefore, it is considered that Sn which is uniformly distributed in the slab at the time of heating despite the temperature difference also acts uniformly in terms of the grain growth suppressing effect at the time of decarburizing annealing. For this reason, it is considered that Sn has the effect of diluting the spatial nonuniformity of the grain growth during the decarburizing annealing caused by the spatial nonuniformity of the AlN. Therefore, the addition of Sn is effective in further reducing the variation in the magnetic properties of the product. The proper range of Sn is 0.01 to 0.1.
5%. Below this lower limit, the effect of suppressing grain growth is undesirably too small. On the other hand, if the upper limit is exceeded, nitriding of the steel sheet becomes difficult, which causes secondary recrystallization failure, which is not preferable.

【0028】この他インヒビター構成元素として知られ
ているSb,Cu,Cr,Ni,B,Ti,Nb等を微
量に含有することはさしつかえない。特に、B,Ti,
Nb等窒化物構成元素は、スラブ加熱時の鋼中の固溶N
量を低減するために積極的に添加してもかまわない。こ
れらのAlよりNとの親和力の高い元素がある場合に
は、後述する熱延板でのN−N as AlN,(N as A
lN)/Nの値を計算する際に、全N量から含有する
B,Ti,Nbのために形成される窒化物のN量を差し
引きすることは、本発明における効果の精度を高める上
で好ましい。スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。
In addition, trace amounts of Sb, Cu, Cr, Ni, B, Ti, Nb, etc., which are known as inhibitor constituent elements, may be contained. In particular, B, Ti,
The nitride constituent elements such as Nb are dissolved N in the steel during slab heating.
It may be added positively to reduce the amount. In the case where there is an element having a higher affinity for N than Al, when N-N as AlN, (N as A
In calculating the value of (1N) / N, subtracting the N amount of the nitride formed for the contained B, Ti, and Nb from the total N amount is effective in improving the accuracy of the effect in the present invention. preferable. The slab heating temperature was limited to less than 1280 ° C. for the purpose of reducing costs to the same level as ordinary steel. Preferably it is 1200 ° C or lower.

【0029】加熱されたスラブは、引き続き熱延されて
熱延板となる。熱延工程は、通常100〜400mm厚の
スラブを加熱した後、いずれも複数回のパスで行う粗熱
延と仕上熱延よりなる。粗熱延の方法については特に限
定するものではないが、AlN析出を促進するために、
積極的に水冷を行う等の方策をとることは好ましい。粗
熱延後仕上熱延までの時間については、特に限定するも
のではないが、1秒以上かけて仕上熱延を開始すること
は、AlNの析出促進の点で好ましい。
The heated slab is subsequently hot-rolled into a hot-rolled sheet. The hot rolling process generally comprises a rough hot rolling and a finishing hot rolling, which are performed in a plurality of passes after heating a slab having a thickness of 100 to 400 mm. Although there is no particular limitation on the method of rough hot rolling, in order to promote AlN precipitation,
It is preferable to take measures such as actively cooling the water. The time from rough hot rolling to finish hot rolling is not particularly limited, but it is preferable to start finishing hot rolling over 1 second or more in terms of accelerating the precipitation of AlN.

【0030】引き続く仕上熱延は、通常4〜10パスの
高速連続圧延で行われる。通常仕上熱延の圧下配分は前
段が圧下率が高く後段にいくほど圧下率と下げて形状を
良好なものとしている。圧延速度は通常100〜300
0m/minとなっており、パス間の時間は0.01〜10
0秒となっている。
The subsequent finishing hot rolling is usually performed by high-speed continuous rolling of 4 to 10 passes. Normally, the reduction distribution of the finish hot rolling is such that the former has a higher reduction ratio and the lower the reduction ratio is, the better the shape is. Rolling speed is usually 100-300
0m / min and the time between passes is 0.01-10
0 seconds.

【0031】本発明では、仕上熱延の条件を限定してい
るものではないが、後述する熱延板でのAlN析出の適
正範囲を実現するため、仕上熱延開始温度、終了温度を
調整したり、圧下配分を調整することは積極的に行うべ
きである。AlNの析出しやすい温度域(800〜95
0℃)、またはその近傍で、積極的に圧下率を高め、加
工誘起析出を生ぜしめることも、AlN析出量制御に有
効な手段となる。
Although the present invention does not limit the conditions of the hot-rolling process, the starting temperature and the ending temperature of the hot-rolling process are adjusted in order to realize an appropriate range of AlN precipitation on the hot-rolled sheet described later. Or to adjust the rolling distribution should be aggressive. Temperature range where AlN is likely to precipitate (800-95)
At or near 0 ° C.), aggressively increasing the rolling reduction to cause work-induced precipitation is also an effective means for controlling the amount of AlN precipitation.

【0032】熱延の最終パス後、鋼板は通常0.1〜1
00秒程度空冷された後水冷され300〜700℃の温
度で巻取られ、徐冷される。この冷却プロセスについて
は特に限定されるものではないが、熱延後1秒以上空冷
等を行い、鋼板をAlNの析出温度域にできるだけ長時
間保持する等の方法をAlN析出量制御に利用すること
は好ましい。
After the final pass of hot rolling, the steel sheet is usually 0.1 to 1
After air cooling for about 00 seconds, it is water cooled, wound up at a temperature of 300 to 700 ° C., and gradually cooled. The cooling process is not particularly limited, but a method of performing air cooling or the like for at least one second after hot rolling and maintaining the steel sheet in the AlN precipitation temperature range for as long as possible is used for controlling the amount of AlN precipitation. Is preferred.

【0033】かかる熱延後の鋼板のN as AlNの量
は、N−N as AlN≦0.0030%かつ、(N as
AlN)/N≧0.55としなければならない。という
のは、図1に示した如く、この範囲にAlN析出を制御
することによって、良好な磁気特性が安定して得られる
からである。
The amount of N as AlN in the steel sheet after the hot rolling is as follows: N−N as AlN ≦ 0.0030% and (N as
AlN) /N≧0.55. This is because, as shown in FIG. 1, by controlling the precipitation of AlN in this range, good magnetic characteristics can be stably obtained.

【0034】この熱延板は次いで、熱延板焼鈍を施すこ
となく圧下率80%以上の最終冷延を行う。最終冷延の
圧下率を80%以上としたのは、圧下率を上記範囲とす
ることによって、脱炭板において尖鋭な{110}〈0
01〉方位粒と、これに蚕食されやすい対応方位粒
({111}〈112〉方位粒等)を適正量得ることが
でき、磁束密度を高める上で好ましいためである。かか
る冷延後の鋼板は、通常の方法で脱炭焼鈍、焼鈍分離剤
塗布、最終仕上焼鈍を施されて最終製品となる。ここで
脱炭焼鈍完了後、最終仕上焼鈍開始までの間の一次再結
晶粒の平均粒径を18〜35μmに制御することは、必
要である。その理由はこの平均粒径の範囲で良好な磁束
密度が得られやすく、かつ粒径変動に対する磁束密度の
変化が少ないからである。
This hot rolled sheet is then subjected to final cold rolling at a rolling reduction of 80% or more without performing hot rolled sheet annealing. The reason why the rolling reduction of the final cold rolling is set to 80% or more is that the sharpening {110} <0 in the decarburized plate is achieved by setting the rolling reduction within the above range.
This is because an appropriate amount of <01> orientation grains and corresponding orientation grains (e.g., {111} <112> orientation grains) easily susceptible to silkworm can be obtained, which is preferable in increasing the magnetic flux density. The steel sheet after such cold rolling is subjected to decarburizing annealing, application of an annealing separating agent, and final finish annealing by a usual method, and becomes a final product. Here, it is necessary to control the average grain size of the primary recrystallized grains from 18 to 35 μm after the completion of the decarburization annealing until the start of the final finish annealing. The reason is that a good magnetic flux density is easily obtained in the range of the average particle diameter, and the change of the magnetic flux density with respect to the fluctuation of the particle diameter is small.

【0035】そして脱炭焼鈍後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施すと規定したの
は、本発明の如き低温スラブ加熱を前提とするプロセス
では、二次再結晶に必要なインヒビター強度が不足がち
になるからである。窒化の方法としては特に限定するも
のではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3
スを混入させ窒化する方法、プラズマを用いる方法、焼
鈍分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒
化物が分離してできた窒素を鋼板に吸収させる方法、最
終仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化
する方法等いずれの方法でもよい。窒化量については二
次再結晶を安定して発現させるために10ppm 以上は必
要である。
The reason that the steel sheet is subjected to the nitriding treatment after the decarburizing annealing and before the start of the secondary recrystallization of the final finish annealing is that the process premised on the low-temperature slab heating as in the present invention is performed by This is because the inhibitor strength required for recrystallization tends to be insufficient. The method of nitriding is not particularly limited, but may be a method of nitriding by mixing NH 3 gas in the annealing atmosphere after decarburizing annealing, a method using plasma, adding a nitride to the annealing separator, and increasing the final finish annealing. Any method may be used, such as a method of absorbing nitrogen formed by separating nitrides in a temperature into a steel sheet, or a method of nitriding a steel sheet by increasing the N 2 partial pressure in an atmosphere of final finish annealing. The amount of nitriding is required to be 10 ppm or more in order to stably develop secondary recrystallization.

【0036】[0036]

【実施例】【Example】

実施例1 重量%で、Si:3.01%、C:0.028%、酸可
溶性Al:0.034%、N:0.0065%、Mn:
0.12%、S:0.007%を含有する250mm厚の
スラブを(1)1250℃、(2)1100℃の2条件
で、各1時間保持した後、7パスで40mm厚まで粗熱延
し、しかる後、6パスで仕上熱延を行い、2.3mm厚の
熱延板とした。この時、(A)粗熱延中に、強制水冷を
行い、仕上熱延開始温度をスラブ加熱温度より、90〜
100℃降下させる熱延方法、(B)Aより軽度の水冷
により、仕上熱延開始温度をスラブ加熱温度より、30
〜50℃降下させる熱延方法なる2通りの熱延を行っ
た。
Example 1 By weight%, Si: 3.01%, C: 0.028%, acid-soluble Al: 0.034%, N: 0.0065%, Mn:
A 250 mm thick slab containing 0.12% and S: 0.007% is held for 1 hour under each of (1) 1250 ° C. and (2) 1100 ° C., and then rough-heated to 40 mm thick in 7 passes. Then, finish hot rolling was performed in 6 passes to obtain a 2.3 mm thick hot rolled sheet. At this time, during (A) rough hot rolling, forced water cooling is performed, and the finish hot rolling start temperature is set to 90-
The hot rolling method of lowering by 100 ° C., (B) by water cooling lighter than A, the finishing hot rolling starting temperature is 30
Two types of hot rolling were performed as a hot rolling method in which the temperature was lowered by ~ 50 ° C.

【0037】この熱延板を酸洗し約85%の圧下率で冷
延して、0.335mm厚の冷延板とした。しかる後、
810℃、820℃、830℃、840℃の各温
度に150秒保持する4種類の脱炭焼鈍(25%N2
75%H2 、露点62℃)を施し、しかる後、750℃
で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3
スを混入させ鋼板に窒素を吸収せしめた。窒化後の鋼板
のN量は0.0185〜0.0245%であり、鋼板の
一次再結晶粒の平均粒径は、20〜28μmであった。
次いで、この鋼板にMgOを主成分とする焼鈍分離剤を
塗布し公知の方法で最終仕上焼鈍を施した。熱延板のN
as AlNを分析し、N−N as AlN及び、(N as
AlN)/Nを計算した。実験条件と磁気特性の結果を
表1に示す。
The hot rolled sheet was pickled and cold rolled at a rolling reduction of about 85% to obtain a 0.335 mm thick cold rolled sheet. After a while
Four types of decarburizing annealing (25% N 2 +) maintained at 810 ° C., 820 ° C., 830 ° C., and 840 ° C. for 150 seconds.
75% H 2 , dew point 62 ° C) and then 750 ° C
For 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding was 0.0185 to 0.0245%, and the average grain size of the primary recrystallized grains of the steel sheet was 20 to 28 μm.
Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and final finish annealing was performed by a known method. N of hot rolled sheet
As AlN is analyzed, and N-N as AlN and (N as
(AlN) / N was calculated. Table 1 shows the experimental conditions and the results of the magnetic characteristics.

【0038】[0038]

【表1】 [Table 1]

【0039】実施例2 重量%で、Si:3.15%、C:0.035%、酸可
溶性Al:0.032%、N:0.0060%、Mn:
0.13%、S:0.007%を含有する250mm厚の
スラブを1150℃で、1時間保持した後、7パスで4
0mm厚まで粗熱延し、しかる後、6パスで仕上熱延を行
い、2.3mm厚の熱延板とした。この時、(A)粗熱延
後に、強制水冷を行い、仕上熱延開始温度をスラブ加熱
温度より、70〜80℃降下させる熱延方法、(B)A
の水冷を行わず、仕上熱延開始温度をスラブ加熱温度よ
り、30〜50℃降下させる熱延方法、(C)粗熱延後
に、30秒空冷を行い、仕上熱延開始温度をスラブ加熱
温度より、65〜75℃降下させる熱延方法なる3通り
の熱延を行った。
EXAMPLE 2 Si: 3.15%, C: 0.035%, acid-soluble Al: 0.032%, N: 0.0060%, Mn:
A 250 mm thick slab containing 0.13% and S: 0.007% was kept at 1150 ° C. for 1 hour, and then 4 passes in 7 passes.
The sheet was roughly hot-rolled to a thickness of 0 mm and then hot-rolled in 6 passes to give a 2.3 mm-thick hot-rolled sheet. At this time, (A) a hot rolling method in which forced water cooling is performed after the rough hot rolling to lower the finish hot rolling start temperature by 70 to 80 ° C. from the slab heating temperature, (B) A
(C) Air-cooling is performed for 30 seconds after rough hot rolling, and the finishing hot rolling start temperature is set to the slab heating temperature. Thus, three types of hot rolling were performed by a hot rolling method in which the temperature was lowered by 65 to 75 ° C.

【0040】この熱延板を酸洗し約88%の圧下率で冷
延して、0.285mm厚の冷延板とした。しかる後、
810℃、820℃、830℃、840℃の各温
度に150秒保持する4種類の脱炭焼鈍(25%N2
75%H2 、露点62℃)を施し、しかる後、750℃
で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3
スを混入させ鋼板に窒素を吸収せしめた。窒化後の鋼板
のN量は0.0190〜0.0231%であり、鋼板の
一次再結晶粒の平均粒径は、21〜27μmであった。
次いで、この鋼板にMgOを主成分とする焼鈍分離剤を
塗布し公知の方法で最終仕上焼鈍を施した。熱延板のN
as AlNを分析し、N−N as AlN及び、(N as
AlN)/Nを計算した。実験条件と磁気特性の結果を
表2に示す。
The hot rolled sheet was pickled and cold rolled at a rolling reduction of about 88% to obtain a cold rolled sheet having a thickness of 0.285 mm. After a while
Four types of decarburizing annealing (25% N 2 +) maintained at 810 ° C., 820 ° C., 830 ° C., and 840 ° C. for 150 seconds.
75% H 2 , dew point 62 ° C) and then 750 ° C
For 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding was 0.0190 to 0.0231%, and the average particle size of the primary recrystallized grains of the steel sheet was 21 to 27 μm.
Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and final finish annealing was performed by a known method. N of hot rolled sheet
As AlN is analyzed, and N-N as AlN and (N as
(AlN) / N was calculated. Table 2 shows the experimental conditions and the results of the magnetic properties.

【0041】[0041]

【表2】 [Table 2]

【0042】実施例3 重量%で、Si:2.85%、C:0.031%、酸可
溶性Al:0.035%、N:0.0058%、Mn:
0.11%、S:0.006%を含有し、さらに、
(1)Sn<0.005%、(2)Sn:0.06%、
(3)Sn:0.11%を含有する250mm厚の3種類
のスラブを1050℃で、1時間保持した後、7パスで
30mm厚まで粗熱延し、しかる後、6パスで仕上熱延を
行い、2.8mm厚の熱延板とした。この時、(A)粗熱
延の各パス間に、強制水冷を行い、仕上熱延開始温度を
スラブ加熱温度より、80〜90℃降下させる熱延方
法、(B)Aの水冷を行わず、仕上熱延開始温度をスラ
ブ加熱温度より、30〜50℃降下させる熱延方法なる
2通りの熱延を行った。
Example 3 By weight%, 2.85% of Si, 0.031% of C, 0.035% of acid-soluble Al, 0.0058% of N, Mn:
0.11%, S: 0.006%,
(1) Sn <0.005%, (2) Sn: 0.06%,
(3) After holding three types of slabs of 250 mm thickness containing Sn: 0.11% at 1050 ° C. for 1 hour, rough hot rolling to 30 mm thickness by 7 passes, and then finish hot rolling by 6 passes. And a hot rolled sheet having a thickness of 2.8 mm was obtained. At this time, (A) a hot rolling method in which forced water cooling is performed between each pass of the rough hot rolling to lower the finishing hot rolling starting temperature by 80 to 90 ° C. from the slab heating temperature, and (B) water cooling of A is not performed. Then, two types of hot rolling were performed: a hot rolling method in which the finishing hot rolling start temperature was lowered by 30 to 50 ° C. from the slab heating temperature.

【0043】この熱延板を酸洗し約84%の圧下率で冷
延して、0.46mm厚の冷延板とした。しかる後、8
10℃、820℃、830℃、840℃の各温度
に250秒保持する4種類の脱炭焼鈍(25%N2 +7
5%H2 、露点62℃)を施し、しかる後、750℃で
30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3 ガス
を混入させ鋼板に窒素を吸収せしめた。窒化後の鋼板の
N量は0.0220〜0.0242%であり、鋼板の一
次再結晶粒の平均粒径は、21〜28μmであった。次
いで、この鋼板にMgOを主成分とする焼鈍分離剤を塗
布し公知の方法で最終仕上焼鈍を施した。熱延板のN a
s AlNを分析し、N−N as AlN及び、(N as A
lN)/Nを計算した。実験条件と磁気特性の結果を表
3に示す。
The hot rolled sheet was pickled and cold rolled at a rolling reduction of about 84% to obtain a 0.46 mm thick cold rolled sheet. After a while, 8
Four types of decarburization annealing (25% N 2 +7) maintained at each of 10 ° C., 820 ° C., 830 ° C., and 840 ° C. for 250 seconds.
5% H 2, dew point 62 ° C.) alms, thereafter, subjected to annealing for holding 30 seconds at 750 ° C., was allowed to absorb nitrogen steel is mixed NH 3 gas into the annealing atmosphere. The N content of the steel sheet after nitriding was 0.0220 to 0.0242%, and the average grain size of the primary recrystallized grains of the steel sheet was 21 to 28 μm. Next, an annealing separator containing MgO as a main component was applied to the steel sheet, and final finish annealing was performed by a known method. N a of hot rolled sheet
s AlN was analyzed and N-N as AlN and (N as A
1N) / N was calculated. Table 3 shows the experimental conditions and the results of the magnetic characteristics.

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【発明の効果】本発明においては、熱延板でのAlNの
析出量を制御し、一次再結晶粒の平均粒径を制御し、
炭焼鈍後、最終仕上焼鈍の二次再結晶開始までの間に鋼
板に窒化処理を施し、さらには、Sn添加を行うことに
より、低温スラブ加熱でかつ熱延板焼鈍を省略してもな
お良好な磁気特性を安定して得ることができるので、そ
の工業的効果は大である。
In the present invention, by controlling the amount of precipitation of AlN in the hot-rolled sheet, by controlling the average particle size of the primary recrystallization grains, de
After the charcoal annealing , the steel sheet is subjected to nitriding treatment before the start of the secondary recrystallization of the final finish annealing, and furthermore, by adding Sn, it is still good even if the low-temperature slab heating and the hot-rolled sheet annealing are omitted. Since such magnetic characteristics can be stably obtained, the industrial effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延板でのAlNの析出量と製品の磁束密度の
変動との関係を表わすグラフである。
FIG. 1 is a graph showing the relationship between the amount of AlN deposited on a hot-rolled sheet and the variation in magnetic flux density of a product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 幸司 北九州市戸畑区飛幡町1番1号 新日本 製鐵株式会社 八幡製鐵所内 (56)参考文献 特開 昭59−190324(JP,A) 特開 昭59−56522(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 8/12 C22C 38/00 303 C22C 38/06 H01F 1/16 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Koji Yamazaki, 1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi Nippon Steel Corporation Yawata Works (56) References JP-A-59-190324 (JP, A) JP-A-59-56522 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C21D 8/12 C22C 38/00 303 C22C 38/06 H01F 1/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で C :0.075%以下、 Si:2.2〜4.5%、 酸可溶性Al:0.010〜0.060%、 N :0.0130%以下、 S+0.405Se:0.014%以下、 Mn:0.05〜0.8%、 残部がFe及び不可避的不純物からなるスラブを128
0℃未満の温度で加熱し、熱延を行い、引き続き熱延板
焼鈍を施すことなく、圧下率80%以上の最終強圧下冷
延を行い、次いで脱炭焼鈍、最終仕上焼鈍を施して一方
向性電磁鋼板を製造する方法において、熱延板でのAl
NとしてのN量(重量比)をN as AlNとした時、 N−N as AlN≦0.0030%、 かつ (N as AlN)/N≧0.55 とし、脱炭焼鈍完了後、最終仕上焼鈍開始までの一次再
結晶粒の平均粒径を18〜35μmとし、脱炭焼鈍後、
最終仕上焼鈍の二次再結晶開始までの間に鋼板に0.0
010重量%以上の窒素吸収を行わせる窒化処理を施す
ことを特徴とする磁気特性の優れた一方向性電磁鋼板の
安定製造方法。
1. C: 0.075% or less by weight, Si: 2.2 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: 0.0130% or less, S + 0. 405Se: 0.014% or less, Mn: 0.05 to 0.8%, balance of slab consisting of Fe and unavoidable impurities is 128
Heating is performed at a temperature of less than 0 ° C., hot rolling is performed, followed by final high-pressure cold rolling at a rolling reduction of 80% or more without performing hot-rolled sheet annealing, followed by decarburizing annealing and final finishing annealing. In the method for manufacturing a grain-oriented electrical steel sheet, the method for producing Al
When the amount of N as N (weight ratio) is N as AlN, N−N as AlN ≦ 0.0030%, and (N as AlN) /N≧0.55. The average particle size of the primary recrystallized grains until the start of annealing is 18 to 35 μm, and after decarburizing annealing ,
0.010% of the steel sheet before the start of the secondary recrystallization in the final finish annealing
A stable production method for a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by performing a nitriding treatment for absorbing 010% by weight or more of nitrogen.
【請求項2】 スラブの成分としてさらにSn:0.0
1〜0.15%を含有せしめることを特徴とする請求項
1記載の磁気特性の優れた一方向性電磁鋼板の安定製造
方法。
2. The slab component further contains Sn: 0.0
2. The method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the content is 1 to 0.15%.
JP5261343A 1933-10-19 1993-10-19 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties Expired - Lifetime JP2948454B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5261343A JP2948454B2 (en) 1993-10-19 1993-10-19 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
US08/322,909 US5472521A (en) 1933-10-19 1994-10-13 Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
DE69425406T DE69425406T2 (en) 1993-10-19 1994-10-17 Process for producing grain-oriented electrical steel sheet with excellent magnetic properties
EP94116331A EP0648847B1 (en) 1993-10-19 1994-10-17 Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
KR1019940026613A KR0139247B1 (en) 1993-10-19 1994-10-18 Production method of grain oriented electrical steel sheet having excellent magnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5261343A JP2948454B2 (en) 1993-10-19 1993-10-19 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH07118744A JPH07118744A (en) 1995-05-09
JP2948454B2 true JP2948454B2 (en) 1999-09-13

Family

ID=17360519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5261343A Expired - Lifetime JP2948454B2 (en) 1933-10-19 1993-10-19 Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2948454B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060641A (en) * 1999-12-27 2001-07-07 이구택 A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY

Also Published As

Publication number Publication date
JPH07118744A (en) 1995-05-09

Similar Documents

Publication Publication Date Title
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH0730397B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH08269571A (en) Production of grain-oriented silicon steel strip
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JP3348217B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2878501B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH07138643A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH04154914A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term