JPH06256847A - Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic - Google Patents

Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic

Info

Publication number
JPH06256847A
JPH06256847A JP4303793A JP4303793A JPH06256847A JP H06256847 A JPH06256847 A JP H06256847A JP 4303793 A JP4303793 A JP 4303793A JP 4303793 A JP4303793 A JP 4303793A JP H06256847 A JPH06256847 A JP H06256847A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
electrical steel
hot
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4303793A
Other languages
Japanese (ja)
Inventor
Katsuro Kuroki
克郎 黒木
Yasunari Yoshitomi
康成 吉冨
Hiroaki Masui
浩昭 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4303793A priority Critical patent/JPH06256847A/en
Publication of JPH06256847A publication Critical patent/JPH06256847A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably manufacture a grain-oriented electrical steel sheet having low core loss and high magnetic flux density. CONSTITUTION:An electrical steel slab containing 2.5-5.0% Si, C, Mn, Al, N and <=0.15% S and/or Se, 0.015-0.15% P, 0.03-0.30% Cu and, if necessary, added with Sn and Cr and the balance Fe with inevitable impurities is hot-rolled at <=1280 deg.C and, if necessary, the annealing is executed to the hot-rolled sheet and the finish rolled ratio is made to be >=80% and decarbonize-annealing, nitriding-annealing and finish-annealing are executed. By this method, in the slab heating temp. same as that of the plain carbon steel, the steel sheet with low core loss and high magnetic flux density can stably be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電機機器の鉄心に用いら
れる一方向性電磁鋼板の製造方法に関するもので、これ
により鉄損の低い高磁束密度一方向性電磁鋼板の製造を
可能にするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet used for an iron core of an electric machine, which enables production of a high magnetic flux density grain-oriented electrical steel sheet with low iron loss. Is.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は鋼板面が{110}
面で、圧延方向が〈100〉軸を有するいわゆるゴス方
位(ミラー指数で{110}〈001〉方位を表す)を
持つ結晶粒から構成されており、軟磁性材料として変圧
器及び発電機用の鉄心に使用される。この鋼板は磁気特
性として磁化特性と鉄損特性が良好でなければならな
い。磁化特性の良否はかけられた一定の磁場中で鉄心内
に誘起される磁束密度の高低で決まり、磁束密度の高い
製品では鉄心を小型化できる。磁束密度の高さは鋼板結
晶粒の方位を{110}〈001〉に高度に揃えること
によって達成できる。
2. Description of the Related Art A unidirectional electrical steel sheet has a {110} steel plate surface.
In the plane, the rolling direction is composed of crystal grains having a so-called Goss orientation (representing {110} <001> orientation in Miller index) having a <100> axis, and is used as a soft magnetic material for transformers and generators. Used for iron core. This steel sheet must have good magnetic properties and iron loss properties. The quality of the magnetization characteristics is determined by the level of the magnetic flux density induced in the iron core in the applied constant magnetic field, and the iron core can be downsized in products with high magnetic flux density. The high magnetic flux density can be achieved by aligning the orientation of the steel plate crystal grains to {110} <001>.

【0003】鉄損は鉄心に所定の交流磁場を与えた場合
に熱エネルギーとして消費される電力損失であり、その
良否に対して磁束密度、板厚、不純物量、比抵抗、結晶
粒の大きさ等が影響する。磁束密度の高い鋼板は電機機
器の鉄心を小さくでき、又鉄損も小さくなるので望まし
く、当該技術分野ではできる限り磁束密度の高い製品を
安いコストで製造する方法の開発が課題である。
Iron loss is a power loss consumed as heat energy when a predetermined AC magnetic field is applied to the iron core, and magnetic flux density, plate thickness, amount of impurities, specific resistance, size of crystal grains are determined according to the quality. And so on. A steel sheet having a high magnetic flux density is desirable because it can reduce the iron core of an electric device and also reduce the iron loss. In the technical field, development of a method for manufacturing a product having a high magnetic flux density at a low cost is an issue.

【0004】ところで、現在、工業生産されている代表
的な一方向性電磁鋼板の製造方法として3種類あるが、
各々については長所、短所がある。第一の技術はM.
F.Littmannによる特公昭30−3651号公
報に示されたMnSを用いた2回冷延工程であり、得ら
れる二次再結晶粒は安定して発達するが、高い磁束密度
が得られない。第二の技術は田口等による特公昭40−
15644号公報に示されたAlN+MnSを用いた最
終冷間圧延率を80%以上の強圧下率とするプロセスで
あり、高い磁束密度は得られるが、工業生産に際しては
製造条件の厳密なコントロールが要求される。第三の技
術は今中等による特公昭51−13469号公報に示さ
れたMnS(及び/又はMnSe)+Sbを含有する珪
素鋼を2回冷延工程によって製造するプロセスであり、
比較的に高い磁束密度は得られている。
By the way, there are three types of typical unidirectional electrical steel sheets that are currently industrially manufactured.
Each has its advantages and disadvantages. The first technology is M.
F. It is a two-time cold rolling process using MnS disclosed in Japanese Patent Publication No. Sho 30-3651 by Littmann, and the obtained secondary recrystallized grains grow stably, but a high magnetic flux density cannot be obtained. The second technique is Taguchi et al.
This is a process of making the final cold rolling rate using AlN + MnS disclosed in 15644 gazette a strong reduction rate of 80% or more, and although a high magnetic flux density can be obtained, strict control of manufacturing conditions is required in industrial production. To be done. The third technique is a process for producing silicon steel containing MnS (and / or MnSe) + Sb, which is disclosed in Japanese Patent Publication No. 51-13469, by two cold-rolling steps.
A relatively high magnetic flux density is obtained.

【0005】上記3種類の技術においては共通して次の
ような問題がある。即ち、上記技術はいずれもが析出物
を微細、均一に制御する技術として熱延に先立つスラブ
加熱温度を1250℃超、実際には1300℃以上と極
めて高い温度にすることによって粗大に析出している析
出物を一旦固溶させ、その後の熱延中、あるいは熱処理
中に析出させている。スラブ加熱温度を上げることはス
ラブ加熱時の使用エネルギーの増大、設備損傷率の増大
等の他材質的にはスラブの結晶組織に起因する線状の二
次再結晶不良が発生し、特に薄手材、高Si材において
顕著になってくる。
The above three types of technology have the following problems in common. That is, in all of the above techniques, as a technique for finely and uniformly controlling the precipitates, the slab heating temperature prior to hot rolling exceeds 1250 ° C., and is actually set to an extremely high temperature of 1300 ° C. or higher to cause coarse precipitation. These precipitates are once solid-dissolved and then precipitated during hot rolling or heat treatment. Increasing the slab heating temperature increases the energy used during slab heating, increases the equipment damage rate, etc., and causes linear secondary recrystallization defects due to the crystal structure of the slab in other materials. , It becomes remarkable in the high Si material.

【0006】このような高温スラブ加熱法に対し特開昭
62−40315号公報或いは特願平1−91956号
に開示されている技術、即ち二次再結晶に必要なインヒ
ビターは、脱炭焼鈍(一次再結晶)完了以降から仕上焼
鈍における二次再結晶発現以前までに造り込むものがあ
る。その手段としては、鋼中にNを侵入させることによ
って、インヒビターとして機能する(Al,Si)Nを
形成させる。鋼中にNを侵入させる手段としては、仕上
焼鈍昇温過程での雰囲気ガスからのNの侵入を利用する
か、脱炭焼鈍後段領域あるいは脱炭焼鈍完了後のストリ
ップを連続ラインでNH3 等の窒化源となる雰囲気ガス
を用いて行う。
For such a high-temperature slab heating method, the technique disclosed in Japanese Patent Application Laid-Open No. 62-40315 or Japanese Patent Application No. 1-91956, that is, the inhibitor necessary for secondary recrystallization is a decarburizing annealing ( Some are built after the completion of primary recrystallization) and before the appearance of secondary recrystallization in finish annealing. As a means thereof, N is allowed to penetrate into the steel to form (Al, Si) N which functions as an inhibitor. As a means for infiltrating N into the steel, the infiltration of N from the atmosphere gas in the temperature rising process of finish annealing is used, or the strip after decarburization annealing or the strip after decarburization annealing is completed in a continuous line with NH 3 etc. It is carried out by using an atmospheric gas that serves as a nitriding source.

【0007】この製造法においては脱炭焼鈍後の一次再
結晶粒の粒径及びその集合組織が二次再結晶粒の発達並
びに磁気特性を大きく左右する。特に一次再結晶集合組
織は良好なGoss組織を発達させるうえで重要な因子
である。一方、仕上焼鈍昇温過程で形成されるフォルス
テライト被膜もその形成状態により二次再結晶集合組織
の集積度を左右する。これは二次再結晶開始温度域のイ
ンヒビターの弱体化(消失時間)に影響しているものと
考えられる。
In this manufacturing method, the grain size and texture of the primary recrystallized grains after decarburization annealing greatly influence the development of secondary recrystallized grains and magnetic properties. Particularly, the primary recrystallization texture is an important factor in developing a good Goss texture. On the other hand, the degree of secondary recrystallization texture also depends on the formation state of the forsterite coating formed during the finish annealing temperature rise process. It is considered that this influences the weakening (disappearing time) of the inhibitor in the secondary recrystallization onset temperature range.

【0008】[0008]

【発明が解決しようとする課題】本発明はこれらの二次
再結晶に影響する因子の適正化及び変動を小さくし、高
磁束密度一方向性電磁鋼板を安定して製造可能ならしめ
ることを目的とする。
The object of the present invention is to optimize and change the factors that influence these secondary recrystallizations and to make it possible to stably produce a high magnetic flux density grain-oriented electrical steel sheet. And

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろはC:0.020〜0.075%、Si:2.5〜
5.0%、Mn:0.05〜0.45%、S或いはSe
を単独又は複合で≦0.015%、酸可溶性Al:0.
010〜0.050%、N:0.0035〜0.012
%、Cu:0.03〜0.30%、P:0.015〜
0.15%、必要に応じて、Sn:0.02〜0.15
%、Cr:0.03〜0.20%を添加し、残部Fe及
び不可避的不純物からなる電磁鋼スラブを、1280℃
以下の温度に加熱した後熱延し必要に応じて熱延板焼鈍
をし、1回又は中間焼鈍を介挿する2回以上の圧延でそ
の最終圧延率を80%以上とし、次いで脱炭焼鈍、仕上
焼鈍をする一方向性電磁鋼板の製造において、脱炭焼鈍
以降、仕上焼鈍の昇温過程の二次再結晶開始温度域にお
いて窒化処理を行うことを特徴とする磁気特性の優れた
一方向性電磁鋼板の製造方法にある。
The gist of the present invention is as follows: C: 0.020 to 0.075%, Si: 2.5 to
5.0%, Mn: 0.05 to 0.45%, S or Se
≦ 0.015%, alone or in combination, acid-soluble Al: 0.
010 to 0.050%, N: 0.0035 to 0.012
%, Cu: 0.03 to 0.30%, P: 0.015
0.15%, Sn: 0.02-0.15 as required
%, Cr: 0.03 to 0.20%, and the electrical steel slab consisting of the balance Fe and unavoidable impurities is heated to 1280 ° C.
After being heated to the following temperatures, hot rolling is performed, and hot-rolled sheet annealing is performed if necessary, and the final reduction rate is set to 80% or more by rolling once or twice or more with intermediate annealing interposed, and then decarburizing annealing. In the production of unidirectional electrical steel sheet for finish annealing, after decarburization annealing, nitriding treatment is performed in the secondary recrystallization starting temperature range of the temperature rising process of finish annealing. It is in the method of manufacturing a magnetic electrical steel sheet.

【0010】以下本発明を詳細に説明する。重量比で
C:0.054%、Si:3.25%、Mn:0.10
%、S:0.007%、酸可溶性Al:0.030%、
P:0.040%、N:0.0075%を含んだ溶鋼に
Cuを表1に示す量で添加したスラブを準備した。更に
上記基本成分にCuとSnを表2に示す量を添加したス
ラブを準備した。
The present invention will be described in detail below. Weight ratio of C: 0.054%, Si: 3.25%, Mn: 0.10.
%, S: 0.007%, acid-soluble Al: 0.030%,
A slab was prepared by adding Cu in an amount shown in Table 1 to molten steel containing P: 0.040% and N: 0.0075%. Further, a slab was prepared by adding Cu and Sn in the amounts shown in Table 2 to the above basic components.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】このようなスラブを1150℃で加熱熱延
し2.3mmの熱延板を造った。これを1120℃+90
0℃で焼鈍した後急冷却した。次いで酸洗し0.23mm
に冷延した。これを830℃×90秒の脱炭焼鈍を湿水
素、窒素雰囲気中で行った。この後窒化焼鈍を750℃
×30秒で水素、窒素、アンモニア混合ガス中で行い、
鋼板の窒素量をほぼ200ppm に調整した。次いでMg
O,TiO2 を主成分とする焼鈍分離剤を塗布し120
0℃×20時間の仕上焼鈍を行った。
Such a slab was heated and hot-rolled at 1150 ° C. to make a hot-rolled sheet of 2.3 mm. This is 1120 ℃ +90
It was annealed at 0 ° C. and then rapidly cooled. Then pickled 0.23 mm
Cold rolled. This was decarburized and annealed at 830 ° C. for 90 seconds in a wet hydrogen and nitrogen atmosphere. After this, nitriding annealing is performed at 750 ° C.
× 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia,
The nitrogen content of the steel sheet was adjusted to approximately 200 ppm. Then Mg
Applying an annealing separator containing O and TiO 2 as main components, 120
Finish annealing was performed at 0 ° C. for 20 hours.

【0014】この後無水クロム酸、燐酸アルミニウムを
主成分とする張力コーティングを施した。表1に示した
試料を用いた結果を図1に示す。図から判るようにCu
の添加効果は0.03%以上において現れる。Cuを添
加すると脱炭焼鈍時の酸化が均一に行われ焼鈍後におい
て酸化層の厚み変動が小さくなる。このため仕上焼鈍後
のフォルステライト被膜も均一な厚みのものが形成され
る。これを図2に示す。
After that, tension coating containing chromic anhydride and aluminum phosphate as main components was applied. The results obtained using the samples shown in Table 1 are shown in FIG. As you can see from the figure, Cu
The effect of addition of 0.03% appears at 0.03% or more. When Cu is added, the oxidation during decarburization annealing is uniformly performed, and the thickness variation of the oxide layer after annealing is reduced. For this reason, the forsterite film after the finish annealing is also formed to have a uniform thickness. This is shown in FIG.

【0015】このように一定量のCu添加は良好なフォ
ルステライト被膜形成に役立っていると考えられる。一
般に集積度の高いGoss組織を得るには二次再結晶開
始温度域におけるインヒビターは徐々に弱まることが望
ましいとされている。本発明における被膜形成時期は、
二次再結晶開始時期より早いため、良好な被膜が形成さ
れるとインヒビターの弱まる速度が遅くなり、(11
0)〔001〕方位の結晶粒の優先成長を有利にしてい
るものと考えられる。
Thus, it is considered that the addition of a certain amount of Cu contributes to the formation of a good forsterite film. In general, in order to obtain a highly integrated Goss structure, it is desirable that the inhibitor in the secondary recrystallization initiation temperature region gradually weakens. The coating formation time in the present invention is
Since it is earlier than the initiation time of secondary recrystallization, the rate at which the inhibitor weakens becomes slower when a good film is formed.
0) It is considered that the preferential growth of crystal grains in the [001] orientation is favored.

【0016】なお、Cuの量が0.30%を超すと熱延
板の表面性状が劣り又酸洗性も悪くなる。表2に示した
試料を用いて処理した結果を図3に示す。Snを添加す
ると鉄損特性が大幅に改善されるが、Cuとの複合添加
によりさらなる低鉄損化が可能となる。Snの効果は一
次再結晶集合組織の改善(Goss核の付加)ひいては
二次再結晶粒の小粒化を達成することによるものが大き
いと考えられる。
If the Cu content exceeds 0.30%, the surface properties of the hot-rolled sheet will be poor and the pickling property will be poor. The results of treatment with the samples shown in Table 2 are shown in FIG. Although the iron loss characteristics are significantly improved by adding Sn, the composite addition with Cu makes it possible to further reduce the iron loss. It is considered that the effect of Sn is largely due to the improvement of the primary recrystallization texture (addition of Goss nuclei) and the reduction of secondary recrystallized grains.

【0017】本発明の限定理由は以下の通りである。C
は、その含有量が0.020%未満になると、二次再結
晶が不安定になり、二次再結晶した場合でも製品の磁束
密度がB8 で1.80Tと低いものとなる。一方、Cの
含有量が0.075%を超えて多くなり過ぎると、脱炭
焼鈍時間が長くなり、生産性を損なう。好ましくは0.
03〜0.06%がよい。Siは、その含有量が2.5
%未満になると低鉄損の製品を得難く、一方5.0%を
超えて多くなり過ぎると材料の冷延性に問題を生ずる。
The reasons for limiting the present invention are as follows. C
When the content is less than 0.020%, the secondary recrystallization becomes unstable, and even when the secondary recrystallization is performed, the magnetic flux density of the product is as low as 1.80 T at B 8 . On the other hand, if the content of C exceeds 0.075% and becomes too large, the decarburization annealing time becomes long and the productivity is impaired. Preferably 0.
03-0.06% is good. Si has a content of 2.5
If it is less than 1.0%, it is difficult to obtain a product with low iron loss, while if it exceeds 5.0%, there is a problem in cold ductility of the material.

【0018】本発明の出発材料の成分系における特徴の
一つは、Sは0.015%以下、好ましくは0.007
0%以下とする点にある。Sは周知の如くMnSを形成
し粒成長を抑制する作用をする。本発明においては二次
再結晶粒を発現させるに必要なインヒビターは脱炭焼鈍
以降で造り込むことを特徴としており、冷延以前で微細
な析出物が分散することは一次再結晶粒径を調整して高
磁束密度低鉄損を得る本発明においては好ましくない。
従ってSは0.015%以下としている。又S量を少な
くすることは熱延時の耳割れの低減にも効果が大きい。
One of the characteristics of the component system of the starting material of the present invention is that S is 0.015% or less, preferably 0.007%.
It is at a point of 0% or less. As is well known, S forms MnS and acts to suppress grain growth. In the present invention, the inhibitor required to develop the secondary recrystallized grains is characterized by being built in after decarburization annealing, and the dispersion of fine precipitates before cold rolling adjusts the primary recrystallized grain size. It is not preferable in the present invention to obtain a high magnetic flux density and a low iron loss.
Therefore, S is set to 0.015% or less. Further, reducing the amount of S has a great effect on reducing ear cracks during hot rolling.

【0019】AlはNと結合してAlNを形成するが、
本発明においては、後工程即ち一次再結晶完了後に鋼を
窒化することにより、(Al,Si)Nを形成せしめる
ことを必須としているから、フリーのAlが一定量以上
必要である。そのため、酸可溶性Alとして、0.01
0〜0.050%添加する。
Al combines with N to form AlN,
In the present invention, it is indispensable to form (Al, Si) N by nitriding steel after the post-process, that is, after completion of primary recrystallization, so that a certain amount or more of free Al is required. Therefore, as acid-soluble Al, 0.01
Add 0-0.050%.

【0020】Nは0.0035〜0.012%にする必
要がある。0.012%を超えるとブリスターと呼ばれ
る鋼板表面の脹れが発生する。又一次再結晶組織の調整
が困難になる。下限は0.0035%がよい。この値未
満になると二次再結晶粒を発達させるのが困難になる。
N must be 0.0035 to 0.012%. If it exceeds 0.012%, swelling of the steel sheet surface called blister occurs. Further, it becomes difficult to adjust the primary recrystallization structure. The lower limit is preferably 0.0035%. Below this value, it becomes difficult to develop secondary recrystallized grains.

【0021】Mnは、その含有量が少な過ぎると二次再
結晶が不安定となり、一方、多過ぎると高い磁束密度を
もつ製品を得難くなる。適正な含有量は、0.050〜
0.45%である。
If the content of Mn is too small, the secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The proper content is 0.050
It is 0.45%.

【0022】Pは磁束密度を高位安定化し又鋼の固有抵
抗を高めるため鉄損低減にも有効な元素で、添加量0.
015%以上でその効果が現れ、0.15%を超えると
鋼の脆化が大きく加工時の取扱いが困難となる。
P is an element which stabilizes the magnetic flux density at a high level and also increases the specific resistance of the steel, and is effective for reducing iron loss.
When the content is 015% or more, the effect is exhibited, and when the content is more than 0.15%, the embrittlement of the steel is large and the handling during processing becomes difficult.

【0023】Cuは0.03%未満では磁束密度向上の
効果がなく、一方0.30%を超えると熱延板の表面性
状が劣り又酸洗性も悪くなる。Crは脱炭焼鈍時の酸化
を促進する元素であるが、Snとの複合添加で仕上焼鈍
後の被膜形成が安定化する。
If Cu is less than 0.03%, there is no effect of improving the magnetic flux density, while if it exceeds 0.30%, the surface properties of the hot-rolled sheet are inferior and the pickling property is deteriorated. Cr is an element that promotes oxidation during decarburization annealing, but the combined addition of Sn stabilizes the film formation after finish annealing.

【0024】Snは脱炭焼鈍後の集合組織を改善し、ひ
いては二次再結晶粒を改善し被膜の安定化と相まって鉄
損改善に効果が大きい。Snの適量は0.02〜0.1
5%でありこれより少ないと効果が弱く、一方多いと窒
化が困難になり二次再結晶粒が発達しなくなる。好まし
くは0.03〜0.08%がよい。Crの適量は0.0
3〜0.20%がよい。好ましくは0.05〜0.15
%がよい。
Sn improves the texture after decarburization annealing and, in turn, improves the secondary recrystallized grains and, together with the stabilization of the coating, has a great effect on improving the iron loss. Suitable amount of Sn is 0.02-0.1
If it is less than 5%, the effect is weak, while if it is more than that, nitriding becomes difficult and secondary recrystallized grains do not develop. It is preferably 0.03 to 0.08%. The proper amount of Cr is 0.0
3 to 0.20% is preferable. Preferably 0.05-0.15
% Is good.

【0025】次に、本発明の製造プロセスについて説明
する。電磁鋼スラブは、転炉或いは電気炉等の溶解炉で
鋼を溶製し、必要に応じて真空脱ガス処理し、次いで連
続鋳造によって或いは造塊後分塊圧延することによって
得られる。熱延板の焼鈍は公知の方法でよいが、通常9
00〜1170℃の温度で行った後急冷却をする。なお
熱延板の焼鈍を省略しても充分商品価値あるものが製造
可能である。冷延率は高いB8 値を得るために80%以
上とする。
Next, the manufacturing process of the present invention will be described. The electromagnetic steel slab is obtained by melting steel in a melting furnace such as a converter or an electric furnace, subjecting it to vacuum degassing treatment if necessary, and then performing continuous casting or slabbing after ingot casting. A known method may be used for annealing the hot rolled sheet, but usually 9
After performing at a temperature of 00 to 1170 ° C., rapid cooling is performed. Even if the annealing of the hot-rolled sheet is omitted, a product having a sufficient commercial value can be manufactured. The cold rolling rate is 80% or more in order to obtain a high B 8 value.

【0026】脱炭焼鈍は脱炭を行う他に一次再結晶組織
の調整及び被膜形成に必要な酸化層を生成させる役割が
ある。これは通常800〜900℃の温度域で湿水素、
窒素ガス中で行う。
The decarburization annealing has a role of adjusting the primary recrystallization structure and forming an oxide layer necessary for forming a film in addition to decarburization. This is wet hydrogen in the temperature range of 800-900 ℃,
Perform in nitrogen gas.

【0027】次に窒化処理条件の限定理由について述べ
る。図4は窒素がもっとも鋼中に入りやすいH2 ガスと
NH3 ガスの混合ガスを雰囲気として、30秒間窒化処
理を行った後、仕上焼鈍して得られた製品が良好な二次
再結晶を示す領域を、窒化処理温度と鋼板の窒素量とN
3 ガス濃度の関係で示す。
Next, the reasons for limiting the nitriding conditions will be described. FIG. 4 shows that the product obtained by performing finish annealing after performing nitriding treatment for 30 seconds in an atmosphere of a mixed gas of H 2 gas and NH 3 gas in which nitrogen is most likely to enter the steel shows good secondary recrystallization. The area shown is the nitriding temperature, the nitrogen content of the steel sheet, and the N
It is shown by the relationship of the H 3 gas concentration.

【0028】この図から明らかなごとく、750〜85
0℃の温度域で窒化が良好であることがわかる。なお8
50℃を超えると一次再結晶粒が成長し二次再結晶不良
となる。又650℃未満では窒化が困難になり二次再結
晶不良となる。良好な二次再結晶粒を安定して発達させ
るには窒素量は120ppm 以上必要である。
As is clear from this figure, 750 to 85
It can be seen that nitriding is good in the temperature range of 0 ° C. 8
If the temperature exceeds 50 ° C, primary recrystallized grains grow and secondary recrystallization becomes defective. On the other hand, if the temperature is lower than 650 ° C, nitriding becomes difficult and secondary recrystallization becomes poor. In order to stably develop good secondary recrystallized grains, the nitrogen content must be 120 ppm or more.

【0029】以上の理由から窒化処理温度は650〜8
50℃とし、鋼板中の窒素量は120ppm とした。この
後MgO,TiO2 を主成分とするスラリーを塗布し1
100℃以上の温度で仕上焼鈍を公知の方法で行う。
For the above reasons, the nitriding temperature is 650 to 8
The temperature was 50 ° C. and the nitrogen content in the steel sheet was 120 ppm. Then, a slurry containing MgO and TiO 2 as a main component is applied to
Finish annealing is performed by a known method at a temperature of 100 ° C. or higher.

【0030】[0030]

【実施例】【Example】

実施例1 重量比でC:0.056%、Si:3.5%、Mn:
0.12%、S:0.008%、酸可溶性Al:0.0
28%、Cr:0.08%、P:0.055%、N:
0.0073%、Sn:0.07%を含んだ溶鋼にCu
を(a)0.01%、(b)0.05%、(c)0.1
0%、(d)0.25%、(e)0.46%を添加した
インゴットを造りこれを加熱熱延し2.3mmの熱延板に
した。
Example 1 C: 0.056% by weight ratio, Si: 3.5%, Mn:
0.12%, S: 0.008%, acid-soluble Al: 0.0
28%, Cr: 0.08%, P: 0.055%, N:
Cu in molten steel containing 0.0073% and Sn: 0.07%
(A) 0.01%, (b) 0.05%, (c) 0.1
An ingot containing 0%, (d) 0.25%, and (e) 0.46% was prepared and hot-rolled into a hot rolled 2.3 mm plate.

【0031】次いで1200℃+900℃で焼鈍した後
急冷却した。次いで酸洗し0.30mmに冷延した。これ
を835℃×150秒の脱炭焼鈍を湿水素、窒素雰囲気
中で行った。この後750℃×30秒の窒化処理を水
素、窒素、アンモニアの混合ガス中で行い鋼板の窒素量
をほぼ180ppm に調整した。次いでMgO,TiO2
を主成分とする焼鈍分離剤を塗布し1200℃×20時
間の仕上焼鈍を行った。この磁気特性を表3に示す。
Then, after annealing at 1200 ° C. + 900 ° C., it was rapidly cooled. Then, it was pickled and cold rolled to 0.30 mm. This was subjected to decarburization annealing at 835 ° C for 150 seconds in a wet hydrogen and nitrogen atmosphere. After that, nitriding treatment was performed at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia to adjust the nitrogen content of the steel sheet to about 180 ppm. Then MgO, TiO 2
Was applied as a main component, and finish annealing was performed at 1200 ° C. for 20 hours. The magnetic properties are shown in Table 3.

【0032】[0032]

【表3】 [Table 3]

【0033】本発明のCu添加範囲において非常に優れ
た磁気特性が得られた。
Very excellent magnetic properties were obtained in the Cu addition range of the present invention.

【0034】実施例2 重量比でC:0.053%、Si:3.4%、Mn:
0.10%、S:0.010%、酸可溶性Al:0.0
32%、P:0.040%、N:0.0078%、C
r:0.12%、Sn:0.05%を含んだ溶鋼にCu
を(a)0.01%、(b)0.07%、(c)0.1
2%を添加したインゴットを造りこれを加熱熱延し1.
6mmの熱延板にした。次いで1200℃+900℃で焼
鈍した後急冷却した。
Example 2 C: 0.053%, Si: 3.4% and Mn: by weight.
0.10%, S: 0.010%, acid-soluble Al: 0.0
32%, P: 0.040%, N: 0.0078%, C
Cu in molten steel containing r: 0.12% and Sn: 0.05%
(A) 0.01%, (b) 0.07%, (c) 0.1
1. Make an ingot with 2% added and heat-roll it.
It was made into a 6 mm hot rolled sheet. Then, it was annealed at 1200 ° C. + 900 ° C. and then rapidly cooled.

【0035】次いで酸洗し0.17mmに冷延した。これ
を835℃×70秒の脱炭焼鈍を湿水素、窒素雰囲気中
で行った。この後750℃×30秒の窒化処理を水素、
窒素、アンモニアの混合ガス中で行い鋼板の窒素量をほ
ぼ200ppm に調整した。次いでMgO,TiO2 を主
成分とする焼鈍分離剤を塗布し1200℃×20時間の
仕上焼鈍を行った。この後、燐酸−無水クロム酸を主成
分とする張力コーティングを施した。この磁気特性を表
4に示す。
Then, it was pickled and cold-rolled to 0.17 mm. This was subjected to decarburization annealing at 835 ° C. for 70 seconds in a wet hydrogen and nitrogen atmosphere. After this, nitriding treatment at 750 ° C. for 30 seconds is performed with hydrogen,
It was performed in a mixed gas of nitrogen and ammonia, and the nitrogen content of the steel sheet was adjusted to about 200 ppm. Then, an annealing separator containing MgO and TiO 2 as a main component was applied and finish annealing was performed at 1200 ° C. for 20 hours. After that, tension coating containing phosphoric acid-chromic anhydride as a main component was applied. The magnetic properties are shown in Table 4.

【0036】[0036]

【表4】 [Table 4]

【0037】本発明のCu添加範囲において非常に優れ
た磁気特性が得られた。
Very good magnetic properties were obtained in the Cu addition range of the present invention.

【0038】実施例3 重量比でC:0.040%、Si:3.0%、Mn:
0.10%、S:0.007%、酸可溶性Al:0.0
34%、P:0.035%、N:0.0078%、C
r:0.12%、Sn:0.05%を含んだ溶鋼にCu
を(a)0.01%、(b)0.10%を添加したイン
ゴットを造りこれを加熱熱延し2.8mmの熱延板にし
た。これを酸洗し0.34mmに冷延した。
Example 3 C: 0.040% by weight, Si: 3.0%, Mn:
0.10%, S: 0.007%, acid-soluble Al: 0.0
34%, P: 0.035%, N: 0.0078%, C
Cu in molten steel containing r: 0.12% and Sn: 0.05%
(A) 0.01% and (b) 0.10% were added to prepare an ingot, which was hot rolled to form a 2.8 mm hot rolled sheet. This was pickled and cold rolled to 0.34 mm.

【0039】次いで840℃で脱炭焼鈍を湿水素、窒素
雰囲気中で行った。この後750℃の窒化処理を水素、
窒素、アンモニアの混合ガス中で行い鋼板の窒素量をほ
ぼ200ppm に調整した。次いでMgO,TiO2 を主
成分とする焼鈍分離剤を塗布し1200℃×20時間の
仕上焼鈍を行った。
Then, decarburization annealing was performed at 840 ° C. in a wet hydrogen and nitrogen atmosphere. After this, nitriding treatment at 750 ° C. is performed with hydrogen,
It was performed in a mixed gas of nitrogen and ammonia, and the nitrogen content of the steel sheet was adjusted to about 200 ppm. Then, an annealing separator containing MgO and TiO 2 as a main component was applied and finish annealing was performed at 1200 ° C. for 20 hours.

【0040】[0040]

【表5】 [Table 5]

【0041】熱延板焼鈍を省略してもCuを添加すると
優れた磁気特性が得られた。
Even if the hot-rolled sheet annealing was omitted, excellent magnetic properties were obtained when Cu was added.

【0042】[0042]

【発明の効果】本発明により、二次再結晶が安定し、普
通鋼並のスラブ加熱温度で低鉄損高磁束密度の一方向性
電磁鋼板を安定して製造することが可能となる。
Industrial Applicability According to the present invention, secondary recrystallization is stable, and it becomes possible to stably manufacture a grain-oriented electrical steel sheet with low iron loss and high magnetic flux density at a slab heating temperature similar to that of ordinary steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cu添加量と磁気特性(磁束密度)の関係を表
す図表である。
FIG. 1 is a chart showing a relationship between a Cu addition amount and a magnetic characteristic (magnetic flux density).

【図2】Cu添加材とCu無添加材の仕上焼鈍後の被膜
の断面写真の模式図である。
FIG. 2 is a schematic diagram of a cross-sectional photograph of a coating film after finish annealing of a Cu-added material and a Cu-free material.

【図3】Cu,Sn添加量と磁気特性(磁束密度、鉄
損)の関係を表す図表である。
FIG. 3 is a chart showing a relationship between Cu and Sn addition amounts and magnetic characteristics (magnetic flux density, iron loss).

【図4】窒化条件(温度、時間)と窒化後の〔N〕量の
関係を示す図表である。
FIG. 4 is a table showing the relationship between nitriding conditions (temperature, time) and [N] amount after nitriding.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.020〜0.075%、 Si:2.5〜5.0%、 Mn:0.05〜0.45%、 S或いはSeを単独又は複合で≦0.015%、 酸可溶性Al:0.010〜0.050%、 N :0.0035〜0.012%、 Cu:0.03〜0.30%、 P :0.015〜0.15% 残部Fe及び不可避的不純物からなる電磁鋼スラブを、
1280℃以下の温度に加熱した後熱延し熱延板焼鈍を
し、1回又は中間焼鈍を介挿する2回以上の圧延でその
最終圧延率を80%以上とし、脱炭焼鈍を行い、脱炭焼
鈍以降、仕上焼鈍の昇温過程の二次再結晶開始温度域に
おいて窒化処理を行い、次いで仕上焼鈍を行うことを特
徴とする磁気特性の優れた一方向性電磁鋼板の製造方
法。
1. A weight ratio of C: 0.020 to 0.075%, Si: 2.5 to 5.0%, Mn: 0.05 to 0.45%, and S or Se alone or in combination. 0.015%, acid soluble Al: 0.010 to 0.050%, N: 0.0035 to 0.012%, Cu: 0.03 to 0.30%, P: 0.015 to 0.15% An electromagnetic steel slab consisting of the balance Fe and unavoidable impurities,
After heating to a temperature of 1280 ° C. or lower, hot rolling is performed and hot-rolled sheet annealing is performed, and decarburization annealing is performed at a final rolling rate of 80% or more by rolling once or twice or more with intermediate annealing interposed, A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, comprising performing nitriding treatment in a secondary recrystallization starting temperature range of a temperature rising process of finish annealing after decarburization annealing, and then performing finish annealing.
【請求項2】 重量比で Sn:0.02〜0.15%、 Cr:0.03〜0.20% を含有することを特徴とする請求項1記載の磁気特性の
優れた一方向性電磁鋼板の製造方法。
2. Unidirectionality with excellent magnetic properties according to claim 1, characterized in that Sn: 0.02 to 0.15% and Cr: 0.03 to 0.20% by weight are contained. Manufacturing method of electrical steel sheet.
【請求項3】 窒化処理を脱炭焼鈍後650〜850℃
の温度でストリップを走行せしめる状態下で水素、窒
素、アンモニアの混合ガス中で行い、窒化後の鋼板の窒
素量を120ppm 以上とすることを特徴とする請求項1
又は2記載の磁気特性の優れた一方向性電磁鋼板の製造
方法。
3. A nitriding treatment after decarburization annealing at 650 to 850 ° C.
2. The nitrogen content of the steel sheet after nitriding is set to 120 ppm or more in a mixed gas of hydrogen, nitrogen and ammonia under the condition that the strip is run at the temperature of 1.
Alternatively, the method for producing a unidirectional electrical steel sheet according to the above 2 having excellent magnetic properties.
JP4303793A 1993-03-03 1993-03-03 Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic Pending JPH06256847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4303793A JPH06256847A (en) 1993-03-03 1993-03-03 Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4303793A JPH06256847A (en) 1993-03-03 1993-03-03 Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic

Publications (1)

Publication Number Publication Date
JPH06256847A true JPH06256847A (en) 1994-09-13

Family

ID=12652720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4303793A Pending JPH06256847A (en) 1993-03-03 1993-03-03 Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPH06256847A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797997B1 (en) * 2006-12-27 2008-01-28 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
WO2008078915A1 (en) * 2006-12-27 2008-07-03 Posco Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
WO2011102456A1 (en) 2010-02-18 2011-08-25 新日本製鐵株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
KR101394452B1 (en) * 2007-08-07 2014-05-14 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR101408230B1 (en) * 2007-08-22 2014-06-17 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797997B1 (en) * 2006-12-27 2008-01-28 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
WO2008078915A1 (en) * 2006-12-27 2008-07-03 Posco Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR101394452B1 (en) * 2007-08-07 2014-05-14 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR101408230B1 (en) * 2007-08-22 2014-06-17 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
WO2011102456A1 (en) 2010-02-18 2011-08-25 新日本製鐵株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JPS6250529B2 (en)
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP4653266B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH055126A (en) Production of nonoriented silicon steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP3390109B2 (en) Low iron loss high magnetic flux density
JP4268277B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH086138B2 (en) Method for manufacturing thin unidirectional silicon steel sheet with low iron loss
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
JPH07310125A (en) Production of high magnetic flux density grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020528