JP2679928B2 - Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss - Google Patents

Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Info

Publication number
JP2679928B2
JP2679928B2 JP5003441A JP344193A JP2679928B2 JP 2679928 B2 JP2679928 B2 JP 2679928B2 JP 5003441 A JP5003441 A JP 5003441A JP 344193 A JP344193 A JP 344193A JP 2679928 B2 JP2679928 B2 JP 2679928B2
Authority
JP
Japan
Prior art keywords
strip
strain
iron loss
heating
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5003441A
Other languages
Japanese (ja)
Other versions
JPH06212274A (en
Inventor
健司 小菅
美樹雄 伊藤
尚 吉村
晴雄 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5003441A priority Critical patent/JP2679928B2/en
Publication of JPH06212274A publication Critical patent/JPH06212274A/en
Application granted granted Critical
Publication of JP2679928B2 publication Critical patent/JP2679928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、2.5〜7.0%のS
iを含み、結晶粒の(110)〔001〕方位の集積度
が高く、かつ結晶粒径が従来になく微細なことにより、
極めて低い鉄損をもつ一方向性電磁鋼板の製造方法を提
供するものである。
The present invention relates to a method for producing 2.5-7.0% S
Since i has a high degree of integration in the (110) [001] orientation of crystal grains and the crystal grain size is finer than ever before,
The present invention provides a method for manufacturing a grain-oriented electrical steel sheet having extremely low iron loss.

【0002】[0002]

【従来の技術】一般に、一方向性電磁鋼板の磁気特性は
鉄損特性と励磁特性の両方で評価される。励磁特性を高
めることは設計磁束密度を高める機器の小型化に有効で
ある。一方鉄損特性を少なくすることは、電気機器とし
て使用する際、熱エネルギーとして失われるものを少な
くし、消費電力を節約できる点で有効である。さらに、
製品の結晶粒の〈100〉軸を圧延方向に揃えること
は、磁化特性を高め、鉄損特性も低くすることができ、
近年特にこの面で多くの研究が重ねられ、様々な製造技
術が開発された。この結果、現在、工業生産されている
代表的な一方向性電磁鋼板の製造技術には、3つの代表
的な製造技術がある。
2. Description of the Related Art Generally, the magnetic properties of a grain-oriented electrical steel sheet are evaluated based on both iron loss properties and excitation properties. Increasing the excitation characteristics is effective in reducing the size of equipment that increases the design magnetic flux density. On the other hand, reducing the iron loss characteristics is effective in that when it is used as an electric device, heat loss is reduced and power consumption can be saved. further,
Aligning the <100> axes of the crystal grains of the product in the rolling direction can improve the magnetization characteristics and lower the iron loss characteristics.
In recent years, many studies have been made particularly on this aspect, and various manufacturing techniques have been developed. As a result, there are three typical manufacturing techniques for the typical industrially produced grain-oriented electrical steel sheets.

【0003】第一の技術は、特公昭30−3651号に
開示されたMnSをインヒビターとして機能させる、2
回冷延工程による製造技術がある。この製造方法は、二
次再結晶の粒径が小さいので、比較的鉄損は良好である
が、高い磁束密度が得られないという問題があった。こ
れに対して、高い磁束密度を得るために、第二の技術と
して、特公昭40−15644号が開示された。これ
は、AlN+MnSをインヒビターとして機能させ、最
終冷延工程における圧延率が80%を超える強圧下とす
る製造技術である。この方法により二次再結晶粒の(1
10)〔001〕方位の集積度が高く、B8 が1.87
0(T)以上の高磁束密度を有する方向性電磁鋼板が得
られる。さらに、第三の技術として、特公昭51−13
469号に開示されたMnSまたはMnSe+Sbをイ
ンヒビターとして機能させる、2回冷延工程による製造
技術が開発された。
The first technique is to cause MnS disclosed in JP-B-30-3651 to function as an inhibitor.
There is a manufacturing technology based on the rolling process. This manufacturing method has a relatively good iron loss due to a small particle size of the secondary recrystallization, but has a problem that a high magnetic flux density cannot be obtained. On the other hand, in order to obtain a high magnetic flux density, Japanese Patent Publication No. 40-15644 was disclosed as a second technique. This is a manufacturing technique in which AlN + MnS is made to function as an inhibitor and the rolling reduction in the final cold rolling step is under high pressure exceeding 80%. By this method, the secondary recrystallized grains (1
10) The degree of integration in the [001] direction is high, and B 8 is 1.87.
A grain-oriented electrical steel sheet having a high magnetic flux density of 0 (T) or more can be obtained. Furthermore, as a third technique, Japanese Patent Publication No. 51-13
A manufacturing technique has been developed in which the MnS or MnSe + Sb disclosed in No. 469 functions as an inhibitor by a double cold rolling process.

【0004】しかし、上記第二の技術による製造方法で
は、高磁束密度を有する方向性電磁鋼板が得られたとし
ても、二次再結晶粒径が10mmオーダの大きなものが得
られていた。さて、一般に鉄損は大きく分けて履歴損と
渦電流損の二つからなる。履歴損に影響を与える物理的
な要因として、上述の結晶方位の他に材料の純度や内部
歪みがある。また、渦電流損に影響を与える物理的な要
因として、鋼板の電気抵抗(Si等の成分量)、板厚、
磁区の大きさ(結晶粒度)や鋼板に及ぼす張力等があ
る。通常の方向性電磁鋼板では渦電流損が全鉄損の3/
4以上を占めるため履歴損より渦電流損を下げる方が全
鉄損を下げる上でより効果的である。
However, in the manufacturing method according to the second technique, even if a grain-oriented electrical steel sheet having a high magnetic flux density is obtained, a large secondary recrystallized grain size of the order of 10 mm has been obtained. By the way, generally, iron loss is roughly divided into hysteresis loss and eddy current loss. Physical factors that affect the hysteresis loss include the purity of the material and internal strain in addition to the above-described crystal orientation. In addition, as physical factors that affect the eddy current loss, electrical resistance of the steel sheet (amount of components such as Si), sheet thickness,
There are magnetic domain size (grain size) and tension applied to the steel sheet. In normal grain-oriented electrical steel sheets, the eddy current loss is 3/3 of the total iron loss.
Since it occupies 4 or more, it is more effective to reduce the eddy current loss than the hysteresis loss in reducing the total iron loss.

【0005】したがって、上記第二の技術による製造方
法では、B8 が1.870(T)以上の高磁束密度を有
する方向性電磁鋼板が得られたとしても、二次再結晶粒
径が10mmオーダと大きいので、渦電流損に影響する磁
区幅が大きくなり、その分鉄損も大きかった。そこで鉄
損を改善するために、特公昭57−2252号に開示さ
れている鋼板にレーザー処理を施す方法、さらに特公昭
58−2569号に開示されている鋼板に機械的な歪み
を加える方法等、磁区を細分化する様々な方法が開示さ
れている。
Therefore, in the manufacturing method according to the second technique, even if a grain-oriented electrical steel sheet having a high magnetic flux density of B 8 of 1.870 (T) or more is obtained, the secondary recrystallized grain size is 10 mm. Since it is large on the order, the magnetic domain width that affects the eddy current loss is large, and the iron loss is also large accordingly. Therefore, in order to improve iron loss, a method of subjecting a steel sheet disclosed in JP-B-57-2252 to laser treatment, and a method of applying mechanical strain to the steel sheet disclosed in JP-B-58-2569, etc. , Various methods of subdividing magnetic domains have been disclosed.

【0006】さらに、上記問題を解決するため、そこ
で、微細な二次再結晶粒径を持つことにより磁区幅を小
さくし、従来よりも低い鉄損を有する一方向性電磁鋼板
の製造方法を提供するものが開示されている。たとえ
ば、特開平1−290716号では、常温圧延された鋼
板に100℃/秒以上の加熱速度で675℃以上の温度
へ超急速焼きなまし処理を施し、該ストリップを脱炭素
処理し、最終高温焼きなまし処理を施して二次成長を行
い、それによって前記ストリップが低減した寸法の二次
粒子および応力除去焼きなまし処理後も有意の変化なし
に持続する改善された鉄損をもつことを特徴とする方法
が開示されている。しかし、この方法は確かにある程度
小さな二次再結晶粒は得られるのではあるが、急速加熱
処理のみを施すことを目的としており、この製造方法で
は余り良好な鉄損値が得られないことが判明した。
Further, in order to solve the above problems, there is provided a method for producing a grain-oriented electrical steel sheet having a fine secondary recrystallized grain size to reduce a magnetic domain width and an iron loss lower than conventional ones. What is done is disclosed. For example, in Japanese Patent Laid-Open No. 1-290716, a cold rolled steel sheet is subjected to a super rapid annealing treatment at a heating rate of 100 ° C./sec or more to a temperature of 675 ° C. or more, the strip is decarbonized, and finally subjected to a high temperature annealing treatment. A secondary growth of the strip, whereby the strip has reduced size secondary particles and improved core loss that persists without significant change after stress relief anneal treatment. Has been done. However, although this method can obtain secondary recrystallized grains that are small to some extent, it is intended only for rapid heat treatment, and this production method does not provide a very good iron loss value. found.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記提案の方
法よりもさらに微細な二次再結晶粒径をもつことによ
り、極めて低い鉄損をもつ一方向性電磁鋼板を得る方法
を提供することにあり、その特徴は急速加熱し、その間
に微少な歪みを導入することにある。
The present invention provides a method for obtaining a grain-oriented electrical steel sheet having an extremely low iron loss by having a finer secondary recrystallized grain size than that of the above-mentioned method. The feature is in rapid heating and introduction of minute strain during the heating.

【0008】[0008]

【課題を解決するための手段】本発明では、上記課題を
解決すべく検討を重ねた結果、重量でC:0.10%以
下、Si:2.5〜7.0%ならびに通常のインヒビタ
ー成分を含み、残余はFeおよび不可避的不純物よりな
る、最終製品厚まで圧延されたストリップを、80℃/
秒以上の加熱速度で700℃以上の温度へ急速加熱し、
かつ上記急速加熱される間に公称歪み0.1%以上の微
少歪みを導入する急速加熱および微少歪み導入処理を施
し、得られたストリップを脱炭焼鈍し、最終仕上焼鈍を
施すことを特徴とすることにより、極めて低い鉄損をも
つ一方向性電磁鋼板が得られることを見い出した。
In the present invention, as a result of repeated studies to solve the above-mentioned problems, C: 0.10% or less by weight, Si: 2.5 to 7.0% and usual inhibitor components were obtained. A strip rolled to the final product thickness, containing the balance of Fe and unavoidable impurities, at 80 ° C. /
Rapid heating to a temperature of 700 ° C or higher at a heating rate of 2 seconds or more,
In addition, rapid heating for introducing a minute strain of 0.1% or more of nominal strain during the rapid heating and a process for introducing a minute strain are performed, and the obtained strip is decarburized and annealed, and finally finished annealed. It was found that by doing so, a grain-oriented electrical steel sheet having an extremely low iron loss can be obtained.

【0009】さらに、ストリップの急速加熱および微少
歪み導入処理が、ロール間で通電することにより急速加
熱され、かつ加熱された側のロールで微少歪み導入が行
われる方法により、極めて低い鉄損をもつ一方向性電磁
鋼板が得られることが可能であること。さらに、これら
急速加熱および微少歪み導入処理が脱炭焼鈍の加熱段階
として行われても、極めて低い鉄損をもつ一方向性電磁
鋼板が得られることを見い出した。
Furthermore, the rapid heating of the strip and the process of introducing the slight strain have a very low iron loss due to the method of rapidly heating the roll by supplying electricity between the rolls and introducing the slight strain in the roll on the heated side. It is possible to obtain unidirectional electrical steel sheets. Furthermore, they have found that even if the rapid heating and the treatment for introducing a slight strain are carried out as a heating step of decarburization annealing, a grain-oriented electrical steel sheet having an extremely low iron loss can be obtained.

【0010】以下に本発明を詳細に説明する。一方向性
電磁鋼板は、その製造工程の最終焼鈍中に二次再結晶を
充分に起こさせ、所謂ゴス集合組織を得ることにより製
造できる。このゴス集合組織を得るためには、一次再結
晶粒の成長粗大化を抑制し、(110)〈001〉方位
の再結晶粒のみを或る温度範囲で選択的に成長させる。
すなわち、二次再結晶させるような素地を作ってやるこ
とが必要である。そのためには、素材に微細な介在物が
一次再結晶粒の成長の抑制材(インヒビター)として、
均一に分散していなければならない。また、この時の最
適な析出サイズは100オングストロームオーダーであ
ると言われている。
Hereinafter, the present invention will be described in detail. The grain-oriented electrical steel sheet can be manufactured by sufficiently causing secondary recrystallization during the final annealing in the manufacturing process to obtain a so-called Goss texture. In order to obtain this Goss texture, coarsening of primary recrystallized grains is suppressed, and only recrystallized grains of the (110) <001> orientation are selectively grown in a certain temperature range.
That is, it is necessary to make a base material for secondary recrystallization. For that purpose, fine inclusions in the material serve as inhibitors (inhibitors) for the growth of primary recrystallized grains,
Must be evenly dispersed. Further, it is said that the optimum precipitation size at this time is on the order of 100 Å.

【0011】急速加熱の効果としては、特開平1−29
0716号に述べられているように、急速加熱により後
の集合組織が、通常加熱と比較して一次再結晶後の(1
10)〈001〉方位粒が増加し、これが二次再結晶の
核となり、ある程度小さな二次再結晶粒が得られる。上
記特許の製造方法における超急速加熱処理のメカニズム
は、最終脱炭素焼きなまし工程前の一次再結晶組成の変
化と高温焼きなまし処理工程前の一次再結晶組織の変化
との二つの変化を包含する、と述べられている。しかし
ながら本発明者らは、この製造方法のみでは一次再結晶
組織の制御、つまり一次再結晶粒の成長の抑制材(イン
ヒビター)の析出制御が不充分であることを突き止め
た。
The effect of rapid heating is described in JP-A-1-29.
As described in No. 0716, after the rapid heating, the texture after the primary recrystallization (1
10) The number of <001> oriented grains increases, which serves as a nucleus for secondary recrystallization, and secondary recrystallized grains that are small to some extent are obtained. The mechanism of the ultra-rapid heat treatment in the manufacturing method of the above patent includes two changes, a change in primary recrystallization composition before the final decarbonization annealing step and a change in primary recrystallization structure before the high temperature annealing step, and Stated. However, the present inventors have found out that the control of the primary recrystallization structure, that is, the precipitation control of the inhibitor (inhibitor) for the growth of primary recrystallized grains is not sufficient with this manufacturing method alone.

【0012】そこで、急速加熱における析出サイズの制
御法について、検討を重ねた結果、急速加熱段階に、公
称歪み0.1%以上の微少歪み導入処理を施すことによ
り、高温域で最適な析出サイズの析出物が歪み誘起析出
することを見い出し、これにより、従来になく微細な二
次再結晶粒径を得られ、極めて低い鉄損を有する一方向
性電磁鋼板を得ることができるようになった。
Therefore, as a result of repeated studies on the control method of the precipitation size in the rapid heating, the optimum precipitation size in the high temperature range was obtained by applying a slight strain of 0.1% or more of the nominal strain in the rapid heating stage. It was found that the precipitates of No.1 were strain-induced precipitation, which made it possible to obtain a finer secondary recrystallized grain size than ever before and to obtain a grain-oriented electrical steel sheet with extremely low iron loss. .

【0013】[0013]

【作用】次に本発明において、鋼組成および製造条件を
前記のように限定した理由を、詳細に説明する。この鋼
成分の限定理由は下記のとおりである。Cについての上
限0.10%は、これ以上多くなると脱炭所要時間が長
くなり、経済的に不利となるので限定した。Siは鉄損
を良くするために下限を2.5%とするが、多すぎると
冷間圧延の際に割れ易く加工が困難となるので上限を
7.0%とする。
Next, the reason why the steel composition and the manufacturing conditions are limited as described above in the present invention will be described in detail. The reasons for limiting the steel components are as follows. The upper limit of 0.10% for C is limited because if it is more than this, the time required for decarburization becomes longer and it is economically disadvantageous. The lower limit of Si is set to 2.5% in order to improve iron loss, but if it is too large, it is likely to break during cold rolling and processing becomes difficult, so the upper limit is set to 7.0%.

【0014】さらに、一方向性電磁鋼板を製造するため
に、通常のインヒビター成分として以下の成分元素を添
加することが好ましい。インヒビターとしてMnSを利
用する場合は、MnとSを添加する。Mnは、MnSの
適当な分散状態を得るため、0.02〜0.15%が望
ましい。SはMnS,(Mn・Fe)Sを形成するため
に必要な元素で、適当な分散状態を得るため、0.00
1〜0.05%が望ましい。さらに、インヒビターとし
てAlNを利用する場合は、酸可溶性AlとNを添加す
る。酸可溶性Al,AlNの適正な分散状態を得るため
0.01〜0.04%が望ましい。Nも、AlNの適正
な分散状態を得るため0.003〜0.02%が望まし
い。その他、Cu,Sn,Sb,Cr,Biはインヒビ
ターを強くする目的で1.0%以下において少なくとも
1種添加しても良い。
Further, in order to produce a grain-oriented electrical steel sheet, it is preferable to add the following component elements as usual inhibitor components. When MnS is used as an inhibitor, Mn and S are added. Mn is desirably 0.02 to 0.15% in order to obtain an appropriate dispersion state of MnS. S is an element necessary for forming MnS and (Mn · Fe) S.
1-0.05% is desirable. Further, when AlN is used as an inhibitor, acid-soluble Al and N are added. In order to obtain an appropriate dispersion state of acid-soluble Al and AlN, 0.01 to 0.04% is desirable. N is also preferably 0.003 to 0.02% in order to obtain a proper dispersion state of AlN. In addition, at least one of Cu, Sn, Sb, Cr and Bi may be added at 1.0% or less for the purpose of strengthening the inhibitor.

【0015】次に、上記の溶鋼を通常の鋳塊鋳造法また
は連続鋳造法、熱間圧延により中間厚のストリップを得
る。この時ストリップ鋳造法も本発明に適用することも
可能である。さらに、インヒビターとして窒化物を必要
とする場合は、AlN等の析出のために950〜120
0℃で30秒〜30分の中間焼鈍を行うことが望まし
い。次に、1回ないし中間焼鈍を含む2回以上の圧延に
より最終製品厚のストリップを得る。この時の最終圧下
率は高いゴス集積度をもつ製品を得るため、圧下率50
%以上が望ましい。下限50%はこれ以下では必要なゴ
ス核が得られないからである。
Next, the above molten steel is subjected to a conventional ingot casting method or continuous casting method and hot rolling to obtain a strip having an intermediate thickness. At this time, the strip casting method can also be applied to the present invention. Further, when a nitride is required as an inhibitor, 950 to 120 is required for precipitation of AlN or the like.
It is desirable to perform intermediate annealing at 0 ° C. for 30 seconds to 30 minutes. Next, a strip of the final product thickness is obtained by rolling once or twice or more including intermediate annealing. The final rolling reduction at this time is 50% in order to obtain a product with a high degree of Goss accumulation.
% Or more is desirable. The lower limit of 50% is that the necessary Goss nucleus cannot be obtained below this.

【0016】以上、最終製品厚まで圧延されたストリッ
プに急速加熱および微少歪み導入処理を施す。まず、ス
トリップを80℃/秒以上の加熱速度で700℃以上の
温度へ急速加熱する。この時の加熱速度の下限80℃/
秒は、これ以下では二次再結晶の核となる一次再結晶後
での(110)〈001〉方位粒が減少し、微細な二次
再結晶粒が得られないので限定した。また、下限700
℃は、これ以下では再結晶が開始されないので限定し
た。さらに、上記急速加熱される間に、公称歪み0.1
%以上の微少歪み導入を施す。この急速加熱される間と
は、急速加熱開始温度から完了温度までの間を言う。
As described above, the strip rolled to the final product thickness is subjected to rapid heating and a process for introducing a slight strain. First, the strip is rapidly heated to a temperature of 700 ° C. or more at a heating rate of 80 ° C./sec or more. Lower limit of heating rate at this time 80 ℃ /
The second is limited because the (110) <001> oriented grains after the primary recrystallization, which is the nucleus of the secondary recrystallization, is reduced below this, and fine secondary recrystallized grains cannot be obtained. Also, the lower limit 700
The temperature was limited to below 0 ° C because recrystallization did not start. Furthermore, during the rapid heating, a nominal strain of 0.1
Introduce a micro strain of at least%. The period of rapid heating refers to the period from the rapid heating start temperature to the completion temperature.

【0017】図1に、0.22mm厚のストリップを昇温
速度180℃/秒で825℃まで急速加熱する際、スト
リップに導入される歪みと得られる製品鉄損特性との関
係を示す。公称歪みの0.1%以上で良好な鉄損値が得
られている。これにより、公称歪みの下限値を0.1%
に限定した。なお、以上の急速加熱および微少歪み導入
処理は、皮膜形成等の問題からできるだけ還元雰囲気あ
るいは無酸化雰囲気中で実施することが望ましい。
FIG. 1 shows the relationship between the strain introduced into the strip and the product iron loss characteristics obtained when the strip having a thickness of 0.22 mm is rapidly heated to 825 ° C. at a heating rate of 180 ° C./sec. A good iron loss value is obtained at 0.1% or more of the nominal strain. As a result, the lower limit of the nominal strain is 0.1%
Limited to. In addition, it is desirable to carry out the above rapid heating and minute strain introduction treatment in a reducing atmosphere or a non-oxidizing atmosphere as much as possible in view of problems such as film formation.

【0018】さらに、上記の急速加熱および微少歪み導
入処理は、ロール間に通電する方法により可能である。
図2に、本発明での処理方法の一つの実施例の概略図を
示す。ストリップを挟む上下一対のロールを二組設け、
ロールR1,R2間のストリップSに通電することによ
り、ストリップSを700℃以上の温度へ80℃/秒以
上の加熱速度で急速加熱し、さらに加熱された側のロー
ルR2により、急速加熱完了温度P点で公称歪み0.1
%以上の微少歪みを導入する。この時、ロールの抜熱に
よりストリップの若干の温度下降が起こる場合が考えら
れる。
Further, the rapid heating and the process for introducing a slight strain can be performed by a method of energizing between rolls.
FIG. 2 shows a schematic diagram of one embodiment of the treatment method according to the present invention. Two pairs of upper and lower rolls sandwiching the strip are provided,
By energizing the strip S between the rolls R1 and R2, the strip S is rapidly heated to a temperature of 700 ° C. or more at a heating rate of 80 ° C./sec or more, and further heated by the roll R2 on the heated side to a rapid heating completion temperature. Nominal strain of 0.1 at point P
Introduce a micro strain of more than%. At this time, it is conceivable that the temperature of the strip may slightly drop due to heat removal from the roll.

【0019】以上の処理は皮膜形成等の問題から、装置
ボックスBはできるだけ還元雰囲気中で実施することが
望ましい。また、この微少な歪み導入により、加熱され
たストリップの形状を改善することも可能である。な
お、上記の急速加熱および微少歪み導入処理は、次に施
される脱炭焼鈍前に行われても、脱炭焼鈍の加熱段階と
して脱炭焼鈍工程に組み込むことも可能である。
From the problems of film formation and the like, it is desirable to carry out the above treatment in the apparatus box B in a reducing atmosphere as much as possible. It is also possible to improve the shape of the heated strip by introducing this slight strain. The rapid heating and the process for introducing the slight strain may be performed before the decarburization annealing to be performed next, or may be incorporated in the decarburization annealing step as a heating step of the decarburization annealing.

【0020】この後は、湿水素雰囲気中で脱炭焼鈍を行
う、この時製品での磁気特性を劣化させないため炭素は
0.005%以下に低減されなければならない。ここ
で、熱延でのスラブ加熱温度が低く、AlNのみをイン
ヒビターとして利用する場合は、アンモニア雰囲気中で
窒化処理を付加することもある。さらに、MgO等の焼
鈍分離剤を塗布して、二次再結晶と純化のため1100
℃以上の仕上焼鈍を行うことで、極めて低い鉄損特性を
有する一方向性電磁鋼板が製造される。以上得られた製
品に、さらに鉄損を良好にするため、上記一方向性電磁
鋼板に、磁区を細分化するための処理を施すことも可能
である。
After that, decarburization annealing is performed in a wet hydrogen atmosphere. At this time, carbon must be reduced to 0.005% or less so as not to deteriorate the magnetic properties of the product. Here, when the slab heating temperature in hot rolling is low and only AlN is used as an inhibitor, nitriding treatment may be added in an ammonia atmosphere. Further, an annealing separator such as MgO is applied, and 1100 is used for secondary recrystallization and purification.
By performing finish annealing at a temperature of ℃ or more, a grain-oriented electrical steel sheet having extremely low iron loss characteristics can be manufactured. In order to further improve the iron loss of the obtained product, it is possible to subject the above-mentioned grain-oriented electrical steel sheet to a treatment for subdividing magnetic domains.

【0021】[0021]

【実施例】【Example】

(実施例1)表1に示す化学成分を含み、0.22mm厚
にまで最終冷延されたストリップを一組の加熱電極を有
する直接通電加熱装置により種々の条件で加熱した。同
時に、加熱電極間に張力を変更させて種々の歪みを導入
させた。その時の加熱速度と到達温度、導入された歪み
を表2に示す。以上の処理の後、還元雰囲気中で常温ま
で冷却した。
Example 1 A strip containing the chemical components shown in Table 1 and finally cold rolled to a thickness of 0.22 mm was heated under various conditions by a direct current heating device having a set of heating electrodes. At the same time, the tension was changed between the heating electrodes to introduce various strains. Table 2 shows the heating rate, the ultimate temperature, and the introduced strain at that time. After the above processing, it was cooled to room temperature in a reducing atmosphere.

【0022】次に湿潤水素中で脱炭焼鈍し、MgO粉を
塗布した後、1200℃に10時間、水素ガス雰囲気中
で高温焼鈍を行った。表2に得られた製品の二次再結晶
粒径と、磁気特性を示す。製品の磁気特性は、0.1%
以上の微少な歪みを導入することにより、従来よりも微
細な二次再結晶粒径が得られ、極めて低い鉄損を有する
一方向性電磁鋼板が得られている。
Next, decarburization annealing was performed in wet hydrogen, MgO powder was applied, and then high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Table 2 shows the secondary recrystallized grain size and magnetic properties of the obtained products. The magnetic property of the product is 0.1%
By introducing the above-mentioned minute strain, a finer secondary recrystallized grain size than before and a grain-oriented electrical steel sheet having extremely low iron loss have been obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】(実施例2)表1に示す化学成分を含み、
0.27mm厚にまで最終冷延されたストリップを直接通
電加熱装置により250℃/秒の昇温速度で840℃ま
で加熱した。同時に、加熱電極間に張力付加し0.25
%の歪みを導入させた。続けてストリップを840℃の
均一温度の湿潤水素中で脱炭焼鈍した。
Example 2 Including the chemical components shown in Table 1,
The strip finally cold rolled to a thickness of 0.27 mm was heated to 840 ° C. at a heating rate of 250 ° C./sec by a direct current heating device. At the same time, tension is applied between the heating electrodes to 0.25
% Strain was introduced. The strip was subsequently decarburized annealed in wet hydrogen at a uniform temperature of 840 ° C.

【0026】この後、MgO粉を塗布した後、1200
℃に10時間、水素ガス雰囲気中で高温焼鈍を行った。
これにより得られた製品の、平均二次再結晶粒径は3.
2mmであった。また、磁気特性は、B8 =1.94T、
17/50 =0.89(W/kg)の極めて低い鉄損をもつ一
方向性電磁鋼板が得られた。
After this, MgO powder was applied and then 1200
High temperature annealing was performed in a hydrogen gas atmosphere at 10 ° C. for 10 hours.
The average secondary recrystallized grain size of the product thus obtained was 3.
It was 2 mm. The magnetic characteristics are B 8 = 1.94T,
A grain -oriented electrical steel sheet having an extremely low iron loss of W 17/50 = 0.89 (W / kg) was obtained.

【0027】(実施例3)表3に示す化学成分を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。これを、1100℃で5分間焼鈍を
行い、さらに酸洗した後、冷間圧延により0.27mm厚
にした。圧延された鋼板を図2に示す直接通電加熱ロー
ルにより280℃/秒の昇温速度で835℃まで加熱
し、出側ロールで加熱到達直後に0.15%の歪みを導
入した。以上の処理の後、還元雰囲気中で常温まで冷却
した。
(Example 3) Molten steel containing the chemical components shown in Table 3 was cast, heated to a slab, and then hot-rolled to 2.3 mm.
Was obtained. This was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.27 mm. The rolled steel sheet was heated to 835 ° C. at a temperature rising rate of 280 ° C./sec by the direct current heating roll shown in FIG. 2, and 0.15% strain was introduced immediately after reaching the heating by the exit roll. After the above processing, it was cooled to room temperature in a reducing atmosphere.

【0028】次に湿潤水素中で脱炭焼鈍し、MgO粉を
塗布した後、1200℃に10時間、水素ガス雰囲気中
で高温焼鈍を行った。これにより得られた製品の、平均
二次再結晶粒径は3.2mmであった。また、磁気特性
は、B8 =1.93T、W17/50 =0.88(W/kg)の
極めて低い鉄損をもつ一方向性電磁鋼板が得られた。
Next, decarburization annealing was performed in wet hydrogen, MgO powder was applied, and then high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. The product thus obtained had an average secondary recrystallized grain size of 3.2 mm. In addition, the magnetic properties of the grain -oriented electrical steel sheet were B 8 = 1.93T and W 17/50 = 0.88 (W / kg), which had extremely low iron loss.

【0029】[0029]

【表3】 [Table 3]

【0030】(実施例4)表4に示す成分組成を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。これを、1100℃で5分間焼鈍を
行い、さらに酸洗した後、冷間圧延により0.22mm厚
にした。圧延された鋼板を直接通電加熱ロールにより2
90℃/秒の加熱速度で845℃まで加熱し、その後出
側ロールにて0.13%の歪みを導入した。なお、この
時加熱されたストリップは出側ロールの抜熱により、約
160℃の温度降下がみられたが、直ちに20℃/秒の
加熱速度で845℃の均一温度へ加熱し、湿潤水素中で
脱炭焼鈍した。
(Example 4) Molten steel containing the chemical composition shown in Table 4 was cast, heated to a slab, and then hot-rolled to 2.3 mm.
Was obtained. This was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.22 mm. The rolled steel plate is directly heated by an electric heating roll. 2
It was heated to 845 ° C. at a heating rate of 90 ° C./second, and then 0.13% strain was introduced by the exit roll. Although the strip heated at this time showed a temperature drop of about 160 ° C due to the heat removal from the outlet roll, it was immediately heated to a uniform temperature of 845 ° C at a heating rate of 20 ° C / sec, and the strip was heated in wet hydrogen. Decarburized and annealed.

【0031】次にMgO粉を塗布した後、1200℃に
10時間、水素ガス雰囲気中で高温焼鈍を行った。これ
により得られた製品の、平均二次再結晶粒径は3.6mm
であった。また、磁気特性は、B8 =1.94T、W
17/50 =0.81(W/kg)の極めて低い鉄損をもつ一方
向性電磁鋼板が得られた。
Next, after applying MgO powder, high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. The average secondary recrystallized grain size of the product thus obtained is 3.6 mm.
Met. The magnetic characteristics are B 8 = 1.94T, W
A grain -oriented electrical steel sheet having an extremely low iron loss of 17/50 = 0.81 (W / kg) was obtained.

【0032】[0032]

【表4】 [Table 4]

【0033】(実施例5)表5に示す成分組成を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。これを、1100℃で5分間焼鈍を
行い、さらに酸洗した後、冷間圧延により0.22mm厚
にした。圧延された鋼板を二対の直接通電加熱ロールに
より250℃/秒の加熱速度で851℃まで加熱し、出
側ロールにて0.12%の歪みを導入した。なお、この
時加熱されたストリップは出側ロールの抜熱により、約
150℃の温度降下がみられたが、直ちに20℃/秒の
加熱速度で850℃の均一温度へ加熱し、湿潤水素中で
脱炭焼鈍した。
(Example 5) Molten steel containing the composition shown in Table 5 was cast, heated to a slab, and hot-rolled to 2.3 mm.
Was obtained. This was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.22 mm. The rolled steel sheet was heated to 851 ° C. at a heating rate of 250 ° C./sec with two pairs of direct-current heating rolls, and a strain of 0.12% was introduced by the exit side roll. Although the strip heated at this time showed a temperature drop of about 150 ° C due to heat removal from the outlet roll, it was immediately heated to a uniform temperature of 850 ° C at a heating rate of 20 ° C / sec, and the strip was heated in wet hydrogen. Decarburized and annealed.

【0034】また同じ鋼板を誘導加熱により746℃ま
で250℃/秒の加熱速度で加熱し、そのまま歪みが導
入されず、さらに850℃まで15℃/秒で加熱し湿潤
水素中で脱炭焼鈍した。次にMgO粉を塗布した後、1
200℃に10時間、水素ガス雰囲気中で高温焼鈍を行
った。表6に、得られた製品の磁気特性を示す。製品の
磁性は、通電ロール方式で満足できるものが得られた。
Further, the same steel sheet was heated by induction heating to 746 ° C. at a heating rate of 250 ° C./sec, no distortion was introduced as it was, and further heated to 850 ° C. at 15 ° C./sec and decarburized and annealed in wet hydrogen. . Next, after applying MgO powder, 1
High temperature annealing was performed at 200 ° C. for 10 hours in a hydrogen gas atmosphere. Table 6 shows the magnetic properties of the obtained products. The magnetism of the product was satisfactory with the current-carrying roll method.

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】(実施例6)表7に示す成分組成を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。次に1100℃で5分間焼鈍を行
い、さらに酸洗した後、冷間圧延により0.22mm厚に
した。圧延された鋼板を直接通電加熱ロールにより29
0℃/秒の加熱速度で846℃まで加熱し、出側ロール
にて0.21%の歪みを導入した。なお、この時加熱さ
れたストリップは出側ロールの抜熱により、約80℃の
温度降下がみられたが、直ちに20℃/秒の加熱速度で
850℃の均一温度へ加熱し、湿潤水素中で脱炭焼鈍し
た。
(Example 6) Molten steel containing the composition shown in Table 7 was cast, heated to a slab, and then hot-rolled to 2.3 mm.
Was obtained. Next, it was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.22 mm. The rolled steel plate is directly heated by an electric heating roll 29
It was heated to 846 ° C. at a heating rate of 0 ° C./second, and 0.21% strain was introduced by the exit roll. Note that the strip heated at this time showed a temperature drop of about 80 ° C due to the removal of heat from the outlet roll, but it was immediately heated to a uniform temperature of 850 ° C at a heating rate of 20 ° C / sec. Decarburized and annealed.

【0038】次に、アンモニア雰囲気中で窒化処理を実
施し、MgO粉を塗布した後、1200℃に10時間、
水素ガス雰囲気中で高温焼鈍を行った。これにより得ら
れた製品の、平均二次再結晶粒径は3.6mmであった。
また、磁気特性は、B8 =1.91T、W17/50 =0.
83(W/kg)の極めて低い鉄損をもつ一方向性電磁鋼板
が得られた。
Next, a nitriding treatment is carried out in an ammonia atmosphere, MgO powder is applied, and then the temperature is set to 1200 ° C. for 10 hours.
High temperature annealing was performed in a hydrogen gas atmosphere. The product thus obtained had an average secondary recrystallized grain size of 3.6 mm.
The magnetic characteristics are B 8 = 1.91T, W 17/50 = 0.
A grain-oriented electrical steel sheet having an extremely low iron loss of 83 (W / kg) was obtained.

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【発明の効果】本発明によれば、急速加熱および微少歪
み導入処理により、二次再結晶が従来になく小さく、磁
束密度の高い、極めて低い鉄損特性を有する一方向性電
磁鋼板を製造することができるので、産業上の貢献する
ところが極めて大である。
EFFECTS OF THE INVENTION According to the present invention, a unidirectional electrical steel sheet having secondary recrystallization smaller than ever, high magnetic flux density, and extremely low iron loss characteristics is manufactured by rapid heating and a process for introducing a slight strain. Therefore, the industrial contribution is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】急速加熱間に導入される歪みと鉄損特性との関
係の図表である。
FIG. 1 is a chart showing the relationship between strain introduced during rapid heating and iron loss characteristics.

【図2】本発明による通電ロール加熱法の実施例の概略
図である。
FIG. 2 is a schematic view of an embodiment of an electric roll heating method according to the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量でC:0.10%以下、Si:2.
5〜7.0%ならびに通常のインヒビター成分を含み、
残余はFeおよび不可避的不純物よりなる、最終製品厚
まで圧延されたストリップを、80℃/秒以上の加熱速
度で700℃以上の温度へ急速加熱し、かつ上記急速加
熱される間に公称歪み0.1%以上の微少歪みを導入す
る急速加熱および微少歪み導入処理を施し、得られたス
トリップを脱炭焼鈍し、最終仕上焼鈍を施すことを特徴
とする極めて低い鉄損をもつ一方向性電磁鋼板の製造方
法。
1. C: 0.10% or less by weight, Si: 2.
5 to 7.0% as well as the usual inhibitor components,
A strip rolled to the final product thickness, the balance consisting of Fe and inevitable impurities, is rapidly heated to a temperature of 700 ° C. or more at a heating rate of 80 ° C./sec or more, and a nominal strain of 0 is obtained during the rapid heating. . One-way electromagnetic wave with extremely low iron loss, characterized by performing rapid heating that introduces a minute strain of 1% or more and minute strain introduction treatment, decarburizing annealing the resulting strip, and performing final finishing annealing. Steel plate manufacturing method.
【請求項2】 ストリップの急速加熱および微少歪み導
入処理が、ロール間で通電することにより急速加熱さ
れ、かつストリップが加熱された側のロールで微少歪み
導入が行われることを特徴とする請求項1記載の方法。
2. The rapid heating and microstrain introduction treatment of the strip is characterized in that the strip is rapidly heated by energizing between the rolls, and the microstrain is introduced by the roll on the side where the strip is heated. The method described in 1.
【請求項3】 急速加熱および微少歪み導入処理が脱炭
焼鈍の加熱段階として行われる請求項1または2記載の
方法。
3. The method according to claim 1, wherein the rapid heating and the treatment for introducing a slight strain are performed as a heating step of decarburization annealing.
JP5003441A 1993-01-12 1993-01-12 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss Expired - Lifetime JP2679928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5003441A JP2679928B2 (en) 1993-01-12 1993-01-12 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5003441A JP2679928B2 (en) 1993-01-12 1993-01-12 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Publications (2)

Publication Number Publication Date
JPH06212274A JPH06212274A (en) 1994-08-02
JP2679928B2 true JP2679928B2 (en) 1997-11-19

Family

ID=11557443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5003441A Expired - Lifetime JP2679928B2 (en) 1993-01-12 1993-01-12 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Country Status (1)

Country Link
JP (1) JP2679928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138253A (en) 2014-05-12 2016-12-02 제이에프이 스틸 가부시키가이샤 Method for producing oriented electromagnetic steel sheet
KR20160142881A (en) 2014-05-12 2016-12-13 제이에프이 스틸 가부시키가이샤 Method for producing oriented electromagnetic steel sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3392695B2 (en) * 1997-04-02 2003-03-31 新日本製鐵株式会社 Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
US20230243013A1 (en) 2020-06-24 2023-08-03 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2023191029A1 (en) * 2022-03-31 2023-10-05 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138253A (en) 2014-05-12 2016-12-02 제이에프이 스틸 가부시키가이샤 Method for producing oriented electromagnetic steel sheet
KR20160142881A (en) 2014-05-12 2016-12-13 제이에프이 스틸 가부시키가이샤 Method for producing oriented electromagnetic steel sheet
US10294543B2 (en) 2014-05-12 2019-05-21 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US10294544B2 (en) 2014-05-12 2019-05-21 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH06212274A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR0182802B1 (en) Grain-oriented electrical steel sheet with very low core loss and method of producing the same
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH03219020A (en) Production of nonoriented silicon steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH09118921A (en) Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2562259B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP2679927C (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 16