JP2784661B2 - Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet - Google Patents

Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet

Info

Publication number
JP2784661B2
JP2784661B2 JP10216689A JP10216689A JP2784661B2 JP 2784661 B2 JP2784661 B2 JP 2784661B2 JP 10216689 A JP10216689 A JP 10216689A JP 10216689 A JP10216689 A JP 10216689A JP 2784661 B2 JP2784661 B2 JP 2784661B2
Authority
JP
Japan
Prior art keywords
cold rolling
rolling
steel sheet
sheet
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10216689A
Other languages
Japanese (ja)
Other versions
JPH02282422A (en
Inventor
昭郎 大栗
聖夫 向井
隆治 大塚
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14320125&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2784661(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10216689A priority Critical patent/JP2784661B2/en
Publication of JPH02282422A publication Critical patent/JPH02282422A/en
Application granted granted Critical
Publication of JP2784661B2 publication Critical patent/JP2784661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼板の圧延方向に磁化容易軸<100>をも
っている。所謂、磁気性のすぐれた高磁束密度手一方向
性電磁鋼板の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention has an easy axis <100> in the rolling direction of a steel sheet. The present invention relates to a method for manufacturing a so-called high magnetic flux density hand-oriented electrical steel sheet having excellent magnetic properties.

(従来の技術) 一方向性電磁鋼板は、主としてトランス、その他、電
気機器の鉄心材料として使用されており、磁気特性とし
て、励磁特性と鉄損特性が良好でなければならない。
(Prior Art) A grain-oriented electrical steel sheet is mainly used as a core material of transformers and other electrical devices, and it is required that magnetic properties have good excitation characteristics and iron loss characteristics.

この励磁特性を表わす数値として例えば磁場の強さ10
00A/mにおける磁束密度B10を用い、鉄損特性は50ヘルツ
(Hz)の交流電束密度1.7テスラー(T)における鉄損
17/50が用いられる。
As a numerical value representing this excitation characteristic, for example, the magnetic field strength 10
Using magnetic flux density B 10 in the 00A / m, the iron loss characteristics iron loss W 17/50 in an alternating current electric flux density 1.7 tesla of 50 hertz (Hz) (T) is used.

ところで最近においては、省エネルギーが緊急の課題
とされる現況から鉄損がより低いことが強く要望されて
いる。一方向性電磁鋼盤は、その製造における仕上焼純
で{110}<001>方位をもった所謂ゴス組織を2次再結
晶現象を利用して成長させることによって製造される。
磁気特性を高めるには、<001>軸が圧延方向に高度に
揃い、{110}面が鋼板表面に平行な2次再結晶粒を安
定して発現させることが重要である。又、鉄損を大幅に
低減する方法として、磁区細分化技術があるが、この鉄
損改善効果を最も発揮させるために、2次再結晶後の結
晶粒径を大きくすることが重要である。
By the way, recently, there is a strong demand that iron loss be lower due to the current situation where energy saving is an urgent issue. The unidirectional electromagnetic steel plate is manufactured by growing a so-called Goss structure having a {110} <001> orientation by finish refining in the manufacturing process using a secondary recrystallization phenomenon.
In order to enhance the magnetic properties, it is important that the <001> axis is highly aligned in the rolling direction and the {110} plane is stably developed with secondary recrystallized grains parallel to the steel sheet surface. As a method of greatly reducing iron loss, there is a magnetic domain refinement technique. In order to make the most of the iron loss improving effect, it is important to increase the crystal grain size after secondary recrystallization.

このためには、最終強圧下冷延時に、冷延圧下率を適
性化し、温間圧延ばを行なうことが必要であると言われ
ている。
It is said that for this purpose, it is necessary to optimize the rolling reduction at the time of final high-pressure cold rolling and to perform warm rolling.

この強圧下冷延の方法については、種々検討されてい
る。例えば、特公昭50−26493号公報記載の方法では、
小量のC,Alを含んだ電磁鋼板の冷間圧延方法が提案され
ている。これは、最終強冷延時の圧下率が、81〜95%に
おいて、材料温度が50〜350℃の範囲にて行ない、その
材料温度に応じて、熱効果継続時間が変化することで、
冷間圧延時のスベリ機構(Slip System)の僅かな変化
が、1次再結晶粒の結晶方法に変化を与え、これがAl N
による特定方位結晶粒の選択的な成長、具体的には、
{110}<001>方位の結晶粒の成長を助長するとしてい
る。この結果、高磁束密度、低鉄損化が得られる。
Various studies have been made on the method of cold rolling under high pressure. For example, in the method described in Japanese Patent Publication No. 50-26493,
A cold rolling method of an electrical steel sheet containing small amounts of C and Al has been proposed. This is done when the rolling reduction at the time of final strong cold rolling is 81-95% and the material temperature is in the range of 50-350 ° C, and the thermal effect duration changes according to the material temperature.
A slight change in the slip system during cold rolling gives a change to the crystallization method of the primary recrystallized grains.
Selective growth of specific orientation crystal grains, specifically,
It is said that it promotes the growth of {110} <001> crystal grains. As a result, high magnetic flux density and low iron loss can be obtained.

ところで、鉄損を低減せしめるには、Si含有量の増加
や、鋼板板厚の薄手化や、鋼板に張力を付加する方法
や、外的に歪を付与することで磁区細分化を行なう方法
等がある。しかし、Si含有量を高めると、鋼は脆化し、
冷延性が著しく劣化するための実際の製造では問題をき
たす。一方、鋼板板厚を薄手化、例えば、0.18mm厚にす
ると、仕上焼鈍での2次再結晶の発現が不安定となり、
磁気特性が劣化することがある。又、張力付加は、コー
ティングされた絶縁被膜による張力作用に限界があるの
で鉄損を大幅に低減することは期待出来ない。更に、磁
区細分化は、素材の2次再結晶粒径の大きさに大きく影
響されるので素材の2次再結晶粒径を大きくする技術が
必要である。
By the way, to reduce iron loss, increase of Si content, reduction of thickness of steel sheet, method of applying tension to steel sheet, method of subdividing magnetic domain by applying external strain, etc. There is. However, increasing the Si content makes the steel brittle,
A problem arises in actual production because the cold rolling property is significantly deteriorated. On the other hand, if the thickness of the steel sheet is reduced, for example, to 0.18 mm thickness, the appearance of secondary recrystallization in finish annealing becomes unstable,
Magnetic properties may be degraded. Further, since the application of tension has a limit in the action of tension due to the coated insulating film, it is not expected that iron loss will be significantly reduced. Further, since domain refining is greatly affected by the size of the secondary recrystallized grain size of the material, a technique for increasing the secondary recrystallized grain size of the material is required.

(発明が解決しようとする課題) 本発明は、高磁束密度でかつ鉄損が著しく低減され、
さらに磁区細分化効果に優れた薄手一方向性電磁鋼板の
製造方法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has a high magnetic flux density and significantly reduced iron loss,
It is another object of the present invention to provide a method of manufacturing a thin unidirectional magnetic steel sheet having an excellent magnetic domain refining effect.

(課題を解決するための手段) 本発明者達は、最近の低鉄損材に対する強い要望に応
えるべく、一方向性電磁鋼板の低鉄損化について種々の
実験と検討を行なった。その結果、Al Nをインヒビター
として、高磁束密度の一方向性電磁鋼板を製造するにあ
たって、酸可溶性Alを含有する電磁鋼素材を熱延し、最
終強冷延前に950〜1200℃の範囲で高温連続焼鈍後、急
冷し、Al Nを析出させ、81〜95%の圧下率範囲で行なう
最終強冷延を含む1回もしくは2回以上の冷延により0.
15〜0.23mmの最終板厚とし、脱炭し、仕上焼鈍する薄手
一方向性電磁鋼板の製造方法において、上記強圧下率で
行う冷延を30〜100mm径の小径ロールにて、単位面積当
りの圧延張力が10〜35kg/mm2の高張力下で、前段パスを
30%以上の高圧下率で行ない、途中板厚が0.40mm以下の
後段パスの平均板温を150〜230℃とすることにより、高
磁束密度で、鉄損が大幅に低減され更に、磁区細分化効
果の優れた薄手一方向性電磁鋼板が製造されることを確
かめた。
(Means for Solving the Problems) In order to respond to the recent strong demand for low iron loss materials, the present inventors have conducted various experiments and studies on reducing the iron loss of the grain-oriented electrical steel sheet. As a result, using Al N as an inhibitor, when manufacturing a unidirectional electrical steel sheet with a high magnetic flux density, hot-rolling a magnetic steel material containing acid-soluble Al, and in the range of 950-1200 ° C before final strong cold rolling. After high-temperature continuous annealing, it is quenched to precipitate AlN, and is subjected to one or two or more cold rolling operations including a final strong cold rolling operation in a rolling reduction range of 81 to 95%.
In the method of producing a thin unidirectional magnetic steel sheet having a final thickness of 15 to 0.23 mm, decarburized, and finish-annealed, the cold rolling performed at the above-described high reduction rate is performed with a small-diameter roll having a diameter of 30 to 100 mm per unit area. rolling tension under high tension 10~35kg / mm 2, the front path
Higher flux rate is 30% or more, and the average sheet temperature of the subsequent pass is 0.40mm or less. It has been confirmed that a thin unidirectional magnetic steel sheet having an excellent effect of forming can be manufactured.

この電磁鋼素材にはC:0.025〜0.085%,Si:2.5〜4.5
%,酸可溶性Al(以下sol.Alと言う):0.010〜0.065%,
Mn:0.03〜0.15%,S:0.010〜0.050%,N:0.0030〜0.0120
%を含み、残部が鉄及び不可避的不純物からなるものが
適用される。これらの成分の他にCu,Sn,Cr,Moの1種或
は、2種以上を合計で1.5%以下含み得る。
C: 0.025-0.085%, Si: 2.5-4.5%
%, Acid-soluble Al (hereinafter referred to as sol.Al): 0.010-0.065%,
Mn: 0.03 to 0.15%, S: 0.010 to 0.050%, N: 0.0030 to 0.0120
%, With the balance consisting of iron and unavoidable impurities. In addition to these components, one or more of Cu, Sn, Cr, and Mo may be contained in a total of 1.5% or less.

以下に本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

まず、本発明の電磁鋼素材の鋼成分について述べる。 First, the steel components of the electromagnetic steel material of the present invention will be described.

Cは、電磁鋼素材を加熱した際、Si量に応じて、少な
くとも鋼の一部にr変態を生じさせる必要がある。この
ため、C0.025%以上の含有を要する。一方、その含有量
が過多になると高磁束密度の成品が得られないので0.08
5%以下とする。Siは、鉄損を低減するためには、2.5%
以上必要であり、一方4.5%を超えると、冷延性が劣化
するので、4.5%以下とする。sol.Alは最終強冷延前の
焼鈍でAl Nを析出し、高磁束密度の成品を得るためには
0.010%以上の含有が必要である。一方、その含有量が
多くなると脆化し、又、コスト的にも不利となるので、
0.065%以下とする。
C needs to cause r transformation in at least a part of the steel according to the amount of Si when the electromagnetic steel material is heated. Therefore, the content of C is required to be 0.025% or more. On the other hand, if the content is excessive, a product with a high magnetic flux density cannot be obtained.
5% or less. Si is 2.5% to reduce iron loss
The above is necessary. On the other hand, if it exceeds 4.5%, the cold rolling property deteriorates. sol.Al precipitates Al N by annealing before final strong cold rolling, and to obtain a product with high magnetic flux density
0.010% or more is required. On the other hand, as the content increases, it becomes brittle, and it is disadvantageous in terms of cost.
0.065% or less.

Nは、前記sol.Alと結合し、インヒビターとしてAl Nを
形成せしめるために0.0030〜0.0120%の含有が必要であ
る。
N must be contained in an amount of 0.0030 to 0.0120% in order to combine with the sol. Al and form AlN as an inhibitor.

MnとSは、MnSを形成するために必要な元素であり、
このためMnは、0.03%以上含有させる。一方その含有量
が多くなると仕上焼鈍における純化時間を長くするので
0.15%以下とする。Sは、前記Mnと同様の理由から0.01
0%以上必要であり、又、0.050%以下とする。
Mn and S are elements necessary for forming MnS,
For this reason, Mn is contained at 0.03% or more. On the other hand, if the content increases, the purification time in finish annealing will be prolonged.
0.15% or less. S is 0.01 for the same reason as for Mn.
0% or more is required and 0.050% or less.

更に磁気特性を高めるためにCu,Sn,Cr,Moの1種或は
2種以上を含ませても差しつかえない。このとき合計の
含有量の上限は1.5%である。この上限を超えた場合は
冷延性が劣化し、又脱炭性が劣化する。
In order to further enhance the magnetic properties, one or more of Cu, Sn, Cr, and Mo may be included. At this time, the upper limit of the total content is 1.5%. If the upper limit is exceeded, the cold rolling property will deteriorate and the decarburization property will deteriorate.

前記成分を含み、残部が鉄および不可避的不純物から
なる珪素鋼スラブは、所定成分に溶製された溶鋼から、
連続鋳造により、或は造塊と分塊圧延により製造され
る。この珪素鋼スラブは所定温度に加熱された後、或は
連続鋳造に次いで直ちに熱延される。この熱延条件は特
別な条件にする必要はない。得られた熱延板は熱延板焼
鈍が施された後、1回冷延されるか、あるいは必要に応
じて中間焼鈍をはさんで2回以上冷延されうる。最終冷
延前の焼鈍(1回冷延のときは熱延板焼鈍)で、インヒ
ビター作用の強いAl Nを析出されるために、950〜1200
℃の高温に加熱し、次いで急冷する連続焼鈍を行う。冷
延は81〜95%の圧下率で行う最終強圧下冷延を含む1回
または2回以上で行われるが、最終強圧下冷延を81〜95
%とするのは主たるインヒビターをAl Nとした板におい
て優れた磁気特性を得るためである。
The silicon steel slab containing the above components, the balance being iron and unavoidable impurities, is a molten steel melted into a predetermined component,
Manufactured by continuous casting or by ingot and slab rolling. The silicon steel slab is hot-rolled after being heated to a predetermined temperature or immediately after continuous casting. The hot rolling conditions do not need to be special conditions. The resulting hot-rolled sheet may be cold-rolled once after hot-rolled sheet annealing, or may be cold-rolled two or more times with intermediate annealing as necessary. In the annealing before the final cold rolling (in the case of one-time cold rolling, hot rolled sheet annealing), 950 to 1200
Continuous annealing is performed by heating to a high temperature of ℃ and then rapidly cooling. The cold rolling is carried out one or more times, including the final strong rolling at a rolling reduction of 81 to 95%, but the final strong rolling is 81 to 95%.
% Is for obtaining excellent magnetic properties in a plate in which the main inhibitor is AlN.

冷延については、実験データを参照して詳細に説明す
る。
The cold rolling will be described in detail with reference to experimental data.

第1表に示す鋼成分からなる熱延板焼鈍されたサンプ
ルを次の条件にて冷延を行なった。
The hot-rolled sheet-annealed sample composed of the steel components shown in Table 1 was cold-rolled under the following conditions.

冷延条件 熱延板(原板)板厚 :2.3mm 仕上板厚 :0.20mm 総圧下率 :91.3% 圧延機ワークロール径:70mmφ 圧延張力 :25kg/mm2 後段パス平均板温 :20〜350℃ 熱延板焼鈍を施した熱延板を、途中板厚が0.40mm以下
の後段パスの平均板温を20〜350℃の範囲内で変更して
冷延し、次いで850℃×150秒にて脱炭焼鈍し、焼鈍分離
剤を塗布乾燥した後、1200℃で仕上焼鈍を行なった。
Cold rolling conditions Hot rolled sheet (original sheet) sheet thickness: 2.3mm Finished sheet thickness: 0.20mm Total rolling reduction: 91.3% Rolling mill work roll diameter: 70mm φ Rolling tension: 25kg / mm 2 Post-pass average sheet temperature: 20 to 350 ° C The hot-rolled sheet subjected to hot-rolled sheet annealing is cold-rolled by changing the average sheet temperature of the subsequent pass having a thickness of 0.40 mm or less in the range of 20 to 350 ° C, and then at 850 ° C for 150 seconds. After decarburizing annealing, applying and drying an annealing separator, finish annealing was performed at 1200 ° C.

かくして得られた一方向性電磁鋼板サンプル1,2,3に
つき、鉄損W17/50,磁束密度B10,結晶粒径,レーザー
処理鉄損向上率を測定し、その結果を第1図〜第4図に
示す。
The iron loss W 17/50 , magnetic flux density B 10 , crystal grain size, and laser treatment iron loss improvement rate were measured for the thus obtained unidirectional magnetic steel sheet samples 1, 2, and 3, and the results are shown in FIGS. As shown in FIG.

これらの図からも明らかな様に、最終冷延時に0.40mm
以下の後段パスの平均板温を150〜230℃で温間圧延した
ものは、鉄損W17/50,磁束密度B10が、大幅に向上し、
結晶粒径が大きくなり、レーザー処理による鉄損向上率
も優れている。
As is clear from these figures, 0.40 mm
In the following post-pass, the average sheet temperature was warm-rolled at 150 to 230 ° C, and the iron loss W 17/50 and magnetic flux density B 10 were greatly improved.
The crystal grain size increases, and the iron loss improvement rate by laser treatment is excellent.

この様に、最終冷延時に、特に薄手時に温間圧延を行
なうと、磁気特性が向上し、結晶粒径が大きくなる理由
は次の様に考えられる。本成分系の特徴である高磁束密
度を得るには、特に板厚0.23のmm以下の薄手材では、最
終冷延率が90%を超える。一方、最終製品の磁性を向上
させるには、1次再結晶後のマトリックスに(110)粒
が多数存在していることが望ましい。しかし、(110)
粒の存在量は、冷延率80%以上で急減してしまうため、
高磁束密度と、(110)の粒を存在させること、とは一
般に両立し難い。特にワークロール径が100mmΦより小
さい冷延機で、圧延張力10〜35kg/mm2の高張力で冷延す
る場合、大径ワークロール、低張力圧延に比べ変形形態
が引抜傾向になり、相対的に(110)粒が更に減少す
る。しかし、残った(110)粒は、非常にシャープであ
り、2次再結晶をしたものは、高磁束密度、低損失,結
晶粒径第傾向を示す。
As described above, when warm rolling is performed at the time of final cold rolling, particularly at the time of thinning, the magnetic properties are improved and the crystal grain size is considered to be as follows. In order to obtain the high magnetic flux density which is a feature of this component system, the final cold rolling reduction exceeds 90%, especially for a thin material having a thickness of 0.23 mm or less. On the other hand, in order to improve the magnetism of the final product, it is desirable that the matrix after the primary recrystallization has a large number of (110) grains. But (110)
Since the abundance of grains rapidly decreases at a cold rolling rate of 80% or more,
It is generally difficult to achieve high magnetic flux density and the presence of (110) grains. In particular the work roll diameter is 100mmΦ smaller cold rolling mill, to cold rolling at a high tension of the rolling tension 10~35kg / mm 2, large-diameter work roll, it makes variations within drawing trend compared with the low tension rolling, relative In addition, (110) grains are further reduced. However, the remaining (110) grains are very sharp, and those subjected to secondary recrystallization show a high magnetic flux density, low loss, and a tendency to the crystal grain size.

特に、薄手製品において、冷延途中の板圧が薄くなっ
た場合、冷延時の板温度を高めることにより、前述の様
な(110)粒の減少を防止するか或は富化することが出
来る。従って板厚0.23mm以下の製品を製造する場合、ワ
ークロール(WR)径100mmφ以下の冷延機を用い、10〜3
5kg/mm2の高張力を適用しないと、所定の板厚まで薄く
することが困難である、この場合、従来の圧延法に比べ
(110)粒が相対的に減少するのに対し、特に薄手での
冷延時の板温を150〜230℃と高めることで、減少する
(110)を粒を補うことができ、従って、シャープな(1
10)粒が存在しうるので、高磁束密度,低鉄損,結晶粒
径大なる製品が得られる。ワークロール径が30mmφ未満
と小さくなると鉄損の劣化が生じ、またロール寿命も短
かくなるので30mmφ以上とする。また途中板厚0.40mm以
下の後段パスでの平均板温が150℃未満では前記のよう
な作用効果は得られず、また、230℃を超えると、組織
の回復が起こり、逆に(100)粒が減少し、特性向上効
果が消失する。
In particular, in the case of a thin product, when the sheet pressure during cold rolling is reduced, it is possible to prevent or enrich the (110) grains as described above by increasing the sheet temperature during cold rolling. . Therefore, when manufacturing a product with a plate thickness of 0.23 mm or less, use a cold rolling machine with a work roll (WR) diameter of 100 mm
If you do not apply a high tension of 5 kg / mm 2, it is difficult to thin to a predetermined thickness, in this case, while compared with the conventional rolling method (110) grains relatively decreased, especially sheer By increasing the sheet temperature during cold rolling to 150-230 ° C, the decrease (110) can be compensated for by the grains, and therefore, the sharp (1)
10) Since grains may be present, a product having a high magnetic flux density, a low iron loss, and a large grain size can be obtained. When the diameter of the work roll is smaller than 30 mmφ, iron loss is deteriorated and the life of the roll is shortened. If the average plate temperature in the subsequent pass with a plate thickness of 0.40 mm or less in the middle is less than 150 ° C, the above-mentioned effects cannot be obtained. Grains are reduced, and the effect of improving properties is lost.

(実施例) 実施例1 第2表に示す珪素鋼スラブを熱延し、得られた板厚2.
3mmの熱延板を板厚1.5mmへ冷延し、これにAl Nの析出焼
鈍を施し、第3図に示す条件で最終冷間圧延した。その
後、850℃×120秒にて、脱炭焼鈍し、MgOを主成分とす
る焼鈍分離剤を塗布、乾燥後、1200℃×20時間の仕上焼
鈍を行った。
(Example) Example 1 A silicon steel slab shown in Table 2 was hot-rolled to obtain a sheet thickness of 2.
A hot-rolled 3 mm sheet was cold-rolled to a thickness of 1.5 mm, subjected to precipitation annealing of AlN, and finally cold-rolled under the conditions shown in FIG. Thereafter, decarburization annealing was performed at 850 ° C. × 120 seconds, an annealing separator containing MgO as a main component was applied, dried, and then subjected to finish annealing at 1200 ° C. × 20 hours.

この様にして製造された一方向性電磁鋼板の各サンプ
ルについて鉄損W17/50と磁束密度B10を測定した。その
結果を仕上冷延における板温度と共に第4図に示す。
The iron loss W 17/50 and the magnetic flux density B 10 were measured for each sample of the grain- oriented electrical steel sheet manufactured in this manner. The results are shown in FIG. 4 together with the sheet temperature in finish cold rolling.

実施例2 第5表に示す鋼成分からなる珪素鋼スラブを熱延し板
厚2.4mmの熱延板とした。次いで、熱延板焼鈍を行な
い、第6表に示す条件で仕上冷延を行い、850℃×120秒
で脱炭焼鈍し、MgOを主成分とする焼鈍分離剤を塗布,
乾燥後1200℃×20時間の仕上焼鈍を行なった。
Example 2 A silicon steel slab composed of the steel components shown in Table 5 was hot-rolled into a hot-rolled sheet having a thickness of 2.4 mm. Next, hot-rolled sheet annealing is performed, finish cold rolling is performed under the conditions shown in Table 6, decarburization annealing is performed at 850 ° C. × 120 seconds, and an annealing separator containing MgO as a main component is applied.
After drying, finish annealing was performed at 1200 ° C. for 20 hours.

製造された一方向性電磁鋼板の各サンプルについて鉄
損W17/50,と磁束密度B10,結晶粒径,レーザー処理時
の鉄損向上率を測定した。この結果を第7表に示す。
The iron loss W 17/50 , the magnetic flux density B 10 , the crystal grain size, and the iron loss improvement rate during laser treatment were measured for each sample of the manufactured grain-oriented electrical steel sheet. The results are shown in Table 7.

(発明の効果) 以上の実施例の結果から明らかなように、本発明によ
ると、鉄損が著しく低減され、かつ、レーザー処理効果
に優れた一方向性電磁鋼板が製造され得るので、産業上
寄与するところが極めて大である。
(Effects of the Invention) As is clear from the results of the above examples, according to the present invention, a grain-oriented electrical steel sheet with significantly reduced iron loss and excellent laser treatment effect can be manufactured, and The contribution is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、仕上冷延時の途中板厚0.40mm以下の平均板温
と鉄損の関係、第2図は、仕入冷延時の途中板厚0.40mm
以下の平均板温と磁束密度の関係、第3図は、仕上冷延
時の途中板厚0.40mm以下の平均板温と結晶粒径の関係、
第4図は、仕上冷延時の途中板厚0.40mm以下の平均板温
とレーザー処理による鉄損向上率の関係を示す図であ
る。
Fig. 1 shows the relationship between the average sheet temperature and the core loss of 0.40mm or less in the middle of the cold rolling during finishing, and Fig. 2 shows the 0.40mm in the middle of the cold rolling during finishing.
The relationship between the average sheet temperature and the magnetic flux density below, FIG. 3 shows the relation between the average sheet temperature and the crystal grain size of 0.40 mm or less in the middle during finish cold rolling,
FIG. 4 is a graph showing the relationship between the average sheet temperature of a sheet thickness of 0.40 mm or less during finish cold rolling and the iron loss improvement rate by laser treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒木 克郎 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式會社第3技術研究所内 (58)調査した分野(Int.Cl.6,DB名) C21D 8/12──────────────────────────────────────────────────続 き Continuing from the front page (72) Katsuro Kuroki Inventor 1-1-1 Edamitsu, Yawatahigashi-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation 3rd Technical Research Institute (58) Field surveyed (Int. Cl. 6 , DB name) C21D 8/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.025〜0.085%,Si:2.5〜4.5
%,酸可溶性Al:0.010〜0.065%,Mn:0.03〜0.15%,S:0.
010〜0.050%,N:0.0030〜0.0120%を含み、残部が鉄お
よび不可避的不純物からなる電磁鋼スラブを熱延し、最
終強冷延の前に950〜1200℃の範囲で連続焼鈍後急冷
し、Al Nを析出させ、81〜95%の圧下率範囲で行う最終
強冷延を含む1回もしくは2回以上の冷延により0.15〜
0.23mmの最終板厚とし、脱炭し、仕上焼鈍する薄手一方
向性電磁鋼板の製造方法において、前記強圧下率で行う
冷延を30〜100mm径の小径ロールにて、単位面積当りの
圧延張力が10〜35kg/mm2の高張力下で、前段パスを30%
以上の高圧下率で行い、途中板厚が0.40mm以下の後段パ
スの平均板温を150〜230℃とすることを特徴とする高磁
束密度薄手一方向性電磁鋼板の製造方法。
C .: 0.025 to 0.085% by weight, Si: 2.5 to 4.5% by weight.
%, Acid soluble Al: 0.010 ~ 0.065%, Mn: 0.03 ~ 0.15%, S: 0.
Hot rolled electromagnetic steel slab containing 010 ~ 0.050%, N: 0.0030 ~ 0.0120%, balance is iron and unavoidable impurities, and quenched after continuous annealing at 950 ~ 1200 ° C before final strong cold rolling , AlN is precipitated, and is subjected to one or two or more cold rolling operations including a final strong cold rolling operation in a rolling reduction range of 81 to 95%.
In the method for producing a thin unidirectional magnetic steel sheet having a final thickness of 0.23 mm, decarburized, and finish-annealed, the cold rolling performed at the above-described high rolling reduction is performed by a small-diameter roll having a diameter of 30 to 100 mm, and is rolled per unit area. tension under high tension 10~35kg / mm 2, the front path 30%
A method for producing a thin magnetically unidirectional magnetic steel sheet having a high magnetic flux density, characterized in that the above-mentioned high-pressure reduction is performed, and the average sheet temperature of a subsequent pass whose sheet thickness is 0.40 mm or less is 150 to 230 ° C.
【請求項2】重量%で、C:0.025〜0.085%,Si:2.5〜4.5
%,酸可溶性Al:0.010〜0.065%,Mn:0.03〜0.15%,S:0.
010〜0.050%,N:0.0030〜0.0120%を含み、さらにCu,S
n,Cr,Moの1種または2種以上を合計で1.5%以下含有
し、残部が鉄および不可避的不純物からなる電磁鋼スラ
ブを熱延し、最終強冷延の前に950〜1200℃の範囲で連
続焼鈍後急冷し、Al Nを析出させ、81〜95%の圧下率範
囲で行う最終強冷延を含む1回もしくは2回以上の冷延
により0.15〜0.23mmの最終板厚とし、脱炭し、仕上焼鈍
する薄手一方向性電磁鋼板の製造方法において、前記強
圧下率で行う冷延を30〜100mm径の小径ロールにて、単
位面積当りの圧延張力が10〜35kg/mm2の高張力下で、前
段パスを30%以上の高圧下率で行い、途中板厚が0.40mm
以下の後段パスの平均板温を150〜230℃とすることを特
徴とする高磁束密度薄手一方向性電磁鋼板の製造方法。
2. C .: 0.025 to 0.085% by weight, Si: 2.5 to 4.5% by weight.
%, Acid soluble Al: 0.010 ~ 0.065%, Mn: 0.03 ~ 0.15%, S: 0.
010 to 0.050%, N: 0.0030 to 0.0120%, Cu, S
One or two or more of n, Cr and Mo are contained in a total of 1.5% or less, and the remainder is hot-rolled from an electromagnetic steel slab composed of iron and unavoidable impurities. Quenching after continuous annealing in the range, AlN is precipitated, and the final sheet thickness is 0.15 to 0.23 mm by one or more cold rolling including final strong cold rolling performed in the rolling reduction range of 81 to 95%, In the method for producing a thin unidirectional magnetic steel sheet to be decarburized and subjected to finish annealing, the cold rolling performed at the high reduction rate is performed using a small-diameter roll having a diameter of 30 to 100 mm, and the rolling tension per unit area is 10 to 35 kg / mm 2. The pre-pass is performed at a high pressure reduction of 30% or more under high tension of
A method for producing a high magnetic flux density thin unidirectional magnetic steel sheet, wherein the average sheet temperature of the following second pass is 150 to 230 ° C.
JP10216689A 1989-04-21 1989-04-21 Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet Expired - Lifetime JP2784661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10216689A JP2784661B2 (en) 1989-04-21 1989-04-21 Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10216689A JP2784661B2 (en) 1989-04-21 1989-04-21 Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet

Publications (2)

Publication Number Publication Date
JPH02282422A JPH02282422A (en) 1990-11-20
JP2784661B2 true JP2784661B2 (en) 1998-08-06

Family

ID=14320125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10216689A Expired - Lifetime JP2784661B2 (en) 1989-04-21 1989-04-21 Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet

Country Status (1)

Country Link
JP (1) JP2784661B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470652B1 (en) * 2000-12-20 2005-03-07 주식회사 포스코 A method for manufacturing high strength cold rolled steel sheet with superior formability
EP2140949B1 (en) 2007-04-24 2017-05-31 Nippon Steel & Sumitomo Metal Corporation Process for producing unidirectionally grain oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JPH02282422A (en) 1990-11-20

Similar Documents

Publication Publication Date Title
JP5423909B1 (en) Method for producing grain-oriented electrical steel sheet
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH055126A (en) Production of nonoriented silicon steel sheet
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH01162725A (en) Production of silicon steel sheet having good magnetic characteristic
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2001192732A (en) Cold rolling method for obtaining grain oriented silicon steel sheet excellent in magnetic property
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0257125B2 (en)
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH05279742A (en) Manufacture of silicon steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

EXPY Cancellation because of completion of term