JP2521586B2 - Method for producing unidirectional electrical steel sheet with excellent magnetic properties - Google Patents

Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Info

Publication number
JP2521586B2
JP2521586B2 JP3063601A JP6360191A JP2521586B2 JP 2521586 B2 JP2521586 B2 JP 2521586B2 JP 3063601 A JP3063601 A JP 3063601A JP 6360191 A JP6360191 A JP 6360191A JP 2521586 B2 JP2521586 B2 JP 2521586B2
Authority
JP
Japan
Prior art keywords
slab
annealing
steel sheet
temperature
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3063601A
Other languages
Japanese (ja)
Other versions
JPH04297525A (en
Inventor
康成 吉冨
吉男 中村
穂高 本間
希瑞 石橋
久和 北河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3063601A priority Critical patent/JP2521586B2/en
Publication of JPH04297525A publication Critical patent/JPH04297525A/en
Application granted granted Critical
Publication of JP2521586B2 publication Critical patent/JP2521586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、磁場の強さ800A
/mにおける磁束密度B8が通常使用される。また、鉄損
特性を表す数値としては、周波数50Hzで1.7テスラ
ー(T)まで磁化したときの1kg当りの鉄損W17/50を使
用している。磁束密度は、鉄損特性の最大支配因子であ
り、一般的にいって磁束密度が高いほど鉄損特性が良好
になる。なお、一般的に磁束密度を高くすると二次再結
晶粒が大きくなり、鉄損特性が不良となる場合がある。
これに対しては、磁区制御により、二次再結晶粒の粒径
に拘らず、鉄損特性を改善することができる。
2. Description of the Related Art Unidirectional magnetic steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. The magnetic field strength is 800A as a numerical value showing the excitation characteristics.
A magnetic flux density B 8 at / m is usually used. In addition, as the numerical value showing the iron loss characteristic, the iron loss W 17/50 per 1 kg when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz is used. The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics.
On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に<001>軸をもったいわゆるゴス組織を発達さ
せることにより、製造されている。良好な磁気特性を得
るためには、磁化容易軸である<001>を圧延方向に
高度に揃えることが必要である。このような高磁束密度
一方向性電磁鋼板の製造技術として代表的なものに田口
悟等による特公昭40−15644号公報及び今中拓一
等による特公昭51−13469号公報記載の方法があ
る。前者においてはMnS 及びAlN を後者ではMnS,MnS
e,Sb等を主なインヒビターとして用いている。従って
現在の技術においてはこれらインヒビターとして機能す
る析出物の大きさ、形態及び分散状態を適正制御するこ
とが不可欠である。MnS に関して言えば、現在の工程で
は熱延前のスラブ加熱時にMnS をいったん完全固溶させ
た後、熱延時に析出する方法がとられている。二次再結
晶に必要な量のMnS を完全固溶するためには1400℃
程度の温度が必要である。これは普通鋼のスラブ加熱温
度に比べて200℃以上も高く、この高温スラブ加熱処
理には以下に述べるような不利な点がある。
This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and <001> axis in the rolling direction. Being manufactured. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy magnetization axis, in the rolling direction. Typical methods for producing such a high magnetic flux density unidirectional electrical steel sheet are methods described in Japanese Patent Publication No. 40-15644 by Satoru Taguchi and Japanese Patent Publication No. 51-13469 by Takuichi Imanaka. . In the former, MnS and AlN are used; in the latter, MnS and MnS
e, Sb, etc. are used as the main inhibitors. Therefore, in the current technology, it is essential to appropriately control the size, morphology and dispersion state of the precipitates that function as these inhibitors. As for MnS, the current process is to completely dissolve MnS during slab heating before hot rolling and then to precipitate during hot rolling. 1400 ℃ to completely dissolve the required amount of MnS for secondary recrystallization
A certain temperature is required. This is higher than the slab heating temperature of ordinary steel by 200 ° C. or more, and this high-temperature slab heating treatment has the following disadvantages.

【0004】 1) 方向性電磁鋼専用の高温スラブ加熱炉が必要。 2) 加熱炉のエネルギー原単位が高い。 3) 溶融スケール量が増大し、いわゆるノロかき出し
等にみられるように操業上の悪影響が大きい。このよう
な問題点を回避するためにはスラブ加熱温度を普通鋼並
みに下げればよいわけであるが、このことは同時にイン
ヒビターとして有効なMnS の量を少なくするかあるいは
まったく用いないことを意味し、必然的に二次再結晶の
不安定化をもたらす。このため低温スラブ加熱化を実現
するためには何らかの形でMnS以外の析出物などにより
インヒビターを強化し、仕上焼鈍時の正常粒成長の抑制
を充分にする必要がある。このようなインヒビターとし
ては硫化物の他、窒化物、酸化物及び粒界析出元素等が
考えられ、公知の技術として例えば次のようなものがあ
げられる。
1) A high temperature slab heating furnace dedicated to grain-oriented electrical steel is required. 2) The energy intensity of the heating furnace is high. 3) The amount of molten scale increases, and the adverse effect on operation is large, as can be seen in so-called shaving. To avoid such problems, the slab heating temperature can be lowered to the level of ordinary steel, but this also means that the amount of MnS effective as an inhibitor is reduced or not used at all. , Inevitably causes instability of secondary recrystallization. Therefore, in order to realize low-temperature slab heating, it is necessary to strengthen the inhibitor in some form with precipitates other than MnS to sufficiently suppress normal grain growth during finish annealing. Such inhibitors include nitrides, oxides, and grain boundary precipitated elements in addition to sulfides. Known techniques include, for example, the following.

【0005】特公昭54−24685号公報ではAs,B
i,Sn,Sb等の粒界偏析元素を鋼中に含有することによ
りスラブ加熱温度を1050〜1350℃の範囲にする
方法が開示された。特開昭52−24116号公報では
Alの他、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の窒化物生
成元素を含有することによりスラブ加熱温度を1100
〜1260℃の範囲にする方法が開示された。また、特
開昭57−158322号公報ではMn含有量を下げ、Mn
/Sの比率を2.5以下にすることにより低温スラブ加
熱化を行ない、さらにCuの添加により二次再結晶を安定
化する技術が開示された。一方、これらインヒビターの
補強と組み合わせて金属組織の側から改良を加えた技術
も開示された。すなわち特開昭57−89433号公報
ではMnに加えS,Se,Sb,Bi,Pb,Sn,B等の元素を加
え、これにスラブの柱状晶率と二次冷延圧下率を組み合
わせることにより1100〜1250℃の低温スラブ加
熱化を実現している。さらに特開昭59−190324
号公報ではSあるいはSeに加え、Al及びBと窒素を主体
としてインヒビターを構成し、これに冷延後の一次再結
晶焼鈍時にパルス焼鈍を施すことにより二次再結晶を安
定化する技術が公開された。このように方向性電磁鋼板
製造における低温スラブ加熱化実現のためには、これま
でに多大な努力が続けられてきている。
In Japanese Patent Publication No. 54-24685, As, B
A method for controlling the slab heating temperature in the range of 1050 to 1350 ° C. by including grain boundary segregation elements such as i, Sn, and Sb in steel has been disclosed. In JP-A-52-24116,
In addition to Al, a slab heating temperature of 1100 is obtained by containing a nitride forming element such as Zr, Ti, B, Nb, Ta, V, Cr and Mo.
Disclosed is a method in the range of ˜1260 ° C. Further, in JP-A-57-158322, the Mn content is reduced to
A technique has been disclosed in which the low-temperature slab heating is performed by setting the ratio of / S to 2.5 or less, and the secondary recrystallization is stabilized by adding Cu. On the other hand, a technique was also disclosed in which improvement was made from the side of the metal structure in combination with reinforcement of these inhibitors. That is, in JP-A-57-89433, elements such as S, Se, Sb, Bi, Pb, Sn, and B are added to Mn, and the columnar crystal ratio of the slab and the secondary cold rolling reduction are combined with this. A low temperature slab heating of 1100 to 1250 ° C is realized. Further, JP-A-59-190324
In the publication, a technique is disclosed in which, in addition to S or Se, an inhibitor is mainly composed of Al and B and nitrogen, and the secondary recrystallization is stabilized by performing pulse annealing during the primary recrystallization annealing after cold rolling. Was done. Thus, in order to realize low temperature slab heating in the production of grain-oriented electrical steel sheets, great efforts have been made so far.

【0006】さて、先に特開昭59−56522号公報
においてMnを0.08〜0.45%、Sを0.007%
以下にすることにより低温スラブ加熱化を可能にする技
術が開示された。この方法により高温スラブ加熱時のス
ラブ結晶粒粗大化に起因する製品の線状二次再結晶不良
発生の問題が解消された。
[0006] First, in Japanese Patent Laid-Open No. 59-56522, Mn is 0.08 to 0.45% and S is 0.007%.
A technique for enabling low temperature slab heating by the following has been disclosed. By this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.

【0007】[0007]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としておるもの
の、当然のことながら、良好な磁気特性を安定して得る
技術でなければ、工業化はできない。他方スラブ加熱を
低温化すると当然、熱延温度が低下する等熱延に関する
変更が生じる。しかしながら、これまでのところ、熱延
方法を組み込んだ低温スラブ加熱の一貫製造方法はほと
んど検討されていなかった。
Although the method using low-temperature slab heating is originally aimed at reducing the manufacturing cost, it cannot be industrialized unless it is a technique for obtaining good magnetic characteristics stably. . On the other hand, if the temperature of the slab heating is lowered, the hot rolling temperature is naturally lowered, so that the hot rolling is changed. However, until now, an integrated manufacturing method of low temperature slab heating incorporating a hot rolling method has hardly been studied.

【0008】従来の高温スラブ加熱(例えば1300℃
以上)の場合、熱延の主な役割は、粗大結晶粒の再結
晶による分断、MnS 、AlN 等の微細析出又は析出抑
制、{110}<001>方位粒の剪断変形による形
成の3点であったが、低温スラブ加熱の場合は必要な
く、に関しては本発明者が特願平1−1778号で開
示している如く、脱炭焼鈍後の金属組織を適切なものと
すればよいので、熱延板での析出物制御は必須でない。
従って従来法での熱延に対する制約は低温スラブ加熱の
場合には少ないと言える。
Conventional high temperature slab heating (eg 1300 ° C.)
In the above case, the main roles of hot rolling are three points: fragmentation by recrystallization of coarse crystal grains, fine precipitation of MnS, AlN, etc. or suppression of precipitation, and formation by shear deformation of {110} <001> oriented grains. However, it is not necessary in the case of low temperature slab heating, and as for the present invention, as disclosed by the present inventor in Japanese Patent Application No. 1-1778, the metallographic structure after decarburization annealing may be made appropriate, Precipitate control on hot-rolled sheet is not essential.
Therefore, it can be said that the restriction on the hot rolling in the conventional method is small in the case of low-temperature slab heating.

【0009】ところで、一方向性電磁鋼板の製造におい
ては通常熱延後組織の不均一化、析出処理等を目的とし
て熱延板焼鈍が行われている。例えばAlN を主インヒビ
ターとする製造方法においては、特公昭46−2382
0号公報に示すように熱延板焼鈍においてAlN の析出処
理を行ってインヒビターを制御する方法がとられてい
る。
In the production of unidirectional electrical steel sheets, hot-rolled sheet annealing is usually carried out for the purpose of making the structure non-uniform after hot rolling, precipitation treatment, and the like. For example, in the production method using AlN as the main inhibitor, Japanese Patent Publication No. 46-2382
As disclosed in Japanese Patent No. 0, the method of controlling the inhibitor by precipitating AlN 3 in hot-rolled sheet annealing is adopted.

【0010】通常一方向性電磁鋼板は鋳造−熱延−焼鈍
−冷延−脱炭焼鈍−仕上焼鈍のような主工程を経て製造
され、多量のエネルギーを必要としており、加えて普通
鋼製造プロセス等と比較して製造コストも高くなってい
る。近年多量のエネルギー消費をするこのような製造工
程に対する見直しが進められ、工程、エネルギーの簡省
略化の要請が強まってきた。このような要請に応えるべ
く、AlN を主インヒビターとする製造方法において、熱
延板焼鈍でのAlN の析出処理を、熱延後の高温巻取で代
替する方法(特公昭59−45730号公報)が提案さ
れた。確かに、この方法によって熱延板焼鈍を省略して
も、磁気特性をある程度確保することはできるが、5〜
20トンのコイル状で巻取られる通常の方法において
は、冷却過程でコイル内での場所的な熱履歴の差が生
じ、必然的にAlN の析出が不均一となり最終的な磁気特
性はコイル内の場所によって変動し、歩留が低下する結
果となる。
Usually, the grain-oriented electrical steel sheet is manufactured through main steps such as casting-hot rolling-annealing-cold rolling-decarburization annealing-finish annealing, and requires a large amount of energy. The manufacturing cost is also higher than the above. In recent years, the review of such a manufacturing process which consumes a large amount of energy has been promoted, and a demand for simplification of the process and energy has been increased. In order to meet such a demand, in a production method using AlN as a main inhibitor, a method of substituting the precipitation treatment of AlN in hot-rolled sheet annealing by high-temperature winding after hot-rolling (Japanese Patent Publication No. 59-45730). Was proposed. Certainly, even if the hot-rolled sheet annealing is omitted by this method, the magnetic characteristics can be secured to some extent, but
In the usual method of winding in a coil of 20 tons, there is a local difference in thermal history in the coil during the cooling process, which inevitably causes uneven deposition of AlN and the final magnetic characteristics are It varies depending on the location, resulting in a decrease in yield.

【0011】そこで本発明者らは、従来ほとんど注目さ
れていなかった仕上熱延最終パス後の再結晶現象に着目
し、この現象を利用して80%以上の強圧下1回冷延に
よる製造法において熱延板焼鈍を省略する方法(特願平
1−85540号、特願平1−85541号)を提示し
た。これらの技術は、仕上熱延最終3パスの強圧下及び
熱延終了後の高温での保持により熱延板を微細再結晶組
織としたことに特徴があり、これらの技術により、12
80℃未満の温度でのスラブ加熱と、熱延板焼鈍の省略
の両立が可能となった。
Therefore, the present inventors have paid attention to the recrystallization phenomenon after the final pass of hot rolling for finishing, which has hardly been noticed in the past, and utilizing this phenomenon, a production method by single cold rolling under a high pressure of 80% or more. The method of omitting the hot-rolled sheet annealing (Japanese Patent Application Nos. 1-85540 and 1-85541) was presented. These techniques are characterized in that the hot-rolled sheet has a fine recrystallized structure by applying high pressure in the final three passes of the finish hot rolling and holding at a high temperature after the completion of the hot rolling.
It has become possible to achieve both slab heating at a temperature lower than 80 ° C. and omission of hot-rolled sheet annealing.

【0012】一方、これまで一方向性電磁鋼板の熱延に
関しては、高温スラブ加熱(例えば1300℃以上)時
のスラブ結晶粒の粗大成長に起因する二次再結晶不良
(圧延方向に連なった線状細粒発生)を防止するため
に、熱延時の960〜1190℃での温度で1パス当り
30%以上の圧下率で再結晶化高圧下圧延を施し、粗大
結晶粒を分断する方法が提案されている(特公昭60−
37172号公報)。確かにこの方法によって線状細粒
発生が減少するが、熱延板焼鈍を施す製造プロセスを前
提としている。
On the other hand, with respect to hot rolling of unidirectional electrical steel sheets, secondary recrystallization defects caused by coarse growth of slab crystal grains during high temperature slab heating (for example, 1300 ° C. or higher) (lines continuous in the rolling direction). In order to prevent the formation of fine grains, a method is proposed in which coarse crystal grains are cut by recrystallization under high pressure rolling at a reduction rate of 30% or more per pass at a temperature of 960 to 1190 ° C during hot rolling. It has been done (Sho 60-
No. 37172). Although this method certainly reduces the generation of linear fine grains, it is premised on a manufacturing process in which hot-rolled sheet annealing is performed.

【0013】また、MnS ,MnSe,Sbをインヒビターとす
る製造方法において、熱延時の950〜1200℃の温
度で圧下率10%以上で連続して熱延し、引き続き3℃
/sec以上の冷却速度で冷却することによってMnS ,MnSe
を均一微細に析出させ、磁気特性を向上させる方法が提
案されている(特開昭51−20716号公報)。また
熱延を低温で行い再結晶の進行を抑制し、剪断変形で形
成される{110}<001>方位粒が引き続く再結晶
で減少するのを防止することによって磁気特性を向上さ
せる方法が提案されている(特公昭59−32526号
公報、特公昭59−35415号公報)。これらの方法
においても、熱延板焼鈍無しの1回冷延法での製造は検
討さえされていない。また、超低炭素を含有する珪素鋼
スラブの熱延において、熱延板で歪を蓄積させる低温大
圧下熱延を行い、引き続く熱延板焼鈍での再結晶により
超低炭素材特有の粗大結晶粒を分断する方法が提案され
ている(特公昭59−34212号公報)。しかしこの
方法においても、熱延板焼鈍無しの1回冷延法での製造
は検討さえされていない。
Further, in the production method using MnS, MnSe and Sb as inhibitors, hot rolling is continuously performed at a temperature of 950 to 1200 ° C. at the time of hot rolling at a rolling reduction of 10% or more, and then 3 ° C.
MnS, MnSe
Has been proposed (Japanese Patent Laid-Open No. 51-20716) to improve the magnetic properties by uniformly and finely depositing Also proposed is a method of improving the magnetic properties by performing hot rolling at a low temperature to suppress the progress of recrystallization and prevent the {110} <001> oriented grains formed by shear deformation from being reduced by subsequent recrystallization. (Japanese Patent Publication No. 59-32526 and Japanese Patent Publication No. 59-35415). Even in these methods, production by the single cold rolling method without hot-rolled sheet annealing has not been studied. In the hot rolling of silicon steel slabs containing ultra-low carbon, hot rolling at low temperature and large pressure that causes strain to accumulate in the hot-rolled sheet is performed, and the coarse crystals peculiar to the ultra-low carbon material are obtained by recrystallization during subsequent hot-rolled sheet annealing. A method for dividing grains has been proposed (Japanese Patent Publication No. 59-34212). However, even in this method, production by a single cold rolling method without annealing of a hot-rolled sheet has not been studied.

【0014】従って、本発明者らが、先に示した低温ス
ラブ加熱と熱延板焼鈍の省略を両立させた技術(特願平
1−85540号、特願平1−85541号)の意義は
大きいことがわかる。本発明者らは、これらの技術を工
場化するため工場実験を進め、その過程で、コイルの長
手方向に磁性の変動が生じることを確かめた。そこで、
本発明者らは、この磁性変動の原因を詳細に検討した結
果、この現象が低温スラブ加熱時のスラブ内の温度差に
起因することをつきとめた。
Therefore, the significance of the above-described technology (Japanese Patent Application Nos. 1-85540 and 1-85541) that enables both the low temperature slab heating and the omission of hot-rolled sheet annealing to be achieved by the present inventors is significant. It turns out to be big. The present inventors proceeded with factory experiments to commercialize these technologies, and confirmed that in the process, fluctuations in magnetism occur in the longitudinal direction of the coil. Therefore,
As a result of detailed examination of the cause of this magnetic fluctuation, the present inventors have found that this phenomenon is due to a temperature difference in the slab during low temperature slab heating.

【0015】[0015]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1) 重量でC:0.021〜0.075%、Si:
2.5〜4.5%、酸可溶性Al:0.010〜0.06
0%、N:0.0030〜0.0130%、S+0.4
05 Se :0.014%以下、Mn:0.05〜0.8%
を含有し、残部がFe及び不可避不純物からなるスラブを
1280℃未満の温度で加熱し、熱延を行い、次いで圧
下率80%以上の最終冷延を含み、必要に応じて中間焼
鈍をはさむ1回以上の冷延を行い、次いで脱炭焼鈍、最
終仕上焼鈍を施して一方向性電磁鋼板を製造する方法に
おいて、スラブの酸可溶性Al,N,Siの含有量を重量%
を単位として、Al(%)、N(%)、Si(%)とした
時、加熱完了時のスラブ内の温度差ΔST(℃)を下記
の式の範囲に制御し、 ΔST(℃)≦32.8+46060 {Al(%)−27/14 N
(%)}2 +4.25Si(%)脱炭焼鈍 後、最終仕上焼鈍の二次再結晶開始までの間に
鋼板に窒化処理を施すことを特徴とする磁気特性の優れ
た一方向性電磁鋼板の製造方法。
The subject matter of the present invention is as follows. (1) C: 0.021 to 0.075% by weight, Si:
2.5-4.5%, acid-soluble Al: 0.010-0.06
0%, N: 0.0030 to 0.0130%, S + 0.4
05 Se: 0.014% or less, Mn: 0.05 to 0.8%
A slab containing Fe and the balance consisting of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., hot-rolled, and then finally cold-rolled at a rolling reduction of 80% or more, with intermediate annealing as necessary 1 In the method of producing a unidirectional electrical steel sheet by performing cold rolling more than once, followed by decarburization annealing and final finishing annealing, the content of acid-soluble Al, N, Si in the slab is expressed as% by weight.
When Al (%), N (%) and Si (%) are used as a unit, the temperature difference ΔST (° C) in the slab at the time of heating completion is controlled within the range of the following formula, and ΔST (° C) ≤ 32.8 + 46060 {Al (%)-27/14 N
(%)} 2 + 4.25Si (%) A unidirectional electrical steel sheet with excellent magnetic properties characterized by nitriding the steel sheet after decarburization annealing and before the start of secondary recrystallization in final annealing. Manufacturing method.

【0016】(2) Sn:0.01〜0.15重量%含
有するスラブを用いることを特徴とする前項1記載の磁
気特性の優れた一方向性電磁鋼板の製造方法。 (3) 熱延終了温度を850〜1050℃とし、熱延
最終3パスの累積圧下率を40%以上とすることを特徴
とする前項1または2記載の磁気特性の優れた一方向性
電磁鋼板の製造方法。
(2) The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to the above item 1, wherein a slab containing Sn: 0.01 to 0.15% by weight is used. (3) The unidirectional electrical steel sheet with excellent magnetic properties according to the above item 1 or 2, wherein the hot rolling end temperature is 850 to 1050 ° C., and the cumulative rolling reduction of the final three hot rolling passes is 40% or more. Manufacturing method.

【0017】(4) 脱炭焼鈍完了後、最終仕上焼鈍開
始までの一次再結晶粒の平均粒径を18〜30μmとす
ることを特徴とする前項1または2または3記載の磁気
特性の優れた一方向性電磁鋼板の製造方法。 (5) 熱延板をスラブ加熱温度以下の温度で焼鈍する
ことを特徴とする前項1または2または3または4記載
の磁気特性の優れた一方向性電磁鋼板の製造方法。
(4) The excellent magnetic properties described in the above item 1 or 2 or 3 are characterized in that the average grain size of the primary recrystallized grains after the completion of decarburization annealing is set to 18 to 30 μm until the start of final finishing annealing. Manufacturing method of unidirectional electrical steel sheet. (5) The method for producing a unidirectional electrical steel sheet having excellent magnetic properties according to the above item 1 or 2 or 3 or 4, wherein the hot rolled sheet is annealed at a temperature equal to or lower than a slab heating temperature.

【0018】[0018]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
或いは造塊法で鋳造し、必要に応じて分塊工程を挟んで
スラブとし、引き続き熱間圧延して熱延板とし、次いで
圧下率80%以上の最終冷延を含み、必要に応じて中間
焼鈍をはさむ1回以上の冷延、脱炭焼鈍、最終仕上焼鈍
を順次行うことによって製造される。
The unidirectional electrical steel sheet targeted by the present invention is
Molten steel obtained by the conventional steelmaking method is cast by a continuous casting method or an ingot casting method, and if necessary, a slab may be sandwiched between slabs, followed by hot rolling into a hot rolled sheet, and then reduction. A final cold rolling with a rate of 80% or more, and if necessary, one or more cold rollings with intermediate annealing, decarburization annealing, and final finishing annealing are sequentially performed.

【0019】本発明者らは、熱延板焼鈍を省略した1回
冷延法で低温スラブ加熱材を製造した場合の磁性の変動
の原因とその解消策について詳細に検討した。そしてそ
の結果、この現象がスラブ加熱時のスラブ内の温度差に
基づく、AlNの析出のバラツキに起因し、その磁性変動
の程度が、Al量、N量、Si量によって異るという新知見
を得た。
The inventors of the present invention have studied in detail the cause of magnetic fluctuation and its solution when a low temperature slab heating material is manufactured by a single cold rolling method without hot-rolled sheet annealing. As a result, a new finding that this phenomenon is caused by variation in AlN precipitation based on the temperature difference in the slab during slab heating, and the degree of magnetic fluctuation varies depending on the Al content, N content, and Si content Obtained.

【0020】そして、その課題の解決策として、スラ
ブ加熱完了時のスラブ内の温度差をAl量、N量、Si量に
応じて決る所定の範囲内におさえること、Sn添加、
熱延最終3パスの強圧下、脱炭焼鈍完了後最終仕上焼
鈍開始までの一次再結晶粒の平均粒径の制御が有効であ
るという新知見を得た。以下詳細に説明する。本発明者
らは、スラブ加熱時のAlN の固溶、析出に着目した。本
発明の前提としている1280℃未満の温度では、本発
明のAl,N,Siの成分範囲では、α相でのAlN の完全固
溶は保障されていない。一方、スラブ加熱の方式は種々
あるが、スラブを炉に装入後、プッシャーで移動させな
がら出口から出す方式やスキット上にスラブをおき、ス
キットを動かしてスラブを入口から出口方向へ移動させ
る方式等が一般に行なわれている。そして、スラブの中
でスキットや炉の下面に接する部分は、温度が低めとな
ることが多い。従って、このスラブ内の温度差に起因す
るAlN の析出量、固溶N量の差が生じることが考えられ
た。そして、熱延から脱炭焼鈍までの工程で、スラブ加
熱時に固溶していたNは、大部分AlN として微細析出
し、その程度がスラブ加熱時の固溶N量に依存すること
が考えられた。実際、工場で実験を行った際、磁気特性
の変動が生じたコイルの、脱炭焼鈍後の一次再結晶粒の
平均粒径を光学顕微鏡と画像解析機を用いて測定したと
ころ、その平均粒径が変動していることが判明した。そ
して、そのバラツキの程度は、Al,N,Si量によって異
っていた。
Then, as a solution to the problem, the temperature difference in the slab upon completion of heating the slab is kept within a predetermined range determined according to the amounts of Al, N and Si, addition of Sn,
We have obtained a new finding that it is effective to control the average grain size of primary recrystallized grains from the completion of decarburization annealing to the start of final finishing annealing under high pressure in the final three passes of hot rolling. This will be described in detail below. The present inventors have paid attention to solid solution and precipitation of AlN 3 when heating the slab. At the temperature lower than 1280 ° C., which is the premise of the present invention, the complete solid solution of AlN in the α phase is not guaranteed within the Al, N and Si component ranges of the present invention. On the other hand, there are various slab heating methods, but after charging the slab into the furnace, moving it with a pusher and letting it out from the outlet, or placing a slab on the skit and moving the skit to move the slab from the inlet to the outlet. Etc. are generally performed. The temperature of the part of the slab that comes into contact with the lower surface of the skit or furnace is often low. Therefore, it was considered that the difference in the precipitation amount of AlN and the amount of solute N due to the temperature difference in the slab occurred. In the process from hot rolling to decarburization annealing, it is considered that most of the solid solution N during slab heating is finely precipitated as AlN, and the degree thereof depends on the amount of solid solution N during slab heating. It was In fact, when conducting an experiment in a factory, the average grain size of the primary recrystallized grains after decarburization annealing of the coil in which the magnetic characteristics fluctuated was measured using an optical microscope and an image analyzer. It was found that the diameter fluctuated. And the degree of the variation was different depending on the amounts of Al, N, and Si.

【0021】そこで、まず、α相での固溶N量を測定し
た。まず、重量で、C=0.022%、Si=3.4〜
4.5%、酸可溶性Al=0.025〜0.041%、N
=0.0068〜0.0101%、S=0.007%、
Mn=0.12%を含有し、残部がFe及び不可避的不純物
からなるインゴットを真空溶解で作成した。次いでイン
ゴットから小試料を切り出し、1000℃×60分の
焼鈍後氷塩水中へ焼入れ、1250℃×60分焼鈍後
氷水中へ焼入れの2条件で処理し、N as AlN を化学分
析で測定し、N−N as AlNを固溶N量とした。しかる
後、2つの温度T1,T2における固溶N量〔N〕(T1)、
〔N〕(T2)は、温度差に比例すると仮定し、下記の
式を得た。
Therefore, first, the amount of solid solution N in the α phase was measured. First, by weight, C = 0.022%, Si = 3.4-
4.5%, acid-soluble Al = 0.025 to 0.041%, N
= 0.0068 to 0.0101%, S = 0.007%,
An ingot containing Mn = 0.12% and the balance of Fe and inevitable impurities was prepared by vacuum melting. Then, a small sample was cut out from the ingot, annealed at 1000 ° C. for 60 minutes, then annealed in ice-salt water, and annealed at 1250 ° C. for 60 minutes, then annealed in ice water, and N as AlN was measured by chemical analysis. NN as AlN was taken as the amount of solid solution N. Then, the amount of solid solution N [N] (T 1 ) at two temperatures T 1 and T 2 ,
Assuming that [N] (T 2 ) is proportional to the temperature difference, the following formula was obtained.

【0022】[0022]

【数1】 [Equation 1]

【0023】そして、1250℃と1000℃の固溶N
量の差を酸可溶性Al,N,Siの量の関数として表す実験
式を求めた。その結果を下記の式に示す。
Then, solid solution N at 1250 ° C. and 1000 ° C.
An empirical formula expressing the difference in amount as a function of the amount of acid-soluble Al, N, Si was determined. The result is shown in the following formula.

【0024】[0024]

【数2】 [Equation 2]

【0025】ここで、重量%を単位とし、酸可溶性Al,
N,Siの量をAl=Al(%)、N=N(%)、Si=Si
(%)と表記している。次いで、このα相内の固溶N量
の差と製品の磁気特性の変動との関係を調査した。ま
ず、図1にスラブ加熱時のα相での固溶N量の差Δ
〔N〕(%)と、製品の磁束密度B8(T)の差ΔB
8(T)との関係を示す。この場合、重量でC=0.0
53%、Si=2.8〜3.6%、酸可溶性Al=0.02
1〜0.051%、N=0.0048〜0.0087
%、S=0.007%、Mn=0.14%を含有し、残部
Fe及び不可避的不純物からなる40mm厚の20種類の成
分のスラブを作成した。そして1050〜1150℃の
間の2水準の温度を各成分のスラブに対して任意に選
び、60分均熱後6パスで熱延し、約2秒後に水冷し、
550℃まで冷却した後、550℃に1時間保持して炉
冷する巻取りシミュレーションを施した。この場合、6
パスの圧下配分は、40→15→7→3.5→3→2.
6→2.3mmとした。熱延終了温度は883〜927℃
であった。かかる熱延板に熱延板焼鈍を施すことなく約
85%の強圧下圧延を行って最終板厚0.335mmの冷
延板とし、840℃に150秒保持し、引き続き875
℃に20秒保持する脱炭焼鈍を施し、次いで、750℃
に30秒保持する焼鈍時、焼鈍雰囲気中にNH3 ガスを混
入させ、鋼板に窒素を吸収せしめた。この窒化処理後の
N量は、0.0194〜0.0218重量%であった。
かかる窒化処理後の鋼板にMgO を主成分とする焼鈍分離
剤を塗布し、最終仕上焼鈍を行った。しかる後、製品の
磁束密度B8を測定し、同一成分のスラブに対してとった
2つのスラブ均熱条件でのB8の差ΔB8をもとめた。
Here, the acid-soluble Al,
The amounts of N and Si are Al = Al (%), N = N (%), Si = Si
It is written as (%). Next, the relationship between the difference in the amount of solute N in the α phase and the variation in the magnetic properties of the product was investigated. First, Fig. 1 shows the difference Δ in the amount of solute N in the α phase during slab heating.
[B] (N) (%) and product magnetic flux density B 8 (T) difference ΔB
8 shows the relationship with (T). In this case, C = 0.0 by weight
53%, Si = 2.8 to 3.6%, acid-soluble Al = 0.02
1 to 0.051%, N = 0.0048 to 0.0087
%, S = 0.007%, Mn = 0.14%, balance
A slab of 20 components having a thickness of 40 mm and made of Fe and inevitable impurities was prepared. Then, two levels of temperature between 1050 to 1150 ° C are arbitrarily selected for the slabs of the respective components, soaked for 60 minutes, hot-rolled in 6 passes, and water-cooled after about 2 seconds,
After cooling to 550 ° C., a coiling simulation was performed in which the furnace was cooled at 550 ° C. for 1 hour. In this case, 6
The distribution of pass reduction is 40 → 15 → 7 → 3.5 → 3 → 2.
6 → 2.3 mm. Hot rolling end temperature is 883-927 ° C
Met. Without subjecting such hot-rolled sheet to hot-rolled sheet annealing, strong reduction rolling of about 85% was carried out to obtain a cold-rolled sheet having a final sheet thickness of 0.335 mm, which was held at 840 ° C. for 150 seconds, and subsequently 875
Decarburization annealing is held for 20 seconds at ℃, then 750 ℃
At the time of annealing for 30 seconds, NH 3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen. The amount of N after this nitriding treatment was 0.0194 to 0.0218% by weight.
An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed. After that, the magnetic flux density B 8 of the product was measured, and the difference ΔB 8 of B 8 under the two slab soaking conditions taken for the slab of the same component was obtained.

【0026】図1から明らかなように、スラブ加熱時の
α相での固溶N量の差Δ〔N〕(%)が0.0010重
量%以下の場合には、製品の磁束密度の差ΔB8(T)が
0.02T以下におさまっている。ここでスラブ加熱時
のα相における固溶N量の差は,式を用いて計算し
た。この図1の結果から、スラブ加熱時のスラブ内の温
度差に起因するα相での固溶N量の差は0.0010重
量%以下にすることが、製品の磁束密度のバラツキを小
さくするのに有効なことがわかった。そこでスラブ内の
温度差ΔST(℃)を式におけるT1−T2として ΔST=T1−T2 … と表記し、また、T1,T2における固溶N量の差を0.0
010重量%以下とすると、 〔N〕(T1)−〔N〕(T2)≦0.0010 …
を得る。そして、,,,式から製品の磁束密度
のバラツキを少くするためのスラブ内の温度差の条件と
してΔST(℃)≦32.8+46060 {Al(%)−27/14 N(%)} 2
4.25Si(%) … を得る。
As is apparent from FIG. 1, when the difference Δ [N] (%) in the amount of solute N in the α phase during heating of the slab is 0.0010% by weight or less, the difference in the magnetic flux density of the product is obtained. ΔB 8 (T) is less than 0.02T. Here, the difference in the amount of solute N in the α phase during slab heating was calculated using an equation. From the result of FIG. 1, the difference in the amount of solid solution N in the α phase caused by the temperature difference in the slab during heating of the slab should be 0.0010% by weight or less to reduce the variation in the magnetic flux density of the product. It turned out to be effective. Therefore, the temperature difference ΔST (° C.) in the slab is expressed as T 1 −T 2 in the equation, and ΔST = T 1 −T 2 …, and the difference in the amount of solid solution N between T 1 and T 2 is 0.0.
If it is 010% by weight or less, [N] (T 1 )-[N] (T 2 ) ≦ 0.0010 ...
Get. Then, from the formula, ΔST (℃) ≤ 32.8 + 46060 {Al (%)-27/14 N (%)} 2 + as the condition of the temperature difference in the slab to reduce the variation of the magnetic flux density of the product
4.25Si (%) ... is obtained.

【0027】スラブ加熱時のスラブ内の温度差を、α相
内の固溶N量を0.0010重量%以下にすることによ
って、製品の磁束密度のバラツキが減少するメカニズム
について、本発明者らは、次のように考えている。本実
験では、加熱炉内でのスラブ内の温度差により生じてい
る現象を、研究所でスラブ加熱温度を変えてシミュレー
トした。本発明のAl,N,Siの成分範囲では1280℃
未満のスラブ加熱温度条件の場合、スラブの高温部と低
温部でAlN の固溶、析出量に差が生じる。スラブ加熱時
のスラブの高温部では固溶Nが多く、引き続く熱延及び
脱炭焼鈍時に、この固溶Nは、AlN の形で微細析出す
る。他方スラブ加熱時のスラブ低温部では固溶Nが少な
く、引き続く熱延及び脱炭焼鈍時に微細に析出するAlN
量は少ない。このようなAlN の析出の場所的不均一は、
脱炭焼鈍時の一次再結晶粒の粒成長の場所的不均一を生
じさせる。つまり、スラブ加熱時のスラブ内の高温部に
相当する部分では、脱炭焼鈍時微細なAlN が多いため、
一次再結晶粒の粒成長は抑制される。一方、スラブ加熱
時のスラブ内の低温部に相当する部分では、脱炭焼鈍時
微細なAlN が少ないため、一次再結晶粒は粒成長しやす
い。このため、脱炭焼鈍完了時、コイル内に、スラブ加
熱時のスラブ内の温度差に起因する一次再結晶粒径の場
所的不均一が生じる。本発明者らが、特願平1−177
8号で開示した如く、この脱炭焼鈍完了時の一次再結晶
粒径は、製品の磁束密度と極めて強い相関がある。従っ
て、この一次再結晶粒径の場所的不均一は、製品での磁
束密度の場所的不均一を生ぜしめることとなる。従っ
て、その磁束密度のバラツキの原因となっているスラブ
加熱時のスラブ内の固溶N量のバラツキを所定の範囲に
入れれば、製品の磁束密度のバラツキが低減されるもの
と考えられる。
The inventors of the present invention have studied the mechanism by which the variation in the magnetic flux density of the product is reduced by adjusting the temperature difference in the slab during heating of the slab so that the amount of solid solution N in the α phase is 0.0010% by weight or less. Thinks in the following way. In this experiment, the phenomenon caused by the temperature difference in the slab in the heating furnace was simulated in the laboratory by changing the slab heating temperature. In the composition range of Al, N and Si of the present invention, 1280 ° C.
When the slab heating temperature condition is less than less than the above, a difference occurs in the amount of solid solution and precipitation of AlN between the high temperature part and the low temperature part of the slab. There is a large amount of solute N in the high temperature portion of the slab when the slab is heated, and during the subsequent hot rolling and decarburization annealing, this solute N is finely precipitated in the form of AlN. On the other hand, there is little solid solution N in the slab low temperature part during slab heating, and AlN finely precipitates during the subsequent hot rolling and decarburization annealing.
The quantity is small. The spatial non-uniformity of such AlN precipitation is
It causes local nonuniformity of grain growth of primary recrystallized grains during decarburization annealing. In other words, in the part corresponding to the high temperature part in the slab during slab heating, there are many fine AlN during decarburization annealing,
Grain growth of primary recrystallized grains is suppressed. On the other hand, in the part corresponding to the low temperature part in the slab during heating of the slab, the primary recrystallized grains are likely to grow because of the small amount of fine AlN during decarburization annealing. For this reason, when the decarburization annealing is completed, there is a spatial nonuniformity of the primary recrystallized grain size in the coil due to the temperature difference in the slab during slab heating. The present inventors have filed Japanese Patent Application No. 1-177.
As disclosed in No. 8, the primary recrystallized grain size at the completion of decarburization annealing has an extremely strong correlation with the magnetic flux density of the product. Therefore, the spatial nonuniformity of the primary recrystallized grain size causes the spatial nonuniformity of the magnetic flux density in the product. Therefore, if the variation in the amount of solute N in the slab during heating of the slab, which causes the variation in the magnetic flux density, is set within a predetermined range, it is considered that the variation in the magnetic flux density of the product is reduced.

【0028】次に本発明の構成要件の限定理由について
述べる。先ず、スラブの成分と、スラブ加熱温度に関し
て限定理由を詳細に説明する。Cは0.021重量%
(以下単に%と略述)未満になると二次再結晶が不安定
になり、かつ二次再結晶した場合でもB8>1.80
(T)が得がたいので0.021%以上とした。一方、
Cが多くなり過ぎると脱炭焼鈍時間が長くなり経済的で
ないので0.075%以下とした。
Next, the reasons for limiting the constituent features of the present invention will be described. First, the reasons for limiting the components of the slab and the slab heating temperature will be described in detail. C is 0.021% by weight
If it is less than (hereinafter simply referred to as%), the secondary recrystallization becomes unstable, and even if secondary recrystallization is performed, B 8 > 1.80.
Since (T) is hard to obtain, it is set to 0.021% or more. on the other hand,
If C becomes too large, the decarburization annealing time becomes long and it is not economical, so the content was made 0.075% or less.

【0029】Siは4.5%を超えると冷延時の割れが著
しくなるので4.5%以下とした。又、2.5%未満で
は素材の固有抵抗が低すぎ、トランス鉄心材料として必
要な低鉄損が得られないので2.5%以上とした。望ま
しくは3.2%以上である。Alは二次再結晶の安定化に
必要なAlN もしくは(Al,Si)N を確保するため、酸可
溶性Alとして0.010%以上が必要である。酸可溶性
Alが0.060%を超えると熱延板のAlN が不適切とな
り二次再結晶が不安定になるので0.060%以下とし
た。
If Si exceeds 4.5%, cracking during cold rolling becomes significant, so the content is set to 4.5% or less. On the other hand, if it is less than 2.5%, the specific resistance of the material is too low, and a low iron loss required as a transformer core material cannot be obtained. Desirably, it is at least 3.2%. In order to secure AlN or (Al, Si) N necessary for stabilizing secondary recrystallization, Al needs to be 0.010% or more as acid-soluble Al. Acid soluble
If Al exceeds 0.060%, AlN of the hot rolled sheet becomes unsuitable and secondary recrystallization becomes unstable, so the content was made 0.060% or less.

【0030】Nについては通常の製鋼作業では0.00
30%未満にすることが困難であり、かつ経済的に好ま
しくないので0.0030%以上とし、一方、0.01
30%を越えるとブリスターと呼ばれる“鋼板表面のふ
くれ”が発生するので0.0130%以下とした。MnS
,MnSeが鋼中に存在しても、製造工程の条件を適性に
選ぶことによって磁気特性を良好にすることが可能であ
る。しかしながらSやSeが高いと線状細粒と呼ばれる二
次再結晶不良部が発生する傾向があり、この二次再結晶
不良部の発生を予防するためには(S+0.405Se)
≦0.014%とすべきである。SあるいはSeが上記値
を超える場合には製造条件をいかに変更しても二次再結
晶不良部が発生する確率が高くなり好ましくない。また
最終仕上焼鈍で純化するのに要する時間が長くなりすぎ
て好ましくなく、この様な観点からSあるいはSeを不必
要に増すことは意味がない。
N is 0.00 in a normal steelmaking operation.
Since it is difficult to make it less than 30% and it is not economically preferable, it is set to 0.0030% or more, while 0.01
If it exceeds 30%, "blister on the steel plate surface" called blister occurs, so the content was made 0.0130% or less. MnS
Even if MnSe is present in the steel, it is possible to improve the magnetic properties by appropriately selecting the manufacturing process conditions. However, if S or Se is high, secondary recrystallization defects called linear fine grains tend to occur. To prevent the generation of secondary recrystallization defects, (S + 0.405Se)
It should be ≦ 0.014%. If S or Se exceeds the above value, the probability of secondary recrystallization failure is increased, no matter how the manufacturing conditions are changed, which is not preferable. In addition, the time required for purification in the final finish annealing is too long, which is not preferable, and it is meaningless to increase S or Se unnecessarily from this viewpoint.

【0031】Mnの下限値は0.05%である。0.05
%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、就中、ストリップの側縁部が波形状となり
製品歩留りを低下させる問題が発生する。一方、Mn量が
0.8%を越えると製品の磁束密度を低下させ、好まし
くないので、Mn量の上限を0.8%とした。Snは、粒界
偏析元素として知られており、粒成長を抑制する元素で
ある。一方スラブ加熱時Snは完全固溶しており、通常考
えられる数10℃の温度差を有する加熱時のスラブ内で
も、一様に固溶していると考えられる。従って、温度差
があるにもかかわらず加熱時のスラブ内で均一に分布し
ているSnは、脱炭焼鈍時の粒成長抑制効果についても、
場所的に均一に作用すると考えられる。このため、AlN
の場所的不均一に起因する脱炭焼鈍時の粒成長の場所的
不均一を、Snは希釈する効果があるものと考えられる。
従って、本発明のα相内の固溶N量の差を制限する技術
に加え、Snを添加することはさらに製品の磁気特性の場
所的バラツキを低減させるのに有効である。このSnの適
性範囲を0.01〜0.15%とした。この下限値未満
では、粒成長抑制効果が少なすぎて好ましくない。一
方、この上限値を超えると鋼板の窒化が難しくなり、二
次再結晶不良の原因となるため好ましくない。
The lower limit of Mn is 0.05%. 0.05
If it is less than%, the shape (flatness) of the hot-rolled sheet obtained by hot rolling, especially the side edge portion of the strip becomes corrugated, which causes a problem of lowering the product yield. On the other hand, if the Mn amount exceeds 0.8%, the magnetic flux density of the product is lowered, which is not preferable, so the upper limit of the Mn amount was set to 0.8%. Sn is known as a grain boundary segregation element and is an element that suppresses grain growth. On the other hand, Sn is completely in solid solution during heating of the slab, and it is considered that Sn is evenly dissolved in the slab during heating having a temperature difference of several tens of degrees C. Therefore, Sn evenly distributed in the slab during heating despite the temperature difference, the grain growth suppression effect during decarburization annealing,
It is thought that it acts uniformly in place. Therefore, AlN
It is considered that Sn has the effect of diluting the non-uniformity of grain growth during decarburization annealing, which is caused by the non-uniformity of Al.
Therefore, in addition to the technique of the present invention for limiting the difference in the amount of solute N in the α phase, the addition of Sn is effective in further reducing the spatial variation in the magnetic properties of the product. The suitable range of Sn is 0.01 to 0.15%. Below this lower limit, the grain growth suppressing effect is too small, which is not preferable. On the other hand, if the upper limit is exceeded, nitriding of the steel sheet becomes difficult, which causes secondary recrystallization failure, which is not preferable.

【0032】この他インヒビター構成元素として知られ
ているSb,Cu,Cr,Ni,B,Ti,Nb等を微量に含有する
ことはさしつかえない。特に、B,Ti,Nb等窒化物構成
元素は、スラブ内の温度差に起因する固溶N量の場所的
差を低減するために積極的に添加してもかまわない。ス
ラブ加熱温度は、普通鋼並にしてコストダウンを行なう
という目的から1280℃未満と限定した。好ましくは
1200℃以下である。
In addition, it is acceptable to contain a small amount of Sb, Cu, Cr, Ni, B, Ti, Nb, etc., which are known as inhibitor constituent elements. In particular, the constituent elements of the nitride such as B, Ti and Nb may be positively added in order to reduce the spatial difference in the amount of solute N due to the temperature difference in the slab. The slab heating temperature was limited to less than 1280 ° C for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower.

【0033】スラブの酸可溶性Al,N,Siの含有量に応
じて、加熱完了時のスラブ内の温度差ΔSTを以下の式
の範囲とすると規定した。 ΔST≦32.8+46060{Al−27/14 N }2 +4.25Si この条件範囲で、スラブ内のα相の固溶Nの差が0.0
010%以下となり、その結果として、製品の磁束密度
の場所的バラツキが低減される。
It was specified that the temperature difference ΔST in the slab at the time of completion of heating was set within the range of the following formula according to the contents of acid-soluble Al, N and Si in the slab. ΔST ≦ 32.8 + 46060 {Al-27 / 14N} 2 + 4.25Si Within this condition range, the difference in the solid solution N of the α phase in the slab is 0.0.
It becomes 010% or less, and as a result, the local variation of the magnetic flux density of the product is reduced.

【0034】加熱されたスラブは、引き続き熱延されて
熱延板となる。この熱延の終了温度を850〜1050
℃とし、熱延最終3パスの累積圧下率を40%以上とす
ることは、製品の磁束密度の場所的バラツキを低減する
上でさらに好ましい。熱延工程は、通常100〜400
mm厚のスラブを加熱した後、いづれも複数回のパスで行
う粗熱延と仕上熱延よりなる。粗熱延の方法については
特に限定するものではなく、通常の方法で行われる。粗
熱延後仕上熱延開始までの時間については、特に限定す
るものではないが、1秒以上かけて仕上熱延を開始する
ことは、AlN の析出促進の点で好ましい。本発明の特徴
は粗熱延に引き続く仕上熱延にある。仕上熱延は通常4
〜10パスの高速連続圧延で行われる。通常仕上熱延の
圧下配分は前段が圧下率が高く後段に行くほど圧下率を
下げて形状を良好なものとしている。圧延速度は通常1
00〜3000m/minとなっており、パス間の時間は
0.01〜100秒となっている。本発明で限定してい
るのは、熱延終了温度と熱延最終3パスの累積圧下率だ
けであり、その他の条件は特に限定するものではない
が、粗熱延、仕上熱延の前段で強圧下を行うことも、幾
分なりとも加工誘起析出を生ぜしめることになり好まし
い。又、最終3パスでも特に最終パスでの強圧下が効果
的である。通常、100〜300mm厚のスラブが1〜5
mm厚の熱延板となる熱延工程において、熱延中板厚が薄
くなるにつれて、板厚方向の熱伝導が容易となるため、
スラブ内にあった温度差は除々に少なくなってくる。こ
の段階で、AlN の析出をさらに促進するためには、歪を
加えAlN の析出核としての転位を多くすることが有効で
ある。従って、鋼板中の温度差が最も軽減される仕上熱
延の後段で加工歪を加え、AlN の析出促進をはかること
は、スラブ加熱時にスラブ内の温度差のために生じたN
の固溶量、AlN 析出量の場所的不均一性が後工程まで継
承されるのを極力抑制するのに有効と考えられる。
The heated slab is subsequently hot rolled to form a hot rolled plate. The end temperature of this hot rolling is set to 850 to 1050.
It is more preferable that the temperature is set to 0 ° C. and the cumulative rolling reduction of the final three hot rolling passes is set to 40% or more in order to reduce the local variation in the magnetic flux density of the product. The hot rolling process is usually 100 to 400
After heating a mm-thick slab, it consists of rough hot rolling and finish hot rolling, each of which is performed in multiple passes. The method of rough hot rolling is not particularly limited, and a usual method is used. The time from the rough hot rolling to the start of the finish hot rolling is not particularly limited, but it is preferable to start the finish hot rolling over 1 second or more from the viewpoint of promoting precipitation of AlN 3. The feature of the present invention is the finish hot rolling following the rough hot rolling. Finishing hot rolling is usually 4
It is performed by high-speed continuous rolling for 10 passes. Normally, the rolling reduction of the finish hot rolling is such that the rolling reduction is higher in the former stage and the rolling reduction is lower in the latter stage so that the shape is good. Rolling speed is usually 1
The time is between 0 and 3000 m / min, and the time between passes is between 0.01 and 100 seconds. What is limited in the present invention is only the hot rolling end temperature and the cumulative rolling reduction in the final hot rolling three passes, and other conditions are not particularly limited, but in the pre-stage of rough hot rolling and finish hot rolling. Performing a strong reduction is also preferable because it causes the work-induced precipitation to some extent. Also, in the last three passes, it is particularly effective to strongly reduce the pressure in the last pass. Normally, slabs with a thickness of 100 to 300 mm are 1 to 5
In the hot rolling process to be a hot rolled sheet with a thickness of mm, as the plate thickness during hot rolling becomes thinner, heat conduction in the plate thickness direction becomes easier,
The temperature difference in the slab gradually decreases. At this stage, in order to further promote the precipitation of AlN 2, it is effective to apply strain to increase the dislocations as AlN precipitation nuclei. Therefore, the work strain is applied in the latter stage of the finish hot rolling where the temperature difference in the steel sheet is most reduced to promote the precipitation of AlN, which is caused by the temperature difference in the slab during slab heating.
It is considered to be effective in suppressing as much as possible the spatial non-uniformity of the solid solution amount of Al and the precipitation amount of AlN from being inherited to the subsequent processes.

【0035】次いで上記熱延条件の限定理由について述
べる。熱延終了温度を850〜1050℃とした。10
50℃を超ると、AlN の析出が生じにくく、本発明のAl
N 析出の場所的不均一の解消効果が十分でない。一方、
850℃未満では、熱延終了後に引き続く再結晶が生じ
にくく、製品の磁束密度が低下するので好ましくない。
Next, the reasons for limiting the above hot rolling conditions will be described. The hot rolling end temperature was 850 to 1050 ° C. 10
When it exceeds 50 ° C, precipitation of AlN hardly occurs, and Al of the present invention
The effect of eliminating localized nonuniformity of N precipitation is not sufficient. on the other hand,
If the temperature is lower than 850 ° C, subsequent recrystallization is unlikely to occur after the hot rolling is completed, and the magnetic flux density of the product is lowered, which is not preferable.

【0036】一方、仕上熱延最終3パスでの累積圧下率
を40%以上とした。この値未満では、AlN の加工誘起
析出の効果が不十分なので好ましくない。なお、最終3
パスの累積圧下率の上限については特に限定するもので
はないが、工業的には99.9%以上の累積圧下を加え
ることは困難である。熱延の最終パス後、通常0.1〜
100秒程度空冷された後水冷され300〜700℃の
温度で巻取られ、徐冷される。この冷却プロセスについ
ては特に限定されるものではないが、熱延後1秒以上空
冷等を行い、鋼板をAlN の析出温度域にできるだけ長時
間保持することは、AlN の析出を進ませる上で好まし
い。
On the other hand, the cumulative rolling reduction in the final hot rolling final three passes was set to 40% or more. Below this value, the effect of work-induced precipitation of AlN is insufficient, which is not preferable. The final 3
Although the upper limit of the cumulative rolling reduction of the pass is not particularly limited, it is industrially difficult to apply a cumulative rolling reduction of 99.9% or more. After the final pass of hot rolling, usually 0.1 ~
After being air-cooled for about 100 seconds, it is water-cooled, wound at a temperature of 300 to 700 ° C., and gradually cooled. The cooling process is not particularly limited, but it is preferable to perform air cooling for 1 second or more after hot rolling and keep the steel sheet in the AlN precipitation temperature range as long as possible in order to promote the precipitation of AlN. .

【0037】この熱延板は次いで、圧下率80%以上の
最終冷延を含み、必要に応じて中間焼鈍をはさむ1回以
上の冷延を施す。最終冷延の圧下率を80%以上とした
のは、圧下率を上記範囲とすることによって、脱炭板に
おいて尖鋭な{110}<001>方位粒と、これに蚕
食され易い対応方位粒({111}<112>方位粒
等)を適正量得ることができ、磁束密度を高める上で好
ましいためである。
The hot-rolled sheet is then subjected to final cold rolling with a rolling reduction of 80% or more and, if necessary, one or more cold rollings with intermediate annealing. The reduction ratio of the final cold rolling is set to 80% or more, by setting the reduction ratio in the above range, the sharpened {110} <001> oriented grains in the decarburized plate and the corresponding oriented grains ( This is because an appropriate amount of {111} <112> oriented grains and the like can be obtained, which is preferable in increasing the magnetic flux density.

【0038】本発明は、熱延板焼鈍省略プロセスを基に
構成したものであるが、スラブ加熱温度以下の温度で熱
延板焼鈍を施す場合も、同様にスラブ加熱時のスラブ内
の温度差に起因する製品の磁束密度の場所的変動が発生
する。従って、この場合も、本発明のスラブ内の温度差
制限、Sn添加、熱延最終3パスの強圧下、後述する脱炭
焼鈍後の粒径の制御を用いることができ、かつ熱延板焼
鈍省略プロセスよりも良好な特性が得られる。
The present invention is constructed based on the process of omitting hot-rolled sheet annealing. However, when hot-rolled sheet annealing is performed at a temperature lower than the slab heating temperature, the temperature difference in the slab during slab heating is also the same. The magnetic flux density of the product is locally varied due to. Therefore, also in this case, the temperature difference limitation in the slab, the addition of Sn, the high pressure of the final three passes of hot rolling, and the control of the grain size after decarburization annealing described later can be used in this case, and the hot rolled sheet annealing can be performed. Better properties are obtained than the omission process.

【0039】かかる冷延後の鋼板は、通常の方法で脱炭
焼鈍、焼鈍分離剤塗布、最終仕上焼鈍を施されて最終製
品となる。ここで脱炭焼鈍完了後、最終仕上焼鈍開始ま
での間の一次再結晶粒の平均粒径を18〜30μmに制
御することは、さらに好ましい。その理由はこの平均粒
径の範囲で良好な磁束密度が得られやすく、かつ粒径変
動に対する磁束密度の変化が少ないからである。
The steel sheet after the cold rolling is subjected to decarburization annealing, application of an annealing separating agent, and final finishing annealing by a usual method to obtain a final product. Here, it is more preferable to control the average grain size of the primary recrystallized grains to 18 to 30 μm after the completion of decarburization annealing and before the start of final finish annealing. The reason is that a good magnetic flux density is easily obtained in the range of the average particle diameter, and the change of the magnetic flux density with respect to the fluctuation of the particle diameter is small.

【0040】そして、脱炭焼鈍後、最終仕上焼鈍の二次
再結晶開始までの間に鋼板に窒化処理を施すと規定した
のは、本発明の如き低温スラブ加熱を前提とするプロセ
スでは、二次再結晶に必要なインヒビター強度が不足が
ちになるからである。窒化の方法としては特に限定する
ものではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3
スを混入させ窒化する方法、プラズマを用いる方法、焼
鈍分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒
化物が分解してできた窒素を鋼板に吸収させる方法、最
終仕上焼鈍の雰囲気のN2分圧を高めとし、鋼板を窒化す
る方法等いずれの方法でもよい。窒化量については特に
限定するものではないが、1ppm 以上は必要である。
It is defined that the steel sheet is subjected to the nitriding treatment after the decarburization annealing and before the start of the secondary recrystallization of the final finish annealing in the process which is premised on the low temperature slab heating as in the present invention. This is because the inhibitor strength required for secondary recrystallization tends to be insufficient. The nitriding method is not particularly limited, a method of nitriding by mixing NH 3 gas into an annealing atmosphere after decarburization annealing, a method of using plasma, a method of adding a nitride to an annealing separator and adding a final finishing annealing step. Any method may be used, such as a method of absorbing nitrogen formed by decomposition of nitrides in the temperature into the steel sheet, a method of increasing the N 2 partial pressure in the atmosphere of final finish annealing and nitriding the steel sheet. For the nitriding amount not particularly limited, 1 ppm or more is required.

【0041】[0041]

【実施例】以下実施例を説明する。 実施例1 C:0.049重量%、Si:3.21重量%、Mn:0.
14重量%、S:0.007重量%を基本成分とし、
酸可溶性Al:0.032重量%、N:0.0068重量
%、酸可溶性Al:0.020重量%、N:0.008
7重量%なる2種類のAl,N量を添加し、残部Fe及び不
可避的不純物からなる2種類の250mm厚のスラブを作
成した。そして、製品の磁束密度のバラツキの許容範囲
に入るスラブ加熱時の温度差を,の成分に対し、
式で計算した。次いで、かかるスラブを、a 1150
℃、b 1095℃の2水準の温度で60分均熱した
後、ただちに熱延を開始し、5パスで40mm厚とした
後、6パスで熱延して2.3mmの熱延板とした。この時
圧下配分を40→15→7→3.5→3→2.6→2.
3(mm)とした。
EXAMPLES Examples will be described below. Example 1 C: 0.049% by weight, Si: 3.21% by weight, Mn: 0.
14% by weight, S: 0.007% by weight as a basic component,
Acid-soluble Al: 0.032% by weight, N: 0.0068% by weight, acid-soluble Al: 0.020% by weight, N: 0.008
Two kinds of Al and N amounts of 7% by weight were added to prepare two kinds of 250 mm thick slabs consisting of balance Fe and unavoidable impurities. And the temperature difference at the time of slab heating that is within the allowable range of the variation of the magnetic flux density of the product,
Calculated by formula. The slab is then a 1150
After soaking for 60 minutes at 2 levels of 10 ° C and b 1095 ° C, hot rolling is started immediately, the thickness is 40 mm in 5 passes, and hot rolling is performed in 6 passes to a hot rolled plate of 2.3 mm. . At this time, the reduction distribution is 40 → 15 → 7 → 3.5 → 3 → 2.6 → 2.
It was set to 3 (mm).

【0042】次いで、熱延終了後は1秒間空冷後550
℃まで水冷し、550℃に1時間保持した後炉冷する巻
取りシミュレーションを行った。この熱延板を酸洗して
圧下率約85%で0.335mmの冷延板とし、830℃
で150秒保持し、次いで870℃に20秒保持する脱
炭焼鈍を施した。しかる後、750℃で30秒保持する
焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ鋼板に
窒素を吸収せしめた。窒化後のこの鋼板のN量は0.0
193〜0.0220重量%であった。次いで、この鋼
板にMgO を主成分とする焼鈍分離剤を塗布し、N225
%、H275%の雰囲気ガス中で10℃/時の速度で12
00℃まで昇温し、引き続きH2100%雰囲気ガス中で
1200℃で20時間保持する最終仕上焼鈍を行った。
Next, after the hot rolling is finished, air cooling is performed for 1 second and then 550.
A coiling simulation was performed in which the material was cooled to 0 ° C with water, held at 550 ° C for 1 hour, and then cooled in a furnace. This hot-rolled sheet is pickled to make a cold-rolled sheet of 0.335 mm with a reduction of about 85% at 830 ° C.
For 150 seconds and then at 870 ° C. for 20 seconds for decarburization annealing. After that, annealing was carried out at 750 ° C. for 30 seconds, and NH 3 gas was mixed in the annealing atmosphere so that the steel sheet absorbed nitrogen. The N content of this steel sheet after nitriding is 0.0
It was 193 to 0.0220% by weight. Then, an annealing separator containing MgO as a main component was applied to the steel sheet, and N 2 25
%, H 2 75% in an atmosphere gas at a rate of 10 ° C./hour for 12
The temperature was raised to 00 ° C., and then the final finishing annealing was carried out by keeping the temperature at 1200 ° C. for 20 hours in an atmosphere gas of H 2 100%.

【0043】実験条件と製品の磁気特性を表1に示す。Table 1 shows the experimental conditions and the magnetic properties of the products.

【0044】[0044]

【表1】 [Table 1]

【0045】実施例2 C:0.051重量%、Si:3.01重量%、Mn:0.
15重量%、S:0.006重量%、N:0.0085
重量%を基本成分とし、酸可溶性Alを、0.019重
量%、0.028重量%、0.037重量%なる3
水準のレベルで添加し、残部Fe及び不可避的不純物から
なる3種類の250mm厚スラブを作成した。そして、製
品の磁束密度のバラツキの許容範囲に入るスラブ加熱時
の温度差を,,の成分に対し、式で計算した。
次いで、かかるスラブを、a 1150℃、b 109
5℃の2水準の温度で60分均熱した後、1080℃で
熱延を開始して2.3mmの熱延板とした。熱延の圧下配
分、熱延後の冷却条件、及び熱延後最終仕上焼鈍までの
工程条件は、実施例1記載の条件で行った。窒化後のN
量は0.0183〜0.0211重量%であった。
Example 2 C: 0.051% by weight, Si: 3.01% by weight, Mn: 0.
15% by weight, S: 0.006% by weight, N: 0.0085
% As a basic component and acid-soluble Al as 0.019% by weight, 0.028% by weight, 0.037% by weight 3
Three types of 250 mm-thick slabs containing the balance Fe and unavoidable impurities were prepared by adding at the level of level. Then, the temperature difference during slab heating, which is within the allowable range of variations in the magnetic flux density of the product, was calculated by the formula for the component of.
Then, the slab is a 1150 ° C., b 109
After soaking at two levels of temperature of 5 ° C for 60 minutes, hot rolling was started at 1080 ° C to obtain a hot rolled sheet of 2.3 mm. The rolling distribution under hot rolling, the cooling conditions after hot rolling, and the process conditions up to final finishing annealing after hot rolling were performed under the conditions described in Example 1. N after nitriding
The amount was 0.0183-0.0211% by weight.

【0046】実験条件と製品の磁気特性を表2に示す。Table 2 shows the experimental conditions and the magnetic properties of the products.

【0047】[0047]

【表2】 [Table 2]

【0048】実施例3 C:0.038重量%、Si:3.05重量%、Mn:0.
15重量%、S:0.006重量%、酸可溶性Al:0.
023重量%を基本成分として含有し、N::0.0
087重量%、Sn:0.002重量%、N:0.00
87重量%、Sn:0.07重量%、N:0.0045
重量%、Sn:0.002重量%、N:0.0045重
量%、Sn:0.07重量%なる4種類の成分で、残部Fe
及び不可避的不純物からなる4種類の250mm厚のスラ
ブを作成した。そして磁束密度のバラツキの許容範囲に
入るスラブ加熱時の温度差を,,,の成分に対
して式で計算した。
Example 3 C: 0.038% by weight, Si: 3.05% by weight, Mn: 0.
15% by weight, S: 0.006% by weight, acid-soluble Al: 0.
023% by weight as a basic component, N :: 0.0
087 wt%, Sn: 0.002 wt%, N: 0.00
87% by weight, Sn: 0.07% by weight, N: 0.0045
%, Sn: 0.002% by weight, N: 0.0045% by weight, Sn: 0.07% by weight, and the balance Fe.
And four types of 250 mm thick slabs consisting of unavoidable impurities were prepared. Then, the temperature difference during slab heating, which is within the allowable range of variations in magnetic flux density, was calculated by the equation for the components of and.

【0049】次いで、かかるスラブを、a 1200
℃、b 1150℃の2水準の温度で60分均熱した
後、1100℃で熱延を開始して2.3mmの熱延板とし
た。熱延の圧下配分、熱延後の冷却条件、及び冷延まで
の工程条件は、実施例1記載の条件で行った。しかる
後、かかる冷延板を845℃に150秒保持し、次いで
875℃に20秒保持する脱炭焼鈍を施した。しかる後
750℃に30秒保持する焼鈍を行い、焼鈍雰囲気中に
NH3 ガスを混入させ、鋼板に窒素を吸収せしめた。窒化
後のN量は0.0213〜0.0225重量%であっ
た。次いで、この鋼板にMgO を主成分とする焼鈍分離剤
を塗布し、N225%、H275%の雰囲気ガス中で15℃
/時の速度で1200℃まで昇温し、引き続きH2100
%雰囲気ガス中で1200℃で20時間保持する最終仕
上焼鈍を行った。
Then, the slab is a 1200
After soaking for 60 minutes at two levels of 1 ° C and b1150 ° C, hot rolling was started at 1100 ° C to obtain a 2.3 mm hot rolled sheet. The rolling distribution under hot rolling, the cooling conditions after hot rolling, and the process conditions up to cold rolling were performed under the conditions described in Example 1. Thereafter, the cold rolled sheet was held at 845 ° C. for 150 seconds, and then subjected to decarburization annealing at 875 ° C. for 20 seconds. After that, annealing is performed at 750 ° C. for 30 seconds, and then in an annealing atmosphere.
NH 3 gas was mixed in to allow the steel sheet to absorb nitrogen. The amount of N after nitriding was 0.0213 to 0.0225% by weight. Then, an annealing separator containing MgO as a main component was applied to this steel sheet, and the temperature was kept at 15 ° C. in an atmosphere gas of N 2 25% and H 2 75%.
The temperature is increased to 1200 ° C at a speed of 1 / hour, and then H 2 100 is added.
% Final atmosphere annealing was carried out at 1200 ° C. for 20 hours in an atmosphere gas.

【0050】実験条件と製品の磁気特性を表3に示す。Table 3 shows the experimental conditions and the magnetic properties of the products.

【0051】[0051]

【表3】 [Table 3]

【0052】実施例4 C:0.044重量%、Si:3.15重量%、Mn:0.
14重量%、S:0.007重量%、N:0.0080
重量%を基本成分として含有し、酸可溶性Alを、0.
020重量%、0.034重量%なる2水準のレベル
で添加し、残部Fe及び不可避的不純物からなる2種類の
成分からなる40mm厚スラブを作成した。そして、製品
の磁束密度のバラツキの許容範囲に入るスラブ加熱時の
温度差を式で計算した。次いで、かかるスラブを、a
1150℃、b 1095℃の2水準の温度で30分
均熱した後、ただちに熱延を開始して、1.8mmの熱延
板とした。この時圧下配分をA 40→16→7→2.
9→2.5→2.1→1.8(mm)、B 40→30→
20→10→5→2.5→1.8(mm)の2条件とし
た。熱延後4秒間空冷後、400℃まで水冷し、400
℃に1時間保持した後炉冷する巻取りシミュレーション
を行った。この場合、熱延終了温度は893〜924℃
であった。この熱延板を圧下率約86%で0.260mm
の冷延板とし、引き続き最終仕上焼鈍までの工程条件を
実施例3と同じ条件で行った。
Example 4 C: 0.044% by weight, Si: 3.15% by weight, Mn: 0.
14% by weight, S: 0.007% by weight, N: 0.0080
It contains 0.1% by weight as a basic component and contains 0.1% of acid-soluble Al.
Two levels of 020% by weight and 0.034% by weight were added to prepare a 40 mm thick slab consisting of two kinds of components consisting of the balance Fe and inevitable impurities. Then, the temperature difference at the time of heating the slab, which is within the allowable range of the variation in the magnetic flux density of the product, was calculated by the formula. Then, the slab is a
After soaking at two levels of temperature of 1150 ° C. and b1095 ° C. for 30 minutes, hot rolling was immediately started to obtain a hot rolled sheet of 1.8 mm. At this time, the reduction distribution is A 40 → 16 → 7 → 2.
9 → 2.5 → 2.1 → 1.8 (mm), B 40 → 30 →
The two conditions were 20 → 10 → 5 → 2.5 → 1.8 (mm). After hot-rolling for 4 seconds, air-cool to 400 ℃, 400
A coiling simulation was carried out in which the furnace was held for 1 hour and then cooled in the furnace. In this case, the hot rolling finish temperature is 893 to 924 ° C.
Met. This hot-rolled sheet has a reduction rate of 86% and 0.260 mm.
Then, the process conditions until the final finish annealing were performed under the same conditions as in Example 3.

【0053】実験条件、製品の磁気特性を表4に示す。Table 4 shows the experimental conditions and the magnetic properties of the products.

【0054】[0054]

【表4】 [Table 4]

【0055】実施例5 C:0.057重量%、Si:3.40重量%、Mn:0.
14重量%、S:0.007重量%、N:0.0083
重量%を基本成分とし、酸可溶性Alを、0.022重
量%、0.038重量%なる2水準のレベルで添加
し、残部Fe及び不可避的不純物からなる2種類の40mm
厚スラブを作成した。そして、製品の磁束密度のバラツ
キの許容範囲に入るスラブ加熱時の温度差を,の成
分に対し、式で計算した。次いで、かかるスラブを、
a 1150℃、b 1090℃の2水準の温度で60
分均熱した後、ただちに熱延を開始して2.3mmの熱延
板とした。40mmからの熱延の圧下配分、熱延後の冷却
条件、及び冷延までの工程条件は、実施例1記載の条件
で行った。かかる冷延板を、810℃に150秒保
持、840℃に150秒保持、840℃に150秒
保持し、次いで870℃に20秒保持なる3条件で脱炭
焼鈍を施した。しかる後、750℃に30秒保持する焼
鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ、鋼板に
窒素を吸収せしめた。窒化後のN量は、0.0187〜
0.0223重量%であった。この鋼板の断面全厚にお
ける一次再結晶粒の平均粒径を光学顕微鏡と画像解析を
用いて測定した。次いで、この鋼板にMgO を主成分とす
る焼鈍分離剤を塗布し、実施例1記載の条件で最終仕上
焼鈍を行った。
Example 5 C: 0.057% by weight, Si: 3.40% by weight, Mn: 0.
14% by weight, S: 0.007% by weight, N: 0.0083
The basic component is wt%, acid-soluble Al is added at two levels of 0.022 wt% and 0.038 wt%, and two types of 40 mm consisting of balance Fe and unavoidable impurities are added.
Created a thick slab. Then, the temperature difference during heating of the slab, which is within the allowable range of variations in the magnetic flux density of the product, was calculated by the formula for the component. Then, this slab
a at 1150 ° C, b at 1090 ° C at two levels of 60
Immediately after soaking, the hot rolling was started immediately to obtain a hot rolled sheet of 2.3 mm. The reduction distribution of hot rolling from 40 mm, the cooling conditions after hot rolling, and the process conditions until cold rolling were performed under the conditions described in Example 1. The cold-rolled sheet was subjected to decarburization annealing under three conditions of holding at 810 ° C for 150 seconds, holding at 840 ° C for 150 seconds, holding at 840 ° C for 150 seconds, and then holding at 870 ° C for 20 seconds. After that, annealing was performed at 750 ° C. for 30 seconds, NH 3 gas was mixed in the annealing atmosphere, and the steel sheet was made to absorb nitrogen. The amount of N after nitriding is 0.0187-
It was 0.0223% by weight. The average grain size of the primary recrystallized grains in the entire cross section of the steel sheet was measured using an optical microscope and image analysis. Then, an annealing separator containing MgO as a main component was applied to this steel sheet, and final finish annealing was performed under the conditions described in Example 1.

【0056】実験条件と製品の磁気特性を表5に示す。Table 5 shows the experimental conditions and the magnetic properties of the products.

【0057】[0057]

【表5】 [Table 5]

【0058】実施例6 実施例3記載の4種類の成分のスラブを、a 1150
℃、b 1100℃の2水準の温度で60分均熱した
後、ただちに熱延を開始し、5パスで40mm厚とした。
しかる後、A 40→15→7→3.5→3→2.6→
2.3(mm)、B40→30→20→10→6→4→
2.3(mm)の2条件で熱延し、その後の冷却条件、及
び最終仕上焼鈍までの工程条件を実施例1記載の条件で
行った。この場合、熱延終了温度は925〜947℃で
あった。また、窒化後のN量は、0.0193〜0.0
214重量%であった。
Example 6 A slab of the four components described in Example 3 was used as a 1150
After soaking for 60 minutes at two levels of temperatures of 1 ° C. and 1100 ° C., hot rolling was started immediately and the thickness was 40 mm in 5 passes.
After that, A 40 → 15 → 7 → 3.5 → 3 → 2.6 →
2.3 (mm), B40 → 30 → 20 → 10 → 6 → 4 →
Hot rolling was performed under the two conditions of 2.3 (mm), the subsequent cooling conditions and the process conditions until the final finish annealing were performed under the conditions described in Example 1. In this case, the hot rolling end temperature was 925 to 947 ° C. Moreover, the amount of N after nitriding is 0.0193 to 0.0
It was 214% by weight.

【0059】実験条件と製品の磁気特性を表6に示す。Table 6 shows the experimental conditions and the magnetic properties of the products.

【0060】[0060]

【表6】 [Table 6]

【0061】実施例7 実施例1記載の4種類の熱延板に950℃×2分(均
熱)後急冷する熱延板焼鈍を施し、次いで約88%の圧
下率で0.285mm厚の冷延板とし、830℃で150
秒保持し、次いで850℃に20秒保持する脱炭焼鈍を
施した。しかる後、760℃で30秒保持する焼鈍を行
い、焼鈍雰囲気中にNH3 ガスを混入し、鋼板に窒素を吸
収せしめた。窒化後のN量は、0.0198〜0.02
15重量%であった。次いでこの鋼板にMgO を主成分と
する焼鈍分離剤を塗布し、実施例1記載の条件で最終仕
上焼鈍を施した。
Example 7 The four kinds of hot-rolled sheets described in Example 1 were subjected to hot-rolled sheet annealing of 950 ° C. × 2 minutes (soaking) and then rapid cooling, and then 0.285 mm thick with a rolling reduction of about 88%. Cold rolled sheet, 150 at 830 ℃
Decarburization annealing was performed by holding for 2 seconds and then at 850 ° C. for 20 seconds. After that, annealing was performed at 760 ° C. for 30 seconds, NH 3 gas was mixed in the annealing atmosphere, and the steel sheet was made to absorb nitrogen. The amount of N after nitriding is 0.0198 to 0.02
It was 15% by weight. Then, an annealing separator containing MgO as a main component was applied to this steel sheet, and final finish annealing was performed under the conditions described in Example 1.

【0062】実験条件と製品の磁気特性を表7に示す。Table 7 shows the experimental conditions and the magnetic properties of the products.

【0063】[0063]

【表7】 [Table 7]

【0064】[0064]

【発明の効果】以上説明したように、本発明において
は、スラブ加熱時のスラブ内のα相の固溶N量の変動規
制、さらにはSn添加及び熱延終了温度と熱延最終3パス
の累積圧下率の制御とさらに脱炭焼鈍完了後、最終仕上
焼鈍開始までの間での一次再結晶粒の平均粒径を制御す
ることにより、熱延板焼鈍を省略して、良好な磁気特性
を場所的バラツキなく安定して得ることができるので、
その工業的効果は極めて大である。
As described above, in the present invention, fluctuation regulation of the amount of solute N in the α phase in the slab during slab heating, Sn addition, hot-rolling end temperature and hot-rolling final 3 pass By controlling the cumulative rolling reduction and controlling the average grain size of the primary recrystallized grains between the completion of decarburization annealing and the start of final finishing annealing, hot rolled sheet annealing can be omitted and good magnetic properties can be obtained. Since it can be obtained stably without spatial variation,
Its industrial effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、スラブ加熱時のα相での固溶N量の差
と製品の磁束密度の差との関係を表すグラフである。
FIG. 1 is a graph showing the relationship between the difference in the amount of solute N in the α phase and the difference in the magnetic flux density of products during slab heating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本間 穂高 福岡県北九州市八幡東区枝光1−1−1 新日本製鐵株式会社 第3技術研究所 内 (72)発明者 石橋 希瑞 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (72)発明者 北河 久和 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hodaka Hodaka 1-1-1 Edamitsu, Yawatahigashi-ku, Kitakyushu, Fukuoka Prefecture Inside the 3rd Technical Research Laboratories, Nippon Steel Corporation (72) Kirei Ishibashi Kitakyushu, Fukuoka Prefecture No. 1-1 Tobata-cho, Tobata-ku, Shinagawa Nippon Steel Co., Ltd. Yawata Works (72) Inventor Hisawa Kitagawa No. 1-1 Tobita-cho, Tobata-ku, Kitakyushu, Kitakyushu Shin-Nippon Steel Co., Ltd. Yawata Works

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量でC:0.021〜0.075%、
Si:2.5〜4.5%、酸可溶性Al:0.010〜0.
060%、N:0.0030〜0.0130%、S+
0.405 Se :0.014%以下、Mn:0.05〜
0.8%を含有し、残部がFe及び不可避不純物からなる
スラブを1280℃未満の温度で加熱し、熱延を行い、
次いで圧下率80%以上の最終冷延を含み、必要に応じ
て中間焼鈍をはさむ1回以上の冷延を行い、次いで脱炭
焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板を製造す
る方法において、スラブの酸可溶性Al,N,Siの含有量
を重量%を単位として、Al(%)、N(%)、Si(%)
とした時、加熱完了時のスラブ内の温度差ΔST(℃)
を下記の式の範囲に制御し、 ΔST(℃)≦32.8+46060 {Al(%)−27/14 N
(%)}2 +4.25Si(%)脱炭焼鈍 後、最終仕上焼鈍の二次再結晶開始までの間に
鋼板に窒化処理を施すことを特徴とする磁気特性の優れ
た一方向性電磁鋼板の製造方法。
1. C: 0.021 to 0.075% by weight,
Si: 2.5-4.5%, acid-soluble Al: 0.010-0.
060%, N: 0.0030 to 0.0130%, S +
0.405 Se: 0.014% or less, Mn: 0.05 to
A slab containing 0.8% and the balance consisting of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C. to perform hot rolling,
Next, a method of producing a unidirectional electrical steel sheet by including final cold rolling with a rolling reduction of 80% or more, performing cold rolling once or more with intermediate annealing if necessary, and then performing decarburizing annealing and final finishing annealing. In, the content of the acid-soluble Al, N, Si of the slab in units of% by weight, Al (%), N (%), Si (%)
, The temperature difference in the slab when heating is completed ΔST (℃)
Is controlled within the range of the following formula, and ΔST (℃) ≦ 32.8 + 46060 {Al (%)-27/14 N
(%)} 2 + 4.25Si (%) A unidirectional electrical steel sheet with excellent magnetic properties characterized by nitriding the steel sheet after decarburization annealing and before the start of secondary recrystallization in final annealing. Manufacturing method.
【請求項2】 Sn:0.01〜0.15重量%含有する
スラブを用いることを特徴とする請求項1記載の磁気特
性の優れた一方向性電磁鋼板の製造方法。
2. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein a slab containing Sn: 0.01 to 0.15% by weight is used.
【請求項3】 熱延終了温度を850〜1050℃と
し、熱延最終3パスの累積圧下率を40%以上とするこ
とを特徴とする請求項1または2記載の磁気特性の優れ
た一方向性電磁鋼板の製造方法。
3. A unidirectional method having excellent magnetic properties according to claim 1, wherein the hot rolling end temperature is 850 to 1050 ° C., and the cumulative rolling reduction in the final three hot rolling passes is 40% or more. For manufacturing high-performance electrical steel sheet.
【請求項4】 脱炭焼鈍完了後、最終仕上焼鈍開始まで
の一次再結晶粒の平均粒径を18〜30μmとすること
を特徴とする請求項1または2または3記載の磁気特性
の優れた一方向性電磁鋼板の製造方法。
4. The excellent magnetic properties according to claim 1, wherein the average grain size of the primary recrystallized grains after the completion of decarburization annealing and before the start of final finish annealing is 18 to 30 μm. Manufacturing method of unidirectional electrical steel sheet.
【請求項5】 熱延板をスラブ加熱温度以下の温度で焼
鈍することを特徴とする請求項1または2または3また
は4記載の磁気特性の優れた一方向性電磁鋼板の製造方
法。
5. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, 2 or 3 or 4, wherein the hot rolled sheet is annealed at a temperature equal to or lower than a slab heating temperature.
JP3063601A 1991-03-27 1991-03-27 Method for producing unidirectional electrical steel sheet with excellent magnetic properties Expired - Lifetime JP2521586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063601A JP2521586B2 (en) 1991-03-27 1991-03-27 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063601A JP2521586B2 (en) 1991-03-27 1991-03-27 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH04297525A JPH04297525A (en) 1992-10-21
JP2521586B2 true JP2521586B2 (en) 1996-08-07

Family

ID=13233967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063601A Expired - Lifetime JP2521586B2 (en) 1991-03-27 1991-03-27 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2521586B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102325004B1 (en) * 2019-12-20 2021-11-10 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
KR102493775B1 (en) * 2020-12-21 2023-01-30 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same

Also Published As

Publication number Publication date
JPH04297525A (en) 1992-10-21

Similar Documents

Publication Publication Date Title
KR102164329B1 (en) Grain oriented electrical steel sheet and method for manufacturing therof
WO1991016462A1 (en) Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
US5261971A (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2878501B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH04154914A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP3348217B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JPH0794689B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2000199014A (en) Production of grain oriented silicon steel sheet
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 15

EXPY Cancellation because of completion of term