JPH02263923A - Production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH02263923A
JPH02263923A JP1085540A JP8554089A JPH02263923A JP H02263923 A JPH02263923 A JP H02263923A JP 1085540 A JP1085540 A JP 1085540A JP 8554089 A JP8554089 A JP 8554089A JP H02263923 A JPH02263923 A JP H02263923A
Authority
JP
Japan
Prior art keywords
hot
rolling
annealing
final
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1085540A
Other languages
Japanese (ja)
Other versions
JPH0742504B2 (en
Inventor
Yasunari Yoshitomi
吉冨 康成
Takehide Senuma
武秀 瀬沼
Yozo Suga
菅 洋三
Nobuyuki Takahashi
延幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1085540A priority Critical patent/JPH0742504B2/en
Priority to EP90106345A priority patent/EP0391335B2/en
Priority to DE69025417T priority patent/DE69025417T3/en
Publication of JPH02263923A publication Critical patent/JPH02263923A/en
Priority to US08/246,918 priority patent/US5545263A/en
Publication of JPH0742504B2 publication Critical patent/JPH0742504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet having superior magnetic properties by specifying hot rolling finishing temp. and cumulative rolling reduction, respectively, at the time of producing a grain-oriented silicon steel sheet from a silicon steel slab. CONSTITUTION:A silicon steel having a composition consisting of, by weight, 0.021-0.100% C, 2.5-4.5% Si, usual inhibitor components, and the balance Fe with inevitable impurities is hot-rolled and successively subjected, without hot rolled plate annealing, to cold rolling at >=80% rolling reduction, to decarburizing annealing, and to final finish annealing, by which a grain-oriented silicon steel sheet is produced. At this time, hot rolling finishing temp. and cumulative rolling reduction in the final three passes are regulated to 750-1150 deg.C and >=40%, respectively. By this method, the grain-oriented silicon steel sheet excellent in magnetic properties can be produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、トランス等の鉄心として使用される磁気特性
の優れた一方向性電磁鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a unidirectional electrical steel sheet with excellent magnetic properties used as an iron core of a transformer or the like.

〔従来の技術〕[Conventional technology]

一方向性電磁鋼板は、主にトランスその他の電気機器の
鉄心材料として使用されており、励磁特性,鉄損特性等
の磁気特性に優れていることが要求される。励磁特性を
表す数値としては、磁場の強さ800A/mにおける磁
束密度B8が通常使用される。また、鉄損特性を表す数
値としては、周波数50Hzで1.7テスラー(T)ま
で磁化したときのlkg当りの鉄損Wlff/S。を使
用している。
Unidirectional electrical steel sheets are mainly used as core materials for transformers and other electrical equipment, and are required to have excellent magnetic properties such as excitation properties and iron loss properties. As a numerical value representing the excitation characteristic, a magnetic flux density B8 at a magnetic field strength of 800 A/m is usually used. In addition, as a numerical value representing iron loss characteristics, iron loss Wlff/S per 1 kg when magnetized to 1.7 Tesla (T) at a frequency of 50 Hz. are using.

磁束密度は、鉄損特性の最大支配因子であり、一般的に
いって磁束密度が高いほど鉄損特性が良好になる。なお
、一般的に磁束密度を高くすると二次再結晶粒が大きく
なり、鉄損特性が不良となる場合がある。これに対して
は、磁区制御により、二次再結晶粒の粒径に拘らず、鉄
損特性を改善することができる。
Magnetic flux density is the most dominant factor in iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. In general, when the magnetic flux density is increased, secondary recrystallized grains become larger, which may result in poor iron loss characteristics. On the other hand, by magnetic domain control, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

この一方向性電磁鋼板は、最終仕上焼鈍工程で二次再結
晶を起こさせ、鋼板面に(110)、圧延方向に<00
1>軸をもったいわゆるゴス組織を発達させることによ
り、製造されている。良好な磁気特性を得るためには、
磁化容易軸である<001>を圧延方向に高度に揃える
ことが必要である。二次再結晶粒の方向性は、MnS 
、 jVN等をインヒビターとして利用し、最終強圧下
圧延を施す方法によって大幅に改善され、それに伴って
鉄損特性も著しく向上する。
This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finish annealing process, resulting in (110) on the steel sheet surface and <000 in the rolling direction.
1> Manufactured by developing a so-called Goss structure with an axis. In order to obtain good magnetic properties,
It is necessary to align the easy magnetization axis <001> to a high degree in the rolling direction. The orientation of secondary recrystallized grains is MnS
, jVN, etc. as an inhibitor and a final heavy reduction rolling method can significantly improve the iron loss properties, and accordingly, the iron loss characteristics can also be significantly improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、一方向性電磁鋼板の製造においては通常熱延
後組織の不均一化、析出処理等を目的として熱延板焼鈍
が行われている。例えばA7Nを主インヒビターとする
製造方法においては、特公昭46−23820号公報に
示すように熱延板焼鈍においてAZNの析出処理を行っ
てインヒビターを制御する方法がとられている。
By the way, in the production of unidirectional electrical steel sheets, hot rolled sheets are usually annealed for the purpose of making the structure non-uniform, precipitation treatment, etc. after hot rolling. For example, in a manufacturing method using A7N as the main inhibitor, as shown in Japanese Patent Publication No. 46-23820, a method is used in which the inhibitor is controlled by performing a precipitation treatment of AZN during hot-rolled sheet annealing.

通常一方向性電磁鋼板は鋳造−熱延一焼鈍一冷延一説炭
焼鈍一仕上焼鈍のような主工程を経て製造され、多量の
エネルギーを必要としており、加えて普通鋼製造プロセ
ス等と比較して製造コストも高くなっている。
Normally, unidirectional electrical steel sheets are manufactured through the following main processes: casting, hot rolling, annealing, cold rolling, charcoal annealing, and final annealing, which requires a large amount of energy, and in addition, compared to ordinary steel manufacturing processes, etc. The manufacturing cost is also high.

近年多量のエネルギー消費をするこのような製造工程に
対する見直しが進められ、工程、エネルギーの簡省略化
の要請が強まってきた。このような要請に答えるべく、
AZNを主インヒビターとする製造方法において、熱延
板焼鈍での八!Nの析出処理を、熱延後の高温巻取で代
替する方法(特公昭59−45730号公報)が提案さ
れた。確かに、この方法によって熱延板焼鈍を省略して
も、磁気特性をある程度確保することはできるが、5〜
20トンのコイル状で巻取られる通常の方法においては
、冷却過程でコイル内での場所的な熱履歴の差が生じ、
必然的にAINの析出が不均一となり最終的な磁気特性
はコイル内の場所によって変動し、歩留が低下する結果
となる。
In recent years, such manufacturing processes that consume large amounts of energy have been reviewed, and there has been a growing demand for simplification of processes and energy. In order to respond to such requests,
In the manufacturing method using AZN as the main inhibitor, 8! A method (Japanese Patent Publication No. 59-45730) has been proposed in which N precipitation treatment is replaced by high-temperature coiling after hot rolling. It is true that magnetic properties can be maintained to a certain extent even if hot-rolled sheet annealing is omitted using this method, but
In the normal method of winding into a 20-ton coil, differences in thermal history occur locally within the coil during the cooling process.
Inevitably, the precipitation of AIN becomes non-uniform, and the final magnetic properties vary depending on the location within the coil, resulting in a decrease in yield.

そこで本発明者らは、従来はとんど注目されていなかっ
た仕上熱延最終パス後の再結晶現象に着目し、この現象
を利用して80%以上の強圧下1回冷延による製造法に
おいて熱延板焼鈍を省略することを検討した。
Therefore, the present inventors focused on the recrystallization phenomenon after the final pass of finish hot rolling, which had not received much attention in the past, and utilized this phenomenon to develop a manufacturing method using one cold rolling under a strong reduction of 80% or more. We considered omitting hot-rolled sheet annealing.

一方向性電磁鋼板の熱延に関しては、高温スラブ加熱(
例えば1300°C以上)時のスラブ結晶粒の粗大成長
に起因する二次再結晶不良(圧延方向に連なった線状細
粒発生)を防止するために、熱延時の960〜1190
°Cでの温度で1パス当り30%以上の圧下率で再結晶
化高圧下圧延を施し粗大結晶粒を分断する方法が提案さ
れている(特公昭60−37172号公報)。確かにこ
の方法によって線状細粒発生が減少するが、熱延板焼鈍
を施す製造プロセスを前提としている。
For hot rolling of unidirectional electrical steel sheets, high-temperature slab heating (
For example, in order to prevent secondary recrystallization failure (generation of linear fine grains connected in the rolling direction) caused by coarse growth of slab crystal grains at temperatures of 960 to 1190 during hot rolling,
A method has been proposed in which coarse crystal grains are divided by performing recrystallization high-reduction rolling at a temperature of 30% or more per pass at a temperature of .degree. C. (Japanese Patent Publication No. 60-37172). This method certainly reduces the generation of linear fine grains, but it is based on the manufacturing process of hot-rolled sheet annealing.

また、MnS 、 MnSe、 Sbをインヒビターと
する製造方法において、熱延時の950〜1200°C
の温度で圧下率10%以上で連続して熱延し、引き続き
3°C/sec以上の冷却速度で冷却することによって
MnS 、 MnSeを均一微細に析出させ、磁気特性
を向上させる方法が提案されている(特開昭51207
16号公報)。また熱延を低温で行い再結晶の進行を抑
制し、剪断変形で形成される(110)<001>方位
粒が引き続く再結晶で減少するのを防止することによっ
て磁気特性を向上させる方法が提案されている(特公昭
59−32526号公報。
In addition, in a manufacturing method using MnS, MnSe, or Sb as an inhibitor, the temperature at 950 to 1200°C during hot rolling is
A method has been proposed in which MnS and MnSe are uniformly and finely precipitated by continuously hot rolling at a temperature of 10% or more with a reduction rate of 10% or more and then cooling at a cooling rate of 3°C/sec or more to improve magnetic properties. (Japanese Unexamined Patent Publication No. 51207
Publication No. 16). In addition, a method has been proposed to improve magnetic properties by performing hot rolling at a low temperature to suppress the progress of recrystallization and to prevent the (110) <001> oriented grains formed by shear deformation from being reduced by subsequent recrystallization. (Japanese Patent Publication No. 59-32526.

特公昭59m−35415号公報)。これらの方法にお
いても、熱延板焼鈍無しの1回冷延法での製造は検討さ
えされていない。また、超低炭素を含有する珪素鋼スラ
ブの熱延において、熱延板で歪を蓄積させる低温大圧下
熱延を行い、引き続く熱延板焼鈍での再結晶により超低
炭素材特有の粗大結晶粒を分断する方法が提案されてい
る(特公昭5934212号公報)。しかしこの方法に
おいても、熱延板焼鈍無しの1回冷延法での製造は検討
さえされていない。
Special Publication No. 59m-35415). Even in these methods, production by a one-time cold rolling method without hot-rolled sheet annealing has not even been considered. In addition, when hot-rolling silicon steel slabs containing ultra-low carbon, we perform low-temperature, large-reduction hot rolling that accumulates strain in the hot-rolled plate, and then recrystallize in the subsequent hot-rolled plate annealing to create the coarse crystals characteristic of ultra-low carbon materials. A method of dividing grains has been proposed (Japanese Patent Publication No. 5934212). However, even in this method, production by a one-time cold rolling method without hot-rolled sheet annealing has not even been considered.

そこで本発明者らは、従来はとんど注目されていなかっ
た仕上熱延の最終パス後の再結晶現象に着目し、この現
象を利用して80%以上の強圧下1回冷延による製造法
において熱延板焼鈍を省略して優れた磁気特性をもつ一
方向性電磁鋼板を得ることを目的として研究を行った。
Therefore, the present inventors focused on the recrystallization phenomenon after the final pass of finishing hot rolling, which had not received much attention in the past, and utilized this phenomenon to develop a method for manufacturing by cold rolling in one pass under a strong reduction of 80% or more. Research was conducted with the aim of obtaining unidirectional electrical steel sheets with excellent magnetic properties by omitting the hot-rolled sheet annealing process.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては、その目的を達成するために、通常の
成分からなる珪素鋼スラブに対し、熱延終了温度を75
0〜1150°Cとし、最終3パスの累積圧下率を40
%以上とする熱延を行い引き続き熱延板焼鈍をすること
なく圧下率80%以上の冷延、脱炭焼鈍、最終仕上焼鈍
を施すことを特徴とする。
In the present invention, in order to achieve the objective, the hot rolling finish temperature is set at 75% for silicon steel slabs made of ordinary components.
0 to 1150°C, and the cumulative reduction rate of the final three passes was 40
% or more, followed by cold rolling with a rolling reduction of 80% or more, decarburization annealing, and final finish annealing without hot-rolled sheet annealing.

更に、この特徴に加えて、仕上熱延の最終パスの圧下率
を20%以上とすることによって、−層磁気特性の優れ
た一方向性電磁鋼板が得られる。
Furthermore, in addition to this feature, by setting the rolling reduction ratio in the final pass of finish hot rolling to 20% or more, a unidirectional electrical steel sheet with excellent -layer magnetic properties can be obtained.

〔作 用〕[For production]

本発明が対象としている一方向性電磁鋼板は、従来用い
られている製鋼法で得られた溶鋼を連続鋳造法或いは造
塊法で鋳造し、必要に応じて分塊工程を挟んでスラブと
し、引き続き熱間圧延して熱延板とし、次いで熱延板焼
鈍を施すことなく圧下率80%以上の冷延、脱炭焼鈍、
最終仕上焼鈍を順次行うことによって製造される。
The unidirectional electrical steel sheet to which the present invention is directed is produced by casting molten steel obtained by a conventional steel manufacturing method using a continuous casting method or an ingot forming method, and forming a slab through a blooming process as necessary. Subsequently, hot rolling is performed to obtain a hot rolled sheet, followed by cold rolling with a rolling reduction of 80% or more without annealing the hot rolled sheet, decarburization annealing,
Manufactured by sequential final annealing.

本発明者らは、仕上熱延の最終パス後の再結晶現象に注
目して、種々の観点から広範囲にわたって研究したとこ
ろ、この現象と磁気特性が密接に関係していることを確
かめた。以下、実験結果を基に詳細に説明する。
The present inventors focused on the recrystallization phenomenon after the final pass of finish hot rolling and conducted extensive research from various viewpoints, and as a result, confirmed that this phenomenon and magnetic properties are closely related. A detailed explanation will be given below based on experimental results.

第1図は熱延終了温度及び熱延の最終3パスの累積圧下
率が製品の磁束密度に与える影響を表したグラフである
。ここでは、C: 0.054重量%。
FIG. 1 is a graph showing the influence of the hot rolling end temperature and the cumulative reduction rate of the final three passes of hot rolling on the magnetic flux density of the product. Here, C: 0.054% by weight.

Si:3.25重量%、酸可溶性Af:0.027重量
%、N:0.0080重量%、S:0.007重量%。
Si: 3.25% by weight, acid-soluble Af: 0.027% by weight, N: 0.0080% by weight, S: 0.007% by weight.

Mn : 0.14重量%を含有し、残部Fe及び不可
避的不純物からなる20〜60inn厚のスラブを11
50〜1400°Cに加熱し、6パスで2.3M厚の熱
延板に熱延し、約1秒後に水冷し、550 ”Cまで冷
却した後550°Cに1時間保持して炉冷する巻取りシ
ミュレートを施し熱延板焼鈍を施すことなく約85%の
強圧下圧延を行って最終板J!!0.335mmの冷延
板とし、830〜1000°Cの温度で脱炭焼鈍を行い
、引き続きMgOを主成分とする焼鈍分離剤を塗布して
最終仕上焼鈍を行った。
A slab with a thickness of 20 to 60 inches containing Mn: 0.14% by weight and the remainder Fe and unavoidable impurities was
Heating to 50-1400°C, hot-rolling into a 2.3M thick hot-rolled plate in 6 passes, cooling with water after about 1 second, cooling to 550"C, holding at 550°C for 1 hour, and cooling in the furnace. The final plate J!!0.335mm cold-rolled plate was subjected to a winding simulation and subjected to strong reduction rolling of about 85% without hot-rolled plate annealing, and decarburized annealed at a temperature of 830 to 1000°C. Then, an annealing separator containing MgO as a main component was applied and final annealing was performed.

第1図から明らかなように熱延終了温度750〜115
0°Cでかつ最終3パスの累積圧下率40%以上の場合
にB8≧1.8 B Tの高い磁束密度が得られている
。また本発明者らはこの新知見をさらに詳細に検討した
As is clear from Figure 1, the hot rolling finish temperature is 750 to 115.
A high magnetic flux density of B8≧1.8 B T is obtained when the temperature is 0° C. and the cumulative reduction rate of the final three passes is 40% or more. The present inventors also investigated this new finding in more detail.

第2図は、第1図で磁束密度が良好であった熱延終了温
度750〜1150℃でかつ熱延の最終3パス累積圧下
率40%以上の場合における熱延の最終パスの圧下率と
磁束密度との関係を表したグラフである。
Figure 2 shows the rolling reduction ratio of the final pass of hot rolling when the magnetic flux density was good in Figure 1, at a hot rolling end temperature of 750 to 1150°C, and when the cumulative rolling reduction ratio of the final three passes of hot rolling was 40% or more. It is a graph showing the relationship with magnetic flux density.

第2図から明らかなように最終パスの圧下率が20%以
上の場合にB、≧1.90 Tの高い磁束密度が得られ
ている。
As is clear from FIG. 2, a high magnetic flux density of B≧1.90 T is obtained when the rolling reduction ratio in the final pass is 20% or more.

熱延終了温度、最終3パスの累積圧下率、最終パスの圧
下率と製品の磁束密度との間に第1図及び第2図に示し
た関係が成立する理由については、必ずしも明らかでは
ないが、本発明者らは次のように推察している。
Although it is not necessarily clear why the relationships shown in Figures 1 and 2 hold between the hot rolling end temperature, the cumulative rolling reduction rate of the final three passes, the rolling reduction rate of the final pass, and the magnetic flux density of the product. , the present inventors speculate as follows.

第3図、第4図に各々熱延条件の異る熱延板金属組織、
脱炭焼鈍後(脱炭板)の集合組m(板厚1/4地点)の
例を示す。この場合第1図で説明したものと同一成分の
33.2mm、  26n+a+厚のスラブを1150
°Cで加熱後1050°Cで熱延を開始し、■33゜2
→18.6→11.9→8.6→5.1→3.2→2.
3(mm)、  ■26→11.8→6.7→3.5→
3.0→2.6→2.3(mm)のパススケジュールで
2、3 +n+n厚の熱延板とし、第1図で説明したも
のと同じ条件で冷却を行った。この時熱延終了温度は各
々■:935°C2■:912”Cであった。しかる後
この熱延板に熱延板焼鈍を施すことなく約85%の強圧
下圧延を行って最終板厚0.335 mmの冷延板とし
、引き続きN225%、Hz75%、n点60℃の雰囲
気中で830°Cに150秒保持する脱炭焼鈍を行った
Figures 3 and 4 show the metal structures of hot-rolled sheets under different hot-rolling conditions, respectively.
An example of set m (plate thickness 1/4 point) after decarburization annealing (decarburization plate) is shown. In this case, a slab of 33.2 mm and 26n+a+ thickness with the same composition as that explained in Fig. 1 was
After heating at °C, start hot rolling at 1050 °C, ■33゜2
→18.6→11.9→8.6→5.1→3.2→2.
3 (mm), ■26→11.8→6.7→3.5→
A hot-rolled sheet with a thickness of 2,3+n+n was prepared using a pass schedule of 3.0→2.6→2.3 (mm), and cooling was performed under the same conditions as described in FIG. 1. At this time, the hot-rolling end temperature was 935°C and 912"C, respectively.The hot-rolled sheet was then subjected to heavy reduction rolling of about 85% without hot-rolled sheet annealing, and the final thickness was A cold-rolled sheet of 0.335 mm was then decarburized by holding it at 830°C for 150 seconds in an atmosphere of 25% N, 75% Hz, and 60°C at the n point.

第3図から明らかなように、本発明の条件を満す■の場
合、■と比較して熱延板の再結晶率が極めて高く、結晶
粒径が小さい。また、第4図から明らかなように本発明
の条件を満す■の場合、■と比較して、脱炭板の(11
1)方位粒が多く、(100)方位粒が少く、(110
)方位粒には差がない。なお、熱延板の再結晶率(板厚
1/4地点)は、本発明者らが開発したE CP (E
lectron channelling patte
rn)を画像解析して結晶歪を測定する方法(日本金属
学会秋期講演大会概要集(1988,11) P289
)を用いて測定し、標準試料の焼鈍板に1.5%冷延し
た場合のECPの鮮明度より高い値を示す粒の面積率(
低歪粒の面積率)を再結晶率と呼んでいる。この方法は
従来の金属組織を目視判定して再結晶率を測定する方法
と比較して格段に精度がよい。
As is clear from FIG. 3, in the case of (1) which satisfies the conditions of the present invention, the recrystallization rate of the hot rolled sheet is extremely high and the crystal grain size is small compared to (2). Moreover, as is clear from FIG. 4, in the case of (1) which satisfies the conditions of the present invention, compared to (2), the decarburization plate (11
1) Many oriented grains, few (100) oriented grains, (110
) There is no difference in orientation grains. The recrystallization rate of the hot-rolled sheet (at the 1/4th point of the sheet thickness) is determined by E CP (E
electron channeling patte
rn) to measure crystal strain by image analysis (Summary of the Autumn Conference of the Japan Institute of Metals (1988, November) P289
), and the area ratio of grains (
The area ratio of low strain grains) is called the recrystallization rate. This method is much more accurate than the conventional method of visually determining the metal structure and measuring the recrystallization rate.

第3図、第4図から明らかなように、本発明である■の
場合、熱延板の再結晶率が極めて高く(歪が少な()か
つ結晶粒径が小さくなっており、これを冷延再結晶させ
ると、(110)方位粒に影響を与えることな1111
)方位粒が多く、(100)方位粒が少い集合組織を得
ることができる。
As is clear from FIGS. 3 and 4, in the case of the present invention (2), the recrystallization rate of the hot-rolled sheet is extremely high (with little strain () and the crystal grain size is small). When recrystallized by extension, the 1111 crystals do not affect the (110) oriented grains.
) A texture with many oriented grains and few (100) oriented grains can be obtained.

従来から(1101<001>二次再結晶粒の母体は熱
延時表面層での剪断変形で形成されると考えられており
、熱延板での(110)<001>方位粒を冷延再結晶
後に富化するためには、熱延板での(110)<001
>方位粒を粗粒でかつ歪の少ない状態にすることが有効
と考えられている。本発明においては熱延板の結晶粒径
は小さいが歪が少ない状態となっており、結果的には、
脱炭焼鈍後の状態で(1101<001>方位粒に影響
を与えない。
It has been conventionally believed that the matrix of (1101<001> secondary recrystallized grains) is formed by shear deformation in the surface layer during hot rolling, and (110)<001> oriented grains in hot rolled sheets are In order to enrich after crystallization, (110)<001 in hot rolled sheet
>It is considered effective to make the oriented grains coarse and have little strain. In the present invention, the grain size of the hot-rolled sheet is small, but the strain is small, and as a result,
In the state after decarburization annealing (no effect on 1101<001> oriented grains).

他方、脱炭板の主方位である(111)<112>、(
10(N<025>は(110)<ooi>二次再結晶
粒の粒成長に影響を与える方位として知られており、(
111)<112>が多いほど、(100)<025>
が少ないほど(1101<001>二次再結晶粒の粒成
長が容易となると考えられる。本発明においては、熱延
最終3パスで高圧下を加えることによって最終パス後に
引き続く再結晶での核生成サイトが増加し、再結晶が進
み、結晶粒も微細化される。本発明の熱延板を引き続き
冷延再結晶させると冷延前の粒径が小さいがために粒界
近傍から(111)<112>が多く核体し、粒内から
核体ずる(100)<025>が相対的に減少する。
On the other hand, the main orientations of the decarburization plate (111)<112>, (
10(N<025> is known as the orientation that affects the grain growth of (110)<ooi> secondary recrystallized grains,
111) The more <112>, the more (100) <025>
It is thought that the smaller the number (1101<001>), the easier the grain growth of secondary recrystallized grains.In the present invention, by applying high pressure in the final three passes of hot rolling, nucleation in the recrystallization that follows after the final pass is reduced. The number of sites increases, recrystallization progresses, and the crystal grains become finer.If the hot-rolled sheet of the present invention is subsequently cold-rolled and recrystallized, since the grain size before cold rolling is small, (111) There are many <112> nuclei, and (100) <025> nuclei are relatively reduced from inside the grain.

従って、本発明においては、熱延最終パス後に引き続く
再結晶によって熱延板が低歪でかつ結晶粒径が小さい状
態となったがために、脱炭焼鈍板の状態で(110)<
001>方位粒に影響を与えることなく、(110)<
001>方位粒の粒成長に有利な(IIN<112>方
位粒を増加させ、(110)<001>方位粒の粒成長
を妨げる(100)<025>方位粒を減少させること
に成功した。これにより熱延板焼鈍を省略しても良好な
磁気特性を得ることが可能となる。
Therefore, in the present invention, since the hot-rolled sheet has a low strain and a small grain size due to the recrystallization that continues after the final pass of hot rolling, the decarburized annealed sheet has (110)<
(110)< without affecting the 001> oriented grains
We succeeded in increasing grains with an IIN <112> orientation, which is advantageous for the grain growth of grains with a 001> orientation, and decreasing grains with a (100) <025> orientation, which hinders the growth of grains with a (110) <001> orientation. This makes it possible to obtain good magnetic properties even if hot-rolled plate annealing is omitted.

次いで、本発明の各要件について説明する。Next, each requirement of the present invention will be explained.

本発明で使用されるスラブは重量でC:  0.021
〜0.100%、St;2.5〜4.5%ならびに通常
のインヒビター成分を含み、残余はFeおよび不可避的
不純物よりなる。
The slab used in the present invention has a weight C: 0.021
~0.100%, St; 2.5-4.5% and the usual inhibitor components, the remainder consisting of Fe and unavoidable impurities.

次に上記成分の限定理由について述べる。Cは0、02
1%未満になると二次再結晶が不安定となり、二次再結
晶した場合でもB、>1.80 (T)が得がたいので
、0.021%以上とした。また、0、100%を超え
ると脱炭不良が発生して好ましくない。又Siについて
は4.5%を超えると冷延が困難となり好ましくなく、
2.5%未満では良好な磁気特性を得ることが困難とな
り好ましくない。
Next, the reason for limiting the above components will be described. C is 0,02
If it is less than 1%, secondary recrystallization becomes unstable, and even if secondary recrystallization is performed, it is difficult to obtain B > 1.80 (T), so it is set to 0.021% or more. Moreover, if it exceeds 0.100%, decarburization failure will occur, which is not preferable. Moreover, if Si exceeds 4.5%, cold rolling becomes difficult, which is undesirable.
If it is less than 2.5%, it becomes difficult to obtain good magnetic properties, which is not preferable.

また、インヒビター構成元素として、必要に応じてAI
、 N、 Mn、 S、 Se、 sb、 B、 Cu
、 Bit Nb。
In addition, as an inhibitor constituent element, AI
, N, Mn, S, Se, sb, B, Cu
, Bit Nb.

Cr、 Sn+ Ti等を添加することもできる。Cr, Sn+Ti, etc. can also be added.

このスラブの加熱温度は、特に限定されるものではない
が、コストの面から1300°C以下とすることが好ま
しい。
The heating temperature of this slab is not particularly limited, but from the viewpoint of cost, it is preferably 1300°C or less.

加熱されたスラブは、引き続き熱延されて熱延板となる
。本発明の特徴はこの熱延工程にある。
The heated slab is subsequently hot-rolled into a hot-rolled sheet. The feature of the present invention lies in this hot rolling process.

つまり熱延終了温度を750〜1150°Cとし、最終
3パスの累積圧下率を40%以上とする。さらに加えて
、最終パスの圧下率が20%以上であることが良好な磁
気特性を得る上で一層好ましい。
That is, the hot rolling end temperature is set to 750 to 1150°C, and the cumulative reduction rate of the final three passes is set to 40% or more. In addition, it is more preferable that the rolling reduction in the final pass is 20% or more in order to obtain good magnetic properties.

熱延工程は、通常100〜400mm厚のスラブを加熱
した後いづれも複数回のパスで行う粗圧延と仕上圧延よ
り成る。粗圧延の方法については特に限定するものでは
なく通常の方法で行われる。
The hot rolling process usually consists of rough rolling and finish rolling, each of which is performed in multiple passes after heating a slab with a thickness of 100 to 400 mm. The rough rolling method is not particularly limited and may be carried out by a conventional method.

本発明の特徴は粗圧延に引き続く仕上圧延にある。The feature of the present invention is the finish rolling that follows the rough rolling.

仕上圧延は通常4〜10パスの高速連続圧延で行われる
。通常仕上圧延の圧下配分は前段が圧下率が高く後段に
行くほど圧下率を下げて形状を良好なものとしている。
Finish rolling is usually performed by high-speed continuous rolling of 4 to 10 passes. Normally, the reduction distribution in finish rolling is such that the reduction rate is high in the first stage and the reduction rate is lowered toward the latter stage to obtain a good shape.

圧延速度は通常100〜3000m/winとなってお
り、パス間の時間は0.01〜100秒となっている。
The rolling speed is usually 100 to 3000 m/win, and the time between passes is 0.01 to 100 seconds.

本発明で限定しているのは、熱延終了温度と最終3パス
の累積圧下率とさらに加えて最終パスの圧下率だけであ
り、その他の条件は特に限定するものではないが、最終
3パスのパス間時間を1000秒以上と異常に長くとる
とパス間の回復、再結晶で歪が解放され、蓄積歪の効果
が得られにくくなるので好ましくない。
What is limited in the present invention is only the end temperature of hot rolling, the cumulative rolling reduction ratio of the final three passes, and the rolling reduction ratio of the final pass, and other conditions are not particularly limited. If the interpass time is abnormally long, such as 1000 seconds or more, the strain will be released by recovery and recrystallization between passes, making it difficult to obtain the effect of accumulated strain, which is not preferable.

その他仕上熱延前段の数パスでの圧下率については、最
終パスまで加えた歪が残っていることが期待しにくいの
で特に限定せず、最終3パスだけを重視すれば十分であ
る。
Regarding the rolling reduction ratio in the several passes before finishing hot rolling, it is not particularly limited because it is difficult to expect that the strain applied until the final pass remains, and it is sufficient to focus only on the final three passes.

次いで1記熱延条件の限定理由について述べる。Next, the reasons for limiting the hot rolling conditions described in 1 will be described.

熱延終了温度を750〜1150°C2最終3パスの累
積圧下率を40%以上としたのは、第1図から明らかな
ようにこの範囲で88≧1.88(T)の良好な磁束密
度B8をもつ製品が得られるためである。なお最終3パ
スの累積圧下率の上限にっいては特に限定するものでは
ないが工業的には99.9%以上の累積圧下を加えるこ
とは困難である。またさらに好ましくは最終パスの圧下
率を20%以上としたのは第2図から明らかなようにこ
の範囲において、Bll≧1.90(T)の−層良好な
磁束密度B、をもつ製品が得られるためである。なお最
終パスの圧下率の上限は特に限定するものではないが、
工業的には90%以上の圧下を加えることは困難である
The reason why we set the hot rolling end temperature to 750 to 1150°C2 and the cumulative reduction rate in the final three passes to 40% or more is because, as is clear from Figure 1, we have a good magnetic flux density of 88≧1.88 (T) in this range. This is because a product with B8 can be obtained. Although there is no particular limitation on the upper limit of the cumulative rolling reduction of the final three passes, it is industrially difficult to apply a cumulative rolling reduction of 99.9% or more. More preferably, the rolling reduction ratio in the final pass is set to 20% or more, as is clear from FIG. This is because it can be obtained. Note that the upper limit of the rolling reduction rate in the final pass is not particularly limited;
Industrially, it is difficult to apply a reduction of 90% or more.

熱延の最終パス後通常01〜100秒程度空冷された後
水冷され300〜700 ’Cの温度で巻取られ、徐冷
される。この冷却プロセスについては特に限定されるも
のではないが、熱延後1秒以上空冷することは、再結晶
を進ませる上で好ましい。
After the final pass of hot rolling, it is usually air cooled for about 01 to 100 seconds, then water cooled, wound up at a temperature of 300 to 700'C, and slowly cooled. Although this cooling process is not particularly limited, air cooling for 1 second or more after hot rolling is preferable in order to advance recrystallization.

この熱延板は熱延板焼鈍を施すことなく80%以上の圧
下率で冷延される。圧下率を80%以上としたのは、圧
下率を上記範囲とするとによって、脱炭仮において尖鋭
な(1101<001>方位粒と、これに蚕食され易い
対応方位粒((111)<112>方位粒等)を適正量
得ることができ、磁束密度を高める上で好ましいためで
ある。
This hot-rolled sheet is cold-rolled at a rolling reduction of 80% or more without performing hot-rolled sheet annealing. The reason why the rolling reduction rate is set to 80% or more is that by setting the rolling reduction rate to the above range, sharp (1101 <001> oriented grains and corresponding oriented grains ((111) <112> This is because an appropriate amount of oriented grains, etc.) can be obtained, which is preferable for increasing magnetic flux density.

冷延後鋼板は通常の方法で脱炭焼鈍、焼鈍分離剤塗布、
仕上焼鈍を施されて再柊製品となる。なお、脱炭焼鈍後
の状態で、二次再結晶に必要なインヒビター強度が不足
している場合には、仕上焼鈍等においてインヒビターを
強化する処理が必要となる。インヒビター強化法の一例
としては、A2を含有する鋼において仕上焼鈍雰囲気ガ
スの窒素分圧を高めに設定する方法が知られている。
After cold rolling, the steel plate is decarburized and annealed in the usual way, coated with an annealing separator,
After finishing annealing, it becomes a re-Hiragi product. Note that if the inhibitor strength required for secondary recrystallization is insufficient in the state after decarburization annealing, a treatment to strengthen the inhibitor such as finish annealing is required. As an example of an inhibitor strengthening method, a method is known in which the nitrogen partial pressure of the final annealing atmosphere gas is set to be high in steel containing A2.

[実施例〕 以下、実施例を説明する。[Example〕 Examples will be described below.

実施例1− C: 0.054重量%、Si;3.25重量%、Mn
:0.16重量%、S:0.005重量%、酸可溶性A
/ : 0.026重量%、N:0.0078重量%を
含有し、残部Fe及び不可避的不純物からなる40間1
のスラブを1150°Cの温度で加熱した後、1050
°Cで熱延を開始し6パスで熱延して2.3艶の熱延板
とした。この時圧下配分を■40→15→7→3.5→
3→2.6→2.3 (mm) 、■40→30→20
→10→5→2.8→2.3 (mm) 、  ■40
→30−20 →10 →5 →3 →2.3 (mm
)の3条件とした。熱延終了後は1秒間空冷後550°
Cまで水冷し、550 ”Cに1時間保持した後炉冷す
る巻取シミュレーションを行った。この熱延板を酸洗し
て圧下率的85%で0.335 mmの冷延板とし、8
30°Cで150秒保持する脱炭焼鈍を施した。
Example 1-C: 0.054% by weight, Si; 3.25% by weight, Mn
: 0.16% by weight, S: 0.005% by weight, acid soluble A
/: Contains 0.026% by weight, N: 0.0078% by weight, and the balance consists of Fe and inevitable impurities.
After heating the slab at a temperature of 1150°C, 1050°C
Hot rolling was started at °C and hot rolled in 6 passes to obtain a hot rolled sheet with a gloss of 2.3. At this time, the reduction distribution is ■40 → 15 → 7 → 3.5 →
3→2.6→2.3 (mm), ■40→30→20
→10→5→2.8→2.3 (mm), ■40
→30-20 →10 →5 →3 →2.3 (mm
). After hot rolling, air cool for 1 second and then 550°
A winding simulation was performed in which the hot-rolled sheet was water-cooled to C, held at 550"C for 1 hour, and then cooled in a furnace. This hot-rolled sheet was pickled to form a cold-rolled sheet of 0.335 mm at a rolling reduction of 85%.
Decarburization annealing was performed at 30°C for 150 seconds.

得られた脱炭焼鈍板に、MgOを主成分とする焼鈍分離
剤を塗布し、N225%、8275%の雰囲気ガス中で
10“C/時の速度で1200°Cまで昇温し、引き続
きHzlOO%雰囲気ガス中で1200°Cで20時間
保持する最終仕上焼鈍を行った。
The obtained decarburized annealed plate was coated with an annealing separator mainly composed of MgO, heated to 1200°C at a rate of 10"C/hour in an atmosphere gas of 225% N and 8275%, and then heated to 1200°C with HzlOO. Final annealing was performed at 1200° C. for 20 hours in an atmosphere gas.

熱延条件、熱延終了温度と製品の磁気特性を第1表に示
す。
Table 1 shows the hot rolling conditions, hot rolling end temperature, and magnetic properties of the product.

一実施例2− C: 0.055重量%、St:3.28重量%、Mn
:0.15重量%、S:0.007重量%、酸可溶性/
V : o、 028重量%、N:0.0080重量%
を含有し、残部Fe及び不可避的不純物からなる26o
un厚のスラブを1150℃の温度で加熱した後、6パ
スで熱延して2.3 mmの熱延板とした。この時圧下
配分を26→15→10→7→5→2.8→2.3(n
un)とし、熱延開始温度を■1000°C1■900
°C1■800’C,0700°Cの4条件とした。熱
延終了後の冷却条件、引き続く最終仕上焼鈍までの工程
条件は実施例1と同じ条件で行った。
Example 2 - C: 0.055% by weight, St: 3.28% by weight, Mn
: 0.15% by weight, S: 0.007% by weight, acid soluble/
V: o, 028% by weight, N: 0.0080% by weight
26o, with the remainder consisting of Fe and unavoidable impurities.
After heating the slab with a thickness of 100° C. to 1150° C., it was hot-rolled in 6 passes to obtain a 2.3 mm hot-rolled plate. At this time, the reduction distribution is 26 → 15 → 10 → 7 → 5 → 2.8 → 2.3 (n
un), and the hot rolling start temperature is ■1000°C1■900
Four conditions were used: °C1, 800'C, and 0700°C. The cooling conditions after hot rolling and the process conditions up to the final final annealing were the same as in Example 1.

熱延条件、熱延終了温度と製品の磁気特性を第2表に示
す。
Table 2 shows the hot rolling conditions, hot rolling end temperature, and magnetic properties of the product.

−実施例3− C: 0.058重量%、Si:3.30重量%、Mn
:0.15重量%、S:0.006重世%、酸可溶性7
V: 0.030重量%、N:0,0081重量%を含
有し、残部Fe及び不可避的不純物からなる40mm厚
のスラブを1250°Cの温度で加熱した後、6パスで
熱延して2.0 rMlの熱延板とした。この時圧下配
分を40→30→20→10→5→3→2 (n+m)
とじ熱延開始温度を■1250°C2■tioo’c■
1000℃の3条件とした。熱延終了後は実施例1と同
じ条件で冷却した。この熱延板を酸洗して圧下率約86
%で0.285 mmの冷延板とし、830°Cで12
0秒保持し引き続き910°Cに20秒保持する脱炭焼
鈍を施した。得られた脱炭焼鈍板にMgOを主成分とす
る焼鈍分離剤を塗布し、N225%、H,75%の雰囲
気ガス中で10°C/時の速度で880℃まで昇温し、
引き続きN275%、H225%雲囲気ガス中で15’
C/時の速度で1200°Cまで昇温し、引き続きH,
100%の雰囲気ガス中で1200 ’Cで20時間保
持する最終仕上焼鈍を行った。
-Example 3- C: 0.058% by weight, Si: 3.30% by weight, Mn
: 0.15% by weight, S: 0.006% by weight, acid soluble 7
A 40 mm thick slab containing V: 0.030% by weight, N: 0,0081% by weight, and the balance consisting of Fe and unavoidable impurities was heated at a temperature of 1250°C, and then hot rolled in 6 passes. It was made into a hot rolled sheet of .0 rMl. At this time, the reduction distribution is 40 → 30 → 20 → 10 → 5 → 3 → 2 (n + m)
The binding hot rolling start temperature is ■1250°C2■tioo'c■
Three conditions were used: 1000°C. After the hot rolling was completed, cooling was performed under the same conditions as in Example 1. This hot-rolled plate is pickled and the rolling reduction is approximately 86.
Cold-rolled plate with a thickness of 0.285 mm at 830°C
Decarburization annealing was performed by holding at 910°C for 0 seconds and then holding at 910°C for 20 seconds. An annealing separator containing MgO as the main component was applied to the obtained decarburized annealed plate, and the temperature was raised to 880°C at a rate of 10°C/hour in an atmospheric gas containing 25% N and 75% H.
Continued to 15' in N275%, H225% cloud surrounding gas.
The temperature was raised to 1200°C at a rate of C/hour, and then H,
A final finish annealing was performed at 1200'C in 100% atmospheric gas for 20 hours.

熱延条件、熱延終了温度と製品の磁気特性を第3表に示
す。
Table 3 shows the hot rolling conditions, hot rolling end temperature, and magnetic properties of the product.

実施例4− C: 0.052重量%、Si:3.21重量%、Mn
:0.14重世%、S:0.006重量% 酸可溶性A
!: 0.031重量%、N:0.0079重量%を含
有し、残部Fe及び不可避的不純物からなる40mm厚
のスラブを1150°Cの温度で加熱した後、1050
°Cで熱延を開始し、6パスで熱延して1、8 mmの
熱延板とした。この時圧下配分を■40→16→7→2
.9→2.5−2.1→1.8(mm)、■40→30
→20→10→5→2.5→1.8 (mm) 、■4
0→30→22→12→6→3.5→1.8 (mm)
 、■40→30→22→16→8→4→1.8 (m
m)の4条件とした。熱延後の冷却を実施例1と同じ条
件で行った。この熱延板を酸洗して圧下率約86%で0
.260門の冷延板とし、引き続き最終仕上焼鈍までの
工程条件を実施例1と同じ条件で行った。
Example 4-C: 0.052% by weight, Si: 3.21% by weight, Mn
: 0.14% by weight, S: 0.006% by weight Acid soluble A
! : 0.031% by weight, N: 0.0079% by weight, and the remainder was Fe and unavoidable impurities after heating a 40mm thick slab at a temperature of 1150°C.
Hot rolling was started at °C and hot rolled in 6 passes to obtain a hot rolled sheet of 1.8 mm. At this time, the pressure distribution is ■40 → 16 → 7 → 2
.. 9 → 2.5-2.1 → 1.8 (mm), ■40 → 30
→20→10→5→2.5→1.8 (mm), ■4
0→30→22→12→6→3.5→1.8 (mm)
,■40→30→22→16→8→4→1.8 (m
The four conditions were set as m). Cooling after hot rolling was performed under the same conditions as in Example 1. This hot-rolled sheet is pickled and the rolling reduction is approximately 86%.
.. A 260-gate cold-rolled plate was prepared, and the process conditions up to final annealing were the same as in Example 1.

熱延条件、熱延終了温度、va品の磁気特性を第4表に
示す。
Table 4 shows the hot rolling conditions, hot rolling end temperature, and magnetic properties of the VA product.

一実施例5− C: 0.033重量%、St:3.25重量%、Mn
:0.14重四%、S:0.006重量%、酸可溶性I
V: 0.027重量%、N:0.0078重量%を含
有し、残部Fe及び不可避的不純物からなる26謳厚の
スラブを1150°Cの温度で加熱した後、1050℃
で熱延を開始し、6パスで熱延して2.3 mmの熱延
板とした。この時圧下配分を■26→lO→5→3.5
→3→2.6→2.3 (mm) 、■26→15→1
0→7→5→3→2.3 (mm)の2条件とした。熱
延終了後の冷却条件、引き続く脱炭焼鈍までの工程条件
は実施例1と同じ条件で行った。得られた脱炭焼鈍板に
MgOを主成分とする焼鈍分離剤を塗布し、N、25%
、H!75%の雰囲気ガス中で10°C/時の速度で8
80″Cまで昇温し、引き続き1200°CまでN、7
5%。
Example 5 - C: 0.033% by weight, St: 3.25% by weight, Mn
: 0.14% by weight, S: 0.006% by weight, acid soluble I
After heating a 26cm thick slab containing V: 0.027% by weight, N: 0.0078% by weight, and the balance consisting of Fe and unavoidable impurities at a temperature of 1150°C, it was heated to 1050°C.
Hot rolling was started in 6 passes to obtain a 2.3 mm hot rolled sheet. At this time, the pressure distribution is ■26 → lO → 5 → 3.5
→3→2.6→2.3 (mm), ■26→15→1
Two conditions were set: 0→7→5→3→2.3 (mm). The cooling conditions after hot rolling and the process conditions up to the subsequent decarburization annealing were the same as in Example 1. The resulting decarburized annealed plate was coated with an annealing separator containing MgO as a main component, and then treated with 25% N.
,H! 8 at a rate of 10 °C/h in 75% atmospheric gas
Raise the temperature to 80″C, then continue to heat up to 1200°C with N, 7
5%.

H225%の雰囲気ガス中で10°C/時の速度で昇温
し、次いで82100%の雰囲気ガス中で1200″C
で20時間保持する最終仕上焼鈍を行った。
The temperature was increased at a rate of 10°C/hour in an atmosphere of 25% H2, then 1200"C in an atmosphere of 82100%.
A final finish annealing was performed for 20 hours.

熱延条件、熱延終了温度と製品の磁気特性を第5表に示
す。
Table 5 shows the hot rolling conditions, hot rolling end temperature, and magnetic properties of the product.

一実施例6− C: 0.078重量%、Si:3.25重量%、Mn
:0、073重量%、 S : 0.025重量%、酸
可溶性Al 70.027重量%、N:0.0081重
量%、 Sn: O,l 0重量%、Cu:0.06重
量%を含有し、残部Fe及び不可避的不純物からなる4
0mm厚のスラブを1300°Cの温度で加熱した後1
050″Cで熱延を開始し6パスで熱延して2.3Mの
熱延板とした。この時圧下配分を■40→15→7→3
.5→3°−2,6−2,3(in) 、■40 →3
0 →20 →10→6→3.6→2.3 (mm)の
2条件とした。熱延終了後の冷却から冷延までの工程条
件は実施例1と同じ条件で行った。次いでこの冷延板を
830°Cで120秒保持し、引き続き950℃に20
秒保持する脱炭焼鈍を施した。引き続く最終仕上焼鈍ま
での工程条件は実施例1と同じ条件で行った。
Example 6 - C: 0.078% by weight, Si: 3.25% by weight, Mn
Contains: 0.073% by weight, S: 0.025% by weight, acid-soluble Al 70.027% by weight, N: 0.0081% by weight, Sn: O, 0% by weight, Cu: 0.06% by weight. 4, with the remainder consisting of Fe and unavoidable impurities.
After heating a 0mm thick slab at a temperature of 1300°C1
Hot rolling was started at 050"C and hot rolled in 6 passes to obtain a 2.3M hot rolled sheet. At this time, the reduction distribution was: ■40 → 15 → 7 → 3
.. 5 → 3°-2, 6-2, 3 (in), ■40 → 3
Two conditions were set: 0 → 20 → 10 → 6 → 3.6 → 2.3 (mm). The process conditions from cooling after hot rolling to cold rolling were the same as in Example 1. This cold-rolled plate was then held at 830°C for 120 seconds and then heated to 950°C for 20 seconds.
Decarburization annealing was performed for seconds. The process conditions up to the final final annealing were the same as in Example 1.

熱延条件、熱延終了温度と製品の磁気特性を第6表に示
す。
Table 6 shows the hot rolling conditions, hot rolling end temperature, and magnetic properties of the product.

一実施例7 C: 0.045重量%、St:3.20重量%、Mn
:0、065重量%、S:0.023重量%、 Cu 
: 0.08重量%、Sb:0.018重量%を含有し
、残部Fe及び不可避的不純物からなる26nn厚のス
ラブを1300℃の温度で加熱した後、1050°Cで
熱延を開始し6パスで熱延して2.3 wllの熱延板
とした。この時圧下配分を■40→15→7→3.5→
3→2.6→2.3 (mm) 、■40→30→20
→12→8→4→2.3 (mm)の2条性とした。熱
延終了後の冷却から冷延までの工程条件は実施例1と同
じ条件で行った。次いでこの冷延板を830°Cで12
0秒保持し引き続き910″Cに20秒保持する脱炭焼
鈍を施した。引き続く最終仕上焼鈍までの工程条件は実
施例1と同じ条件で行った。
Example 7 C: 0.045% by weight, St: 3.20% by weight, Mn
: 0.065% by weight, S: 0.023% by weight, Cu
After heating a 26 nm thick slab containing 0.08 wt% Sb and 0.018 wt% Sb with the remainder Fe and unavoidable impurities at a temperature of 1300°C, hot rolling was started at 1050°C. It was hot-rolled in a pass to obtain a 2.3 wll hot-rolled plate. At this time, the reduction distribution is ■40 → 15 → 7 → 3.5 →
3→2.6→2.3 (mm), ■40→30→20
→ 12 → 8 → 4 → 2.3 (mm). The process conditions from cooling after hot rolling to cold rolling were the same as in Example 1. This cold-rolled plate was then heated at 830°C for 12
Decarburization annealing was performed by holding for 0 seconds and then holding at 910''C for 20 seconds.The process conditions up to the final finish annealing were the same as in Example 1.

熱延条件、熱延終了温度と製品の磁気特性を第7表に示
す。
Table 7 shows the hot rolling conditions, hot rolling end temperature, and magnetic properties of the product.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては、熱延終了温度
と熱延最終3パスの累積圧下率とさらに好ましくは熱延
の最終パスの圧下率を制御することにより、熱延板焼鈍
を施すことなく1回冷延法で良好な磁気特性を得ること
ができるので、その工業的効果は極めて大である。
As explained above, in the present invention, hot-rolled sheet annealing is performed by controlling the hot-rolling end temperature, the cumulative rolling reduction rate of the final three passes of hot rolling, and more preferably the rolling reduction ratio of the final pass of hot rolling. Since good magnetic properties can be obtained in a single cold rolling process, the industrial effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱延終了温度及び熱延の最終3パスの累積圧下
率が製品の磁束密度に与える影響を表したグラフであり
、第2図は熱延の最終パスの圧下率が製品の磁束密度に
与える影響を表したグラフであり、第3図は熱延条件の
異る熱延板金属組織の例を示す顕微鏡写真であり、第4
図は熱延条件の異る場合の脱炭板集合組織の例である。 特許出廓人 新日本製鐵株式会社
Figure 1 is a graph showing the influence of the end temperature of hot rolling and the cumulative reduction rate in the final three passes of hot rolling on the magnetic flux density of the product. Fig. 3 is a graph showing the influence on density; Fig. 3 is a micrograph showing examples of hot-rolled sheet metal structures under different hot-rolling conditions;
The figure shows examples of decarburized plate textures under different hot rolling conditions. Patent distributor Nippon Steel Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)重量でC:0.021〜0.100%、Si:2
.5〜4.5%ならびに通常のインヒビター成分を含み
、残余はFeおよび不可避的不純物よりなる珪素鋼スラ
ブを熱延し、熱延板焼鈍をすることなく引き続き圧下率
80%以上の冷延、脱炭焼鈍、最終仕上焼鈍を施して一
方向性電磁鋼板を製造する方法において、熱延終了温度
を750〜1150℃とし、最終3パスの累積圧下率を
40%以上とすることを特徴とする磁気特性の優れた一
方向性電磁鋼板の製造方法。
(1) C: 0.021-0.100%, Si: 2 by weight
.. A silicon steel slab containing 5 to 4.5% and normal inhibitor components, with the remainder consisting of Fe and unavoidable impurities, is hot-rolled and subsequently cold-rolled and de-rolled at a reduction rate of 80% or more without hot-rolled plate annealing. A method for producing a grain-oriented electrical steel sheet by subjecting it to charcoal annealing and final finish annealing, characterized in that the hot rolling end temperature is 750 to 1150°C and the cumulative reduction rate of the final three passes is 40% or more. A method for producing unidirectional electrical steel sheets with excellent properties.
(2)仕上熱延の最終パスの圧下率が20%以上である
ことを特徴とする請求項1記載の磁気特性の優れた一方
向性電磁鋼板の製造方法。
(2) The method for producing a unidirectional electrical steel sheet with excellent magnetic properties according to claim 1, characterized in that the rolling reduction in the final pass of finish hot rolling is 20% or more.
JP1085540A 1989-04-04 1989-04-04 Method for producing unidirectional electrical steel sheet with excellent magnetic properties Expired - Lifetime JPH0742504B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1085540A JPH0742504B2 (en) 1989-04-04 1989-04-04 Method for producing unidirectional electrical steel sheet with excellent magnetic properties
EP90106345A EP0391335B2 (en) 1989-04-04 1990-04-03 Process for production of grain oriented electrical steel sheet having superior magnetic properties
DE69025417T DE69025417T3 (en) 1989-04-04 1990-04-03 Process for the production of grain-oriented electrical steel sheets with excellent magnetic properties
US08/246,918 US5545263A (en) 1989-04-04 1994-05-20 Process for production of grain oriented electrical steel sheet having superior magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1085540A JPH0742504B2 (en) 1989-04-04 1989-04-04 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH02263923A true JPH02263923A (en) 1990-10-26
JPH0742504B2 JPH0742504B2 (en) 1995-05-10

Family

ID=13861707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1085540A Expired - Lifetime JPH0742504B2 (en) 1989-04-04 1989-04-04 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH0742504B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
JP2011246750A (en) * 2010-05-25 2011-12-08 Nippon Steel Corp Method for producing low iron loss unidirectional magnetic steel sheet
CN109097535A (en) * 2018-09-27 2018-12-28 长春工业大学 A method of high-intensitive non-orientation silicon steel is prepared based on Processed by Accumulative Roll-bonding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350008A (en) * 1976-10-19 1978-05-08 Kawasaki Steel Co Manufacturing of single anesotropic silicon steel sheets with high magnetic flux density
JPS6037172A (en) * 1983-08-08 1985-02-26 Nec Corp Manufacture of field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350008A (en) * 1976-10-19 1978-05-08 Kawasaki Steel Co Manufacturing of single anesotropic silicon steel sheets with high magnetic flux density
JPS6037172A (en) * 1983-08-08 1985-02-26 Nec Corp Manufacture of field effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
JP2011246750A (en) * 2010-05-25 2011-12-08 Nippon Steel Corp Method for producing low iron loss unidirectional magnetic steel sheet
CN109097535A (en) * 2018-09-27 2018-12-28 长春工业大学 A method of high-intensitive non-orientation silicon steel is prepared based on Processed by Accumulative Roll-bonding

Also Published As

Publication number Publication date
JPH0742504B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0241565B2 (en)
KR930009976B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269571A (en) Production of grain-oriented silicon steel strip
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH02263923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2787776B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2001040449A (en) Manufacture of grain-oriented electrical steel sheet superior in magnetic flux density and iron loss, and steel plate before final cold rolling for manufacturing the steel plate
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH04154914A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH02274811A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH04324A (en) Production of grain-oriented silicon steel sheet having large sheet thickness and excellent in magnetic property
JPH04323A (en) Production of grain-oriented silicon steel sheet having large sheet thickness and excellent in magnetic property
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH04362133A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic property

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

EXPY Cancellation because of completion of term