JPH05156361A - Manufacture of grain-oriented electric steel sheet excellent in magnetic property - Google Patents
Manufacture of grain-oriented electric steel sheet excellent in magnetic propertyInfo
- Publication number
- JPH05156361A JPH05156361A JP3281071A JP28107191A JPH05156361A JP H05156361 A JPH05156361 A JP H05156361A JP 3281071 A JP3281071 A JP 3281071A JP 28107191 A JP28107191 A JP 28107191A JP H05156361 A JPH05156361 A JP H05156361A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- final
- hot
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Soft Magnetic Materials (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.
【0002】[0002]
【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、通常磁場の強さ80
0A/mにおける磁束密度B8 が通常使用される。ま
た、鉄損特性を表す数値としては、周波数50Hzで1.
7テスラー(T)まで磁化した時の1kg当りの鉄損W
17/50 を使用している。磁束密度は、鉄損特性の最大支
配因子であり、一般的にいって磁束密度が高いほど鉄損
特性が良好になる。なお、一般的に磁束密度を高くする
と二次再結晶粒が大きくなり、鉄損特性が不良となる場
合がある。これに対しては、磁区制御により、二次再結
晶粒の粒径に拘らず、鉄損特性の改善することができ
る。2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. As a numerical value showing the excitation characteristic, the strength of a normal magnetic field is 80
A magnetic flux density B 8 at 0 A / m is normally used. In addition, as a numerical value showing the iron loss characteristic, at a frequency of 50 Hz, 1.
Iron loss W per 1kg when magnetized to 7 Tesler (T)
I am using 17/50 . The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics. On the other hand, by controlling the magnetic domain, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.
【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に<001>軸を持ったいわゆるゴス組織を発達さ
せることにより製造されている。良好な磁気特性を得る
ためには、磁化容易軸である<001>を圧延方向に高
度に揃えることが必要である。This unidirectional electrical steel sheet is manufactured by causing secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} axis on the steel sheet surface and <001> axis in the rolling direction. Has been done. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy magnetization axis, in the rolling direction.
【0004】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに田口悟等による特公昭4
0−15644号公報及び今中拓一等による特公昭51
−13469号公報記載の方法がある。前者においては
主なインヒビターとしてMnS及びAlNを、後者では
MnS、MnSe、Sb等を用いている。従って現在の
技術においてはこれらインヒビターとして機能する析出
物の大きさ、形態及び分散状態を適性制御することが不
可欠である。MnSに関して言えば、現在の工程では熱
延前のスラブ加熱時にMnSを一旦完全固溶させた後、
熱延時に析出させる方法がとられている。二次再結晶に
必要な量のMnSを完全固溶するためには1400℃程
度の温度が必要である。これは普通鋼のスラブ加熱温度
に比べて200℃以上も高く、この高温スラブ加熱処理
には以下に述べるような不利な点がある。 1)方向性電磁鋼専用の高温スラブ加熱炉が必要。 2)加熱炉のエネルギー原単位が高い。 3)溶融スケール量が増大し、いわゆるノロかき出し等
に見られるように操業上の悪影響が大きい。A representative technique for producing such a high magnetic flux density grain-oriented electrical steel sheet is Satoshi Taguchi et al.
0-15644 and Japanese Patent Publication Sho 51
There is a method described in JP-A-13469. In the former, MnS and AlN are used as main inhibitors, and in the latter, MnS, MnSe, Sb, etc. are used. Therefore, in the present technology, it is essential to appropriately control the size, morphology and dispersion state of the precipitates that function as these inhibitors. Speaking of MnS, in the present process, after MnS is completely solid-soluted at the time of heating the slab before hot rolling,
A method of precipitating during hot rolling is adopted. A temperature of about 1400 ° C. is necessary to completely form a solid solution of the required amount of MnS for secondary recrystallization. This is higher than the slab heating temperature of ordinary steel by 200 ° C. or more, and this high temperature slab heating treatment has the following disadvantages. 1) A high temperature slab heating furnace exclusively for grain oriented electrical steel is required. 2) The energy intensity of the heating furnace is high. 3) The amount of molten scale increases, and the adverse effect on operation is large, as seen in so-called shaving.
【0005】このような問題点を回避するためには、ス
ラブ加熱温度を普通鋼並みに下げれば良いわけである
が、このことは同時にインヒビターとして有効なMnS
の量を少なくするかあるいは全く用いないことを意味
し、必然的に二次再結晶の不安定化をもたらす。このた
め低温スラブ加熱化を実現するためには何らかの形でM
nS以外の析出物などによりインヒビターを強化し、仕
上焼鈍時の正常粒成長の抑制を充分にする必要がある。
このようなインヒビターとしては硫化物の他、窒化物、
酸化物及び粒界析出元素等が考えられ、公知の技術とし
て例えば次のようなものがあげられる。In order to avoid such problems, the slab heating temperature should be lowered to the level of ordinary steel, but this is also effective as an inhibitor of MnS.
Is meant to be used in a small amount or not used at all, which necessarily causes destabilization of secondary recrystallization. Therefore, in order to realize low-temperature slab heating, M
It is necessary to strengthen the inhibitor with precipitates other than nS to sufficiently suppress normal grain growth during finish annealing.
Such inhibitors include sulfides, nitrides,
Oxides, grain boundary precipitation elements and the like are considered, and known techniques include, for example, the following.
【0006】特公昭54−24685号公報ではAs、
Bi、Sn、Sb等の粒界偏析元素を鋼中に含有するこ
とにより、スラブ加熱温度を1050〜1350℃の範
囲にする方法が開示され、特開昭52−24116号公
報ではAlの他、Zr、Ti、B、Nb、Ta、V、C
r、Mo等の窒化物生成元素を含有することによりスラ
ブ加熱温度を1100〜1260℃の範囲にする方法が
開示されている。また、特開昭57−158322号公
報にはMn含有量を下げ、Mn/Sの比率を2.5以下
にすることにより低温スラブ加熱化を行い、さらにCu
の添加により二次再結晶を安定化する技術を開示してい
る。一方、これらインヒビターの補強と組み合わせて金
属組織の側から改良を加えた技術も開示された。すなわ
ち特開昭57−89433号公報ではMnに加えS、S
e、Sb、Bi、Pb、Sn、B等の元素を加え、これ
にスラブの柱状晶率と二次冷延圧下率を組み合わせるこ
とにより1100〜1250℃の低温スラブ加熱化を実
現している。さらに特開昭59−190324号公報で
はSあるいはSeに加え、Al及びBと窒素を主体とし
てインヒビターを構成し、これに冷延後の一次再結晶焼
鈍時にパルス焼鈍を施すことにより二次再結晶を安定化
する技術を提示している。このように方向性電磁鋼板製
造における低温スラブ加熱化実現のためには、これまで
に多大な努力が続けられてきている。In Japanese Patent Publication No. 54-24685, As,
A method of controlling the slab heating temperature in the range of 1050 to 1350 ° C. by containing grain boundary segregation elements such as Bi, Sn, and Sb in the steel is disclosed, and in JP-A-52-24116, in addition to Al, Zr, Ti, B, Nb, Ta, V, C
There is disclosed a method in which the slab heating temperature is set to a range of 1100 to 1260 ° C. by containing a nitride-forming element such as r or Mo. Further, in JP-A-57-158322, low temperature slab heating is performed by reducing the Mn content and setting the Mn / S ratio to 2.5 or less.
Discloses a technique for stabilizing the secondary recrystallization by adding. On the other hand, a technique was also disclosed in which improvement was made from the side of the metal structure in combination with reinforcement of these inhibitors. That is, in JP-A-57-89433, S, S
Elements such as e, Sb, Bi, Pb, Sn, and B are added, and the columnar crystal ratio of the slab and the secondary cold rolling reduction are combined to achieve low temperature slab heating at 1100 to 1250 ° C. Further, in JP-A-59-190324, an inhibitor is mainly composed of Al and B and nitrogen in addition to S or Se, and secondary annealing is performed by performing pulse annealing during primary recrystallization annealing after cold rolling. The technology that stabilizes is presented. Thus, in order to realize low temperature slab heating in the production of grain-oriented electrical steel sheets, great efforts have been made so far.
【0007】さて、特開昭59−56522号公報にお
いては、Mnを0.08〜0.45%、Sを0.007
%以下にすることにより低温スラブ加熱化を可能にする
技術が開示された。この方法により高温スラブ加熱時の
スラブ結晶粒粗大化に起因する製品の線状二次再結晶不
良発生の問題が解消された。Now, in JP-A-59-56522, Mn is 0.08 to 0.45% and S is 0.007.
A technique has been disclosed that enables low temperature slab heating by controlling the content to be not more than%. By this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.
【0008】[0008]
【発明が解決しようとする課題】低温スラブ加熱化が可
能となったこと自体は上記の如く工業的には大きなメリ
ットがあるが、生産管理等に余分の労力をさくことは、
コストダウンの点で好ましくない。そこで、低温スラブ
加熱を前提として、生産管理等の労力を少なくし、かつ
磁気特性を高位安定化させる工程設計が必要となる。こ
のためには、工程数を増すことも総合的には許容される
場合もある。本発明は、このような要求を充足し、かつ
優れた磁気特性を有する一方向性電磁鋼板の製造方法を
提供するものである。The fact that low-temperature slab heating is possible has a great industrial advantage as described above, but it is not necessary to put extra effort into production control.
It is not preferable in terms of cost reduction. Therefore, on the premise of low-temperature slab heating, it is necessary to reduce the labor such as production control and design the process to stabilize the magnetic characteristics at a high level. For this purpose, it may be totally acceptable to increase the number of steps. The present invention provides a method for manufacturing a grain-oriented electrical steel sheet which satisfies such requirements and has excellent magnetic properties.
【0009】[0009]
【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。すなわち、 (1) 重量%で C:0.025〜0.075%、Si:2.5〜4.5
%、酸可溶性Al:0.010〜0.060%、N:
0.0010〜0.0130%、S+0.405Se:
0.014%以下、Mn:0.05〜0.8%を含有
し、残部がFe及び不可避的不純物からなるスラブを1
280℃未満の温度で加熱した後、熱延し、得られた熱
延板を圧下率60〜79%の最終冷延を含み、必要に応
じて中間焼鈍をはさむ2回以上の冷延を行い、次いで脱
炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板を製造
する方法において、脱炭焼鈍完了後、最終仕上焼鈍開始
までの一次再結晶粒の平均粒径を10〜35μmとし、
熱延後、最終仕上焼鈍の二次再結晶開始までの間に鋼板
に窒化処理を施すことを特徴とする磁気特性の優れた一
方向性電磁鋼板の製造方法。The gist of the present invention is as follows. That is, (1) C: 0.025 to 0.075% by weight%, Si: 2.5 to 4.5
%, Acid-soluble Al: 0.010 to 0.060%, N:
0.0010 to 0.0130%, S + 0.405Se:
A slab containing 0.014% or less, Mn: 0.05 to 0.8%, and the balance being Fe and inevitable impurities is 1
After heating at a temperature of less than 280 ° C., hot rolling is performed, and the obtained hot rolled sheet includes final cold rolling with a rolling reduction of 60 to 79%, and if necessary, is subjected to two or more cold rollings with intermediate annealing. , Then, decarburization annealing, in the method of producing a final finishing annealing to produce a grain-oriented electrical steel sheet, after decarburization annealing is completed, the average particle size of the primary recrystallized grains until the start of final finishing annealing is 10 to 35 μm,
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises subjecting a steel sheet to a nitriding treatment after hot rolling and before the start of secondary recrystallization of final finish annealing.
【0010】(2) 前項の最終仕上焼鈍での二次再結晶開
始直前の鋼板には重量%でN:0.0100%以上が含
有されることを特徴とする磁気特性の優れた一方向性電
磁鋼板の製造方法である。(2) The steel sheet immediately before the start of secondary recrystallization in the final finish annealing described in the preceding paragraph contains N: 0.0100% or more by weight%, which is an excellent unidirectional property of magnetic properties. It is a method of manufacturing an electromagnetic steel sheet.
【0011】[0011]
【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程をはさ
んでスラブとし、引き続き熱間圧延して熱延板とし、次
いで必要に応じて熱延板焼鈍を施し、この熱延板に圧下
率60〜79%の最終冷延を含み、中間焼鈍をはさむ2
回以上の冷延を行い、次いで脱炭焼鈍、最終仕上焼鈍を
順次行うことによって製造される。The function of the grain-oriented electrical steel sheet of the present invention is
The molten steel obtained by the conventional steelmaking method is cast by a continuous casting method or an ingot making method, and if necessary, the slab is separated by a slab, and then hot-rolled into a hot-rolled sheet. If necessary, hot-rolled sheet annealing is performed, and this hot-rolled sheet includes final cold rolling with a rolling reduction of 60 to 79%, and intermediate annealing is performed 2.
It is manufactured by performing cold rolling more than once and then sequentially performing decarburization annealing and final finishing annealing.
【0012】本発明の特徴である脱炭焼鈍完了後、最終
仕上焼鈍開始までの間での一次再結晶粒径制御の効果に
ついて、実験結果を基に説明する。図1は一次再結晶粒
径が製品の磁束密度に与える影響をあらわしたグラフで
ある。ここでの実験は、重量%で、C=0.053%、
Si=3.25%、酸可溶性Al=0.015〜0.0
43%、N=0.0033〜0.0095%、S=0.
007%、Mn=0.14%を含有し、残部Fe及び不
可避的不純物からなる40mm厚のスラブを1150℃に
加熱し、6パスで2.3mm厚の熱延板とした。この熱延
板を酸洗し、次いで圧下率約42%で冷延し、1.34
mm厚とした。しかる後この鋼板に1100℃×30秒均
熱し、900℃まで徐冷後急冷する中間焼鈍を施し、次
いで、圧下率75%で冷延し、0.335mm厚の冷延板
とした。その後、この冷延板を780〜1000℃に1
50秒保持する脱炭焼鈍を施した。この時の焼鈍雰囲気
はN2 25%とH2 75%の混合ガスで露点は62℃で
あった。しかる後、750℃に30秒保持する熱処理
中、雰囲気ガス中にNH3 ガスを混入させ鋼板に窒素処
理を施した。窒化後の鋼板のN量は0.0179〜0.
0208重量%であった。また、この鋼板の一次再結晶
粒の平均粒径(円相当直径)を光学顕微鏡と画像解析機
を用いて測定した。次いで、窒化後の鋼板にMgOを主
成分とする焼鈍分離剤を塗布し、N2 :25%、H2 :
75%の混合ガス中で1200℃まで15℃/hrで昇温
し、H2 :100%中に1200℃で20時間保持する
最終仕上焼鈍を行った。The effect of controlling the primary recrystallized grain size between the completion of decarburization annealing and the start of final finish annealing, which is a feature of the present invention, will be described based on experimental results. FIG. 1 is a graph showing the effect of the primary recrystallized grain size on the magnetic flux density of the product. In this experiment, the weight% is C = 0.053%,
Si = 3.25%, acid-soluble Al = 0.015 to 0.0
43%, N = 0.333 to 0.0095%, S = 0.
A slab containing 007% and Mn = 0.14% and having a balance of Fe and unavoidable impurities and having a thickness of 40 mm was heated to 1150 ° C., and a hot rolled sheet having a thickness of 2.3 mm was formed by 6 passes. The hot-rolled sheet was pickled, then cold-rolled at a rolling reduction of about 42% to obtain 1.34.
mm thickness. Thereafter, this steel sheet was soaked at 1100 ° C. for 30 seconds, subjected to intermediate annealing by gradually cooling to 900 ° C. and then rapidly cooling, and then cold rolled at a rolling reduction of 75% to obtain a 0.335 mm thick cold rolled sheet. Then, this cold rolled sheet is heated to 780 to 1000 ° C for 1 hour.
Decarburization annealing was performed for 50 seconds. At this time, the annealing atmosphere was a mixed gas of 25% N 2 and 75% H 2 , and the dew point was 62 ° C. After that, during the heat treatment of holding at 750 ° C. for 30 seconds, NH 3 gas was mixed in the atmosphere gas to subject the steel sheet to nitrogen treatment. The N content of the steel sheet after nitriding was 0.0179 to 0.
It was 0208% by weight. The average grain size (equivalent circle diameter) of the primary recrystallized grains of this steel sheet was measured using an optical microscope and an image analyzer. Then, an annealing separator containing MgO as a main component is applied to the steel sheet after nitriding, and N 2 : 25%, H 2 :
A final finishing annealing was carried out by raising the temperature to 1200 ° C. at a rate of 15 ° C./hr in a 75% mixed gas and holding the temperature in H 2 : 100% at 1200 ° C. for 20 hours.
【0013】図1から明らかなように一次再結晶粒の平
均粒径が10〜35μmの範囲で、B8 ≧1.85Tな
る良好な磁気特性が得られている。As is apparent from FIG. 1, good magnetic properties of B 8 ≧ 1.85 T are obtained when the average grain size of the primary recrystallized grains is in the range of 10 to 35 μm.
【0014】図1に示した如き関係が成立する理由につ
いては必ずしも明らかではないが、本発明者らは次のよ
うに推察している。すなわち、二次再結晶方位に対する
一時再結晶集合組織の影響メカニズムは、対応方位とい
う概念を用いて説明できると考えられる。本発明の如き
60〜79%の低圧下率最終冷延の場合、一次再結晶集
合組織は、それほど尖鋭には発達しない。従って、二次
再結晶方位に対する対応方位もそれほど強くならない。
この様な場合、二次再結晶する核の存在量とそれに対す
る対応方位の量の積の多い核が二次再結晶しやすいと考
えられる。この時、上記の積の二次再結晶に必要な臨界
値が重要となり、この臨界値が高過ぎると、様々な方位
を持つ二次再結晶粒が発生することとなる。そして、一
次再結晶粒径の逆数は、二次再結晶粒の粒成長の駆動力
に比例する量と考えられるので、一次再結晶の平均粒径
が小さいほど、上臨界値が低く、大きいほど臨界値が高
いと考えれる。従って図1に示した如く、10〜35μ
mに一次再結晶の平均粒径の適性値が存在したものとい
える。10μm超の場合、何れも、二次再結晶が不良と
なっており、上記臨界値の適性範囲と一次再結晶粒径の
適性範囲が対応しているものと解される。Although the reason why the relationship shown in FIG. 1 is established is not always clear, the present inventors presume as follows. That is, it is considered that the mechanism of influence of the temporary recrystallization texture on the secondary recrystallization orientation can be explained by using the concept of corresponding orientation. In the case of 60-79% low pressure final cold rolling as in the present invention, the primary recrystallization texture does not develop so sharply. Therefore, the orientation corresponding to the secondary recrystallization orientation does not become so strong.
In such a case, it is considered that the nuclei having a large product of the abundance of the secondary recrystallized nuclei and the corresponding orientation amount are likely to be secondary recrystallized. At this time, the critical value required for secondary recrystallization of the above product becomes important, and if this critical value is too high, secondary recrystallized grains having various orientations will be generated. Since the reciprocal of the primary recrystallized grain size is considered to be proportional to the driving force for grain growth of the secondary recrystallized grain, the smaller the average grain size of the primary recrystallized grains, the lower the upper critical value, the larger the It seems that the critical value is high. Therefore, as shown in FIG.
It can be said that there was an appropriate value of the average particle size of the primary recrystallization in m. In the case where it exceeds 10 μm, the secondary recrystallization is poor in all cases, and it is understood that the appropriate range of the critical value and the appropriate range of the primary recrystallized grain size correspond to each other.
【0015】次に本発明の構成要件の限定理由について
述べる。先ず、スラブ成分とスラブ加熱温度に関して限
定理由を詳細に説明する。Cは0.025重量%(以下
単に%と略述)未満になると二次再結晶が不安定にな
り、かつ二次再結晶した場合でもB8 >1.80(T)
が得がたいので0.025%以上とした。一方、Cが多
くなり過ぎると脱炭焼鈍時間が長くなり経済的でないの
で0.075%以下とした。Next, the reasons for limiting the constituent features of the present invention will be described. First, the reasons for limiting the slab components and the slab heating temperature will be described in detail. When C is less than 0.025% by weight (hereinafter simply referred to as%), the secondary recrystallization becomes unstable, and even when the secondary recrystallization is performed, B 8 > 1.80 (T)
Since it is difficult to obtain, it was set to 0.025% or more. On the other hand, if C is too much, the decarburization annealing time becomes long and it is not economical, so the content was made 0.075% or less.
【0016】Siは4.5%を超えると冷延時の割れが
著しくなるので4.5%以下とした。また、2.5%未
満では素材の固有抵抗が低過ぎ、トランス鉄心材料とし
て必要な低鉄損が得られないので2.5%以上とした。
望ましくは3.2%以上である。If Si exceeds 4.5%, cracking during cold rolling becomes significant, so Si is set to 4.5% or less. If it is less than 2.5%, the specific resistance of the material is too low, and the low iron loss required for the transformer core material cannot be obtained.
It is preferably 3.2% or more.
【0017】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)窒化物を確保するため、酸可溶
性Alとして0.010%以上が必要である。酸可溶性
Alが0.060%を超えると熱延板のAlNが不適切
となり二次再結晶が不安定となるので0.060%以下
とした。Al is AlN necessary for stabilizing secondary recrystallization.
Alternatively, in order to secure (Al, Si) nitride, 0.010% or more is required as acid-soluble Al. If the acid-soluble Al exceeds 0.060%, the AlN of the hot-rolled sheet becomes unsuitable and the secondary recrystallization becomes unstable, so the content was made 0.060% or less.
【0018】Nについては通常の製鋼作業では0.00
10%未満にすることが困難であり、かつ経済的に好ま
しくないので0.0010%以上とし、一方、0.01
30%を超えるとブリスターと呼ばれる“鋼板のふく
れ”が発生するので0.0130%以下とした。N is 0.00 in the ordinary steelmaking work.
Since it is difficult to make it less than 10% and it is not economically preferable, it is set to 0.0010% or more, while 0.01
When it exceeds 30%, "blister of steel plate" called blister occurs, so the content is made 0.0130% or less.
【0019】MnS、MnSeが鋼中に存在しても、製
造工程の条件を適性に選ぶことによって磁気特性を良好
にすることは可能である。しかしながらSやSeが高い
と線状細粒と呼ばれる二次再結晶不良部が発生する傾向
があり、この二次再結晶不良部の発生を予防するために
は(S+0.405Se)≦0.014%とすべきであ
る。SあるいはSeが上記値を超える場合には製造条件
をいかに変更しても二次再結晶不良部が発生する確率が
高くなり好ましくない。また、最終仕上焼鈍で純化する
のに要する時間が長くなり過ぎて好ましくなく、この様
な観点からSあるいはSeを不必要に増すことは意味が
ない。Even if MnS and MnSe are present in the steel, it is possible to improve the magnetic properties by appropriately selecting the conditions of the manufacturing process. However, if S and Se are high, secondary recrystallization defects called linear fine grains tend to occur. To prevent the generation of secondary recrystallization defects, (S + 0.405Se) ≦ 0.014 Should be%. If S or Se exceeds the above value, the probability of occurrence of defective secondary recrystallization is increased no matter how the manufacturing conditions are changed, which is not preferable. In addition, the time required for purification in the final finish annealing is undesirably long, and it is meaningless to increase S or Se unnecessarily from this viewpoint.
【0020】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、ストリップの側縁部が波形状となり製品歩
留りを低下させる問題が発生する。一方、Mn量が0.
8%を超えると製品の磁束密度を低下させ、好ましくな
いので、Mn量の上限を0.8%とした。The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, the shape (flatness) of the hot-rolled sheet obtained by hot rolling and the side edge portion of the strip become wavy, which causes a problem of lowering the product yield. On the other hand, the Mn content is 0.
If it exceeds 8%, the magnetic flux density of the product is lowered, which is not preferable, so the upper limit of the amount of Mn was set to 0.8%.
【0021】この他、インヒビター構成元素としている
Sn、Sb、Cr、Cu、Ni、B、Ti等を微量に含
有することは差し支えない。In addition to this, a small amount of Sn, Sb, Cr, Cu, Ni, B, Ti, etc., which are inhibitor constituent elements, may be contained.
【0022】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。スラブ加熱に引
き続き、通常の方法で熱延が行われ、熱延板となる。次
いで、圧下率60〜79%の最終冷延を含み、必要に応
じて中間焼鈍をはさみ2回以上の冷延を行う。最終冷延
の圧下率が60%未満では{111}<112>等{1
10}<001>に対する対応方位が少なすぎて高い磁
束密度を得るには好ましくなく、79%超では、高磁束
密度は得られるものの、適性な一次再結晶粒径の範囲が
狭くなるので良好な磁気特性を安定して得る点では不利
である。このため、最終冷延圧下率を60〜79%と規
定した。The slab heating temperature is limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower. Subsequent to slab heating, hot rolling is performed by a usual method to obtain a hot rolled sheet. Then, the final cold rolling with a rolling reduction of 60 to 79% is included, and if necessary, intermediate annealing is performed, and cold rolling is performed twice or more. If the final cold rolling reduction is less than 60%, {111} <112> etc. {1
10} <001> is too small to obtain a high magnetic flux density, and if it exceeds 79%, a high magnetic flux density can be obtained, but an appropriate range of primary recrystallized grain size becomes narrow, which is preferable. It is disadvantageous in that the magnetic characteristics are stably obtained. Therefore, the final cold rolling reduction rate is defined as 60 to 79%.
【0023】かかる冷延後の鋼板は、通常の方法で脱炭
焼鈍、焼鈍分離剤塗布、最終仕上焼鈍を施されて最終製
品となる。ここで脱炭焼鈍完了後、最終仕上焼鈍開始ま
での間の一次再結晶粒の平均粒径を10〜35μmとし
たのは、図1に示した如くこの値の範囲でB8 (T)
1.85なる良好な磁束密度が得られるからである。そ
して、熱延後最終仕上焼鈍の二次再結晶開始までの間に
鋼板に窒化処理を施すと規定したのは、本発明の如き低
温スラブ加熱を前提とするプロセスでは、二次再結晶に
必要なインヒビター強度が不足がちになるからである。
窒化の方法としては特に限定するものではなく、脱炭焼
鈍後引き続き焼鈍雰囲気にNH3 ガスを混入させ窒化す
る方法、プラズマを用いる方法、焼鈍分離剤に窒化物を
添加し、最終仕上焼鈍の昇温中に窒化物が分解してでき
た窒素を鋼板に吸収させる方法、最終仕上焼鈍の雰囲気
のN2 分圧を高めとし、鋼板を窒化する方法等何れの方
法でも良い。窒化量については特に限定するものではな
いが、1ppm 以上は必要である。The steel sheet after cold rolling is subjected to decarburization annealing, application of an annealing separating agent, and final finishing annealing by a usual method to obtain a final product. The average grain size of the primary recrystallized grains after the completion of decarburization annealing and before the start of final finishing annealing is set to 10 to 35 μm as shown in FIG. 1 within the range of B 8 (T).
This is because a good magnetic flux density of 1.85 can be obtained. Then, it is defined that the steel sheet is subjected to the nitriding treatment before the start of the secondary recrystallization of the final finish annealing after the hot rolling, in the process premised on the low temperature slab heating as in the present invention, it is necessary for the secondary recrystallization. This is because the inhibitor strength tends to be insufficient.
The method of nitriding is not particularly limited, and it is a method of mixing NH 3 gas into the annealing atmosphere after decarburization annealing to perform nitriding, a method of using plasma, a nitride is added to an annealing separating agent, and a final finishing annealing is performed. Any method may be used, such as a method of absorbing nitrogen generated by decomposition of nitrides in the temperature into the steel sheet, or a method of nitriding the steel sheet by increasing the N 2 partial pressure in the atmosphere of final annealing. The nitriding amount is not particularly limited, but 1 ppm or more is necessary.
【0024】最終仕上焼鈍においては、例えば、H2 中
で焼鈍する等の場合、鋼板から脱窒が生じやすく、たと
え、最終仕上焼鈍前に窒化処理を施したとしても、二次
再結晶を生ぜしめ、かつ良好な磁気特性を得るための析
出物が不足する場合も考える。二次再結晶開始直前の鋼
板においては、Nが重量で0.0100%以上が含有さ
れていることが、良好な磁気特性を得るためにさらに好
ましい。最終仕上焼鈍条件は、特に限定するものではな
いが、N2 分圧を1%以上とした雰囲気中で焼鈍するこ
とは、二次再結晶安定化の点で好ましい。In the final finish annealing, for example, in the case of annealing in H 2 or the like, denitrification is likely to occur from the steel sheet, and even if a nitriding treatment is performed before the final finish annealing, secondary recrystallization occurs. It is also considered that there is a shortage of precipitates for tightening and obtaining good magnetic properties. In the steel sheet immediately before the start of secondary recrystallization, it is more preferable that the N content is 0.0100% or more by weight in order to obtain good magnetic properties. The final finish annealing conditions are not particularly limited, but annealing in an atmosphere with a N 2 partial pressure of 1% or more is preferable from the viewpoint of stabilizing secondary recrystallization.
【0025】[0025]
【実施例】以下実施例を説明する。 [実施例1]C:0.055重量%、Si:3.24重
量%、Mn:0.15重量%、S:0.007重量%、
酸可溶性Al:0.029重量%、N:0.0076重
量%を含有し、残部Fe及び不可避的不純物からなる4
0mm厚スラブを1150℃の温度で60分加熱した後、
1080℃で熱延を開始し、2.3mm厚の熱延板とし
た。この熱延板を酸洗し、次いで圧下率約34%で冷却
し、1.52mm厚とした。しかる後この鋼板を1050
℃×30秒(均熱)の処理後、900℃まで徐冷した後
急冷する中間焼鈍を施した。次いで圧下率約78%で冷
却し、0.335mm厚の冷延板とした。EXAMPLES Examples will be described below. [Example 1] C: 0.055 wt%, Si: 3.24 wt%, Mn: 0.15 wt%, S: 0.007 wt%,
Acid-soluble Al: 0.029% by weight, N: 0.0076% by weight, balance Fe and unavoidable impurities 4
After heating the 0 mm thick slab at a temperature of 1150 ° C. for 60 minutes,
Hot rolling was started at 1080 ° C. to obtain a hot rolled sheet having a thickness of 2.3 mm. The hot rolled sheet was pickled and then cooled at a rolling reduction of about 34% to a thickness of 1.52 mm. After that, this steel plate is 1050
After the treatment at 30 ° C. for 30 seconds (soaking), the intermediate annealing was performed by gradually cooling to 900 ° C. and then rapidly cooling. Then, it was cooled at a rolling reduction of about 78% to obtain a cold-rolled sheet having a thickness of 0.335 mm.
【0026】この冷延板に830℃×150秒(均熱)
なる脱炭焼鈍を施した。脱炭焼鈍後の鋼板の平均粒径
(円相当直径)は、22μmであった。次いでかかる鋼
板に、750℃に30秒保持する熱処理中、雰囲気ガ
ス中にNH3 ガスを混入させて窒化処理,処理なしの
2条件の処理を施した。条件の窒化後の鋼板のN量
は、0.0188重量%であった。その後、の鋼板
にMgOを主成分とする焼鈍分離剤を塗布し、公知の方
法で最終仕上焼鈍を行った。実験条件と製品の磁気特性
の結果を表1に示す。830 ° C. × 150 seconds (soaking) on this cold rolled sheet
Decarburization annealing was applied. The average grain size (circle equivalent diameter) of the steel sheet after decarburization annealing was 22 μm. Next, during the heat treatment of holding the steel plate at 750 ° C. for 30 seconds, NH 3 gas was mixed into the atmosphere gas and subjected to the two conditions of nitriding treatment and non-treatment. The N content of the steel sheet after nitriding under the conditions was 0.0188% by weight. After that, an annealing separator having MgO as a main component was applied to the steel sheet, and final finish annealing was performed by a known method. Table 1 shows the experimental conditions and the results of the magnetic properties of the products.
【0027】[0027]
【表1】 [Table 1]
【0028】[実施例2]C:0.048重量%、S
i:3.23重量%、Mn:0.14重量%、S:0.
007重量%、酸可溶性Al:0.018重量%、N:
0.0089重量%を含有し、残部Fe及び不可避的不
純物からなる40mm厚スラブを1250℃の温度で60
分加熱した後、直ちに熱延を行い、2.3mm厚の熱延板
とした。この熱延板を酸洗し、次いで圧下率約42%で
冷却し、1.34mm厚とした。しかる後この鋼板に98
0℃×2分(均熱)後、600℃まで空冷した後急冷す
る中間焼鈍を施し、次いで圧下率75%で冷却し、0.
335mm厚の冷延板とした。[Example 2] C: 0.048% by weight, S
i: 3.23% by weight, Mn: 0.14% by weight, S: 0.
007% by weight, acid-soluble Al: 0.018% by weight, N:
A 40 mm thick slab containing 0.0089% by weight and the balance Fe and unavoidable impurities was added at a temperature of 1250 ° C. to 60
Immediately after heating for a minute, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.3 mm. The hot rolled sheet was pickled and then cooled at a rolling reduction of about 42% to have a thickness of 1.34 mm. Then 98 on this steel plate
After 0 ° C. × 2 minutes (soaking), it was air-cooled to 600 ° C. and then subjected to an intermediate annealing of rapid cooling, followed by cooling at a reduction rate of 75%,
A cold-rolled sheet having a thickness of 335 mm was used.
【0029】その後この冷延板にa:800℃×150
秒(均熱),b:840℃×150秒(均熱)なる2水
準の脱炭焼鈍を施した。この場合、一次再結晶粒の平均
粒径(円相当直径)はa:9μm,b:13μmであっ
た。かかる鋼板に実施例1記載の窒化処理、を施し
た。条件の窒化後の鋼板のN量は、0.0169〜
0.0181重量%であった。しかる後、MgOを主成
分とする焼鈍分離剤を塗布し、公知の方法で最終仕上焼
鈍を行った。実験条件と製品の磁気特性を表2に示す。Thereafter, a: 800 ° C. × 150 was applied to this cold rolled sheet.
Seconds (soaking), b: 840 ° C. × 150 seconds (soaking), two levels of decarburization annealing. In this case, the average grain size (equivalent circle diameter) of the primary recrystallized grains was a: 9 μm, b: 13 μm. This steel sheet was subjected to the nitriding treatment described in Example 1. The N content of the steel sheet after nitriding under the conditions is 0.0169 to
It was 0.0181% by weight. After that, an annealing separator containing MgO as a main component was applied, and final finish annealing was performed by a known method. Table 2 shows the experimental conditions and the magnetic properties of the products.
【0030】[0030]
【表2】 [Table 2]
【0031】[実施例3]C:0.040重量%、S
i:3.30重量%、Mn:0.14重量%、S:0.
006重量%、酸可溶性Al:0.048重量%、N:
0.0051重量%を含有し、残部Fe及び不可避的不
純物からなる40mm厚スラブを1100℃の温度で60
分加熱した後、直ちに熱延を行い、2.3mm厚の熱延板
とした。この熱延板に1000℃×2分間均熱後、60
0℃まで空冷した後急冷する熱延板焼鈍を施し、次いで
酸洗、圧下率50%の冷延を施し、1.15mm厚の冷延
板とした。しかる後、この冷延板に1000℃×2分
(均熱)の処理後、900℃まで徐冷した後急冷する中
間焼鈍を施した。次いで圧下率約75%で冷却し、0.
285mm厚の冷延板とした。[Example 3] C: 0.040% by weight, S
i: 3.30% by weight, Mn: 0.14% by weight, S: 0.
006% by weight, acid-soluble Al: 0.048% by weight, N:
A 40 mm-thick slab containing 0.0051% by weight and the balance Fe and unavoidable impurities at a temperature of 1100 ° C.
Immediately after heating for a minute, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.3 mm. After soaking this hot rolled sheet for 2 minutes at 1000 ° C, 60
A hot-rolled sheet was annealed by air-cooling to 0 ° C. and then rapidly cooled, then pickled and cold-rolled at a reduction rate of 50% to obtain a 1.15 mm-thick cold-rolled sheet. Thereafter, this cold-rolled sheet was subjected to an intermediate annealing of 1000 ° C. × 2 minutes (soaking), then gradually cooled to 900 ° C. and then rapidly cooled. Then, it is cooled at a reduction rate of about 75%, and
A cold rolled sheet having a thickness of 285 mm was used.
【0032】この冷延板にa:850℃×150秒(均
熱),b:950℃×150秒(均熱)なる2水準の脱
炭焼鈍を施した。この場合、一次再結晶粒の平均粒径
(円相当直径)はa:26μm,b:37μmであっ
た。かかる鋼板に実施例1記載の窒化処理、を施し
た。条件の窒化後の鋼板のN量は、0.0193〜
0.0201重量%であった。その後、MgOを主成分
とする焼鈍分離剤を塗布し、公知の方法で最終仕上焼鈍
を行った。実験条件と製品の磁気特性を表3に示す。This cold-rolled sheet was subjected to two levels of decarburization annealing: a: 850 ° C. × 150 seconds (soaking), b: 950 ° C. × 150 seconds (soaking). In this case, the average grain size (equivalent circle diameter) of the primary recrystallized grains was a: 26 μm, b: 37 μm. This steel sheet was subjected to the nitriding treatment described in Example 1. The N content of the steel sheet after nitriding under the conditions is 0.0193 to
It was 0.0201% by weight. After that, an annealing separator containing MgO as a main component was applied, and final finish annealing was performed by a known method. Table 3 shows the experimental conditions and the magnetic properties of the products.
【0033】[0033]
【表3】 [Table 3]
【0034】[実施例4]C:0.045重量%、S
i:3.25重量%、Mn:0.15重量%、S:0.
007重量%、酸可溶性Al:0.030重量%、N:
0.0087重量%、Sn:0.050重量%を含有
し、残部Fe及び不可避的不純物からなる40mm厚スラ
ブを1150℃の温度で60分加熱した後、直ちに熱延
を行い、2.3mm厚の熱延板とした。この熱延板を酸洗
し、次いで圧下率約34%で冷延し、1.52mm厚とし
た。しかる後、この鋼板を1100℃×30秒(均熱)
なる処理後、900℃まで徐冷した後急冷する中間焼鈍
を施し、次いで圧下率約78%で冷却し、0.335mm
厚の冷延板とした。[Example 4] C: 0.045% by weight, S
i: 3.25% by weight, Mn: 0.15% by weight, S: 0.
007% by weight, acid-soluble Al: 0.030% by weight, N:
A 40 mm thick slab containing 0.0087 wt% and Sn: 0.050 wt% and the balance Fe and unavoidable impurities was heated at a temperature of 1150 ° C. for 60 minutes and immediately hot-rolled to a thickness of 2.3 mm. It was used as a hot rolled sheet. The hot-rolled sheet was pickled and then cold-rolled at a rolling reduction of about 34% to a thickness of 1.52 mm. After that, the steel plate was heated at 1100 ° C for 30 seconds (soaking).
After the above treatment, an intermediate annealing is performed in which the material is gradually cooled to 900 ° C and then rapidly cooled, and then cooled at a reduction rate of about 78% to obtain a thickness of 0.335 mm.
It was a thick cold-rolled sheet.
【0035】この冷延板に820℃×150秒(均熱)
なる脱炭焼鈍を施した。脱炭焼鈍後の鋼板の平均粒径
(円相当直径)は21μmであった。次いでこの鋼板
に、750℃に30秒保持する熱処理中、雰囲気ガス
中にNH3 ガスを混入させて窒化処理,処理なしの2
条件の処理を施した。条件の窒化後の鋼板のN量は、
0.0124重量%であった。その後、MgOを主成分
とする焼鈍分離剤を塗布し、15/hrで1200℃まで
昇温し、1200℃に20時間保持する最終仕上焼鈍を
施した。この時1200℃の20時間保定においては、
H2 100%なる焼鈍雰囲気中で行い、昇温過程では
a:N2 25%、H2 75%,b:H2 100%なる2
水準の雰囲気条件とした。なお、最終仕上焼鈍中の90
0℃から1200℃までの間に25℃間隔で試料を炉か
ら取り出し、二次再結晶開始直前の試料のN量を調査し
た。窒化処理を施していない試料については、二次再結
晶が生じなかった。窒化処理を施した試料については、
雰囲気aの場合、1050℃で二次再結晶粒が観察さ
れ、1025℃での鋼板(二次再結晶開始直前)のN量
は、0.0146重量%であった。一方、雰囲気bの場
合、1075℃で二次再結晶粒が観察され、1050℃
での鋼板(二次再結晶開始直前)のN量は、0.009
5重量%であった。実験条件と製品の磁気特性を表4に
示す。This cold-rolled sheet was heated at 820 ° C. for 150 seconds (soaking).
Decarburization annealing was applied. The average grain size (equivalent circle diameter) of the steel sheet after decarburization annealing was 21 μm. Then, during the heat treatment of holding this steel plate at 750 ° C. for 30 seconds, NH 3 gas was mixed in the atmosphere gas to perform nitriding treatment and no treatment.
The condition was processed. The N content of the steel sheet after nitriding under the conditions is
It was 0.0124% by weight. After that, an annealing separator containing MgO as a main component was applied, the temperature was raised to 1200 ° C. at 15 / hr, and final finishing annealing was performed at 1200 ° C. for 20 hours. At this time, in a 20-hour retention at 1200 ° C,
It is performed in an annealing atmosphere of H 2 100%, and in the temperature rising process, a: N 2 25%, H 2 75%, b: H 2 100% 2.
The standard atmosphere conditions were used. In addition, 90 during final finish annealing
Samples were taken out of the furnace at intervals of 25 ° C. from 0 ° C. to 1200 ° C., and the N content of the samples immediately before the start of secondary recrystallization was investigated. Secondary recrystallization did not occur in the sample that was not subjected to the nitriding treatment. For samples that have undergone nitriding,
In the atmosphere a, secondary recrystallized grains were observed at 1050 ° C., and the N content of the steel sheet at 1025 ° C. (immediately before the start of secondary recrystallization) was 0.0146 wt%. On the other hand, in the case of the atmosphere b, secondary recrystallized grains were observed at 1075 ° C and 1050 ° C.
The N content of the steel sheet (immediately before the start of secondary recrystallization) was 0.009.
It was 5% by weight. Table 4 shows the experimental conditions and the magnetic properties of the products.
【0036】[0036]
【表4】 [Table 4]
【0037】[実施例5]C:0.048重量%、S
i:3.31重量%、Mn:0.15重量%、S:0.
007重量%、酸可溶性Al:0.031重量%、N:
0.0069重量%を含有し、残部Fe及び不可避的不
純物からなる40mm厚スラブを1150℃の温度で60
分加熱した後、直ちに熱延を行い、2.3mm厚の熱延板
とした。この熱延板を酸洗し、次いで圧下率約49%で
冷延し、1.18mm厚の冷延板とした。しかる後、この
冷延板に1050℃×30秒(均熱)なる処理後、90
0℃まで徐冷した後急冷する中間焼鈍を施し、次いで圧
下率約78%で冷却し、0.260mm厚の冷延板とし
た。[Example 5] C: 0.048% by weight, S
i: 3.31% by weight, Mn: 0.15% by weight, S: 0.
007% by weight, acid-soluble Al: 0.031% by weight, N:
A 40 mm thick slab containing 0.0069% by weight and the balance Fe and unavoidable impurities at a temperature of 1150 ° C.
Immediately after heating for a minute, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.3 mm. The hot rolled sheet was pickled and then cold rolled at a rolling reduction of about 49% to obtain a cold rolled sheet having a thickness of 1.18 mm. Thereafter, the cold-rolled sheet was treated at 1050 ° C. for 30 seconds (soaking), then 90
An intermediate annealing was performed in which the steel was gradually cooled to 0 ° C. and then rapidly cooled, and then cooled at a rolling reduction of about 78% to obtain a 0.260 mm-thick cold-rolled sheet.
【0038】この冷延板にa:820℃×150秒(均
熱),b:850℃×150秒(均熱)なる2水準の脱
炭焼鈍を施した。この場合、一次再結晶粒の平均粒径
(円相当直径)はa:21μm,b:24μmであっ
た。かかる鋼板に実施例1記載の窒化処理を施した。
窒化後の鋼板のN量は、0.0195〜0.0210重
量%であった。その後、MgOを主成分とする焼鈍分離
剤を塗布し、10/hrで1200℃まで昇温し、120
0℃に20時間保持する最終仕上焼鈍を施した。この時
1200℃の20時間保定においては、H2 100%な
る焼鈍雰囲気中で行い、昇温過程ではa:N2 25%、
H2 75%,b:N2 75%、H2 25%なる2水準の
雰囲気条件とした。なお、最終仕上焼鈍中に実施例4記
載の条件で試料を炉から取り出し、二次再結晶開始直前
の試料のN量を調査した。脱炭焼鈍条件aで最終仕上焼
鈍の雰囲気条件Aの場合、1050℃で二次再結晶粒が
観察され、1025℃での鋼板(二次再結晶開始直前)
のN量は、0.0198重量%であった。脱炭焼鈍条件
aで最終仕上焼鈍の雰囲気条件Bの場合、1075℃で
二次再結晶粒が観察され、1050℃での鋼板(二次再
結晶開始直前)のN量は、0.0254重量%であっ
た。脱炭焼鈍条件bで最終仕上焼鈍の雰囲気条件Aの場
合、1075℃で二次再結晶粒が観察され、1050℃
での鋼板(二次再結晶開始直前)のN量は、0.018
4重量%であった。脱炭焼鈍条件bで最終仕上焼鈍の雰
囲気条件Bの場合、1100℃で二次再結晶粒が観察さ
れ、1075℃での鋼板(二次再結晶開始直前)のN量
は、0.0245重量%であった。実験条件と製品の磁
気特性を表5に示す。This cold-rolled sheet was subjected to two levels of decarburization annealing: a: 820 ° C. × 150 seconds (soaking), b: 850 ° C. × 150 seconds (soaking). In this case, the average grain size (equivalent circle diameter) of the primary recrystallized grains was a: 21 μm, b: 24 μm. This steel sheet was subjected to the nitriding treatment described in Example 1.
The N content of the steel sheet after nitriding was 0.0195 to 0.0210% by weight. After that, an annealing separating agent containing MgO as a main component is applied, and the temperature is raised to 1200 ° C. at 10 / hr, and 120
A final finish annealing was carried out at 0 ° C for 20 hours. At this time, the temperature was kept at 1200 ° C. for 20 hours in an annealing atmosphere of H 2 100%, and in the temperature rising process, a: N 2 25%,
H 2 75%, b: N 2 75%, and H 2 25% were set as two levels of atmospheric conditions. During the final finish annealing, the sample was taken out from the furnace under the conditions described in Example 4, and the N content of the sample immediately before the start of secondary recrystallization was investigated. In the case of decarburizing annealing condition a and final finishing annealing atmosphere condition A, secondary recrystallized grains were observed at 1050 ° C., and a steel plate at 1025 ° C. (immediately before the start of secondary recrystallization)
The amount of N was 0.0198% by weight. In the case of decarburization annealing condition a and final finishing annealing atmosphere condition B, secondary recrystallized grains were observed at 1075 ° C., and the N content of the steel plate at 1050 ° C. (immediately before the start of secondary recrystallization) was 0.0254 wt. %Met. In the case of decarburization annealing condition b and final finishing annealing atmosphere condition A, secondary recrystallized grains are observed at 1075 ° C. and 1050 ° C.
The N content of the steel sheet (immediately before the start of secondary recrystallization) was 0.018
It was 4% by weight. In the case of decarburization annealing condition b and final finishing annealing atmosphere condition B, secondary recrystallized grains are observed at 1100 ° C., and the N content of the steel plate at 1075 ° C. (immediately before the start of secondary recrystallization) is 0.0245 wt. %Met. Table 5 shows the experimental conditions and the magnetic properties of the products.
【0039】[0039]
【表5】 [Table 5]
【0040】[0040]
【発明の効果】以上説明したように、本発明において、
2回以上の冷延を行うプロセスの最終冷延の圧下率を6
0〜79%とし、脱炭焼鈍完了後、最終仕上焼鈍開始ま
での間での一次再結晶粒径を10〜35μmとし、熱延
後最終仕上焼鈍の二次再結晶開始までの間に鋼板に窒化
処理を施し、さらには二次再結晶開始直前での鋼板のN
量を制御することにより、低温スラブ加熱条件で、良好
な磁気特性を安定して得られるので、その工業的効果は
極めて大である。As described above, in the present invention,
The final cold rolling reduction rate of the process of performing cold rolling two or more times is 6
0 to 79%, the primary recrystallization grain size is 10 to 35 μm after the completion of decarburization annealing and before the start of final finish annealing, and after hot rolling, the steel sheet is formed before the start of secondary recrystallization of final finish annealing. Nitriding treatment was performed, and N of the steel sheet immediately before the start of secondary recrystallization
By controlling the amount, good magnetic properties can be stably obtained under the low temperature slab heating condition, so that its industrial effect is extremely large.
【図1】一次再結晶粒径(円相当直径)と製品の磁束密
度の関係を表す図である。FIG. 1 is a diagram showing a relationship between a primary recrystallized grain size (equivalent circle diameter) and a magnetic flux density of a product.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年11月17日[Submission date] November 17, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0014[Correction target item name] 0014
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0014】図1に示した如き関係が成立する理由につ
いては必ずしも明らかではないが、本発明者らは次のよ
うに推察している。すなわち、二次再結晶方位に対する
一次再結晶集合組織の影響メカニズムは、対応方位とい
う概念を用いて説明できると考えられる。本発明の如き
60〜79%の低圧下率最終冷延の場合、一次再結晶集
合組織は、それほど尖鋭には発達しない。従って、二次
再結晶方位に対する対応方位もそれほど強くならない。
この様な場合、二次再結晶する核の存在量とそれに対す
る対応方位の量の積の多い核が二次再結晶しやすいと考
えられる。この時、上記の積の二次再結晶に必要な臨界
値が重要となり、この臨界値が高過ぎると、二次再結晶
が起こらず、低過ぎると、様々な方位を持つ二次再結晶
粒が発生することとなる。そして、一次再結晶粒径の逆
数は、二次再結晶粒の粒成長の駆動力に比例する量と考
えられるので、一次再結晶の平均粒径が小さいほど、上
臨界値が低く、大きいほど臨界値が高いと考えれる。従
って図1に示した如く、10〜35μmに一次再結晶の
平均粒径の適性値が存在したものといえる。10μm超
の場合、何れも、二次再結晶が不良となっており、上記
臨界値の適性範囲と一次再結晶粒径の適性範囲が対応し
ているものと解される。Although the reason why the relationship shown in FIG. 1 is established is not always clear, the present inventors presume as follows. That is, for the secondary recrystallization orientation
The mechanism of influence of primary recrystallization texture can be explained by using the concept of corresponding orientation. In the case of 60-79% low pressure final cold rolling as in the present invention, the primary recrystallization texture does not develop so sharply. Therefore, the orientation corresponding to the secondary recrystallization orientation does not become so strong.
In such a case, it is considered that the nuclei having a large product of the abundance of the secondary recrystallized nuclei and the corresponding orientation amount are likely to be secondary recrystallized. At this time, the critical value required for secondary recrystallization of the above product becomes important, and if this critical value is too high, secondary recrystallization
Does not occur and is too low, secondary recrystallized grains having various orientations will be generated. Since the reciprocal of the primary recrystallized grain size is considered to be proportional to the driving force of the grain growth of the secondary recrystallized grains, the smaller the average grain size of the primary recrystallized grains, the lower the upper critical value, the larger the It seems that the critical value is high. Therefore, as shown in FIG. 1, it can be said that there is an appropriate value for the average particle size of primary recrystallization in the range of 10 to 35 μm. In the case where it exceeds 10 μm, the secondary recrystallization is poor in any case, and it is understood that the appropriate range of the critical value and the appropriate range of the primary recrystallized grain size correspond to each other.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0017[Correction target item name] 0017
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0017】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)Nを確保するため、酸可溶性A
lとして0.010%以上が必要である。酸可溶性Al
が0.060%を超えると熱延板のAlNが不適切とな
り二次再結晶が不安定となるので0.060%以下とし
た。Al is AlN necessary for stabilizing secondary recrystallization.
Alternatively , in order to secure (Al, Si) N , acid-soluble A
0.01% or more is required as l. Acid soluble Al
Is more than 0.060%, the AlN of the hot-rolled sheet becomes unsuitable and the secondary recrystallization becomes unstable, so the content was made 0.060% or less.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0023[Name of item to be corrected] 0023
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0023】かかる冷延後の鋼板は、通常の方法で脱炭
焼鈍、焼鈍分離剤塗布、最終仕上焼鈍を施されて最終製
品となる。ここで脱炭焼鈍完了後、最終仕上焼鈍開始ま
での間の一次再結晶粒の平均粒径を10〜35μmとし
たのは、図1に示した如くこの値の範囲でB8 (T)≧
1.85なる良好な磁束密度が得られるからである。そ
して、熱延後最終仕上焼鈍の二次再結晶開始までの間に
鋼板に窒化処理を施すと規定したのは、本発明の如き低
温スラブ加熱を前提とするプロセスでは、二次再結晶に
必要なインヒビター強度が不足がちになるからである。
窒化の方法としては特に限定するものではなく、脱炭焼
鈍後引き続き焼鈍雰囲気にNH3 ガスを混入させ窒化す
る方法、プラズマを用いる方法、焼鈍分離剤に窒化物を
添加し、最終仕上焼鈍の昇温中に窒化物が分解してでき
た窒素を鋼板に吸収させる方法、最終仕上焼鈍の雰囲気
のN2 分圧を高めとし、鋼板を窒化する方法等何れの方
法でも良い。窒化量については特に限定するものではな
いが、1ppm 以上は必要である。The steel sheet after cold rolling is subjected to decarburization annealing, application of an annealing separating agent, and final finishing annealing by a usual method to obtain a final product. The average grain size of the primary recrystallized grains after completion of decarburization annealing and before the start of final finishing annealing is set to 10 to 35 μm as shown in FIG. 1 within the range of B 8 (T) ≧
This is because a good magnetic flux density of 1.85 can be obtained. Then, it is defined that the steel sheet is subjected to the nitriding treatment before the start of the secondary recrystallization of the final finish annealing after the hot rolling, in the process premised on the low temperature slab heating as in the present invention, it is necessary for the secondary recrystallization. This is because the inhibitor strength tends to be insufficient.
The nitriding method is not particularly limited, and a method of denitrifying and then subsequently nitriding by mixing NH 3 gas in an annealing atmosphere, a method of using plasma, a method of adding a nitride to an annealing separator and adding a final finishing annealing step Any method such as a method of absorbing nitrogen formed by decomposition of nitrides in the temperature into the steel sheet or a method of nitriding the steel sheet by increasing the N 2 partial pressure in the atmosphere of final annealing is applicable. The nitriding amount is not particularly limited, but 1 ppm or more is necessary.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0040[Item name to be corrected] 0040
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0040】[0040]
【発明の効果】以上説明したように、本発明において、
2回以上の冷延を行うプロセスの最終冷延の圧下率を6
0〜79%とし、脱炭焼鈍完了後、最終仕上焼鈍開始ま
での間での一次再結晶粒の平均粒径を10〜35μmと
し、熱延後最終仕上焼鈍の二次再結晶開始までの間に鋼
板に窒化処理を施し、さらには二次再結晶開始直前での
鋼板のN量を制御することにより、低温スラブ加熱条件
で、良好な磁気特性を安定して得られるので、その工業
的効果は極めて大である。As described above, in the present invention,
The final cold rolling reduction rate of the process of performing cold rolling two or more times is 6
0 to 79%, the average grain size of the primary recrystallized grains is 10 to 35 μm after the completion of decarburization annealing and before the start of final finish annealing, and after the hot rolling until the start of secondary recrystallization of final finish annealing. By nitriding the steel sheet and controlling the N content of the steel sheet immediately before the start of secondary recrystallization, good magnetic properties can be stably obtained under low-temperature slab heating conditions. Is extremely large.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図面の簡単な説明】[Brief description of drawings]
【図1】一次再結晶粒の平均粒径(円相当直径)と製品
の磁束密度の関係を表す図である。FIG. 1 is a diagram showing the relationship between the average grain size (equivalent circle diameter) of primary recrystallized grains and the magnetic flux density of a product.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 B 7371−5E (72)発明者 河野 彪 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI technical display location H01F 1/16 B 7371-5E (72) Inventor Akira Kono No. 1 Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka No. 1 inside Nippon Steel Co., Ltd. Yawata Works
Claims (2)
ブを、1280℃未満の温度で加熱した後、熱延し、得
られた熱延板を圧下率60〜79%の最終冷延を含み、
必要に応じて中間焼鈍をはさむ2回以上の冷延を行い、
次いで脱炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼
板を製造する方法において、脱炭焼鈍完了後、最終仕上
焼鈍開始までの一次再結晶粒の平均粒径を10〜35μ
mとし、熱延後、最終仕上焼鈍の二次再結晶開始までの
間に鋼板に窒化処理を施すことを特徴とする磁気特性の
優れた一方向性電磁鋼板の製造方法。1. By weight%, C: 0.025 to 0.075%, Si: 2.5 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: 0.0010 to 0. After heating a slab containing 0.0130%, S + 0.405Se: 0.014% or less, Mn: 0.05 to 0.8% and the balance of Fe and inevitable impurities at a temperature of less than 1280 ° C., Hot-rolled, the resulting hot-rolled sheet including final cold rolling with a rolling reduction of 60 to 79%,
If necessary, perform cold rolling twice or more with intermediate annealing.
Then, in the method of producing a unidirectional electrical steel sheet by performing decarburization annealing and final finishing annealing, after decarburization annealing is completed, the average grain size of the primary recrystallized grains until the start of final finishing annealing is 10 to 35 μm.
m, a nitriding treatment is performed on the steel sheet after hot rolling and before the start of secondary recrystallization in the final finish annealing, a method for producing a unidirectional electrical steel sheet having excellent magnetic properties.
鋼板に、重量%でN:0.0100%以上が含有される
ことを特徴とする請求項1記載の磁気特性の優れた一方
向性電磁鋼板の製造方法。2. A steel sheet immediately before the start of secondary recrystallization in the final finish annealing contains N: 0.0100% or more by weight%. Manufacturing method of grain-oriented electrical steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3281071A JPH05156361A (en) | 1991-10-28 | 1991-10-28 | Manufacture of grain-oriented electric steel sheet excellent in magnetic property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3281071A JPH05156361A (en) | 1991-10-28 | 1991-10-28 | Manufacture of grain-oriented electric steel sheet excellent in magnetic property |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05156361A true JPH05156361A (en) | 1993-06-22 |
Family
ID=17633915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3281071A Withdrawn JPH05156361A (en) | 1991-10-28 | 1991-10-28 | Manufacture of grain-oriented electric steel sheet excellent in magnetic property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05156361A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0726328A1 (en) * | 1995-02-13 | 1996-08-14 | Kawasaki Steel Corporation | Method of manufacturing grain-oriented silicon steel sheet having excellent characteristics |
US5720196A (en) * | 1995-04-18 | 1998-02-24 | Kawasaki Steel Corporation | Hot-rolling method of steel piece joint during continuous hot-rolling |
CN100455690C (en) * | 2005-11-30 | 2009-01-28 | 宝山钢铁股份有限公司 | Oriented silicon steel based on thin slab continuous casting and rolling and its manufacturing method |
-
1991
- 1991-10-28 JP JP3281071A patent/JPH05156361A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0726328A1 (en) * | 1995-02-13 | 1996-08-14 | Kawasaki Steel Corporation | Method of manufacturing grain-oriented silicon steel sheet having excellent characteristics |
US5665178A (en) * | 1995-02-13 | 1997-09-09 | Kawasaki Steel Corporation | Method of manufacturing grain-oriented silicon steel sheet having excellent magnetic characteristics |
US5720196A (en) * | 1995-04-18 | 1998-02-24 | Kawasaki Steel Corporation | Hot-rolling method of steel piece joint during continuous hot-rolling |
CN100455690C (en) * | 2005-11-30 | 2009-01-28 | 宝山钢铁股份有限公司 | Oriented silicon steel based on thin slab continuous casting and rolling and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0477384A1 (en) | Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics | |
JP3008003B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2607331B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP3065853B2 (en) | Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties | |
JP2787776B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH05156361A (en) | Manufacture of grain-oriented electric steel sheet excellent in magnetic property | |
JP2521585B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JP2709549B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH06306473A (en) | Production of grain-oriented magnetic steel sheet excellent in magnetic property | |
JPH07118746A (en) | Stable production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP3314844B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties | |
JP2521586B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JPH06306474A (en) | Production of grain-oriented magnetic steel sheet excellent in magnetic property | |
JP3474594B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness | |
JPH05230534A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP2948454B2 (en) | Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties | |
JP2948455B2 (en) | Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties | |
JPH0788531B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JPH07310124A (en) | Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic | |
JPH07138641A (en) | Production of grain-oriented electrical steel sheet excellent in magnetic property | |
JP3287488B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPS6296615A (en) | Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling | |
JP3348217B2 (en) | Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties | |
JPH08176666A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP3507232B2 (en) | Manufacturing method of unidirectional electrical steel sheet with large product thickness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990107 |