JPH04154914A - Production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH04154914A
JPH04154914A JP2272459A JP27245990A JPH04154914A JP H04154914 A JPH04154914 A JP H04154914A JP 2272459 A JP2272459 A JP 2272459A JP 27245990 A JP27245990 A JP 27245990A JP H04154914 A JPH04154914 A JP H04154914A
Authority
JP
Japan
Prior art keywords
rolling
hot
hot rolling
final
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2272459A
Other languages
Japanese (ja)
Other versions
JP2784687B2 (en
Inventor
Yasunari Yoshitomi
吉冨 康成
Katsuro Kuroki
黒木 克郎
Yozo Suga
菅 洋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2272459A priority Critical patent/JP2784687B2/en
Publication of JPH04154914A publication Critical patent/JPH04154914A/en
Application granted granted Critical
Publication of JP2784687B2 publication Critical patent/JP2784687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce a grain-oriented silicon steel sheet excellent in magnetic properties by subjecting a slab having a specific composition consisting of C, Si, Al, N, S, Se, Mn, and Fe to specific hot rolling and to coiling at low temp. and applying specific cold rolling to the resulting hot rolled plate. CONSTITUTION:A slab having a composition consisting of, by weight, <=0.020% C, 2.5-4.5% Si, 0.010-0.060% acid-soluble Al, 0.0030-0.0130% N, <=0.014% (S+0.405Se), 0.05-0.8% Mn, and the balance Fe with inevitable impurities is heated to <1280 deg.C and hot-rolled. Hot rolling finishing temp. is regulated to >900-<1150 deg.C, and the resulting plate is held at least for 1sec at >=800 deg.C and coiled at <700 deg.C. Moreover, in the above finish hot rolling, the cumulative reduction of area in the final three passes is regulated to >=50%, and further, it is preferable to regulate the reduction of area in the final pass to >=20%. This hot rolled plate is cold-rolled once at >80% reduction of area or is subjected to two or more cold rollings including final cold rolling at >80% reduction of area while process-annealed between the cold rolling stages, by which the final sheet thickness is reached. Then the resulting cold rolled sheet is subjected to decarburizing annealing and finish annealing, by which the grain- oriented silicon steel sheet excellent in magnetic properties can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、変圧器等の鉄芯として使用される磁気特性の
優れた一方向性電磁鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a unidirectional electrical steel sheet with excellent magnetic properties, which is used as an iron core of a transformer or the like.

(従来の技術) 一方向性電磁鋼板は、主として変圧器その他の電気機器
の鉄芯材料として使用され、励磁特性、鉄損特性等の磁
気特性に優れていることが要求される。
(Prior Art) Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic properties such as excitation properties and iron loss properties.

励磁特性は、磁場の強さ800A/mにおける磁束密度
(B.値)によって表される。鉄損特性は、周波数50
Hzで1. 7 Teslaまで鉄芯を磁化したときの
鉄芯1kg当たりのエネルギーロスW+7/S。
The excitation characteristics are expressed by the magnetic flux density (B. value) at a magnetic field strength of 800 A/m. The iron loss characteristics are at frequency 50
1 in Hz. Energy loss per 1 kg of iron core when magnetizing the iron core up to 7 Tesla W+7/S.

によって表される。一方向性電磁鋼板の磁束密度は、゛
鉄損特性の最大支配因子であり、−船釣に、磁束密度が
高いほど鉄損特性が良好である(鉄損値が低い)。また
一般に、一方向性電磁鋼板の製造プロセスにおいて製品
の磁束密度を高くすると、二次再結晶粒が大きくなり鉄
損特性が悪くなる場合がある。このような、磁束密度が
高く二次再結晶粒が大きな一方向性電磁鋼板に対しては
、磁区幅を細分化する磁区制御によって二次再結晶粒の
大きさに拘わりなく鉄損特性を良好ならしめることがで
きる。
Represented by The magnetic flux density of a grain-oriented electrical steel sheet is the most dominant factor in iron loss characteristics; - For boat fishing, the higher the magnetic flux density, the better the iron loss characteristics (lower iron loss value). Additionally, in general, when the magnetic flux density of the product is increased in the manufacturing process of grain-oriented electrical steel sheets, secondary recrystallized grains become larger and iron loss characteristics may deteriorate. For such unidirectional electrical steel sheets with high magnetic flux density and large secondary recrystallized grains, magnetic domain control that subdivides the magnetic domain width improves iron loss characteristics regardless of the size of secondary recrystallized grains. You can get used to it.

一方向性電磁鋼板は、最終仕上焼鈍工程において二次再
結晶を生成させ、鋼板面に(11O)面を、圧延方向に
<001>軸を有する、所謂Goss組織を発達させる
ことによって製造される。良好な磁気特性をもつ一方向
性電磁鋼板を得るためには、磁化容易軸である<001
>軸を圧延方向に高度に揃えることが必要である。
Unidirectional electrical steel sheets are manufactured by generating secondary recrystallization in the final finish annealing process and developing a so-called Goss structure that has a (11O) plane on the steel sheet surface and a <001> axis in the rolling direction. . In order to obtain a unidirectional electrical steel sheet with good magnetic properties, the axis of easy magnetization <001
>It is necessary to align the axes to a high degree in the rolling direction.

高い磁束密度を有する一方向性電磁鋼板の製造技術の代
表的なものとして、川口らによって特公昭40−156
44号公報に開示された技術或は今生らによって特公昭
51−13469号公報に開示された技術がある。前者
においてはA/!NおよびMnSを、後者においてはM
nS 、 MnSe、 Sbを主なインヒビターとして
機能させている。
As a typical manufacturing technology for unidirectional electrical steel sheets with high magnetic flux density, Kawaguchi et al.
There is a technique disclosed in Japanese Patent Publication No. 44 or a technique disclosed by Imao et al. in Japanese Patent Publication No. 13469/1983. In the former case, A/! N and MnS, in the latter case M
nS, MnSe, and Sb function as the main inhibitors.

現在の一方向性電磁鋼板の工業的製造プロセスにおいて
は、これらインヒビターとして機能する析出物の大きさ
、形態および分散状態を適正に制御することが不可欠で
ある。
In the current industrial manufacturing process of grain-oriented electrical steel sheets, it is essential to appropriately control the size, morphology, and dispersion state of these precipitates that function as inhibitors.

MnSに関して言えば、熱間圧延に先立つスラブ加熱段
階でMnSを一旦完全に固溶させた後、熱間圧延段階で
析出させる方法が採られている。二次再結晶においてイ
ンヒビターとして機能するに必要な量のMnSを完全に
固溶させるためには、スラブを1400℃程度の高温に
加熱しなければならない。
Regarding MnS, a method has been adopted in which MnS is completely dissolved in solid solution in the slab heating stage prior to hot rolling, and then precipitated in the hot rolling stage. In order to completely dissolve the amount of MnS necessary to function as an inhibitor in the secondary recrystallization, the slab must be heated to a high temperature of about 1400°C.

このスラブ加熱温度は、普通鋼スラブの加熱温度よりも
200℃以上も高く、このことに起因して以下のような
問題がある。
This slab heating temperature is 200° C. or more higher than the heating temperature of ordinary steel slabs, and this causes the following problems.

1)方向性電磁鋼専用の高温スラブ加熱を余分に必要と
する。
1) Requires extra high-temperature slab heating exclusively for grain-oriented electrical steel.

2)加熱炉のエネルギー原単位が高い。2) The energy consumption rate of the heating furnace is high.

3)スラブからの溶融スケール(鉱滓:ノロ)の量が増
大し、ノロ掻きといった操業上困難な作業を余儀無くさ
れる。
3) The amount of molten scale (slag) from the slab increases, forcing difficult operations such as slag scraping.

4)加熱炉の補修頻度が高くなり、このことに起因して
メインテナンス・コストが上昇するのみならず、設備稼
働率を低下させ設備生産性を低くする。
4) The heating furnace needs to be repaired more frequently, which not only increases maintenance costs but also lowers the equipment operating rate and equipment productivity.

このような問題を解決するには、スラブ加熱温度を普通
鋼並に低くすればよいのであるけれども、このことは、
二次再結晶においてインヒビターとして機能するMnS
の量を少なくするか或は全く用いないことを意味し、必
然的に二次再結晶の不安定化をもたらす。従って、スラ
ブ加熱温度を低くすることを実現するためには、MnS
以外の析出物によってインヒビターを強化し、仕上焼鈍
時に正常粒成長の抑制を十分にする必要がある。このよ
うなインヒビターとしては、硫化物のほか、窒化物、酸
化物および粒界析出元素等が考えられ、次のようなもの
が知られている。
To solve this problem, the slab heating temperature can be lowered to the same level as ordinary steel;
MnS functions as an inhibitor in secondary recrystallization
This means reducing the amount of or not using it at all, which inevitably leads to destabilization of secondary recrystallization. Therefore, in order to lower the slab heating temperature, MnS
It is necessary to strengthen the inhibitor with other precipitates to sufficiently suppress normal grain growth during final annealing. In addition to sulfides, such inhibitors can include nitrides, oxides, grain boundary precipitated elements, and the following are known.

特公昭54−24685号公報には、As、 5iSS
n、 Sb等の粒界偏析元素を網中に含有させることに
よって、スラブ加熱温度を1050〜1350℃とする
ことが  。
In Japanese Patent Publication No. 54-24685, As, 5iSS
By incorporating grain boundary segregation elements such as n and Sb into the mesh, the slab heating temperature can be set to 1050 to 1350°C.

開示されている。また、特開昭52−24116号公報
には、Alのほか、ZrXTi、 B、 Nb、 Ta
、 V。
Disclosed. Furthermore, in JP-A-52-24116, in addition to Al, ZrXTi, B, Nb, Ta
, V.

Cr、 Mo等の窒化物生成元素をスラブに含有させる
こ七によって、スラブ加熱温度を1100〜1260℃
とすることが開示されている。さらに、特開昭57−1
58322号公報には、Mn含有量を低くし、かつMn
/Sを2.5以下とすることによって、スラブ加熱温度
を低くし、さらにCuの添加によって二次再結晶を安定
化させることが開示されている。一方、これらインヒビ
ターの補強と組合せて金属組織の側から改良を加えた技
術も開示された。即ち、特開昭57−89433号公報
には、Mnに加えS、 se、 sb、Bi、 Pb、
 B等の元素を加え、これにスラブの柱状晶率と二次冷
延圧下率を組合せることによって1100〜1250℃
の低温スラブ加熱化を実現している。
By incorporating nitride-forming elements such as Cr and Mo into the slab, the slab heating temperature can be increased from 1100 to 1260°C.
It is disclosed that. Furthermore, JP-A-57-1
Publication No. 58322 discloses that the Mn content is lowered and the Mn content is lowered.
It is disclosed that by setting /S to 2.5 or less, the slab heating temperature can be lowered, and further, secondary recrystallization can be stabilized by adding Cu. On the other hand, a technique has also been disclosed in which improvements are made from the metal structure side in combination with reinforcement of these inhibitors. That is, in JP-A-57-89433, in addition to Mn, S, se, sb, Bi, Pb,
By adding elements such as B and combining this with the columnar crystallinity of the slab and the secondary cold rolling reduction rate,
This enables low-temperature slab heating.

さらに、特開昭59−190324号公報には、S或は
Seに加え、A!およびBと窒素を主体としてインヒビ
ターを構成し、冷間圧延後の一次再結晶焼鈍時にパルス
焼鈍を材料に施すことによって二次再結晶を安定化させ
る技術が開示されている。このように、一方向性電磁鋼
板の製造プロセスにおいて、スラブ加熱温度を低くすべ
く、これまでに多大の努力が払われてきた。
Furthermore, in JP-A-59-190324, in addition to S or Se, A! A technique is disclosed in which the inhibitor is composed mainly of B and nitrogen, and the secondary recrystallization is stabilized by subjecting the material to pulse annealing during the primary recrystallization annealing after cold rolling. As described above, great efforts have been made to lower the slab heating temperature in the manufacturing process of grain-oriented electrical steel sheets.

ところで、本発明者等は先に特開昭59−56522号
公報に、Mnを0.08〜0.45%、Sを0.007
%以下とすることによって、低温スラブ加熱を可能にす
る技術を開示した。この技術によって、高温スラブ加熱
時の結晶粒粗大化に起因する製品の線状二次再結晶不良
の問題が解決された。
By the way, the present inventors previously reported in JP-A-59-56522 that Mn was 0.08 to 0.45% and S was 0.007%.
% or less, thereby making it possible to heat slabs at low temperatures. This technology has solved the problem of linear secondary recrystallization defects in products caused by coarsening of crystal grains during high-temperature slab heating.

スラブ加熱温度を普通綱並に低くする製造プロセスは、
元来、製造コストの低減を目的とするものであるけれど
も、当然のことながら、良好な磁気特性をもつ製品を安
定して得ることができる製造プロセスでなければ工業化
はできない。他方、スラブ加熱温度を低くすると熱間圧
延温度が低下する等、熱間圧延条件の変更を伴う。しか
しながら、これまでのところ、熱間圧延条件を織り込ん
だ低温スラブ加熱を前提とする一貫製造プロセスは、検
討さえも行なわれていなかった。
The manufacturing process that lowers the slab heating temperature to that of ordinary steel is
Originally, the purpose was to reduce manufacturing costs, but it goes without saying that it cannot be industrialized unless the manufacturing process can stably produce products with good magnetic properties. On the other hand, lowering the slab heating temperature involves changing hot rolling conditions, such as lowering the hot rolling temperature. However, up to now, an integrated manufacturing process based on low-temperature slab heating that incorporates hot rolling conditions has not even been considered.

従来の、高温スラブ加熱(たとえば1300’C以上の
)を前提とする製造プロセスの場合、熱間圧延工程の冶
金学的な主たる役割は、 a)粗大結晶粒の再結晶による分断、 b ) MnS、AffiN等の微細析出或は析出抑制
、C)材料の剪断変形による(110) <Ool>方
位性の形成、 の3点であった。
In the case of conventional manufacturing processes that require high-temperature slab heating (e.g., 1300'C or higher), the main metallurgical roles of the hot rolling process are: a) Segmentation of coarse grains by recrystallization; b) MnS , fine precipitation or precipitation suppression of AffiN, etc., and C) formation of (110) <Ool> orientation due to shear deformation of the material.

しかしながら、低温スラブ加熱を前提とする製造プロセ
スの場合、前記a)の機能は必要なく、b)に関しては
、本発明者等が特願平1−1778号に開示したように
、脱炭焼鈍後の金属組織を適切なものとすればよいので
、熱間圧延段階での析出物制御は必須ではない。従って
、従来の高温スラブ加熱を前提とする製造プロセスにお
いて必要であった熱間圧延条件の制約は、低温スラブ加
熱を前提とする製造プロセスの場合には少ないと言える
However, in the case of a manufacturing process based on low-temperature slab heating, the above function a) is not necessary, and as for b), as disclosed by the present inventors in Japanese Patent Application No. 1-1778, after decarburization annealing, Precipitate control at the hot rolling stage is not essential, as it is sufficient to have an appropriate metallographic structure. Therefore, it can be said that the restrictions on hot rolling conditions required in conventional manufacturing processes based on high-temperature slab heating are fewer in the case of manufacturing processes based on low-temperature slab heating.

本発明者等は、二次再結晶制御のために、従来の高温ス
ラブ加熱を前提とする製造プロセスにおいては実現不可
能であった、熱延板の金属組織を極限まで適切なものと
する熱間圧延方法を検討した。たとえば、熱間圧延過程
の最終パス後の金属物理学現象に関しては、MnS、A
RN等の微細析出或は析出抑制が、従来の製造プロセス
においては最重要制御項目であり、他の現象はあまり顧
みられなかった。
In order to control secondary recrystallization, the present inventors have developed a method using heat to optimize the metallographic structure of hot-rolled sheets, which was impossible to achieve in conventional manufacturing processes based on high-temperature slab heating. The inter-rolling method was investigated. For example, regarding the metal physical phenomena after the final pass of the hot rolling process, MnS, A
Fine precipitation or suppression of precipitation of RN and the like is the most important control item in conventional manufacturing processes, and other phenomena have not been given much attention.

本発明者等は、従来殆ど注目されていなかった仕上熱間
圧延最終パス後の再結晶現象に着目し、この現象を利用
して熱延板の金属組織を制御し、低温スラブ加熱を前提
とする、80%超の圧下率を適用する最終強圧下冷間圧
延による製造プロセスにおいて、製品の磁気特性を良好
かつ安定なものとする製造方法を検討した。
The present inventors focused on the recrystallization phenomenon after the final pass of finishing hot rolling, which had received little attention in the past, and utilized this phenomenon to control the metallographic structure of hot-rolled sheets, and to develop the method based on the premise of low-temperature slab heating. We investigated a manufacturing method that would make the magnetic properties of the product good and stable in a manufacturing process using final heavy reduction cold rolling that applies a rolling reduction of more than 80%.

一方向性電磁鋼板の熱間圧延に関しては、高温(たとえ
ば、1300℃以上)スラブ加熱時の結晶粒の粗大成長
に起因する二次再結晶不良(圧延方向に連なった線状細
粒の発生)を防止するために、熱間圧延時、960〜1
190℃の温度域で1パス当たり30%以上の圧下率を
適用する再結晶化高圧下圧延を材料に施して、粗大結晶
粒を分断する方法が、たとえば特公昭60−37172
号公報に開示されている。確かに、この方法によって線
状細粒の発生は減少するけれども、この方法は高温スラ
ブ加熱を前提とする製造プロセスにおけるものである。
Regarding hot rolling of unidirectional electrical steel sheets, secondary recrystallization failure (occurrence of linear fine grains connected in the rolling direction) due to coarse growth of crystal grains during slab heating at high temperatures (e.g., 1300°C or higher) In order to prevent
For example, a method of dividing coarse grains by subjecting the material to recrystallization high reduction rolling applying a rolling reduction of 30% or more per pass in a temperature range of 190°C is disclosed in Japanese Patent Publication No. 60-37172.
It is disclosed in the publication No. It is true that this method reduces the generation of linear fine particles, but this method is used in a manufacturing process that assumes high-temperature slab heating.

低温スラブ加熱(1280℃未満)を前提とする製造プ
ロセスの場合には、前記高温スラブ加熱に起因する結晶
粒の粗大化が起こらないから、粗大結晶粒を分断するこ
とを目的とする再結晶化高圧下圧延は必要ではない。
In the case of a manufacturing process based on low-temperature slab heating (below 1280°C), coarsening of crystal grains due to the high-temperature slab heating does not occur, so recrystallization for the purpose of dividing coarse crystal grains is performed. High reduction rolling is not necessary.

一方、MnS 、、Mn5eXSbをインヒビターとし
て機能させる一方向性電磁鋼板の製造プロセスにおいて
、スラブの熱間圧延時に950〜1200℃の温度域で
10%以上の圧下率を適用して連続して圧延し、次いで
3℃/S以上の冷却速度で材料を冷却し、MnS 、 
MnSeを均一微細に析出させることによって、製品の
磁気特性を向上させる方法が、たとえば特開閉51−2
0716号公報に開示されている。
On the other hand, in the manufacturing process of grain-oriented electrical steel sheets in which MnS, Mn5eXSb acts as an inhibitor, hot rolling of slabs is performed continuously at a rolling reduction of 10% or more in a temperature range of 950 to 1200°C. , then cool the material at a cooling rate of 3°C/S or more, and MnS,
A method for improving the magnetic properties of products by uniformly and finely precipitating MnSe is disclosed in, for example, JP-A No. 51-2.
It is disclosed in Publication No. 0716.

また、スラブの熱間圧延を低温で行って再結晶の進行を
抑制し、剪断変形によって形成される(110)<00
1>方位粒が、引き続く再結晶によって減少するのを防
止することによって製品の磁気特性を向上させる方法が
、たとえば特公昭59−32526号公報、特公昭59
−35415号公報に開示されている。これらの方法に
おいても、低温スラブ加熱を前提とする、80%超の圧
下率を適用する最終強圧下冷間圧延による製造プロセス
は、検討さえなされていない。また、C≦0.02重量
%を含有する珪素鋼スラブの熱間圧延において、900
℃以下の温度域での累積圧下率を40%以上とすること
によって、熱延板に歪を蓄積させる低温大圧下圧延を材
料に施し、引き続く熱延板焼鈍での再結晶により超低炭
素鋼特有の熱延再結晶の不足を補う方法が、特公昭59
−34212号公報に開示されているけれども、この方
法においては、低温熱間圧延は圧延機の負荷が過大とな
り、また熱延板の形状(平坦さ)が不良となり易く、さ
らに良好な磁気特性をもつ製品を安定して得ることも容
易でない。
In addition, the slab is hot-rolled at a low temperature to suppress the progress of recrystallization, and the (110)<00
1> A method for improving the magnetic properties of a product by preventing the reduction of oriented grains due to subsequent recrystallization is disclosed, for example, in Japanese Patent Publication No. 59-32526 and Japanese Patent Publication No. 59
It is disclosed in the publication No.-35415. Even in these methods, a manufacturing process using final heavy reduction cold rolling applying a rolling reduction of more than 80%, which is based on low-temperature slab heating, has not even been considered. In addition, in hot rolling of silicon steel slabs containing C≦0.02% by weight, 900%
By setting the cumulative reduction rate to 40% or more in the temperature range below ℃, the material undergoes low-temperature, large-reduction rolling that accumulates strain in the hot-rolled sheet, followed by recrystallization during hot-rolled sheet annealing to produce ultra-low carbon steel. A method to compensate for the peculiar lack of hot rolling recrystallization was developed in 1983.
Although this method is disclosed in Japanese Patent No. 34212, low-temperature hot rolling places an excessive load on the rolling mill, and the shape (flatness) of the hot-rolled sheet tends to be poor, and it is difficult to obtain good magnetic properties. It is also not easy to stably obtain products that have the same properties.

(発明が解決しようとする課題) 本発明は、低温スラブ加熱を前提とする、80%超の圧
下率を適用する最終強圧下冷間圧延による製造プロセス
によって、磁気特性に優れた一方向性電磁鋼板を安定し
て製造することができる方法を提供することを目的とす
る。
(Problems to be Solved by the Invention) The present invention provides a unidirectional electromagnetic material with excellent magnetic properties, using a manufacturing process using final heavy reduction cold rolling applying a rolling reduction of more than 80%, which is based on low-temperature slab heating. The purpose of the present invention is to provide a method that can stably produce steel plates.

(課題を解決するための手段) 本発明の要旨とするところは下記のとおりである。(Means for solving problems) The gist of the present invention is as follows.

(1)重量で、C≦0.020%、SAl:2.5〜4
.5%、酸可溶性Af : 0.010〜0.060%
、N : 0.0030〜0.0130%、(S +0
.405Se)50.014%、Mn : 0.05〜
0.8%を含有し、残部Feおよび不可避的不純物から
なるスラブを、1280℃未満の温度に加熱し、熱間圧
延し、次いで80%超の圧下率を適用する1回の冷間圧
延工程或は80%超の圧下率を適用する最終冷間圧延を
含む中間焼鈍を挟む2回以上の冷間圧延工程によって最
終板厚とした後、脱炭焼鈍、仕上焼鈍を施す一方向性電
磁鋼板の製造方法において、熱間圧延終了温度を900
℃超1150℃未満とし、熱間圧延終了後少なくとも1
秒間800℃以上の温度域に保持し、700℃未満の温
度域で巻取ることを特徴とする磁気特性の優れた一方向
性電磁鋼板の製造方法。
(1) By weight, C≦0.020%, SAl: 2.5-4
.. 5%, acid soluble Af: 0.010-0.060%
, N: 0.0030-0.0130%, (S +0
.. 405Se) 50.014%, Mn: 0.05~
A slab containing 0.8% Fe and unavoidable impurities is heated to a temperature below 1280° C., hot rolled, and then a cold rolling step of more than 80% is applied. Alternatively, a unidirectional electrical steel sheet that is subjected to decarburization annealing and finish annealing after reaching the final thickness through two or more cold rolling processes sandwiching intermediate annealing including final cold rolling applying a rolling reduction of more than 80%. In the manufacturing method, the hot rolling end temperature is 900
℃ but less than 1150℃, and at least 1 after the end of hot rolling
A method for producing a unidirectional electrical steel sheet with excellent magnetic properties, which comprises maintaining the temperature in a temperature range of 800°C or more for seconds and winding it in a temperature range of less than 700°C.

(2)熱間圧延が、仕上熱間圧延の最終3パスの圧下率
を50%以上としてなされるものである前項1記載の磁
気特性の優れた一方向性電磁鋼板の製造方法。
(2) The method for producing a unidirectional electrical steel sheet with excellent magnetic properties according to item 1 above, wherein the hot rolling is performed at a rolling reduction rate of 50% or more in the final three passes of finish hot rolling.

(3)熱間圧延が、仕上熱間圧延の最終パスの圧下率を
20%以上としてなされるものである前項1または2記
載の磁気特性の優れた一方向性電磁鋼板の製造方法。
(3) The method for producing a unidirectional electrical steel sheet with excellent magnetic properties according to item 1 or 2 above, wherein the hot rolling is carried out at a rolling reduction rate of 20% or more in the final pass of finish hot rolling.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明者等は、従来、注目されていなかった仕上熱間圧
延の最終パス後の材料の再結晶現象に着目し、この現象
を利用して、低温スラブ加熱を前提とする、80%超の
圧下率を適用する最終強圧下冷間圧延による製造プロセ
スによって磁気特性に優れた一方向性電磁鋼板を安定し
て製造する方法を確立すべく研究を重ね、本発明を完成
するに至ったものである。
The present inventors focused on the recrystallization phenomenon of the material after the final pass of finish hot rolling, which had not received attention in the past, and utilized this phenomenon to improve the We have completed research to establish a method for stably manufacturing unidirectional electrical steel sheets with excellent magnetic properties through a manufacturing process using cold rolling with final heavy reduction applying a rolling reduction ratio, and we have now completed the present invention. be.

本発明が対象とする一方向性電磁鋼板は、従来用いられ
ている製鋼法によって得られる溶鋼を、連続鋳造して直
接にスラブとするか或は溶鋼を鋳型に注入、凝固させて
鋼塊とし、これを分塊圧延してスラブとし、次いで熱間
圧延して熱延板とした後、必要に応じて焼鈍を施し、次
いで80%超の圧下率を適用する1回の冷間圧延工程或
は80%超の圧下率を適用する最終冷間圧延工程を含む
中間焼鈍を挟む2回以上の冷間圧延によって最終板厚と
した後、脱炭焼鈍、最終仕上焼鈍を施すプロセスによっ
て製造される。
The unidirectional electrical steel sheet to which the present invention is directed is produced by continuous casting of molten steel obtained by conventional steel manufacturing methods to directly form a slab, or by pouring molten steel into a mold and solidifying it to form a steel ingot. , which is bloomed into a slab, then hot-rolled into a hot-rolled sheet, annealed if necessary, and then subjected to a single cold rolling step applying a rolling reduction of more than 80%, or is manufactured by a process in which the final thickness is achieved by cold rolling two or more times with intermediate annealing, including a final cold rolling process applying a rolling reduction of more than 80%, followed by decarburization annealing and final finish annealing. .

本発明者等は、仕上熱間圧延の最終パス後の材料の再結
晶現象に注目して、種々の観点から広範囲に亘って研究
を進めた結果、仕上熱間圧延の最終パス後の材料の再結
晶現象と製品の磁気特性が密接に関係していることを見
出した。
The present inventors focused on the recrystallization phenomenon of the material after the final pass of finishing hot rolling, and as a result of carrying out extensive research from various viewpoints, we found that the We found that the recrystallization phenomenon and the magnetic properties of the product are closely related.

以下に、本発明を、実験結果に基づいてさらに詳細に説
明する。
The present invention will be explained in more detail below based on experimental results.

第1図は、熱間圧延終了温度および熱間圧延終了後、8
00℃以上の温度域に材料(鋼板)が保持される時間が
製品の磁束密度に与える影響を示すグラフである。
Figure 1 shows the temperature at the end of hot rolling and the temperature at 8
2 is a graph showing the influence of the time a material (steel plate) is kept in a temperature range of 00° C. or higher on the magnetic flux density of a product.

ここでは、重量で、C: 0.011%、SAl:3.
28%、酸可溶性へf : 0.026%、N : 0
.0078%、S: 0.007%、Mn : 0.1
4%を含有し、残部Feおよび不可避的不純物からなる
20〜60mm厚さのスラブを、1100〜1280℃
に加熱して熱間圧延し、6パスで2.3mm厚さの熱延
板とした。熱間圧延後材料を直ちに水冷、熱間圧延後一
定時間空冷後水冷、熱間圧延後空冷等種々の冷却を材料
に施し、550℃で冷却を終了した。550℃の温度に
1時間保持した後、炉冷する巻取りシミュレーションを
行なった。次いで、この熱延板に、1100℃の温度に
30秒間保持した後900℃まで徐冷し、然る後急冷す
る熱延板焼鈍を施し、次いで約88%の圧下率を適用す
る最終強圧下冷間圧延を施して0.285 mm厚さの
最終板厚とした。その後、冷延板を830〜1000℃
の温度域で脱炭焼鈍した後、・MgOを主成分とする焼
鈍分離剤を塗布し、次いで最終仕上焼鈍を施した。
Here, by weight, C: 0.011%, SAl: 3.
28%, acid soluble f: 0.026%, N: 0
.. 0078%, S: 0.007%, Mn: 0.1
A slab with a thickness of 20 to 60 mm containing 4% Fe and unavoidable impurities was heated at 1100 to 1280°C.
The material was heated to 2.3 mm in thickness and hot-rolled in 6 passes to obtain a hot-rolled sheet with a thickness of 2.3 mm. The material was subjected to various types of cooling such as water cooling immediately after hot rolling, air cooling for a certain period of time after hot rolling, water cooling after hot rolling, and air cooling after hot rolling, and cooling was completed at 550°C. A winding simulation was performed in which the material was maintained at a temperature of 550° C. for 1 hour and then cooled in a furnace. Next, this hot-rolled sheet is subjected to hot-rolled sheet annealing by holding at a temperature of 1100°C for 30 seconds, slowly cooling to 900°C, and then rapidly cooling, and then subjected to a final strong reduction applying a reduction rate of about 88%. It was cold rolled to a final thickness of 0.285 mm. After that, the cold-rolled plate was heated to 830-1000℃.
After decarburization annealing in a temperature range of , an annealing separator containing .MgO as a main component was applied, followed by final finish annealing.

第1図から明らかなように、熱間圧延終了温度が900
℃超、1150’C未満であり、かつ熱間圧延終了後少
なくとも1秒間800℃以上の温度域に熱延板を保持す
る場合に、B6≧1.88 Tの高い磁束密度をもつ製
品が得られる。
As is clear from Figure 1, the hot rolling end temperature is 900.
℃ and less than 1150'C, and when the hot-rolled sheet is held in a temperature range of 800℃ or higher for at least 1 second after hot rolling, a product with a high magnetic flux density of B6≧1.88T can be obtained. It will be done.

本発明者等は、この新しい知見をさらに詳細に検討した
The present inventors investigated this new finding in more detail.

第2図は、第1図に示す実験結果において磁束密度が良
好であった、熱間圧延終了温度が900℃超、1150
℃未満であり、かつ熱間圧延終了後少なくとも1秒間8
00℃以上の温度域に熱延板を保持する場合における、
仕上熱間圧延の最終3パスの累積圧下率と製品の磁束密
度の関係を示すグラフである。第2図から明らかなよう
に、仕上熱間圧延の最終3パスの累積圧下率が50%以
上の場合に、BIl≧1.90 Tの高い磁束密度をも
つ製品が得られる。本発明者等は、この新しい知見をさ
らに詳細に検討した。
Figure 2 shows that the magnetic flux density was good in the experimental results shown in Figure 1, and the hot rolling end temperature was over 900°C and 1150°C.
℃ and for at least 1 second after the end of hot rolling.
When holding a hot rolled sheet in a temperature range of 00°C or higher,
It is a graph showing the relationship between the cumulative reduction ratio of the final three passes of finish hot rolling and the magnetic flux density of the product. As is clear from FIG. 2, when the cumulative reduction ratio of the final three passes of finish hot rolling is 50% or more, a product with a high magnetic flux density of BIl≧1.90 T can be obtained. The present inventors investigated this new finding in more detail.

第3図は、第2図に示す実験結果において磁束密度が良
好であった、熱間圧延終了温度が900℃超、1150
℃未満であり、かつ熱間圧延終了後少なくとも1秒間8
00℃以上の温度域に熱延板を保持し、かつ仕上熱間圧
延の最終3パスの累積圧下率を50%以上とする場合に
おける、仕上熱間圧延の最終パスの圧下率と製品の磁束
密度の関係を示すグラフである。第3図から明らかなよ
うに、仕上熱間圧延の最終パスの圧下率が20%以上の
場合に、B8≧1.92 Tの高い磁束密度をもつ製品
が得られる。
Figure 3 shows that the magnetic flux density was good in the experimental results shown in Figure 2, and the hot rolling end temperature was over 900°C and 1150°C.
℃ and for at least 1 second after the end of hot rolling.
The rolling reduction ratio of the final pass of finish hot rolling and the magnetic flux of the product when the hot rolled sheet is held in a temperature range of 00°C or higher and the cumulative rolling reduction ratio of the final three passes of finishing hot rolling is 50% or more. It is a graph showing the relationship between densities. As is clear from FIG. 3, when the reduction ratio in the final pass of finish hot rolling is 20% or more, a product with a high magnetic flux density of B8≧1.92 T can be obtained.

熱間圧延終了温度、熱間圧延後800℃以上の温度域に
材料(鋼板)を保持する時間、仕上熱間圧延の最終3パ
スの累積圧下率、仕上熱間圧延の最終パスの圧下率と製
品の磁束密度の間に、第1図、第2図および第3図に示
す関係が存在する理由については必ずしも明らかではな
いけれども、本発明者等は次のように推察している。
Hot rolling end temperature, time to hold the material (steel plate) in a temperature range of 800°C or higher after hot rolling, cumulative reduction rate of the final three passes of finish hot rolling, rolling reduction rate of the final pass of finish hot rolling. Although the reason why the relationships shown in FIGS. 1, 2, and 3 exist between the magnetic flux densities of products is not necessarily clear, the inventors of the present invention speculate as follows.

従来から、(1101<001>方位二次再結晶粒の母
体は、スラブの熱間圧延時に、材料表層での剪断変形に
よって形成されると考えられており、熱延板での(11
0)<001>方位粒を冷延再結晶後に富化するために
は、熱延板の(110)<001>方位粒を粗粒とし、
かつ歪の少ない状態にすることが有効であると考えられ
ている。
Conventionally, it has been thought that the matrix of (1101<001> oriented secondary recrystallized grains) is formed by shear deformation at the surface layer of the material during hot rolling of a slab.
0) In order to enrich the <001> oriented grains after cold rolling recrystallization, the (110) <001> oriented grains of the hot rolled sheet should be coarse grains,
It is believed that it is effective to create a state with less distortion.

本発明の場合、熱間圧延最終パス後の再結晶により熱延
板の結晶粒は小さいが、歪が少ない状態になっており、
これが熱延板焼鈍後にも継承され、(110)<001
>方位粒を冷間圧延、再結晶後に富化する点において、
粒径の点では不利であるけれども歪の点で有利であり、
結果的には脱炭焼鈍後の状態で(110)<oot>方
位粒に影響を与えない。
In the case of the present invention, the crystal grains of the hot rolled sheet are small due to recrystallization after the final pass of hot rolling, but the strain is small.
This is inherited even after hot-rolled sheet annealing, and (110)<001
>In enriching oriented grains after cold rolling and recrystallization,
Although it is disadvantageous in terms of particle size, it is advantageous in terms of distortion,
As a result, the (110)<oot> oriented grains are not affected in the state after decarburization annealing.

他方、脱炭焼鈍板の主方位である(1111<112>
、(1001<025>は、(110)<001>方位
二次再結晶粒の粒成長に影響を与える方位として知られ
ており、(111) <112>方位粒が多いほど、(
1001<025>方位粒が少ないほど、(110)<
001>方位二次再結晶粒の粒成長が容易になると考え
られる。
On the other hand, it is the main orientation of the decarburized annealed plate (1111<112>
, (1001<025> is known as an orientation that affects the grain growth of (110)<001> oriented secondary recrystallized grains, and the more (111)<112> oriented grains, the more (
The fewer 1001<025> oriented grains, the more (110)<
It is considered that grain growth of secondary recrystallized grains with 001> orientation becomes easier.

本発明においては、熱間圧延の最終3パスで高い圧下率
を適用する圧延を行うことによって、最終パス後に引き
続く再結晶における核生成サイトが増加して再結晶が進
み、結晶粒も微細化される。
In the present invention, by performing rolling with a high reduction rate in the final three passes of hot rolling, the number of nucleation sites in the recrystallization that follows after the final pass increases, recrystallization progresses, and crystal grains are also refined. Ru.

次いで、熱延板に焼鈍を施すと、熱延板の状態で核化状
態となっていた多数の粒が再結晶粒となり、熱延板で微
細な再結晶粒となっていたものとともに鋼板全体を占め
、結果的には微細な結晶粒で占められた金属組織となる
Next, when the hot-rolled sheet is annealed, many grains that were in a nucleated state in the hot-rolled sheet become recrystallized grains, and the entire steel sheet together with the fine recrystallized grains in the hot-rolled sheet. As a result, the metal structure is dominated by fine crystal grains.

次いで、この熱延板焼鈍後の材料(鋼板)を冷間圧延、
再結晶させると、冷間圧延前の粒径が小さいために粒界
近傍から(111)<112>方位の核が多発し、粒内
から核発生する(100)<025>方位の核が相対的
に減少する。
Next, the material (steel plate) after annealing this hot rolled plate is cold rolled,
When recrystallized, many nuclei in the (111)<112> orientation occur near the grain boundaries due to the small grain size before cold rolling, and the nuclei in the (100) <025> orientation generated from within the grains are relatively decrease.

このように、本発明においては、熱間圧延の最終パス後
に引き続く再結晶によって、熱延板が低歪で、かつ多数
の再結晶粒が発生するから結晶粒径が小さい状態となり
、この影響が引き続く熱延板焼鈍、冷間圧延、脱炭焼鈍
後にまで引き継がれ、脱炭焼鈍板の状態で、(110)
<001>方位粒に影響を与えることなく、(110)
 <001>方位粒の粒成長に有利な(111)<11
2>方位粒を増加させ、(110)<001>方位粒の
成長を妨げる(100)<025>方位粒を減少させる
ことに成功した。これにより、良好な磁気特性をもつ製
品を安定して得ることが可能となった。
As described above, in the present invention, the recrystallization that continues after the final pass of hot rolling produces a hot rolled sheet with low strain and a large number of recrystallized grains, resulting in a state where the grain size is small, and this effect is reduced. This is carried over to the subsequent hot-rolled sheet annealing, cold rolling, and decarburization annealing, and in the state of the decarburization annealing sheet, (110)
(110) without affecting <001> oriented grains
(111) <11 which is advantageous for grain growth of <001> oriented grains
2> Succeeded in increasing oriented grains and decreasing (100) <025> oriented grains, which hinder the growth of (110) <001> oriented grains. This has made it possible to stably obtain products with good magnetic properties.

次に本発明の構成要件の限定理由について述べる。Next, reasons for limiting the constituent elements of the present invention will be described.

先ず、スラブの成分とスラブ加熱温度に関して限定理由
を詳細に説明する。
First, the reason for limitations regarding the slab components and slab heating temperature will be explained in detail.

Cは多くなり過ぎると脱炭焼鈍時間が長くなり経済的で
ないので0.020%以下とした。
If the amount of C is too large, the decarburization annealing time becomes long and it is not economical, so it is set to 0.020% or less.

Stは4.5%を超えると冷延時の割れが著しくなるの
で4.5%以下とした。また、2.5%未満では素材の
固有抵抗が低すぎ、トランス鉄心材料として必要な低鉄
損が得られないので2.5%以上とした。望ましくは3
.2%以上である。
If St exceeds 4.5%, cracking during cold rolling becomes significant, so it was set to 4.5% or less. In addition, if it is less than 2.5%, the specific resistance of the material is too low and the low core loss necessary for a transformer core material cannot be obtained, so it is set at 2.5% or more. Preferably 3
.. It is 2% or more.

AnおよびNは二次再結晶の安定化に必要なAffiN
もしくは(A l + St) n1tridesを確
保するため、酸可溶性A2として0.010%以上が必
要である。酸可溶性へ!が0.060%を超えると熱延
板のAjl!Nが不適切となり二次再結晶が不安定にな
るので0.060%以下とした。
An and N are AffiN necessary for stabilizing secondary recrystallization.
Or, in order to ensure (A l + St) n1 trides, 0.010% or more of acid-soluble A2 is required. Acid soluble! If it exceeds 0.060%, the Ajl! of the hot rolled sheet! Since N would be inappropriate and secondary recrystallization would become unstable, the content was set at 0.060% or less.

Nについては通常の製鋼作業では0.0030%未満に
することが困難であり、これ未満にすることは経済的に
好ましくないので0.0030%以上とし、また、0.
0130%を超えるとブリスターと呼ばれる“鋼板表面
のふくれ゛が発生するので0.0130%以下とした。
Regarding N, it is difficult to reduce it to less than 0.0030% in normal steelmaking operations, and it is economically undesirable to reduce it to less than this, so it is set to 0.0030% or more.
If it exceeds 0.0130%, "bulging" on the surface of the steel sheet called blister occurs, so it was set to 0.0130% or less.

MnS 、 MnSeが鋼中に存在しても、製造工程の
条件を適切に選ぶことによって磁気特性を良好にするこ
とが可能である。しかしながらSやSeが高いと線状細
粒と呼ばれる二次再結晶不良部が発生する傾向があり、
この二次再結晶不良部の発生を予防するためには(S 
+0.405 Se)50.014%であることが望ま
しい。SあるいはSeが上記値を超える場合には製造条
件をいかに変更しても二次再結晶不良部が発生する確立
が高くなり好ましくない。
Even if MnS and MnSe are present in steel, it is possible to improve the magnetic properties by appropriately selecting manufacturing process conditions. However, when S and Se are high, secondary recrystallization defects called linear fine grains tend to occur.
In order to prevent the occurrence of this secondary recrystallization defective area (S
+0.405 Se) 50.014% is desirable. If S or Se exceeds the above value, no matter how the manufacturing conditions are changed, there is a high probability that secondary recrystallization defects will occur, which is not preferable.

また最終仕上焼鈍で純化するのに要する時間が長くなり
すぎて好ましくなく、このような観点からSあるいはS
eを不必要に増すことは意味がない。
Also, the time required for purification in final finish annealing is undesirable, and from this point of view, S or S
There is no point in increasing e unnecessarily.

Mnの下限値は0.05%である。0.05%未満では
、熱間圧延によって得られる熱延板の形状(平坦さ)、
就中、ストリップの側縁部が波形状となり製品歩留りを
低下させる問題を生じる。一方、Mn量が0.8%を越
えると製品の磁束密度を低下せしめる。
The lower limit of Mn is 0.05%. If it is less than 0.05%, the shape (flatness) of the hot rolled sheet obtained by hot rolling,
In particular, the side edges of the strip become wavy, which causes a problem of lowering product yield. On the other hand, when the Mn content exceeds 0.8%, the magnetic flux density of the product decreases.

スラブ加熱温度は、普通鋼並にしてコストダウンを行う
という目的から1280℃未満と限定した。
The slab heating temperature was limited to less than 1280°C for the purpose of reducing costs by making it comparable to ordinary steel.

好ましくは1200℃以下である。Preferably it is 1200°C or less.

加熱されたスラブは、引き続き熱延されて熱延板となる
。本発明の特徴はこの熱延工程にある。
The heated slab is subsequently hot-rolled into a hot-rolled sheet. The feature of the present invention lies in this hot rolling process.

つまり熱延終了温度を900℃超、1150℃未満とし
、熱延終了後生くとも1秒間800℃以上の温度に保持
し、巻取温度を700℃未満とする。さらにこれに加え
て、仕上熱間圧延の最終3パスの累積圧下率を50%以
上とすることが良好な磁気特性を得る上で一層好ましい
。さらに加えて、仕上熱間圧延の最終パスの圧下率が2
0%以上であることが良好な磁気特性を得る上で一層好
ましい。
That is, the end temperature of hot rolling is set to be higher than 900°C and lower than 1150°C, the temperature is maintained at 800°C or higher for at least 1 second after the end of hot rolling, and the coiling temperature is set to lower than 700°C. Furthermore, in addition to this, it is more preferable to set the cumulative reduction ratio of the final three passes of finish hot rolling to 50% or more in order to obtain good magnetic properties. In addition, the reduction rate of the final pass of finish hot rolling is 2.
It is more preferable that the content is 0% or more in order to obtain good magnetic properties.

熱延工程は通常100〜400nun厚のスラブを加熱
した後、いづれも複数回のパスで行う粗圧延と仕上圧延
よりなる。粗圧延の方法については特に限定するもので
はなく、通常の方法で行われる。
The hot rolling process usually consists of heating a slab with a thickness of 100 to 400 nm, and then rough rolling and finish rolling, both of which are performed in multiple passes. The rough rolling method is not particularly limited and may be carried out by a conventional method.

本発明の特徴は粗圧延に引き続く仕上圧延にある。The feature of the present invention is the finish rolling that follows the rough rolling.

仕上圧延は通常4〜10パスの高速連続圧延で行われる
。通常仕上圧延の圧下配分は前段が圧下率が高く、後段
に行くほど圧下率を下げて形状を良好なものとしている
。圧延速度は通常100〜3000m/minとなって
おり、パス間の時間は0.01〜100秒となっている
。本発明で限定しているのは、熱延終了温度と熱延後の
冷却と巻取温度と仕上圧延の最終3パスの累積圧下率と
さらに加えて仕上圧延の最終パスの圧下率だけであり、
その他の条件は特に限定するものではないが、前記最終
3パスのパス間時間を1000秒以上と異常に長くとる
とパス間の回復、再結晶で歪が解放され、蓄積歪の効果
が得られにくくなるので好ましくない。
Finish rolling is usually performed by high-speed continuous rolling of 4 to 10 passes. Normally, the reduction ratio in finish rolling is such that the reduction rate is high in the earlier stage, and the reduction rate is lowered toward the later stage to obtain a good shape. The rolling speed is usually 100 to 3000 m/min, and the time between passes is 0.01 to 100 seconds. What is limited in the present invention is only the end temperature of hot rolling, the cooling and coiling temperature after hot rolling, the cumulative reduction rate of the final three passes of finishing rolling, and in addition, the rolling reduction rate of the final pass of finishing rolling. ,
Although other conditions are not particularly limited, if the inter-pass time of the final three passes is made abnormally long, such as 1000 seconds or more, the strain will be released by recovery and recrystallization between the passes, and the effect of accumulated strain will be obtained. This is not preferable because it becomes difficult.

その他、仕上圧延前段の数パスでの圧下率については、
最終パスまで加えた歪が残っていることが期待しにくい
ので特に限定せず、最終3パスだけを重視すれば十分で
ある。
In addition, regarding the rolling reduction ratio in several passes before finish rolling,
Since it is difficult to expect that the distortion applied up to the final pass remains, there is no particular limitation, and it is sufficient to focus only on the final three passes.

次いで上記熱延条件の限定理由について述べる。Next, the reason for limiting the above hot rolling conditions will be described.

熱延終了温度を900 ”C超、1150℃未満とし、
熱延終了後生なくとも1秒間800℃以上の温度に保持
すると規定したのは、第1図から明らかなようにこの範
囲でB8≧1.88(T)の良好な磁束密度B8をもつ
製品が得られるためである。なお、熱延終了後網板が8
00℃以上に保持される時間の上限値については特に限
定するものではないが、通常、熱延終了後巻取られるま
での時間が0.1〜1000秒程度であり、1000秒
以上鋼板をストリップ状で800℃以上に保持すること
は設備の点で困難である。
The hot rolling end temperature is more than 900"C and less than 1150°C,
The reason why we stipulated that the temperature should be maintained at 800°C or higher for at least 1 second after the completion of hot rolling is that, as is clear from Figure 1, products with a good magnetic flux density B8 of B8 ≥ 1.88 (T) in this range are This is because it can be obtained. In addition, after hot rolling, the net plate is 8
There is no particular limitation on the upper limit of the time for which the temperature is maintained at 00°C or higher, but the time from the end of hot rolling to the time when it is wound up is usually about 0.1 to 1000 seconds, and the time required for stripping the steel sheet for more than 1000 seconds is usually about 0.1 to 1000 seconds. It is difficult to maintain the temperature above 800° C. in terms of equipment.

熱延後の巻取温度については、700℃以上となると冷
却時のコイル内の熱履歴の差に起因して、コイル内にA
J2N等の析出状態のバラツキ、表面脱炭状態のバラツ
キ、金属組織のバラツキ等が生し、製品の磁気特性にバ
ラツキが生じて好ましくないので、700℃未満としな
ければならない。
Regarding the coiling temperature after hot rolling, if the coiling temperature is 700°C or higher, there will be A in the coil due to the difference in thermal history within the coil during cooling.
The temperature must be lower than 700° C. because it causes variations in the precipitation state of J2N, etc., variations in the surface decarburization state, variations in the metal structure, etc., which causes variations in the magnetic properties of the product, which is undesirable.

次にさらに好ましくは仕上熱延の最終3パスの累積圧下
率を50%以上とすると規定したのは、第2図より明ら
かなように、この範囲でB8≧1.90(T)の良好な
磁束密度B6をもつ製品が得られるためである。なお、
前記最終3パスの累積圧下率の上限については特に限定
するものではないが工業的には99.9%以上の累積圧
下を加えることは困難である。またさらに好ましくは前
記最終パスの圧下率を20%以上としたのは第3図から
明らかなようにこの範囲において、B8≧1.92(T
)の−層良好な磁束密度B8をもつ製品が得られるため
である。なお、前記最終パスの圧下率の上限は特に限定
するものではないが、工業的には90%以上の圧下を加
えることは困難である。
Next, it is more preferable that the cumulative reduction ratio in the final three passes of finishing hot rolling be set to 50% or more, as is clear from Fig. 2. This is because a product having a magnetic flux density of B6 can be obtained. In addition,
The upper limit of the cumulative reduction rate of the final three passes is not particularly limited, but industrially it is difficult to apply a cumulative reduction of 99.9% or more. More preferably, the rolling reduction ratio in the final pass is set to 20% or more, as is clear from FIG.
) This is because a product having a good magnetic flux density B8 can be obtained. Although the upper limit of the rolling reduction rate in the final pass is not particularly limited, it is industrially difficult to apply a rolling reduction of 90% or more.

この熱延板は必要に応じて熱延板焼鈍を施し、次いで、
圧下率80%超の最終冷延を含み、必要に応じて中間焼
鈍をはさむ2回以上の冷延を施す。
This hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary, and then
Cold rolling is performed two or more times, including final cold rolling with a rolling reduction of more than 80%, and intermediate annealing as necessary.

最終冷延の圧下率を80%超としたのは、圧下率を上記
範囲とすることによって、脱炭仮において尖鋭な(11
0)<QQl>方位粒と、これに蚕食され易い対応方位
粒((111) <112 >方位粒等)を適正量帯る
ことができ、磁束密度を高める上で好ましいためである
The reason why the rolling reduction ratio in the final cold rolling was set to over 80% is that by setting the rolling reduction ratio in the above range, the sharp (11
0) <QQl> oriented grains and corresponding oriented grains ((111) <112> oriented grains etc.) which are easily eroded by grains can be included in appropriate amounts, which is preferable for increasing magnetic flux density.

冷延後鋼板は通常の方法で脱炭焼鈍、焼鈍分離剤塗布、
仕上焼鈍を施されて最終製品となる。なお脱炭焼鈍後の
状態で、二次再結晶に必要なインヒビター強度が不足し
ている場合には、仕上焼鈍等においてインヒビターを強
化する処理が必要となる。インヒビター強化法の一例と
しては、1を含有する鋼において仕上焼鈍雰囲気ガスの
窒素分圧を高めに設定する方法等が知られている。
After cold rolling, the steel plate is decarburized and annealed in the usual way, coated with an annealing separator,
Finish annealing is applied to the final product. Note that if the inhibitor strength required for secondary recrystallization is insufficient in the state after decarburization annealing, a treatment to strengthen the inhibitor in finish annealing or the like is required. As an example of an inhibitor strengthening method, a method is known in which the nitrogen partial pressure of the final annealing atmosphere gas is set to be high in steel containing 1.

また、インヒビター強化法の一例として、脱炭焼鈍に引
き続いてNFl、ガス、プラズマ等を用いてストリップ
状で窒化処理を施す方法も有効である。
Furthermore, as an example of an inhibitor strengthening method, it is also effective to perform a nitriding treatment in a strip shape using NFl, gas, plasma, etc. following decarburization annealing.

〔実施例〕〔Example〕

以下実施例を説明する。 Examples will be described below.

一実施例1− C: 0.011重量%、SAl:3.29重量%、M
n二0.15重量%、S : 0.005重量%、酸可
溶性へ!: 0.027重量%、N:0゜0079重量
%を含有し、残部Feおよび不可避的不純物からなる4
0mw1厚のスラブを、1150℃の温度で加熱した後
1070℃で熱延を開始し、40→15→7→3.5→
3→2.6→2、3 (mm)なるパススケジュールで
熱延して2.3mm厚の熱延板とした。この時熱延終了
温度は913℃であり、引き続き00.2秒空冷した後
(911”C)に200℃/秒の冷速で550℃まで水
冷し550℃に1時間保持した後炉冷する巻取リシミュ
レーション、05秒空冷した後(860’C)に100
℃/秒の冷速で550℃まで水冷し、550℃に1時間
保持した後炉冷する巻取リシミュレーションを施した。
Example 1 - C: 0.011% by weight, SAl: 3.29% by weight, M
n2 0.15% by weight, S: 0.005% by weight, acid soluble! : 0.027% by weight, N: 0°0079% by weight, and the balance consists of Fe and inevitable impurities.
After heating a 0 mw 1 thick slab at a temperature of 1150°C, hot rolling was started at 1070°C, 40 → 15 → 7 → 3.5 →
A hot rolled sheet with a thickness of 2.3 mm was obtained by hot rolling with a pass schedule of 3 → 2.6 → 2.3 (mm). At this time, the hot rolling end temperature was 913°C, and after 00.2 seconds of air cooling (911"C), water cooling at a cooling rate of 200°C/second to 550°C, holding at 550°C for 1 hour, and then furnace cooling. Winding resimulation, after air cooling for 05 seconds (860'C)
A winding resimulation was performed in which the material was water-cooled to 550° C. at a cooling rate of ° C./second, held at 550° C. for 1 hour, and then cooled in a furnace.

この熱延板に、1080℃に30秒保持し、次いで、9
00℃に30秒保持し、急冷する熱延板焼鈍を施し、次
いで圧下率約88%で0.285 mm厚の冷延板とし
、830℃で150秒保持する脱炭焼鈍を施した。得ら
れた脱炭焼鈍板をN225%、8275%の雰囲気ガス
中にNH3ガスを混入させた雰囲気ガス中で750℃に
30秒保持して、鋼板に窒素を吸収させた。窒素吸収後
の窒素は0.0195重量%であった。次いでMgOを
主成分とする焼鈍分離剤を鋼板に塗布し、N225%、
8275%の雰囲気ガス中で10℃/時の速度で120
0’Cまで昇温し、引き続きH2100%雰囲気ガス中
で1200℃で20時間保持する最終仕上焼鈍を行った
This hot-rolled plate was held at 1080°C for 30 seconds, and then
The hot-rolled plate was annealed by holding it at 00°C for 30 seconds and rapidly cooling it, then it was made into a cold-rolled plate with a thickness of 0.285 mm at a rolling reduction of about 88%, and it was decarburized by holding it at 830°C for 150 seconds. The obtained decarburized annealed plate was held at 750° C. for 30 seconds in an atmosphere gas containing 25% N and 8275% NH3 gas to allow the steel plate to absorb nitrogen. The nitrogen content after nitrogen absorption was 0.0195% by weight. Next, an annealing separator containing MgO as the main component was applied to the steel plate, and 25% N2,
120 at a rate of 10°C/hour in an atmospheric gas of 8275%
Final annealing was performed by raising the temperature to 0'C and then holding it at 1200C for 20 hours in a 100% H2 atmosphere gas.

焼鈍を行った。Annealing was performed.

熱延条件と製品の磁気特性を第1表に示す。Table 1 shows the hot rolling conditions and magnetic properties of the product.

一実施例2− C: 0.013重量%、SAl:3.30重量%、M
n二0.15重量%、S : 0.007重量%、酸可
溶性Af: 0.034重量%、N : 0.0083
重量%を含有し、残部Feおよび不可避的不純物からな
る26mm厚のスラブを、1150℃の温度で加熱した
後6パスで熱延して2.3mm厚の熱延板とした。この
時圧下配分を26→15→10→7→5→2.8→2.
3 (mm)とし、熱延開始温度を01050℃1■9
00 ’Cの2条件とした。熱延終了後3秒空冷した後
に100’C/秒の冷速で550℃まで水冷し、550
℃に1時間保持した後炉冷する巻取リシミュレーション
を施し、引き続く最終仕上焼鈍までの工程条件は実施例
1と同じ条件で行った。
Example 2 - C: 0.013% by weight, SAl: 3.30% by weight, M
n2 0.15% by weight, S: 0.007% by weight, acid-soluble Af: 0.034% by weight, N: 0.0083
A slab with a thickness of 26 mm, containing % by weight and the balance consisting of Fe and unavoidable impurities, was heated at a temperature of 1150° C. and then hot-rolled in 6 passes to obtain a hot-rolled plate with a thickness of 2.3 mm. At this time, the reduction distribution is 26 → 15 → 10 → 7 → 5 → 2.8 → 2.
3 (mm), and the hot rolling start temperature is 01050℃1■9
Two conditions were set: 00'C. After hot rolling, it was air cooled for 3 seconds and then water cooled to 550°C at a cooling rate of 100'C/sec.
A winding resimulation was performed in which the sample was kept at 1 hour at ℃ and then cooled in a furnace, and the process conditions up to the final final annealing were the same as in Example 1.

熱延条件と製品の磁気特性を第2表に示す。Table 2 shows the hot rolling conditions and magnetic properties of the product.

一実施例3− C: 0.009重量%、SAl:3.27重量%、M
n二0.14重量%、S : 0.006重景重量酸可
溶性へl: 0.028重量%、N : 0.0082
重量%を含有し、残部Feおよび不可避的不純物からな
る40mm厚のスラブを、1150℃の温度で加熱した
後1050℃で熱延を開始し、40→30→20→10
→5→3→2(mm)とし、熱延終了後■2秒空冷後l
OO℃/秒で550℃まで水冷し、550℃で1時間保
持した後炉冷、■2秒空冷後50℃/秒で750℃まで
水冷し、750℃で1時間保持した後炉冷なる2条件で
冷却した。この熱延板に1080℃に30秒保持し、次
いで900℃に30秒保持し、急冷する熱延板焼鈍を施
し、引き続く最終仕上焼鈍までの工程条件は実施例1と
同じ条件で行った。
Example 3 - C: 0.009% by weight, SAl: 3.27% by weight, M
n2 0.14% by weight, S: 0.006 weight, acid soluble: 0.028% by weight, N: 0.0082
A 40 mm thick slab containing Fe and unavoidable impurities was heated at a temperature of 1150°C, and then hot rolling was started at 1050°C, resulting in a rolling process of 40 → 30 → 20 → 10
→ 5 → 3 → 2 (mm), after hot rolling ■ After cooling in air for 2 seconds l
Water cooled at OO°C/sec to 550°C, held at 550°C for 1 hour, then cooled in the furnace.■ After air cooled for 2 seconds, water cooled at 50°C/sec to 750°C, held at 750°C for 1 hour, then furnace cooled.2 Cooled under conditions. This hot-rolled sheet was annealed by holding it at 1080° C. for 30 seconds, then holding it at 900° C. for 30 seconds, and rapidly cooling it, and the process conditions up to the final finish annealing were the same as in Example 1.

熱延条件と製品の磁気特性を第3表に示す。Table 3 shows the hot rolling conditions and magnetic properties of the product.

−実施例4− C: 0.002重量%、SAl:3.20重量%、M
n=0.14重量%、S : 0.006重量%、酸可
溶性へl: 0.034重量%、N : 0.0081
重量%を含有し、残部Peおよび不可避的不純物からな
る40mm厚のスラブを、1100℃の温度で加熱した
後1050’Cで熱延を開始し、6パスで熱延して2.
3mm厚の熱延板とした。この時圧下配分を■40→1
5→7→3.5→3→2.6→2.3 (mm)、■4
0→26→18→12→6→3.2→2.3 (mm)
、■40→28→20→16→9.2→4.6→2.3
 (1m)の3条件とした。
-Example 4- C: 0.002% by weight, SAl: 3.20% by weight, M
n=0.14% by weight, S: 0.006% by weight, acid soluble: 0.034% by weight, N: 0.0081
A slab with a thickness of 40 mm containing 50% by weight, the balance being Pe and unavoidable impurities was heated at a temperature of 1100° C., then hot rolling was started at 1050° C., and the slab was hot rolled in 6 passes.
It was made into a hot-rolled plate with a thickness of 3 mm. At this time, the pressure distribution is ■40 → 1
5 → 7 → 3.5 → 3 → 2.6 → 2.3 (mm), ■4
0→26→18→12→6→3.2→2.3 (mm)
,■40→28→20→16→9.2→4.6→2.3
(1 m).

熱延後の冷却を実施例2と同じ条件で行った。この熱延
板に1050℃に30秒保持し、900℃に30秒保持
する熱延板焼鈍を施し、圧下率約85%で0.335 
mm厚の冷延板とし、引き続き最終仕上焼鈍までの工程
条件を実施例1と同じ条件で行った。
Cooling after hot rolling was performed under the same conditions as in Example 2. This hot-rolled sheet was annealed by holding it at 1050°C for 30 seconds and at 900°C for 30 seconds, and the rolling reduction was approximately 85%.
A cold-rolled plate with a thickness of mm was prepared, and the process conditions up to final annealing were the same as in Example 1.

熱延条件と製品の磁気特性を第4表に示す。Table 4 shows the hot rolling conditions and magnetic properties of the product.

(発明の効果) 以上説明したように本発明においては、熱延終了温度と
熱延終了後鋼板を800℃以上に保持する時間および熱
延後の巻取温度、さらに好ましくは熱延最終3パスの累
積圧下率、またさらに好ましくは熱延の最終パスの圧下
率を制御することにより、低Cの素材での低温スラブ加
熱を前提とする製造方法で良好な磁気特性を安定して得
ることができるので、一方向性電磁鋼板の製造方法とし
ての工業的効果は極めて大である。
(Effects of the Invention) As explained above, in the present invention, the hot rolling end temperature, the time for holding the steel sheet at 800°C or higher after hot rolling, and the coiling temperature after hot rolling, more preferably the final three passes of hot rolling. By controlling the cumulative rolling reduction rate, and more preferably the rolling reduction rate of the final pass of hot rolling, it is possible to stably obtain good magnetic properties in a manufacturing method that assumes low-temperature slab heating using a low C material. Therefore, the industrial effect as a method for producing unidirectional electrical steel sheets is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱延終了温度および熱延終了後800℃以上に
鋼板が保持された時間と製品の磁束密度との関係を表し
たグラフであり、第2図は仕上熱延最終3パスの累積圧
下率と磁束密度との関係を表したグラフであり、第3図
は仕上熱延の最終パスの圧下率と磁束密度との関係を表
したグラフである。 02θ  40   60  8θ
Figure 1 is a graph showing the relationship between the end temperature of hot rolling, the time the steel plate was held at 800°C or higher after the end of hot rolling, and the magnetic flux density of the product, and Figure 2 is the cumulative result of the final three passes of finish hot rolling. This is a graph showing the relationship between rolling reduction and magnetic flux density, and FIG. 3 is a graph showing the relationship between rolling reduction and magnetic flux density in the final pass of finish hot rolling. 02θ 40 60 8θ

Claims (3)

【特許請求の範囲】[Claims] (1)重量で、C≦0.020%、Si:2.5〜4.
5%、酸可溶性Al:0.010〜0.060%、N:
0.0030〜0.0130%、(S+0.405Se
)≦0.014%、Mn:0.05〜0.8%を含有し
、残部Feおよび不可避的不純物からなるスラブを、1
280℃未満の温度に加熱し、熱間圧延し、次いで80
%超の圧下率を適用する1回の冷間圧延工程或は80%
超の圧下率を適用する最終冷間圧延を含む中間焼鈍を挟
む2回以上の冷間圧延工程によって最終板厚とした後、
脱炭焼鈍、仕上焼鈍を施す一方向性電磁鋼板の製造方法
において、熱間圧延終了温度を900℃超1150℃未
満とし、熱間圧延終了後少なくとも1秒間800℃以上
の温度域に保持し、700℃未満の温度域で巻取ること
を特徴とする磁気特性の優れた一方向性電磁鋼板の製造
方法。
(1) By weight, C≦0.020%, Si: 2.5-4.
5%, acid-soluble Al: 0.010-0.060%, N:
0.0030~0.0130%, (S+0.405Se
)≦0.014%, Mn: 0.05 to 0.8%, the balance consisting of Fe and unavoidable impurities.
heated to a temperature below 280°C, hot rolled, then 80°C
One cold rolling process applying a rolling reduction of more than 80%
After achieving the final plate thickness by two or more cold rolling processes sandwiching intermediate annealing including final cold rolling applying a super reduction rate,
In a method for producing a unidirectional electrical steel sheet that undergoes decarburization annealing and finish annealing, the hot rolling end temperature is set to more than 900°C and less than 1150°C, and the temperature is maintained in a temperature range of 800°C or higher for at least 1 second after the end of hot rolling, A method for producing a unidirectional electrical steel sheet with excellent magnetic properties, characterized by winding in a temperature range of less than 700°C.
(2)熱間圧延が、仕上熱間圧延の最終3パスの圧下率
を50%以上としてなされるものである請求項1記載の
磁気特性の優れた一方向性電磁鋼板の製造方法。
(2) The method for producing a unidirectional electrical steel sheet with excellent magnetic properties according to claim 1, wherein the hot rolling is performed at a rolling reduction ratio of 50% or more in the final three passes of the final hot rolling.
(3)熱間圧延が、仕上熱間圧延の最終パスの圧下率を
20%以上としてなされるものである請求項1または2
記載の磁気特性の優れた一方向性電磁鋼板の製造方法。
(3) Claim 1 or 2, wherein the hot rolling is performed at a rolling reduction rate of 20% or more in the final pass of finish hot rolling.
A method for producing a unidirectional electrical steel sheet having excellent magnetic properties as described above.
JP2272459A 1990-10-12 1990-10-12 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JP2784687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2272459A JP2784687B2 (en) 1990-10-12 1990-10-12 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2272459A JP2784687B2 (en) 1990-10-12 1990-10-12 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH04154914A true JPH04154914A (en) 1992-05-27
JP2784687B2 JP2784687B2 (en) 1998-08-06

Family

ID=17514210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2272459A Expired - Lifetime JP2784687B2 (en) 1990-10-12 1990-10-12 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2784687B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100289683B1 (en) * 1996-03-20 2001-05-15 에모또 간지 Method for manufacturing unidirectional silicon steel sheet with excellent magnetic properties
JP2008019462A (en) * 2006-07-11 2008-01-31 Nippon Steel Corp Method for producing magnetic steel sheet excellent in magnetic characteristic in direction perpendicular to rolling direction
JP2009503264A (en) * 2005-08-03 2009-01-29 ティッセンクルップ スチール アクチェンゲゼルシャフト Method for producing directional electromagnetic steel strip
JP2009503265A (en) * 2005-08-03 2009-01-29 ティッセンクルップ スチール アクチェンゲゼルシャフト Method for producing directional electromagnetic steel strip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100289683B1 (en) * 1996-03-20 2001-05-15 에모또 간지 Method for manufacturing unidirectional silicon steel sheet with excellent magnetic properties
JP2009503264A (en) * 2005-08-03 2009-01-29 ティッセンクルップ スチール アクチェンゲゼルシャフト Method for producing directional electromagnetic steel strip
JP2009503265A (en) * 2005-08-03 2009-01-29 ティッセンクルップ スチール アクチェンゲゼルシャフト Method for producing directional electromagnetic steel strip
JP2008019462A (en) * 2006-07-11 2008-01-31 Nippon Steel Corp Method for producing magnetic steel sheet excellent in magnetic characteristic in direction perpendicular to rolling direction
JP4608467B2 (en) * 2006-07-11 2011-01-12 新日本製鐵株式会社 Manufacturing method of electrical steel sheet

Also Published As

Publication number Publication date
JP2784687B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
US5545263A (en) Process for production of grain oriented electrical steel sheet having superior magnetic properties
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH04154914A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH02274812A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06228646A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JPH02274811A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH04154915A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH02263923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3348217B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH04362133A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic property
JPH0791586B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties
JPH0417617A (en) Production of grain-oriented electrical steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13