JPH055126A - Production of nonoriented silicon steel sheet - Google Patents

Production of nonoriented silicon steel sheet

Info

Publication number
JPH055126A
JPH055126A JP3051478A JP5147891A JPH055126A JP H055126 A JPH055126 A JP H055126A JP 3051478 A JP3051478 A JP 3051478A JP 5147891 A JP5147891 A JP 5147891A JP H055126 A JPH055126 A JP H055126A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
cold
magnetic properties
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3051478A
Other languages
Japanese (ja)
Other versions
JP2639227B2 (en
Inventor
Takashi Tanaka
隆 田中
Teruo Kaneko
輝雄 金子
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3051478A priority Critical patent/JP2639227B2/en
Publication of JPH055126A publication Critical patent/JPH055126A/en
Application granted granted Critical
Publication of JP2639227B2 publication Critical patent/JP2639227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a nonoriented silicon steel sheet reduced in iron loss, having high magnetic flux density, and excellent in magnetic properties. CONSTITUTION:A hot rolled plate having a chemical composition consisting of, by weight, 0.006-0.020% C, 3.5-4.5% (Si+Al), <=0.005% (Ti+Nb+Zr+V/10), 0.1-2% Mn, <=0.001% S, <=0.002% N, <=0.003% O, and the balance Fe with inevitable impurities or a hot rolled plate having a chemical composition containing, besides the above components, 0.1-2% Mn is heated up to >=800 deg.C and cooled at >=10 deg.C/s cooling rate to undergo hot rolled plate annealing. Subsequently, a cold rolled steel sheet cold-rolled to the prescribed thickness is heated up to 900-1100 deg.C at <=10 deg.C/s temp. rise rate and successively subjected to decarburizing annealing at <=900 deg.C, by which C content is regulated to <=0.003%. The decarburizing annealing can be done by subjecting the steel sheet, after cold rolled sheet annealing, to temporary cooling down to room temp. and then to reheating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、モータなどの鉄心材料
に用いられる磁気特性に優れた無方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-oriented electrical steel sheet having excellent magnetic properties, which is used for iron core materials such as motors.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、モータなどの鉄心
として用いられている磁性材料であるが、近年、機器の
電力損失の低減および小型化のため、無方向性電磁鋼板
には低鉄損化および高磁束密度化という磁気特性の改善
が強く求められている。
2. Description of the Related Art Non-oriented electrical steel sheets are magnetic materials used as iron cores for motors and the like. In recent years, non-oriented electrical steel sheets have been made of low iron to reduce the power loss and size of equipment. There is a strong demand for improvement in magnetic properties such as loss and higher magnetic flux density.

【0003】磁気特性の改善に対しては、電気抵抗を高
めたり、最終焼鈍後の結晶粒径をある程度大きくするな
どの手法に加えて、磁化容易軸である<100>軸を磁
化の方向に揃え、磁化困難軸である<111>軸を磁化
方向から減らすこと、即ち、集合組織を制御することが
重要であって、モータのような機器に使用される電磁鋼
板にあっては、<100>軸が板面内に無方向に分布
し、<111>軸が板面内にないような集合組織が最も
適している。
In order to improve the magnetic properties, in addition to techniques such as increasing the electric resistance and increasing the crystal grain size after final annealing to some extent, the <100> axis, which is the easy axis of magnetization, is set in the direction of magnetization. Alignment, it is important to reduce the <111> axis, which is the hard axis of magnetization, from the magnetization direction, that is, it is important to control the texture, and for electromagnetic steel sheets used in equipment such as motors, <100 A texture in which the> axis is non-directionally distributed in the plate surface and the <111> axis is not in the plate surface is most suitable.

【0004】従来、このような集合組織を得る手法とし
て、無方向性電磁鋼板の製造に溶湯急冷法、交叉圧延
法、或いは表面エネルギーを利用する方法が知られてい
る。また、特開平2−54720 号公報に、冷間圧延後の焼
鈍を Ac3変態点以上に加熱し、10℃/min 以上の冷却速
度で冷却する方法も開示されている。
Conventionally, as a method for obtaining such a texture, there has been known a melt quenching method, a cross rolling method, or a method of utilizing surface energy in the production of a non-oriented electrical steel sheet. Further, Japanese Patent Laid-Open No. 2-54720 discloses a method of heating annealing after cold rolling to an Ac 3 transformation point or higher and cooling at a cooling rate of 10 ° C./min or higher.

【0005】しかしながら、前記のような板面内方向に
<100>軸が高密度に集積した集合組織を得る方法に
はそれぞれ次のような問題がある。例えば、溶湯急冷法
では板厚の極めて薄いものしか得られず、その電磁鋼板
は占積率に劣る上に打ち抜き加工が困難である。交叉圧
延法ではコイル状で圧延するのが極めて難しく、生産性
に劣る。表面エネルギーを利用する方法では高温で長時
間の焼鈍を必要とするため、製造コストが上昇する。ま
た、特開平2−54720 号公報に記載されているような焼
鈍を Ac3変態点以上で行う方法は、Si含有量の高い成分
系の場合にはAc3変態点が著しく高くなるか、 Ac3変態
点そのものがなくなるので、このような成分系の鋼には
適用することができない。
However, each of the above methods for obtaining a texture in which <100> axes are densely integrated in the in-plane direction has the following problems. For example, the molten metal quenching method can obtain only an extremely thin sheet, and the electromagnetic steel sheet has a poor space factor and is difficult to punch. In the cross rolling method, it is extremely difficult to roll in a coil shape, and the productivity is poor. The method utilizing surface energy requires annealing at high temperature for a long time, which increases the manufacturing cost. Further, the method described in Japanese Patent Application Laid-Open No. 2-54720, in which annealing is performed at the Ac 3 transformation point or higher, the Ac 3 transformation point becomes extremely high in the case of a component system having a high Si content, or Since the 3 transformation point itself disappears, it cannot be applied to steel of such a composition system.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、上記
のような問題を解消することにある。即ち、本発明の目
的は、板面内方向に<100>軸が高密度に集積した集
合組織を有する磁気特性に優れた無方向性電磁鋼板を工
業的に且つ安価に製造することができる方法を提供する
ことにある。
An object of the present invention is to solve the above problems. That is, an object of the present invention is to provide a method capable of industrially and inexpensively producing a non-oriented electrical steel sheet excellent in magnetic properties having a texture in which <100> axes are densely integrated in the in-plane direction. To provide.

【0007】[0007]

【課題を解決するための手段】本発明者らは、電気抵抗
が高く、渦電流損の低い高(Si+Al)系において、板面
内方向の<111>軸の発達を抑え、<100>軸を発
達させることにより磁気特性を改善する方法を検討した
結果、成分組成を限定した(Si+Al)系の熱延板を、一
定の条件のもとで焼鈍し、冷間圧延前の結晶粒径を大き
くするとともに、冷間圧延時およびその後の再結晶焼鈍
時に固溶Cを残存させておくと、磁気特性が大きく改善
されることを見出した。
The inventors of the present invention suppress the development of the <111> axis in the in-plane direction of the sheet in a high (Si + Al) system having a high electric resistance and a low eddy current loss, and suppress the development of the <100> axis. As a result of investigating the method of improving the magnetic properties by developing the alloy, the (Si + Al) hot-rolled sheet with a limited composition was annealed under certain conditions to determine the grain size before cold rolling. It has been found that the magnetic properties can be greatly improved by increasing the amount and allowing the solid solution C to remain during the cold rolling and the subsequent recrystallization annealing.

【0008】上記知見に基づく本発明は下記の〜の
製造方法を要旨とする。
The gist of the present invention based on the above findings is the following manufacturing methods.

【0009】 重量%で、C:0.006 〜0.020 %、Si
+Al:3.5 〜4.5 %、(Ti+Nb+Zr+V/10):0.005
%以下、Mn: 0.1〜2%、S:0.001 %以下、N:0.00
2 %以下、O:0.003 %以下、残部:Feおよび不可避不
純物からなる化学組成の熱延板を、 800℃以上に加熱し
た後、10℃/s以上の冷却速度で冷却し、次いで、所定
厚さに冷間圧延した後、10℃/s以上の昇温速度で900
〜1100℃に加熱し、引き続い 900℃以下の温度でC含有
量が 0.003%以下になるまで脱炭焼鈍することを特徴と
する無方向性電磁鋼板の製造方法。
% By weight, C: 0.006 to 0.020%, Si
+ Al: 3.5 to 4.5%, (Ti + Nb + Zr + V / 10): 0.005
% Or less, Mn: 0.1 to 2%, S: 0.001% or less, N: 0.00
2% or less, O: 0.003% or less, balance: Fe and a hot rolled sheet with a chemical composition consisting of unavoidable impurities are heated to 800 ° C or more, then cooled at a cooling rate of 10 ° C / s or more, and then to a predetermined thickness. After cold rolling, the temperature rise rate of 10 ℃ / s or more is 900
A method for producing a non-oriented electrical steel sheet, which comprises heating to ~ 1100 ° C, followed by decarburization annealing at a temperature of 900 ° C or less until the C content becomes 0.003% or less.

【0010】 上記に記載の化学組成の熱延板を、
800℃以上に加熱した後、10℃/s以上の冷却速度で冷
却し、次いで、所定厚さに冷間圧延した後、10℃/s以
上の昇温速度で 900〜1100℃に加熱し、一旦室温まで冷
却した後、 900℃以下の温度に再加熱してC含有量が
0.003%以下になるまで脱炭焼鈍することを特徴とする
無方向性電磁鋼板の製造方法。
A hot-rolled sheet having the chemical composition described above is
After heating to 800 ° C or higher, it is cooled at a cooling rate of 10 ° C / s or higher, then cold-rolled to a predetermined thickness, and then heated to 900 to 1100 ° C at a heating rate of 10 ° C / s or higher, Once cooled to room temperature, reheated to a temperature below 900 ° C to reduce the C content.
A method for producing a non-oriented electrical steel sheet, which comprises performing decarburization annealing until the content becomes 0.003% or less.

【0011】[0011]

【作用】以下に、本発明において、熱延板の化学組成、
熱延板の焼鈍、冷延板の焼鈍および脱炭焼鈍の条件を上
記のように限定する理由を説明する。なお、成分含有量
に関する「%」は『重量%』を意味する。
In the present invention, the chemical composition of the hot rolled sheet will be described below.
The reason for limiting the conditions of the annealing of the hot rolled sheet, the annealing of the cold rolled sheet and the decarburizing annealing as described above will be described. In addition, "%" regarding a component content means "weight%."

【0012】A) 熱延板の化学組成 C:Cは冷間圧延時および再結晶焼鈍時に固溶Cとして
存在していることが重要である。そのためには 0.006%
以上含有させる必要がある。Cが 0.006%以上含まれて
いれば冷間圧延時および再結晶焼鈍時に固溶Cとして存
在させることができるので、板面方向の<111>軸の
発達を抑えることができる。しかし、あまり多く添加し
ても固溶C量は変わらない上に、焼鈍中においてセメン
タイトが存在するようになり、粒成長が阻害される。さ
らに、過剰の添加は最終の脱炭焼鈍を長引かすことにも
なる。本発明では磁気特性を劣化させないために最終の
脱炭焼鈍でC含有量を 0.003%以下に低減するが、出発
材料の熱延板のC含有量が0.020%を超えていると、粒
成長が阻害され、また脱炭に長時間を要することにな
る。従って、C含有量を0.006〜0.020 %と定めた。
A) Chemical Composition of Hot Rolled Sheet It is important that C: C is present as a solid solution C during cold rolling and recrystallization annealing. 0.006% for that
It is necessary to contain the above. When C is contained in an amount of 0.006% or more, it can be present as solid solution C during cold rolling and recrystallization annealing, so that the development of the <111> axis in the plate surface direction can be suppressed. However, if too much is added, the amount of solid solution C does not change, and in addition, cementite becomes present during annealing, which hinders grain growth. Further, excessive addition also prolongs the final decarburization annealing. In the present invention, the C content is reduced to 0.003% or less in the final decarburization annealing so as not to deteriorate the magnetic properties. However, when the C content of the hot rolled sheet as the starting material exceeds 0.020%, the grain growth is It will be hindered and it will take a long time to decarburize. Therefore, the C content is set to 0.006 to 0.020%.

【0013】SiおよびAl:SiおよびAlは脱酸剤として、
また、電気抵抗値を増加させて鉄損の低下をはかるた
め、さらに変態点を上昇させて 900℃以上の高温での脱
炭焼鈍を可能にするために添加する。そのためにはSi+
Al量で 3.5%以上を必要する。しかし、Si+Al量が 4.5
%を超えると磁束密度が低下するのみならず、鋼が脆く
なる。従って、Si+Al量を 3.5〜4.5 %と定めた。
Si and Al: Si and Al are deoxidizing agents,
Further, it is added in order to increase the electric resistance value to lower the iron loss, and further to raise the transformation point to enable decarburization annealing at a high temperature of 900 ° C or higher. To do that, Si +
3.5% or more of Al is required. However, the amount of Si + Al is 4.5
%, Not only the magnetic flux density is lowered, but also the steel becomes brittle. Therefore, the amount of Si + Al was set to 3.5-4.5%.

【0014】Ti,Nb,ZrおよびV:これらの元素は炭素と
容易に結合し、炭化物を形成して磁気特性を劣化させる
のみならず有効な固溶Cを減少させるので、Ti、Nb、Zr
およびV/10の合計で0.005 %以下とした。なお、Vの
み1/10倍としたのは、炭化物形成能力が他の3元素の
1/10倍に相当するからである。
Ti, Nb, Zr and V: Ti, Nb, Zr because these elements easily combine with carbon to form carbides and deteriorate the magnetic properties as well as reduce the effective solid solution C.
And the total of V / 10 was 0.005% or less. The reason why only V is set to 1/10 times is that the carbide forming ability corresponds to 1/10 times that of the other three elements.

【0015】Mn:Mnは電気抵抗値を高め、鉄損の低下を
促進する作用を有している他に、脱硫の作用もある。こ
れらの効果を得るためには少なくとも 0.1%の含有が必
要であるが、多量に添加すると逆に磁束密度が低下する
ことになるので、その含有量を0.1〜2%とした。
Mn: Mn not only has the effect of increasing the electric resistance value and promoting the decrease of iron loss, but also has the function of desulfurization. In order to obtain these effects, it is necessary to contain at least 0.1%. However, if a large amount is added, the magnetic flux density will be lowered, so the content was made 0.1 to 2%.

【0016】S:Sは硫化物系の微細な析出物を形成し
て磁気特性を劣化させるので、その含有量を 0.001%以
下とした。
S: S forms fine sulfide-based precipitates and deteriorates the magnetic properties, so the content is made 0.001% or less.

【0017】N:Nも窒化物系の微細な析出物を形成し
て磁気特性を劣化させるので、その含有量を 0.002%以
下とした。
Since N: N also forms fine nitride-based precipitates and deteriorates the magnetic properties, the content thereof is set to 0.002% or less.

【0018】O:Oは酸化物を形成してSおよびNと同
様に磁気特性を劣化させるので、その含有量を 0.003%
以下とした。望ましくは 0.002%以下に抑えることであ
る。
O: O forms an oxide and deteriorates the magnetic properties like S and N, so its content is 0.003%.
Below. It is desirable to keep it to 0.002% or less.

【0019】B) 熱延板の焼鈍 この焼鈍の目的は熱延板の粒径を大きくし、且つCを固
溶させることにある。
B) Annealing of Hot Rolled Sheet The purpose of this annealing is to increase the grain size of the hot rolled sheet and to make C a solid solution.

【0020】そのためには、上記化学組成の熱延板を、
800 ℃以上の温度で加熱し、10℃/s以上の冷却速度で
冷却する条件で焼鈍する必要がある。加熱温度が 800℃
より低いと熱延板の粒径が十分に大きくならない。冷却
速度が10℃/s未満では冷却中に炭化物が析出するの
で、冷間圧延時およびその後の再結晶焼鈍時に固溶Cを
存在させることができない。
To this end, a hot-rolled sheet having the above chemical composition is
It is necessary to anneal under the conditions of heating at a temperature of 800 ° C or higher and cooling at a cooling rate of 10 ° C / s or higher. Heating temperature is 800 ℃
If it is lower, the grain size of the hot-rolled sheet does not become sufficiently large. When the cooling rate is less than 10 ° C./s, carbide precipitates during cooling, so solid solution C cannot be present during cold rolling and during recrystallization annealing thereafter.

【0021】C) 冷延板の焼鈍 この焼鈍の目的は、冷延後の鋼板を再結晶させ、結晶粒
を成長させることにある。そのためには、10℃/s以上
の昇温速度で 900〜1100℃の温度に加熱する条件で焼鈍
する必要がある。10℃/sより遅い昇温速度では再結晶
前に炭化物が析出し、面内方向の<111>軸の発達を
抑えることができない。 900℃より低い加熱温度では結
晶粒が十分に成長しないので、鉄損は低くならない。11
00℃より高い加熱温度では Ac3変態点を超えてしまい、
集合組織の制御が困難となったり、Ac3 変態点を超えな
い場合でも著しく粒成長を起こすため、かえって鉄損が
悪くなる。
C) Annealing of Cold Rolled Sheet The purpose of this annealing is to recrystallize the cold rolled steel sheet and grow the crystal grains. For that purpose, it is necessary to anneal under the condition of heating to a temperature of 900 to 1100 ° C. at a temperature rising rate of 10 ° C./s or more. At a heating rate slower than 10 ° C / s, carbide is precipitated before recrystallization, and it is not possible to suppress the development of <111> axis in the in-plane direction. Iron loss does not decrease because the crystal grains do not grow sufficiently at heating temperatures lower than 900 ° C. 11
At heating temperatures higher than 00 ° C, the Ac 3 transformation point is exceeded,
It becomes difficult to control the texture, and even if the Ac 3 transformation point is not exceeded, grain growth occurs remarkably, and the iron loss rather deteriorates.

【0022】D)脱炭焼鈍 本発明方法は固溶Cを含んだ状態で再結晶および粒成長
させるのが特徴であるから、脱炭焼鈍は必ず再結晶およ
び粒成長させた後に行う必要がある。この脱炭焼鈍では
鋼中のC量を 0.003%以下にまで低減し、磁気特性を高
める。本発明ではこの脱炭焼鈍は前記の冷延板の焼鈍に
引き続き、即ち、焼鈍後の高温鋼板を室温まで冷却する
ことなく脱炭焼鈍温度まで下げてから行ってもよく、一
旦、室温まで冷却してから脱炭焼鈍温度に再加熱して行
ってもよい。しかし、いずれの場合も 900℃より高い温
度で脱炭焼鈍すると、必要以上に粒成長を起こし、磁気
特性に不利な集合組織が生成することになるので、いず
れの場合も脱炭焼鈍は 900℃以下で行う必要がある。ま
た、脱炭焼鈍の温度が900℃以下であっても、鋼中の炭
素量が 0.003%以下にならない段階で脱炭焼鈍を終了す
ると、脱炭焼鈍後の鋼板は磁気時効を起こし、磁気特性
が劣化する。なお、冷延板の焼鈍の後、一旦室温まで冷
却する場合は、打ち抜き加工を施した後に脱炭焼鈍を実
施してもよい。
D) Decarburization Annealing Since the method of the present invention is characterized by recrystallization and grain growth in the state containing solid solution C, decarburization annealing must always be performed after recrystallization and grain growth. .. In this decarburization annealing, the amount of C in the steel is reduced to 0.003% or less and the magnetic properties are enhanced. In the present invention, this decarburization annealing may be performed after the annealing of the cold-rolled sheet, that is, after the high temperature steel sheet after annealing is cooled to the decarburization annealing temperature without cooling to room temperature, once cooled to room temperature. Then, it may be reheated to the decarburization annealing temperature. However, in all cases, decarburization annealing at a temperature higher than 900 ° C causes grain growth more than necessary, and a texture that is disadvantageous to magnetic properties is generated. You need to do the following: Even if the temperature of decarburization annealing is 900 ° C or less, if the decarburization annealing is finished at a stage where the carbon content in the steel does not reach 0.003% or less, the steel sheet after decarburization annealing undergoes magnetic aging and magnetic properties. Deteriorates. If the cold-rolled sheet is annealed and then cooled to room temperature, it may be punched and then decarburized and annealed.

【0023】[0023]

【実施例1】表1に示す化学組成の鋼を溶製し、スラブ
とした後、熱間圧延して2.3mm 厚の熱延板とした。
Example 1 Steels having the chemical compositions shown in Table 1 were melted and made into slabs, which were then hot rolled into hot rolled sheets having a thickness of 2.3 mm.

【0024】これらの熱延板を酸洗した後、 900℃で60
sec加熱し、15℃/sの冷却速度で室温まで冷却してか
ら、0.5mm 厚さまで冷間圧延した。次いで、得られた冷
延板を20℃/sの昇温速度で1000℃に加熱し、この温度
で60sec 保持した後、室温まで冷却し、引き続き露点が
+30℃のH2+Ar混合雰囲気中で 700℃の温度で60mi
n保持の脱炭焼鈍を行った。
After pickling these hot-rolled steel sheets, the temperature of the hot-rolled steel sheet was set to 60 at 900 ° C.
It was heated for sec, cooled to room temperature at a cooling rate of 15 ° C / s, and then cold rolled to a thickness of 0.5 mm. Then, the obtained cold-rolled sheet was heated to 1000 ° C at a heating rate of 20 ° C / s, held at this temperature for 60 seconds, and then cooled to room temperature, and subsequently in a H 2 + Ar mixed atmosphere with a dew point of + 30 ° C. 60 mi at a temperature of 700 ° C
Decarburization annealing was performed while maintaining n.

【0025】こうして得られた電磁鋼板から試験片を切
り出し、磁気特性を調査した。その結果を表2に示す。
A test piece was cut out from the thus-obtained magnetic steel sheet, and its magnetic characteristics were investigated. The results are shown in Table 2.

【0026】磁気特性は鉄損と磁束密度について調査し
た。調査はそれぞれの電磁鋼板から圧延方向と圧延方向
に垂直の方向の2方向から採取した試験片を用い、JI
S C2550 のエプスタイン試験により商用周波数
50Hzの交番磁界において行った
The magnetic properties were investigated for iron loss and magnetic flux density. The investigation was conducted using test pieces taken from the respective electromagnetic steel sheets in two directions, the rolling direction and the direction perpendicular to the rolling direction.
Commercial frequency according to Epstein test of S C2550
Performed in an alternating magnetic field of 50 Hz

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】表2から、本発明方法で製造した電磁鋼板
はいずれも0.5mm厚の板厚で、鉄損(W15/50)は 2.3W/k
g 以下、磁束密度 (B50) は1.65T以上と優れた磁気特
性を示していることがわかる。これに対して、成分組成
が本発明で規定する範囲外のものは磁気特性に劣る。試
料No.2の比較例はC量が 0.006%より低く、磁気特性に
不都合な集合組織が発達したため鉄損および磁気密度と
もに悪い。試料No.3の比較例はC量が 0.020%より多
く、脱炭が不十分となり、脱炭後にも 0.003%以上のC
が含まれているため鉄損が悪い。試料No.5の比較例は
(Si+Al) 量が3.5%より低く、電気抵抗の増加による渦
電流の増加が見込めず鉄損が悪い。試料No.6の比較例は
(Si+Al) 量が 4.5%より高く、冷間圧延時に破断が生
じた。
From Table 2, all of the magnetic steel sheets produced by the method of the present invention have a thickness of 0.5 mm and the iron loss (W 15/50 ) is 2.3 W / k.
It can be seen that below g, the magnetic flux density (B 50 ) is 1.65 T or more, indicating excellent magnetic properties. On the other hand, if the component composition is out of the range specified in the present invention, the magnetic properties are poor. In the comparative example of Sample No. 2, the C content was lower than 0.006%, and the iron loss and the magnetic density were poor because the texture which was inconvenient for the magnetic properties developed. In the comparative example of sample No. 3, the amount of C was more than 0.020%, decarburization was insufficient, and after decarburization, the amount of C was 0.003% or more.
Since iron is included, iron loss is bad. Comparative example of sample No.5
The (Si + Al) content is lower than 3.5%, and it is not possible to expect an increase in eddy current due to an increase in electrical resistance, resulting in poor iron loss. Comparative example of sample No.6
The (Si + Al) content was higher than 4.5% and fracture occurred during cold rolling.

【0030】試料No.8の比較例はMn量が 2.0%より高
く、このために磁束密度が低い。試料No.10 の比較例は
(Ti+Nb+Zr+V/10) 量が 0.005%を超えており、固
溶Cが減少し、且つ、磁気特性に有害な微細な炭化物が
生成したため鉄損および磁束密度密度ともに悪い。試料
No.11 の比較例はS量が 0.001%を超えており、磁気特
性に有害な微細な析出物が生成したため鉄損が悪い。試
料No.12 の比較例はN量が0.002%を超えており、磁気
特性に有害な微細な析出物が生成したため鉄損が悪い。
試料No.13 の比較例はO量が 0.003%を超えており、磁
気特性に有害な酸化物が生成したため鉄損が悪い。
In the comparative example of sample No. 8, the Mn content is higher than 2.0% and therefore the magnetic flux density is low. The comparative example of sample No. 10 is
The content of (Ti + Nb + Zr + V / 10) exceeds 0.005%, the solid solution C is reduced, and fine carbides harmful to the magnetic properties are generated, resulting in poor core loss and magnetic flux density. sample
In the comparative example of No. 11, the S content exceeds 0.001%, and the iron loss is poor because fine precipitates harmful to the magnetic properties are formed. In the comparative example of sample No. 12, the N content exceeds 0.002%, and the iron loss is poor because fine precipitates harmful to the magnetic properties are generated.
In the comparative example of Sample No. 13, the O content exceeds 0.003%, and the iron loss is poor because an oxide harmful to the magnetic properties is generated.

【0031】[0031]

【実施例2】表1に示す鋼種Aと同様の化学組成の鋼を
溶製し、スラブとした後、熱間圧延して2.3mm 厚の熱延
板とした。
Example 2 A steel having the same chemical composition as the steel type A shown in Table 1 was melted to form a slab, which was then hot rolled into a hot-rolled sheet having a thickness of 2.3 mm.

【0032】これらの熱延板を酸洗した後、表3に示す
条件で熱延板焼鈍、冷間圧延、冷延板焼鈍および脱炭焼
鈍を行った。冷延板焼鈍は露点−40℃の 100%H2雰囲気
中で、脱炭焼鈍は露点+35℃のH2+N2混合雰囲気中で行
った。また、脱炭焼鈍は冷延板焼鈍後、室温に冷却する
ことなく引き続いて実施した。
After pickling these hot-rolled sheets, hot-rolled sheet annealing, cold rolling, cold-rolled sheet annealing and decarburization annealing were carried out under the conditions shown in Table 3. Cold-rolled sheet annealing was performed in a 100% H 2 atmosphere with a dew point of −40 ° C., and decarburization annealing was performed in a H 2 + N 2 mixed atmosphere with a dew point of + 35 ° C. Further, decarburization annealing was continuously performed after cooling the cold rolled sheet without cooling to room temperature.

【0033】こうして得られた電磁鋼板から、実施例1
と同じ2方向から試験片を切り出し、同じ試験方法で磁
気特性を調査した。その結果を表3に併記する。
From the magnetic steel sheet thus obtained, Example 1
The test pieces were cut out from the same two directions as above, and the magnetic properties were investigated by the same test method. The results are also shown in Table 3.

【0034】[0034]

【表3】 [Table 3]

【0035】表3から明らかなように、本発明方法で製
造した試料No.14の電磁鋼板は0.5mm厚の板厚で、鉄損
(W15/50)は 2.3W/kg 以下、磁束密度 (B50) は1.65
T以上と優れた磁気特性を有している。これに対して、
製造条件が本発明で規定する範囲外のものは磁気特性に
劣る。脱炭焼鈍を行わなかった試料No.15 の比較例は、
磁気特性の向上に対して障害となる炭化物が多く残った
ため鉄損が悪い。冷延板の焼鈍における加熱温度が 900
℃より低い試料No.16 の比較例は、粒成長があまり起こ
らず鉄損が悪い。冷延板の焼鈍における加熱温度が1000
℃より高い試料No.17 の比較例は、著しい粒成長が起こ
り鉄損が悪い。冷延板の焼鈍における昇温速度が10℃/
sより遅い試料No.18 の比較例は、再結晶前にセメンタ
イトが析出してしまい磁気特性に不利な集合組織が生じ
たため鉄損および磁束密度ともに悪い。熱延板焼鈍にお
ける冷却速度が10℃/sより遅い試料No.19 の比較例
は、冷却中にセメンタイトが析出して固溶Cが減少し、
その後の冷間圧延および冷延板焼鈍の際に磁気特性に不
利な集合組織が生じたため鉄損および磁束密度ともに悪
い。熱延板焼鈍における加熱速度が 800℃/sより低い
試料No.20 の比較例は、再結晶および粒成長が十分でな
く、その後の冷間圧延および冷延板焼鈍の際に磁気特性
に不利な集合組織がが生じたため鉄損および磁束密度と
もに悪い。
As is apparent from Table 3, the electromagnetic steel sheet of Sample No. 14 produced by the method of the present invention has a thickness of 0.5 mm and an iron loss of
(W 15/50 ) is less than 2.3 W / kg, magnetic flux density (B 50 ) is 1.65
It has excellent magnetic properties of T or more. On the contrary,
If the manufacturing conditions are outside the range specified in the present invention, the magnetic properties are inferior. The comparative example of Sample No. 15 which was not decarburized and annealed was
Iron loss is poor because a large amount of carbide remains, which hinders the improvement of magnetic properties. The heating temperature during annealing of cold-rolled sheet is 900
In the comparative example of sample No. 16 whose temperature is lower than ℃, grain growth does not occur so much and iron loss is poor. The heating temperature during annealing of cold-rolled sheet is 1000
In the comparative example of Sample No. 17 higher than ℃, remarkable grain growth occurs and iron loss is poor. Temperature rise rate during annealing of cold-rolled sheet is 10 ℃ /
In the comparative example of Sample No. 18 which is slower than s, the cementite is precipitated before recrystallization and a texture which is disadvantageous to the magnetic properties is generated, so that the iron loss and the magnetic flux density are poor. In the comparative example of Sample No. 19 in which the cooling rate in hot-rolled sheet annealing was slower than 10 ° C / s, cementite was precipitated during cooling and solid solution C was decreased,
During the subsequent cold rolling and annealing of the cold rolled sheet, the iron loss and the magnetic flux density were poor because a texture which was unfavorable to the magnetic properties was generated. In the comparative example of Sample No. 20 in which the heating rate in hot-rolled sheet annealing is lower than 800 ° C / s, recrystallization and grain growth were not sufficient, and the magnetic properties were deteriorated during the subsequent cold rolling and cold-rolled sheet annealing. Both iron loss and magnetic flux density are poor due to the formation of various textures.

【0036】[0036]

【発明の効果】以上説明したように、本発明方法によれ
ば鉄損が低く、磁束密度の高い磁気特性に優れた無方向
性電磁鋼板を安価に且つ工業的規模で生産することがで
きる。
As described above, according to the method of the present invention, a non-oriented electrical steel sheet having a low iron loss, a high magnetic flux density and excellent magnetic characteristics can be produced at a low cost on an industrial scale.

Claims (1)

【特許請求の範囲】 【請求項1】重量%で、C:0.006 〜0.020 %、Si+A
l:3.5 〜4.5 %、(Ti+Nb+Zr+V/10):0.005 %
以下、Mn:0.1 〜2%、S:0.001 %以下、N:0.002
%以下、O:0.003 %以下、残部:Feおよび不可避不純
物からなる化学組成の熱延板を、 800℃以上に加熱した
後、10℃/s以上の冷却速度で冷却し、次いで、所定厚
さに冷間圧延した後、10℃/s以上の昇温速度で900〜1
100℃に加熱し、引き続き 900℃以下の温度でC含有量
が 0.003%以下になるまで脱炭焼鈍することを特徴とす
る無方向性電磁鋼板の製造方法。 【請求項2】請求項1に記載の化学組成の熱延板を、 8
00℃以上に加熱した後、10℃/s以上の冷却速度で冷却
し、次いで、所定厚さに冷間圧延した後、10℃/s以上
の昇温速度で 900〜1100℃に加熱し、一旦室温まで冷却
した後、 900℃以下の温度に再加熱してC含有量が 0.0
03%以下になるまで脱炭焼鈍することを特徴とする無方
向性電磁鋼板の製造方法。
[Claims] [Claim 1] C: 0.006 to 0.020% by weight, Si + A
l: 3.5 to 4.5%, (Ti + Nb + Zr + V / 10): 0.005%
Below, Mn: 0.1 to 2%, S: 0.001% or less, N: 0.002
%, O: 0.003% or less, balance: Fe and a hot-rolled sheet of a chemical composition consisting of inevitable impurities are heated to 800 ° C. or higher and then cooled at a cooling rate of 10 ° C./s or higher, and then to a predetermined thickness. After cold rolling to 900-1 at a heating rate of 10 ℃ / s or more
A method for producing a non-oriented electrical steel sheet, which comprises heating to 100 ° C. and subsequently decarburizing and annealing at a temperature of 900 ° C. or lower until the C content becomes 0.003% or less. 2. A hot-rolled sheet having the chemical composition according to claim 1,
After heating to 00 ℃ or more, it is cooled at a cooling rate of 10 ℃ / s or more, then cold-rolled to a predetermined thickness, and then heated to 900 ~ 1100 ℃ at a heating rate of 10 ℃ / s or more, Once cooled to room temperature, it is reheated to a temperature below 900 ℃ and the C content is 0.0
A method for producing a non-oriented electrical steel sheet, which comprises performing decarburization annealing until the content becomes 03% or less.
JP3051478A 1991-03-15 1991-03-15 Manufacturing method of non-oriented electrical steel sheet Expired - Lifetime JP2639227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3051478A JP2639227B2 (en) 1991-03-15 1991-03-15 Manufacturing method of non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3051478A JP2639227B2 (en) 1991-03-15 1991-03-15 Manufacturing method of non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH055126A true JPH055126A (en) 1993-01-14
JP2639227B2 JP2639227B2 (en) 1997-08-06

Family

ID=12888063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3051478A Expired - Lifetime JP2639227B2 (en) 1991-03-15 1991-03-15 Manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP2639227B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100166A (en) * 2005-10-04 2007-04-19 Jfe Steel Kk Non-oriented electrical steel sheet with excellent shape of blanked edge face, and its manufacturing method
JP2008231504A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Non-oriented electromagnetic steel sheet
WO2012029621A1 (en) * 2010-08-30 2012-03-08 Jfeスチール株式会社 Method for producing non-oriented magnetic steel sheet
WO2012086534A1 (en) * 2010-12-22 2012-06-28 Jfeスチール株式会社 Process for production of non-oriented electromagnetic steel sheet
TWI484043B (en) * 2012-02-23 2015-05-11 Jfe Steel Corp Manufacturing method of electromagnetic steel plate
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
EP3556891A4 (en) * 2016-12-19 2019-12-04 Posco Non-oriented electrical steel sheet and manufacturing method therefor
WO2021210672A1 (en) * 2020-04-16 2021-10-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100166A (en) * 2005-10-04 2007-04-19 Jfe Steel Kk Non-oriented electrical steel sheet with excellent shape of blanked edge face, and its manufacturing method
JP4635810B2 (en) * 2005-10-04 2011-02-23 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP2008231504A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Non-oriented electromagnetic steel sheet
WO2012029621A1 (en) * 2010-08-30 2012-03-08 Jfeスチール株式会社 Method for producing non-oriented magnetic steel sheet
JP2012046806A (en) * 2010-08-30 2012-03-08 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
JP2012132070A (en) * 2010-12-22 2012-07-12 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel plate
WO2012086534A1 (en) * 2010-12-22 2012-06-28 Jfeスチール株式会社 Process for production of non-oriented electromagnetic steel sheet
KR101508082B1 (en) * 2010-12-22 2015-04-07 제이에프이 스틸 가부시키가이샤 Method of producing non-oriented electrical steel sheet
TWI484043B (en) * 2012-02-23 2015-05-11 Jfe Steel Corp Manufacturing method of electromagnetic steel plate
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
EP3556891A4 (en) * 2016-12-19 2019-12-04 Posco Non-oriented electrical steel sheet and manufacturing method therefor
US11254997B2 (en) 2016-12-19 2022-02-22 Posco Non-oriented electrical steel sheet and manufacturing method therefor
WO2021210672A1 (en) * 2020-04-16 2021-10-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
JP7001210B1 (en) * 2020-04-16 2022-01-19 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2639227B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR102535436B1 (en) Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR20140073569A (en) Anisotropic electromagnetic steel sheet and method for producing same
JPH0651889B2 (en) Method for producing non-oriented silicon steel by ultra-high speed annealing
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPWO2020218329A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0713266B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0757888B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPS6253571B2 (en)
JP2556599B2 (en) Method for manufacturing corrosion-resistant soft magnetic steel sheet
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS63186823A (en) Production of electromagnetic steel plate having excellent magnetic characteristic
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet