JPS6296615A - Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling - Google Patents
Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rollingInfo
- Publication number
- JPS6296615A JPS6296615A JP60234633A JP23463385A JPS6296615A JP S6296615 A JPS6296615 A JP S6296615A JP 60234633 A JP60234633 A JP 60234633A JP 23463385 A JP23463385 A JP 23463385A JP S6296615 A JPS6296615 A JP S6296615A
- Authority
- JP
- Japan
- Prior art keywords
- hot rolling
- sheet
- rolling
- iron loss
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、トランス等の鉄心に用いられる、熱間圧延で
の耳割れが少な(鉄損特性の優れた高磁束密度一方向電
磁鋼板の製造に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the development of high magnetic flux density unidirectional electrical steel sheets with less edge cracking during hot rolling (excellent iron loss characteristics), which are used in iron cores of transformers, etc. It's about manufacturing.
一方向性電磁鋼板は、軟磁性材料として主にトランスそ
の他の電気機器の鉄心材料に使用されているものであり
、その磁気特性としては励磁特性と鉄損特性が良好でな
くてはならない。Unidirectional electrical steel sheets are soft magnetic materials that are mainly used as iron core materials for transformers and other electrical equipment, and their magnetic properties must have good excitation properties and iron loss properties.
この励磁特性を表わす数値として通常Bll (磁場の
強さ800A/mにおける磁束密度)を用い、鉄損特性
を表わす数値としてW17150 (50Hzで1.
77まで磁化させた時の1 kg当りの鉄損)を用いて
いる。Bll (magnetic flux density at a magnetic field strength of 800 A/m) is usually used as a numerical value representing this excitation characteristic, and W17150 (1.
The iron loss per 1 kg when magnetized to 77) is used.
この一方向電磁11板は通常2次再結晶現象を利用して
鋼板面に(110)面、圧延方向に<001 >軸をも
ったいわゆるゴス組織を発達させることによって得られ
ている。良好な磁気特性を得るためには磁化容易軸であ
る<001>軸を圧延方向に高度に揃える事が重要であ
る。又板厚、結晶粒度、固有抵抗、表面被膜、鋼板の純
度等も磁気特性に太き影響を及ぼす。This unidirectional electromagnetic 11 plate is usually obtained by utilizing a secondary recrystallization phenomenon to develop a so-called Goss structure having a (110) plane and a <001> axis in the rolling direction on the steel plate surface. In order to obtain good magnetic properties, it is important that the <001> axis, which is the axis of easy magnetization, is highly aligned in the rolling direction. In addition, the plate thickness, grain size, specific resistance, surface coating, purity of the steel plate, etc. have a large influence on the magnetic properties.
方向性については、^IN、 MnSをインヒビターと
して利用する方法(特公昭40−1566号公報)およ
びMnSeあるいはMnSとsbをインヒビターとして
利用する方法(特公昭51−1349号公報)によって
大巾に向上し、それに伴って鉄損特性も著しく向上して
きた。また他のインヒビター構成元素としてPb、 S
b、 Nb+ Teを利用する方法(特公昭38−82
14号公報) 、Zr、 Tt+ a、 Nb+ Ta
、 V+ Cr+ M。The directionality has been greatly improved by the method of using ^IN and MnS as inhibitors (Japanese Patent Publication No. 1566/1972) and the method of using MnSe or MnS and sb as inhibitors (Japanese Patent Publication No. 1349/1982). However, the iron loss characteristics have also improved significantly. In addition, other inhibitor constituent elements include Pb and S.
b. Method using Nb + Te (Special Publication No. 38-82
14), Zr, Tt+ a, Nb+ Ta
, V+ Cr+ M.
を利用する方法(特開昭52−24116号公報) 、
Nb。(Japanese Unexamined Patent Publication No. 52-24116),
Nb.
Tiを利用する方法(特開昭55−14858号公報)
Snを利用する方法(特公昭57−9419号公報)等
が提案されている。Method of using Ti (Japanese Unexamined Patent Publication No. 14858/1983)
A method using Sn (Japanese Patent Publication No. 57-9419) has been proposed.
一方近年エネルギー価格の高騰を背景として、トランス
メーカーは低鉄損トランス用素材への指向を一段と強め
ている。低鉄損素材としてアモルファス合金や6.5%
Si鋼等の開発も進められているが、トランス用材料と
して工業的に使用するには解決すべき問題を残している
。そこで低鉄横比の方法として方向性電磁鋼板の板厚を
薄くすることや固有抵抗を高めるためSi量を増すこと
によって鉄損を減少させることなどに努力が払われてき
た。On the other hand, due to the rise in energy prices in recent years, transformer manufacturers have increasingly focused on materials for low core loss transformers. Amorphous alloy and 6.5% as low iron loss materials
Although Si steel and other materials are being developed, there are still problems that need to be solved before they can be used industrially as materials for transformers. Therefore, efforts have been made to reduce iron loss by reducing the thickness of grain-oriented electrical steel sheets and increasing the amount of Si to increase specific resistance as a method for achieving a low iron-lateral ratio.
鋼板の板厚を薄くすることや鋼中のSi量を高めること
が鉄損を減少させる上で有効であることは以前から知ら
れていたことであるが、この2つの方法とも2次再結晶
の不安定をひきおこす等の理由で、板厚とSi量は制限
をうけてきた。AIN。It has long been known that reducing the thickness of steel sheets and increasing the amount of Si in the steel is effective in reducing iron loss, but both of these methods require secondary recrystallization. The plate thickness and Si content have been limited for reasons such as causing instability. A.I.N.
MnSをインヒビターとして利用する製造方法において
Snを添加する方法(特公昭57−9419号公報)は
2次再結晶の安定化に極めて有効であり、板厚を薄くす
ることやSi量を高めることに伴う欠点を改善し、従来
の板厚0.30〜0.35 vaを0.15〜0.23
鶴に、従来のSi量2.9〜3.1%を3.2〜3.5
%とした鉄損特性の優れた成品を製造することを可能と
した。The method of adding Sn to the manufacturing method using MnS as an inhibitor (Japanese Patent Publication No. 57-9419) is extremely effective in stabilizing secondary recrystallization, and is effective in reducing the thickness of the plate and increasing the amount of Si. The conventional board thickness of 0.30 to 0.35 va has been improved to 0.15 to 0.23.
The conventional Si content of 2.9 to 3.1% was added to Tsuru by 3.2 to 3.5%.
This made it possible to manufacture products with excellent iron loss characteristics.
しかしながら、Si量を高める場合、適切な熱延板組織
を得るためSi量に応じてC景が高められており、熱間
圧延中の鋼板中のT量はSi量が低い場合とほぼ同じで
あるがSi量が増した状態となっている。Si はαと
Tで溶解度が異なり、α−γ変態、T−α変態が生じる
熱間圧延中、粒界近傍に偏析する傾向を有し、内部割れ
の原因となり熱延板端部の削れ(耳割れ)を生じさせる
。However, when increasing the amount of Si, the carbon content is increased in accordance with the amount of Si in order to obtain an appropriate structure of the hot rolled sheet, and the amount of T in the steel sheet during hot rolling is almost the same as when the amount of Si is low. However, the amount of Si has increased. Si has a different solubility between α and T, and has a tendency to segregate near grain boundaries during hot rolling where α-γ transformation and T-α transformation occur, causing internal cracks and chipping of the edges of hot-rolled sheets ( ear cracking).
またSnは粒界に偏析するため耳割れを助長する傾向が
ある。つまりSnを添加しSi量を高めて鉄損特性を向
上させる方法は熱間圧延時の耳割れを増し歩留低下を引
き起こすという欠点をもっている。Furthermore, since Sn segregates at grain boundaries, it tends to promote edge cracking. In other words, the method of adding Sn to increase the amount of Si to improve iron loss characteristics has the drawback of increasing edge cracking during hot rolling and causing a decrease in yield.
c本発明が解決しようとする問題点〕
本発明はAIN、 MnSを主インヒビターとする高磁
束密度を有する電磁鋼板を、Si量を増加させる方法に
よって鉄損特性を改善しようとする場合、二次再結晶の
安定のためSnを添加するので熱間圧延での耳割れが一
層増加し、歩留が低下するという問題点を解決する方法
を提供するものである。c) Problems to be Solved by the Present Invention] The present invention solves the problem of secondary The present invention provides a method for solving the problem that since Sn is added to stabilize recrystallization, edge cracking during hot rolling increases and the yield decreases.
本発明は、Sn添加によってSiの増量、板厚の減少に
よる鉄を員低減策を容易にすると同時に、Nb添加によ
って熱間圧延時の耳割れを減少させ歩留りを向上させる
ことに成功した一方向性電磁鋼板の製造方法を提供する
ものである。The present invention has succeeded in increasing the amount of Si by adding Sn and reducing the amount of iron by reducing the plate thickness, and at the same time, by adding Nb, it has succeeded in reducing edge cracking during hot rolling and improving yield. The present invention provides a method for manufacturing a magnetic steel sheet.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明者らは、Snを添加することがSiの増量、板厚
の減少による鉄損低減策を容易にする有効な手段である
ことに着目し、その欠点である熱間圧延時の耳割れ増加
を解決する手段について模索した結果微量のNbを鋼中
に添加することにより、所期の目的を達し、熱間圧延で
の耳割れが少なく磁気特性の優れた一方向性電磁鋼板を
製造できることを見出し、本発明を完成したのである。The present inventors focused on the fact that the addition of Sn is an effective means to facilitate measures to reduce iron loss by increasing the amount of Si and decreasing the sheet thickness, and the inventors focused on the fact that the addition of Sn is an effective means of facilitating measures to reduce iron loss by increasing the amount of Si and decreasing the sheet thickness. As a result of searching for a means to solve this increase, it was discovered that by adding a small amount of Nb to the steel, it was possible to achieve the desired purpose and produce unidirectional electrical steel sheets with excellent magnetic properties and less edge cracking during hot rolling. They discovered this and completed the present invention.
以下、本発明において出発素材であるスラブの成分を規
定した理由について説明する。The reasons for specifying the components of the slab as a starting material in the present invention will be explained below.
Stは4%を超すと脆化が激しく冷間圧延が困難となり
好ましくない。一方2.5%未満では電気抵抗が低く良
好な鉄損特性を得難い。If the St content exceeds 4%, embrittlement becomes severe and cold rolling becomes difficult, which is not preferable. On the other hand, if it is less than 2.5%, the electrical resistance is low and it is difficult to obtain good iron loss characteristics.
Cは0.04%未満では適切な1次再結晶m織が得るこ
とが難しいため2次再結晶組織が不完全なものとなる。If C is less than 0.04%, it is difficult to obtain a suitable primary recrystallized m-weave, resulting in an incomplete secondary recrystallized structure.
一方0.10%を超えると脱炭不良となり好ましくない
。On the other hand, if it exceeds 0.10%, decarburization will be insufficient, which is not preferable.
Snは、0,04%未満ではMnS等を微細に析出させ
て析出分散相を改善するという効果が十分でない。一方
、0.4%を超えるとフォルステライト被膜が劣化して
好ましくない。If Sn is less than 0.04%, the effect of finely precipitating MnS etc. and improving the precipitated dispersed phase is not sufficient. On the other hand, if it exceeds 0.4%, the forsterite coating deteriorates, which is not preferable.
Nbは本発明の特徴をなす元素であるが、その添加量が
0゜06%を超すと2次再結晶の不安定が生じ、0.0
02%未満では熱間圧延片の耳割れ減少の効果が十分で
ない。Nb is an element that characterizes the present invention, but if the amount added exceeds 0.06%, instability of secondary recrystallization will occur.
If it is less than 0.02%, the effect of reducing edge cracking in hot rolled pieces is not sufficient.
酸可溶性AI、Nは本発明において高磁束密度を得るた
めに必須の主インヒビター^INを得るための基本成分
であり、上記範囲を外れると2次再結晶が不安定となり
好ましくないので酸可溶性Alは0.015〜0.04
0%、Nは0.0040〜0.0100%とする。Acid-soluble Al and N are the basic components for obtaining the main inhibitor ^IN, which is essential for obtaining high magnetic flux density in the present invention, and if they are outside the above range, secondary recrystallization becomes unstable, which is undesirable. is 0.015 to 0.04
0%, and N is 0.0040 to 0.0100%.
また、MnおよびSはインヒビターMnSを形成するた
めに必要な元素であり、上記範囲を外れると2次再結晶
が不安定となり好ましくないのでMnは0.030〜0
.150%、Sは0.015〜0.040%と定める。In addition, Mn and S are elements necessary to form the inhibitor MnS, and if they are out of the above range, secondary recrystallization becomes unstable, which is not preferable, so Mn is 0.030 to 0.
.. 150%, and S is set at 0.015 to 0.040%.
更に本発明において0.005〜0.04%のSe。Furthermore, in the present invention, 0.005 to 0.04% Se.
0.001〜0.4%のCr + N i 1Mo 、
S b r Cu +As、Bi等の1種又は2種以上
を本発明の素材に含有することは許容される。0.001-0.4% Cr+Ni1Mo,
It is permissible for the material of the present invention to contain one or more of S b r Cu +As, Bi, and the like.
上記成分の溶鋼を造塊−分塊圧延又は連続“鋳造で10
0〜400 ta−厚のスラブとし、ひき続く熱間圧延
において、Mns等の溶体化のため1300〜1400
℃に数時間保持した後粗圧延で20〜60++v+厚に
し、ひき続く仕上圧延によって1〜5II11厚の熱延
板とする。熱延の仕上り温度は900〜1100℃であ
る。この熱延板に700〜1200℃の焼鈍を必要に応
じて行い、圧下率80%超の強圧下最終冷延を含む1回
以上の冷間圧延とその間に中間焼鈍を行う。最終冷間圧
延に先立つ中間焼鈍は必要に応じて900〜1200℃
に30秒から30分保持した後急冷しAINの析出コン
トロールを行う、冷間圧延工程での複数パス間に50〜
400℃の時効処理を行うと、一層優れた磁気特性が得
られる。最終冷間圧延後は公知の脱炭焼鈍を施し、Mg
Oを主成分とする焼鈍分離剤を塗布し、ひき続く最終仕
上焼鈍ではNt。The molten steel with the above components is processed by ingot making, blooming rolling or continuous casting.
0 to 400 ta-thick slab, and in the subsequent hot rolling, 1300 to 1400 ta to dissolve Mns etc.
After being held at ℃ for several hours, it is roughly rolled to a thickness of 20 to 60++v+, and then finished rolled to a hot rolled sheet of 1 to 5II11 thickness. The finishing temperature of hot rolling is 900 to 1100°C. This hot-rolled sheet is annealed at 700 to 1200° C. as necessary, and cold rolled at least once including final cold rolling with a reduction ratio of more than 80%, and intermediate annealing is performed in between. Intermediate annealing before final cold rolling is performed at 900-1200℃ as necessary.
50 to 50 seconds between multiple passes in the cold rolling process, which is held for 30 seconds to 30 minutes and then rapidly cooled to control the precipitation of AIN.
By performing aging treatment at 400°C, even better magnetic properties can be obtained. After the final cold rolling, a known decarburization annealing is performed, and Mg
An annealing separator mainly composed of O is applied, and Nt is applied in the subsequent final finish annealing.
N2又はその混合ガス中で鋼板を1ooo℃以上に昇温
し数時間保持する。最終仕上焼鈍後、張力付加を目的と
した焼鈍を行うことによって一層優れた磁気特性が得ら
れる。A steel plate is heated to 100° C. or higher in N2 or a mixed gas thereof and held for several hours. Even better magnetic properties can be obtained by performing annealing for the purpose of adding tension after the final finish annealing.
本発明者らは次に延べる実験により上記Nb量の適性範
囲を決定した。The present inventors determined the appropriate range of the above Nb amount through the following experiments.
先ず本発明者らは真空溶解によって St =3.25
%、C=0.07%、 5olA l 0.027%、
N=0.008%、 Mn =0.08%、S=0.0
27%、5n=0.12%、 Nb =0.002〜0
.094%又は< 0.001%を含有し残余Feなる
インゴットを作成し、分塊圧延によって素材を40鶴厚
に調整した後、加熱炉に入れ1350℃に90分保持し
、01150℃圧延スタート、1パスで15m(圧下率
63%)に仕上げる。■1200℃圧延スタート後6バ
スで2.3鶴に仕上げる(仕上げ出口温度1050℃)
という2通りの熱間圧延の実験を行った。第1図に1パ
ス圧下材の耳割れ最大深さとNb量との関係を示す。First, the inventors obtained St = 3.25 by vacuum melting.
%, C=0.07%, 5olA l 0.027%,
N=0.008%, Mn=0.08%, S=0.0
27%, 5n=0.12%, Nb=0.002~0
.. An ingot containing 0.094% or <0.001% of residual Fe was prepared, and after adjusting the material to a thickness of 40 mm by blooming rolling, it was placed in a heating furnace and held at 1350°C for 90 minutes, and rolling was started at 01150°C. Finish to 15m (reduction rate 63%) in one pass. ■After starting rolling at 1200℃, finish into 2.3 cranes in 6 baths (finishing exit temperature 1050℃)
Two types of hot rolling experiments were conducted. FIG. 1 shows the relationship between the maximum edge crack depth and the amount of Nb in a one-pass rolled material.
第1図に示すようにNb量0.002%で耳割れが減少
していることがわかる。6パス圧下2.3mm仕上げの
熱延板に関してはひき続きN290%、 N210%
の混合ガス中で1130℃に30秒保持後、900℃に
1分間保持し急冷し、酸洗しかかる後約90%冷間圧延
して0.225 mとした。得られた冷延板を公知の方
法で脱炭焼鈍し、焼付分離剤を塗布し仕上焼鈍した後張
力コーティングを施して一方向性電磁鋼板を得た。製品
の磁気特性を第2図に示す、第2図に示すようにNb>
0.06%となると磁性が劣化することがわかる。第1
図、第2図の結果よりNb量は0.002〜0.06%
とすべきことがわかる。As shown in FIG. 1, it can be seen that the edge cracking is reduced when the Nb content is 0.002%. For hot-rolled sheets finished with a 6-pass reduction of 2.3 mm, N290% and N210% will continue to be used.
After being held at 1130°C for 30 seconds in a mixed gas of The obtained cold-rolled sheet was decarburized and annealed by a known method, coated with a seizing separator, finished annealed, and then tension-coated to obtain a unidirectional electrical steel sheet. The magnetic properties of the product are shown in Figure 2.As shown in Figure 2, Nb>
It can be seen that when the content is 0.06%, the magnetism deteriorates. 1st
From the results shown in Figure and Figure 2, the amount of Nb is 0.002 to 0.06%.
I understand what I should do.
Nbが耳割れ減少に有効であるという新知見の理由に関
しては必ずしも明らかではないが、本発明者らは以下の
如く推察している。熱間圧延での耳割れ発生のメカニズ
ムを考える上で重要な点の1つにα−γ変態がある。S
、Stの固溶度はα相がT相より大きいため、熱間圧延
中のα−γ変態、γ−α変態はS、Stの偏析を生ずる
大きな原因の1つと考えられる。S、Stの偏析は変態
を経た相あるいはその近傍に生じ、粒界はどその傾向が
顕著と思われる。粒界あるいは粒界近傍のS、Stの偏
析は内部割れの原因となると思われる。またα相とγ相
で変形態が異なることも応力の不均一性、メタルフロー
の不均一性を生む原因となると考えられる。一方巾方向
端部(耳)は圧延方向に張力がかけられた状態となって
いるため、内部割れや不均一なメタルフローが生じた場
合割れに連がる可能性が高くなっている。結局熱間圧延
前に1350〜1400℃に保持されα単相であった鋼
に熱間圧延中にα−γ変態が部分的に生じ、α。Although the reason for the new finding that Nb is effective in reducing ear cracking is not necessarily clear, the present inventors speculate as follows. One of the important points when considering the mechanism of edge cracking during hot rolling is α-γ transformation. S
Since the solid solubility of , St is larger in the α phase than in the T phase, α-γ transformation and γ-α transformation during hot rolling are considered to be one of the major causes of segregation of S and St. Segregation of S and St occurs in or near the phase that has undergone transformation, and it is thought that this tendency is noticeable at grain boundaries. Segregation of S and St at or near grain boundaries is thought to cause internal cracks. It is also thought that the difference in deformation between the α phase and the γ phase is a cause of stress non-uniformity and metal flow non-uniformity. On the other hand, since tension is applied to the edges in the width direction (edges) in the rolling direction, there is a high possibility that cracks will occur if internal cracks or uneven metal flow occur. As a result, the α-γ transformation partially occurs during hot rolling in the steel that was maintained at 1350 to 1400°C and had an α single phase before hot rolling, resulting in α.
γの2相状態となりつつ加工を加えられること自体端部
に割れを生じる原因となると考えられる。It is thought that the fact that processing is applied while in the γ two-phase state itself causes cracks to occur at the ends.
他方Nbはα安定化元素であり、α−γ変態に影響を与
え、αを安定化させることを通じて熱間圧延中のメタル
フローを均一化し、その結果として熱間圧延での耳割れ
減少に有効に働いたと推察される。第3図に本実験6パ
ス熱延材の耳割れとNb量の関係を示す。第3図かられ
かるようにNb添加は耳割れ低減に非常に有効である。On the other hand, Nb is an α-stabilizing element, which affects the α-γ transformation and stabilizes α, thereby making the metal flow uniform during hot rolling, and as a result effective in reducing edge cracking during hot rolling. It is assumed that he worked in Figure 3 shows the relationship between edge cracking and Nb content in the 6-pass hot-rolled material in this experiment. As can be seen from FIG. 3, Nb addition is very effective in reducing edge cracking.
またNbは窒化物生成元素であり、第2図に示すように
Nb>0.06%となるとNbNの析出がr+lN析出
に悪影響を与えることによって磁性が劣化すると考えら
れる。Furthermore, Nb is a nitride-forming element, and as shown in FIG. 2, when Nb>0.06%, it is thought that the precipitation of NbN has an adverse effect on the precipitation of r+lN, resulting in deterioration of magnetism.
以下実施例について述べる。Examples will be described below.
〔実施例1〕
真空溶解によって Si =3.26%、 C=0.0
69%、酸可溶性A l = 0.026%、 N=0
.0080%。[Example 1] Si = 3.26%, C = 0.0 by vacuum melting
69%, acid soluble A l = 0.026%, N = 0
.. 0080%.
Mn =0.076%、 S=0.028%、 Sn
=0.12%。Mn = 0.076%, S = 0.028%, Sn
=0.12%.
Cu =0.077%、 Nb =0.019.0.0
40.0.090又は< 0.001%を含有し、残余
Feなるインゴットを作成し、分塊圧延によって素材を
40鶴厚に調整した後、加熱炉に入れ、素材を1350
℃に90分保持した後空冷し、1200℃から6バスの
熱間圧延を行い2.3fl厚の熱延板を得た。熱間圧延
の仕上げ温度は1000〜1100℃であった。熱延板
をひき続き次の3つの条件で工程処理し一方向性電磁鋼
板を得た。Cu = 0.077%, Nb = 0.019.0.0
An ingot containing 40.0.090 or <0.001% with residual Fe is created, and the material is adjusted to a thickness of 40 mm by blooming rolling, then placed in a heating furnace and the material is heated to 1350 mm.
After being held at 1200° C. for 90 minutes, it was air cooled and hot rolled for 6 baths from 1200° C. to obtain a hot rolled sheet with a thickness of 2.3 fl. The finishing temperature of hot rolling was 1000-1100°C. The hot rolled sheet was successively processed under the following three conditions to obtain a unidirectional electrical steel sheet.
(1) 熱延板焼鈍(1130℃に30秒像保持後0
0℃に1分保持し急冷)−強圧下冷間圧延(0,285
am仕上げ)−脱炭焼鈍(850℃に150秒保持)−
焼鈍分離剤塗布−最終仕上焼鈍(1200℃に20時間
保持)−張力コーティング
(2)強圧下冷間圧延の仕上げ板厚が0.225m■で
あり、他の条件は(11に同じ
(3)熱延板焼鈍(1000℃に3分間保持後急冷)−
冷間圧延(1,25mn仕上げ)−中間焼鈍(1130
℃に30秒保持後850℃に1分間保持し急冷)−強圧
下冷間圧延(0,175w5仕上げ)−ひき続く処理の
条件は(11に同じ
熱延板での耳割れと成品の磁気特性の結果を第1第
1 表
〔実施例2〕
真空溶解によって Si =3.50%、 C=0.
078%、酸可溶性A tt = 0.027%、 N
=0.0083%。(1) Hot-rolled plate annealing (0 after holding the image at 1130℃ for 30 seconds)
Rapid cooling by holding at 0℃ for 1 minute) - Cold rolling under strong reduction (0,285
am finish) - Decarburization annealing (held at 850°C for 150 seconds) -
Annealing separator application - Final finish annealing (held at 1200°C for 20 hours) - Tension coating (2) Finish plate thickness of strong reduction cold rolling is 0.225 m, other conditions are (same as 11 (3) Hot-rolled plate annealing (quenched after holding at 1000℃ for 3 minutes) -
Cold rolling (1,25mm finish) - Intermediate annealing (1130
℃ for 30 seconds, then held at 850℃ for 1 minute and quenched) - Strong reduction cold rolling (0,175w5 finish) - Conditions for subsequent processing are (see 11. Edge cracking in the same hot rolled sheet and magnetic properties of the finished product) The first result is
1 Table [Example 2] By vacuum melting Si = 3.50%, C = 0.
078%, acid soluble Att = 0.027%, N
=0.0083%.
Mn −0,080%、 S = 0.026%、
Sn =0.10%。Mn −0,080%, S = 0.026%,
Sn=0.10%.
Cr = O,050%、 Cu = 0.070%、
Nb =Q、OIQ。Cr = O, 050%, Cu = 0.070%,
Nb = Q, OIQ.
0.080又は<0.001%を含有し、残余Feなる
インゴットを作成し、分塊圧練によって素材を401謹
厚に調整した後、加熱炉に入れ素材を1380℃に60
分保持した後空冷し1200℃から6パ不の熱間圧延を
行い、2.3削厚の熱延板を得た。熱間圧延の仕上げ温
度は1050〜1100℃であった。熱延板をひき続き
次の2つの条件で処理し一方向性電磁鋼板を得た。An ingot containing 0.080 or <0.001% with residual Fe is prepared, and after adjusting the material to a thickness of 401 by blooming, the material is placed in a heating furnace and heated to 1380°C for 60 minutes.
After being held for 20 minutes, it was cooled in air and hot-rolled from 1200°C for 6 rolls to obtain a hot-rolled plate with a thickness of 2.3. The finishing temperature of hot rolling was 1050-1100°C. The hot rolled sheet was successively treated under the following two conditions to obtain a unidirectional electrical steel sheet.
(1) 熱延板焼鈍(1125℃に30秒保持後85
0℃に1分間保持し急冷)−強圧下冷間圧延(0,22
5m仕上げ)−脱炭焼鈍(850℃に150秒保持)→
焼鈍分離剤塗布−最終仕上焼鈍(1200℃に20時間
保持)→張カコーティング
(2)冷間圧延(1,55fl仕上げ)→中間焼鈍(1
125℃に30秒保持後1分間保持し急冷)−強圧下冷
間圧延(0,225m仕上げ)→ひき続く処理条件は(
11に同じ
熱延板での耳割れと成品の磁気特性の結果を第2表に示
す。(1) Hot-rolled plate annealing (85℃ after holding at 1125℃ for 30 seconds
Rapid cooling by holding at 0℃ for 1 minute) - cold rolling under strong reduction (0,22
5m finishing) - Decarburization annealing (held at 850℃ for 150 seconds) →
Annealing separator application - final finish annealing (held at 1200℃ for 20 hours) → tension coating (2) cold rolling (1,55fl finish) → intermediate annealing (1
Hold at 125℃ for 30 seconds, then hold for 1 minute and quench) - Strong reduction cold rolling (0,225m finishing) → Subsequent processing conditions are (
Table 2 shows the results of edge cracking in the same hot rolled sheet and magnetic properties of the finished product.
第 2 表
〔発明の効果〕
以上のとおり、本発明によれば、一方向性珪素鋼中に少
量のNbを添加することで、優れた磁気特性を保ったま
ま熱間圧延での耳割れによる歩留り低下を防ぐことがで
きるので、その工業的効果は大きい。Table 2 [Effects of the Invention] As described above, according to the present invention, by adding a small amount of Nb to unidirectional silicon steel, it is possible to prevent edge cracking caused by hot rolling while maintaining excellent magnetic properties. Since it is possible to prevent a decrease in yield, it has a great industrial effect.
第1図は、Nb量と熱間圧延での耳割れの関係図、第2
図は、Nb量と磁気特性との関係図、第3図は、Nb量
と熱間圧延での耳割れとの関係を示す金属mm写真であ
る。Figure 1 is a diagram showing the relationship between Nb content and edge cracking during hot rolling.
The figure is a diagram showing the relationship between the amount of Nb and magnetic properties, and FIG. 3 is a metal mm photograph showing the relationship between the amount of Nb and edge cracking during hot rolling.
Claims (1)
.10%、Sn:0.04〜0.4%、Nb:0.00
2〜0.06%、酸可溶性Al:0.015〜0.04
0%、N:0.0040〜0.0100%、Mn:0.
030〜0.150%、S:0.015〜0.040%
を含有する珪素鋼素材スラブを熱間圧延し、圧延率80
%超の強圧下最終冷間圧延を含む1回以上の冷間圧延と
その間に行なう中間焼鈍と最終冷間圧延後の脱炭焼鈍、
最終仕上焼鈍を施すことを特徴とする熱間圧延での耳割
れが少なく磁気特性の優れた一方向性電磁鋼板の製造方
法。Si: 2.5-4.0%, C: 0.04-0 by weight
.. 10%, Sn: 0.04-0.4%, Nb: 0.00
2-0.06%, acid-soluble Al: 0.015-0.04
0%, N: 0.0040-0.0100%, Mn: 0.
030-0.150%, S: 0.015-0.040%
A silicon steel material slab containing
% or more of cold rolling including final cold rolling with heavy reduction, intermediate annealing performed in between, and decarburization annealing after final cold rolling;
A method for producing a unidirectional electrical steel sheet with excellent magnetic properties and less edge cracking during hot rolling, characterized by subjecting it to final annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60234633A JPH0663031B2 (en) | 1985-10-22 | 1985-10-22 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties with little edge cracking in hot rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60234633A JPH0663031B2 (en) | 1985-10-22 | 1985-10-22 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties with little edge cracking in hot rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6296615A true JPS6296615A (en) | 1987-05-06 |
JPH0663031B2 JPH0663031B2 (en) | 1994-08-17 |
Family
ID=16974091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60234633A Expired - Lifetime JPH0663031B2 (en) | 1985-10-22 | 1985-10-22 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties with little edge cracking in hot rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0663031B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004044252A1 (en) * | 2002-11-11 | 2004-05-27 | Posco | Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property |
CN100430493C (en) * | 2002-11-11 | 2008-11-05 | Posco公司 | Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property |
JP2011111653A (en) * | 2009-11-26 | 2011-06-09 | Jfe Steel Corp | Method for producing grain-oriented magnetic steel sheet |
-
1985
- 1985-10-22 JP JP60234633A patent/JPH0663031B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004044252A1 (en) * | 2002-11-11 | 2004-05-27 | Posco | Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property |
US7282102B2 (en) | 2002-11-11 | 2007-10-16 | Posco | Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property |
CN100430493C (en) * | 2002-11-11 | 2008-11-05 | Posco公司 | Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property |
JP2011111653A (en) * | 2009-11-26 | 2011-06-09 | Jfe Steel Corp | Method for producing grain-oriented magnetic steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JPH0663031B2 (en) | 1994-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2983128B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPS6345444B2 (en) | ||
JPS6250529B2 (en) | ||
JP3359449B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JPH0567683B2 (en) | ||
JPH03294427A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP3392664B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3323052B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP3392579B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3065853B2 (en) | Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties | |
KR950002895B1 (en) | Ultrahigh-silicon directional electrical steel sheet and production thereof | |
JPS6296615A (en) | Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling | |
JP2983129B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3498978B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP2521585B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JPH06256847A (en) | Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic | |
JP3311021B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss | |
JP3474594B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness | |
JP2562254B2 (en) | Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet | |
JP3392699B2 (en) | Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics | |
JPH07305116A (en) | Production of high magnetic flux density grain-oriented silicon steel sheet | |
JP3061515B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP2948454B2 (en) | Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties | |
JPH04362138A (en) | Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property | |
JPH0798976B2 (en) | Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss |