JP2679927B2 - Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss - Google Patents

Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Info

Publication number
JP2679927B2
JP2679927B2 JP5003439A JP343993A JP2679927B2 JP 2679927 B2 JP2679927 B2 JP 2679927B2 JP 5003439 A JP5003439 A JP 5003439A JP 343993 A JP343993 A JP 343993A JP 2679927 B2 JP2679927 B2 JP 2679927B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
iron loss
electrical steel
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5003439A
Other languages
Japanese (ja)
Other versions
JPH06212262A (en
Inventor
健司 小菅
美樹雄 伊藤
尚 吉村
晴雄 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5003439A priority Critical patent/JP2679927B2/en
Priority to KR1019940000334A priority patent/KR0182802B1/en
Priority to DE69420058T priority patent/DE69420058T2/en
Priority to EP94100292A priority patent/EP0606884B1/en
Publication of JPH06212262A publication Critical patent/JPH06212262A/en
Priority to US08/612,611 priority patent/US5833768A/en
Application granted granted Critical
Publication of JP2679927B2 publication Critical patent/JP2679927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、2.5〜7.0%のS
iを含み、結晶粒の(110)〔001〕方位の集積度
が高く、かつ結晶粒径が従来になく微細なことにより、
極めて低い鉄損をもつ一方向性電磁鋼板の製造方法を提
供するものである。
The present invention relates to a method for producing 2.5-7.0% S
Since i has a high degree of integration in the (110) [001] orientation of crystal grains and the crystal grain size is finer than ever before,
The present invention provides a method for manufacturing a grain-oriented electrical steel sheet having extremely low iron loss.

【0002】[0002]

【従来の技術】一般に、一方向性電磁鋼板の磁気特性は
鉄損特性と励磁特性の両方で評価される。励磁特性を高
めることは設計磁束密度を高める機器の小型化に有効で
ある。一方鉄損特性を少なくすることは、電気機器とし
て使用する際、熱エネルギーとして失われるものを少な
くし、消費電力を節約できる点で有効である。さらに、
製品の結晶粒の〈100〉軸を圧延方向に揃えること
は、磁化特性を高め、鉄損特性も低くすることができ、
近年特にこの面で多くの研究が重ねられ、様々な製造技
術が開発された。
2. Description of the Related Art Generally, the magnetic properties of a grain-oriented electrical steel sheet are evaluated based on both iron loss properties and excitation properties. Increasing the excitation characteristics is effective in reducing the size of equipment that increases the design magnetic flux density. On the other hand, reducing the iron loss characteristics is effective in that when it is used as an electric device, heat loss is reduced and power consumption can be saved. further,
Aligning the <100> axes of the crystal grains of the product in the rolling direction can improve the magnetization characteristics and lower the iron loss characteristics.
In recent years, many studies have been made particularly on this aspect, and various manufacturing techniques have been developed.

【0003】この結果、現在、工業生産されている代表
的な一方向性電磁鋼板の製造技術には、3つの代表的な
製造技術がある。第一の技術は、特公昭30−3651
号に開示された、MnSをインヒビターとして機能させ
る、2回冷延工程による製造技術がある。この製造方法
は、二次再結晶の粒径が小さいので、比較的鉄損は良好
であるが、高い磁束密度が得られないという問題があっ
た。これに対して、高い磁束密度を得るために、第二の
技術として、特公昭40−15644号が開示された。
これは、AlN+MnSをインヒビターとして機能さ
せ、最終冷延工程における圧延率が80%を超える強圧
下とする製造技術である。この方法により二次再結晶粒
の(110)〔001〕方位の集積度が高く、B8
1.870(T)以上の高磁束密度を有する方向性電磁
鋼板が得られる。さらに、第三の技術として、特公昭5
1−13469号に開示された、MnSまたはMnSe
+Sbをインヒビターとして機能させる、2回冷延工程
による製造技術が開発された。
As a result, there are three typical manufacturing techniques for the typical industrially produced grain-oriented electrical steel sheet. The first technology is Japanese Examined Japanese Patent Publication 30-3651.
There is a manufacturing technique disclosed in the above-mentioned publication in which MnS functions as an inhibitor by a two-time cold rolling process. This manufacturing method has a relatively good iron loss due to a small particle size of the secondary recrystallization, but has a problem that a high magnetic flux density cannot be obtained. On the other hand, in order to obtain a high magnetic flux density, Japanese Patent Publication No. 40-15644 was disclosed as a second technique.
This is a manufacturing technique in which AlN + MnS is made to function as an inhibitor and the rolling reduction in the final cold rolling step is under high pressure exceeding 80%. By this method, a grain-oriented electrical steel sheet having a high degree of integration of the (110) [001] orientation of secondary recrystallized grains and a high magnetic flux density of B 8 of 1.870 (T) or more can be obtained. Furthermore, as a third technology, Japanese Patent Publication Sho 5
MnS or MnSe, disclosed in 1-143469.
A manufacturing technique has been developed in which + Sb functions as an inhibitor by a double cold rolling process.

【0004】さて、一般に鉄損は大きく分けて履歴損と
渦電流損の二つからなる。履歴損に影響を与える物理的
な要因として、上述の結晶方位の他に材料の純度や内部
歪みがある。また、渦電流損に影響を与える物理的な要
因として、鋼板の電気抵抗(Si等の成分量)、板厚、
磁区の大きさ(結晶粒度)や鋼板に及ぼす張力等があ
る。通常の方向性電磁鋼板では渦電流損が全鉄損の3/
4以上を占めるため履歴損より渦電流損を下げる方が全
鉄損を下げる上でより効果的である。
In general, iron loss is roughly classified into hysteresis loss and eddy current loss. Physical factors that affect the hysteresis loss include the purity of the material and internal strain in addition to the above-described crystal orientation. In addition, as physical factors that affect the eddy current loss, electrical resistance of the steel sheet (amount of components such as Si), sheet thickness,
There are magnetic domain size (grain size) and tension applied to the steel sheet. In normal grain-oriented electrical steel sheets, the eddy current loss is 3/3 of the total iron loss.
Since it occupies 4 or more, it is more effective to reduce the eddy current loss than the hysteresis loss in reducing the total iron loss.

【0005】このため、上記第二の技術による製造方法
では、二次結晶粒の(110)〔001〕方位の集積度
が高く、B8 が1.870(T)以上の高磁束密度を有
する方向性電磁鋼板が得られたとしても、二次再結晶粒
径が10mmオーダと大きくなるため、渦電流損に影響す
る磁区幅が大きかった。これを改善するために、特公昭
57−2252号に開示されている鋼板にレーザー処理
を施す方法、さらに特公昭58−2569号に開示され
ている鋼板に機械的な歪みを加える方法等、磁区を細分
化する様々な方法が開示されている。
Therefore, in the manufacturing method according to the second technique, the degree of integration of the (110) [001] orientation of the secondary crystal grains is high, and B 8 has a high magnetic flux density of 1.870 (T) or more. Even if the grain-oriented electrical steel sheet was obtained, the secondary recrystallized grain size was as large as 10 mm, so that the magnetic domain width that affected the eddy current loss was large. In order to improve this, a method of subjecting a steel sheet disclosed in JP-B-57-2252 to a laser treatment, and a method of applying mechanical strain to the steel sheet disclosed in JP-B-58-2569, etc. Various methods have been disclosed for subdividing.

【0006】そこで、微細な二次再結晶粒径をもつこと
により、従来よりも低い鉄損を有する一方向性電磁鋼板
の製造方法を提供するものが開示されている。たとえ
ば、特開平1−290716号では、常温圧延された鋼
板に100℃/秒以上の加熱速度で675℃以上の温度
へ超急速焼きなまし処理を施し、該ストリップを脱炭素
処理し、最終高温焼きなまし処理を施して二次成長を行
い、それによって前記ストリップが低減した寸法の二次
粒子および応力除去焼きなまし処理後も有意の変化なし
に持続する改善された鉄損をもつことを特徴とする方法
が開示されている。しかし、確かにある程度小さな二次
再結晶粒は得られるのではあるが、この方法は急速加熱
のみを処理することを目的としており、余り良好な鉄損
値が得られないことが判明した。
[0006] Therefore, it is disclosed that a method for producing a grain-oriented electrical steel sheet having a finer secondary recrystallized grain size and having a lower iron loss than the conventional one is provided. For example, in Japanese Patent Laid-Open No. 1-290716, a cold rolled steel sheet is subjected to a super rapid annealing treatment at a heating rate of 100 ° C./sec or more to a temperature of 675 ° C. or more, the strip is decarbonized, and finally subjected to a high temperature annealing treatment. A secondary growth of the strip, whereby the strip has reduced size secondary particles and improved core loss that persists without significant change after stress relief anneal treatment. Has been done. However, although it is true that secondary recrystallized grains that are small to some extent can be obtained, this method is intended to treat only rapid heating, and it has been found that a very good iron loss value cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記提案の方
法よりもさらに微細な二次再結晶粒径をもつことによ
り、極めて低い鉄損をもつ一方向性電磁鋼板を得る方法
を提供することにあり、その特徴は急速加熱し、その直
後に冷却を施すことにある。
The present invention provides a method for obtaining a grain-oriented electrical steel sheet having an extremely low iron loss by having a finer secondary recrystallized grain size than that of the above-mentioned method. The feature is that it is rapidly heated and then immediately followed by cooling.

【0008】[0008]

【課題を解決するための手段】本発明は、重量でC:
0.10%以下、Si:2.5〜7.0%ならびに通常
のインヒビター成分を含み、残余はFeおよび不可避的
不純物よりなる溶鋼を出発素材として、最終製品厚まで
圧延されたストリップを、800℃以上の温度域へ80
℃/秒以上の加熱速度で加熱し、最高温度に到達後0.
1秒以内に、50℃/秒以上の冷却速度で800℃未満
の温度域へ冷却を施す処理をし、得られたストリップを
脱炭焼鈍および最終仕上焼鈍を施すことにより、極めて
低い鉄損をもつ一方向性電磁鋼板が得られることを見い
出した。さらに、ストリップの急速加熱および冷却処理
が、ロール間で通電することにより急速加熱され、かつ
加熱された側のロールで冷却が行われる方法により、極
めて低い鉄損をもつ一方向性電磁鋼板が得られることを
見い出した。
SUMMARY OF THE INVENTION The present invention provides a C:
A strip rolled from a molten steel containing 0.10% or less, Si: 2.5 to 7.0% and a usual inhibitor component, with the balance Fe and unavoidable impurities as a starting material to a final product thickness, 800 80 to above ℃
After heating at a heating rate of ℃ / sec or more and reaching the maximum temperature, 0.
Within 1 second, a cooling treatment at a cooling rate of 50 ° C./second or more to a temperature range of less than 800 ° C. is performed, and the obtained strip is subjected to decarburization annealing and final finishing annealing to obtain an extremely low iron loss. It has been found that a unidirectional electrical steel sheet can be obtained. Furthermore, the method of rapid heating and cooling of the strip is such that it is rapidly heated by energizing between the rolls, and cooling is performed by the roll on the heated side, so that a grain-oriented electrical steel sheet with extremely low iron loss is obtained. I found that I could be.

【0009】以下に本発明を詳細に説明する。一方向性
電磁鋼板は、その製造工程の最終焼鈍中に二次再結晶を
充分に起こさせ、所謂ゴス集合組織を得ることにより製
造できる。このゴス集合組織を得るためには、一次再結
晶粒の成長粗大化を抑制し、(110)〈001〉方位
の再結晶粒のみを或る温度範囲で選択的に成長させる。
すなわち、二次再結晶させるような素地を作ってやるこ
とが必要である。そのためには、素材に微細な介在物が
一次再結晶粒の成長の抑制材(インヒビター)として、
均一に分散していなければならない。また、この時の最
適な析出サイズは100オングストロームオーダーであ
ると言われている。
Hereinafter, the present invention will be described in detail. The grain-oriented electrical steel sheet can be manufactured by sufficiently causing secondary recrystallization during the final annealing in the manufacturing process to obtain a so-called Goss texture. In order to obtain this Goss texture, coarsening of primary recrystallized grains is suppressed, and only recrystallized grains of the (110) <001> orientation are selectively grown in a certain temperature range.
That is, it is necessary to make a base material for secondary recrystallization. For that purpose, fine inclusions in the material serve as inhibitors (inhibitors) for the growth of primary recrystallized grains,
Must be evenly dispersed. Further, it is said that the optimum precipitation size at this time is on the order of 100 Å.

【0010】急速加熱の効果としては、特開平1−29
0716号に述べられているように、急速加熱により後
の集合組織が、通常加熱と比較して一次再結晶後の(1
10)〈001〉方位粒が増加し、これが二次再結晶の
核となり、ある程度小さな二次再結晶粒が得られる。さ
らに、上記特許の製造方法において達成させるメカニズ
ムは、最終脱炭素焼きなまし工程前の一次再結晶組成に
変化と高温焼きなまし処理工程前の一次再結晶組織の変
化との二つの変化を包含する、と述べられているが、こ
の製造方法のみでは一次再結晶組織の制御が不充分であ
ることが判明した。
The effect of rapid heating is described in JP-A-1-29.
As described in No. 0716, after the rapid heating, the texture after the primary recrystallization (1
10) The number of <001> oriented grains increases, which serves as a nucleus for secondary recrystallization, and secondary recrystallized grains that are small to some extent can be obtained. Furthermore, the mechanism achieved in the manufacturing method of the above patent includes two changes, a change in the primary recrystallization composition before the final decarbonization annealing step and a change in the primary recrystallization structure before the high temperature annealing treatment step. However, it has been found that the control of the primary recrystallized structure is insufficient only by this production method.

【0011】そこで、さらに微細な二次再結晶粒を得る
原因を種々検討した結果、800℃以上の温度域へ80
℃/秒以上の加熱速度で加熱し、最高温度に到達後0.
1秒以内に加熱された側のロールにより、50℃/秒以
上の冷却速度で800℃未満の温度域へ冷却を施すこと
により、高温域で析出物が粗大化せず、100オングス
トロームオーダーの最適な析出サイズが保持できること
が判明し、これにより従来になく、小さな二次再結晶粒
径を得ることができ、極めて低い鉄損を有する一方向性
電磁鋼板を得ることができるようになった。
Therefore, as a result of various studies on the cause of obtaining finer secondary recrystallized grains, the temperature range of 800 ° C. or higher was examined.
After heating at a heating rate of ℃ / sec or more and reaching the maximum temperature, 0.
Cooling to a temperature range of less than 800 ° C at a cooling rate of 50 ° C / sec or more by a roll heated on the side within 1 second prevents precipitates from coarsening in the high temperature range, making it optimal for 100 angstrom order It has been found that a large precipitation size can be maintained, which makes it possible to obtain a small secondary recrystallized grain size, which is unprecedented, and to obtain a grain-oriented electrical steel sheet having extremely low iron loss.

【0012】[0012]

【作用】次に本発明において、鋼組成および製造条件を
前記のように限定した理由を、詳細に説明する。この鋼
成分の限定理由は下記のとおりである。Cについての上
限0.10%は、これ以上多くなると脱炭所要時間が長
くなり、経済的に不利となるので限定した。Siは鉄損
を良くするために下限を2.5%とするが、多すぎると
冷間圧延の際に割れ易く加工が困難となるので上限を
7.0%とする。
Next, the reason why the steel composition and the manufacturing conditions are limited as described above in the present invention will be described in detail. The reasons for limiting the steel components are as follows. The upper limit of 0.10% for C is limited because if it is more than this, the time required for decarburization becomes longer and it is economically disadvantageous. The lower limit of Si is set to 2.5% in order to improve iron loss, but if it is too large, it is likely to break during cold rolling and processing becomes difficult, so the upper limit is set to 7.0%.

【0013】さらに、一方向性電磁鋼板を製造するため
に、通常のインヒビター成分として以下の成分元素を添
加することが好ましい。インヒビターとしてMnSを利
用する場合は、MnとSを添加する。Mnは、MnSの
適当な分散状態を得るため、0.02〜0.15%が望
ましい。SはMnS,(Mn・Fe)Sを形成するため
に必要な元素で、適当な分散状態を得るため、0.00
1〜0.05%が望ましい。さらに、インヒビターとし
てAlNを利用する場合は、酸可溶性AlとNを添加す
る。酸可溶性Al,AlNの適正な分散状態を得るため
0.01〜0.04%が望ましい。Nも、AlNの適正
な分散状態を得るため0.003〜0.02%が望まし
い。その他、Cu,Sn,Sb,Cr,Biはインヒビ
ターを強くする目的で1.0%以下において少なくとも
1種添加しても良い。
Further, in order to produce a grain-oriented electrical steel sheet, it is preferable to add the following component elements as usual inhibitor components. When MnS is used as an inhibitor, Mn and S are added. Mn is desirably 0.02 to 0.15% in order to obtain an appropriate dispersion state of MnS. S is an element necessary for forming MnS and (Mn · Fe) S.
1-0.05% is desirable. Further, when AlN is used as an inhibitor, acid-soluble Al and N are added. In order to obtain an appropriate dispersion state of acid-soluble Al and AlN, 0.01 to 0.04% is desirable. N is also preferably 0.003 to 0.02% in order to obtain a proper dispersion state of AlN. In addition, at least one of Cu, Sn, Sb, Cr and Bi may be added at 1.0% or less for the purpose of strengthening the inhibitor.

【0014】次に、上記の溶鋼を通常の鋳塊鋳造法また
は連続鋳造法、熱間圧延により中間厚のストリップを得
る。この時ストリップ鋳造法も本発明に適用することも
可能である。さらに、インヒビターとして窒化物を必要
とする場合は、AlN等の析出のために950〜120
0℃で30秒〜30分の中間焼鈍を行うことが望まし
い。次に、1回ないし中間焼鈍を含む2回以上の圧延に
より最終製品厚のストリップを得る。この時の最終圧下
率は高いゴス集積度をもつ製品を得るため、圧下率50
%以上が必要となる。下限50%はこれ以下では必要な
ゴス核が得られないため限定した。
Next, the above-mentioned molten steel is subjected to a usual ingot casting method or a continuous casting method, and hot-rolled to obtain a strip having an intermediate thickness. At this time, the strip casting method can also be applied to the present invention. Further, when a nitride is required as an inhibitor, 950 to 120 is required for precipitation of AlN or the like.
It is desirable to perform intermediate annealing at 0 ° C. for 30 seconds to 30 minutes. Next, a strip of the final product thickness is obtained by rolling once or twice or more including intermediate annealing. The final rolling reduction at this time is 50% in order to obtain a product with a high degree of Goss accumulation.
% Or more is required. The lower limit of 50% is limited because the required Goss nucleus cannot be obtained below this range.

【0015】このように最終製品厚まで圧延されたスト
リップを、800℃以上の温度域へ80℃/秒以上の加
熱速度で加熱処理を実施する。この時の加熱速度の下限
80℃/秒は、これ以下では二次再結晶の核となる一次
再結晶後での(110)〈001〉方位粒が減少し、微
細な二次再結晶粒が得られないので限定した。また、下
800℃は、これ未満では再結晶が開始されないので
限定した。さらに、加熱された到達温度域で、微細な析
出物の粗大化を防止するため、最高温度に到達後0.1
秒以内に50℃/秒以上の冷却速度で800℃未満の温
度域へ冷却を施す。最高温度に到達後の均熱時間の上限
値0.1秒は、これ以上では析出物が粗大化するため限
定した。上記冷却温度域の上限800℃未満は、これを
超えては析出ノーズから大きく外れるため限定した。
The strip thus rolled to the final product thickness is subjected to a heat treatment in a temperature range of 800 ° C. or higher at a heating rate of 80 ° C./sec or higher. If the lower limit of the heating rate at this time is 80 ° C./second, the (110) <001> oriented grains after the primary recrystallization, which is the nucleus of the secondary recrystallization, are reduced below this, and the fine secondary recrystallized grains are I can't get it, so I limited it. Further, the lower limit of 800 ° C. is limited because recrystallization does not start below this temperature. Furthermore, in order to prevent coarsening of fine precipitates in the heated ultimate temperature range, 0.1
Within a second, it is cooled to a temperature range of less than 800 ° C. at a cooling rate of 50 ° C./second or more. The upper limit value of 0.1 second of the soaking time after reaching the maximum temperature is limited because the precipitates become coarser if the soaking time is longer than this. If the upper limit of the cooling temperature range is less than 800 ° C,
If it exceeds the limit, it will be greatly deviated from the precipitation nose, so it was limited.

【0016】図1に、0.22mm厚のストリップを昇温
速度180℃/秒で825℃まで加熱した後の650℃
までの冷却速度と、得られる製品鉄損特性との関係を示
す。50℃/秒以上の冷却速度で冷却を施すと良好な鉄
損値が得られている。なお、以上の処理は、皮膜形成後
の問題から、できるだけ還元雰囲気中で実施することが
望ましい。
FIG. 1 shows that a strip having a thickness of 0.22 mm was heated to 825 ° C. at a heating rate of 180 ° C./sec and then heated to 650 ° C.
The relationship between the cooling rate up to and the iron loss characteristics of the obtained product is shown. A good iron loss value is obtained when cooling is performed at a cooling rate of 50 ° C./sec or more. Note that it is desirable to carry out the above treatment in a reducing atmosphere as much as possible in view of problems after the film formation.

【0017】さらに、上記の急速加熱および冷却処理の
一つとして、ロール間に通電する方法がある。図2に本
発明での一つの実施例の概略図を示す。ストリップを挟
む上下一対のロールを二組設け、ロールR1,R2間の
ストリップSに通電することにより、ストリップSを
00℃以上の温度域へ80℃/秒以上の加熱速度で加熱
し、さらに加熱された側のロールR2によりP点で冷却
を施すことにより、最高温度に到達後0.1秒以内に加
熱された側のロールにより、50℃/秒以上の冷却速度
で800℃未満の温度域へ冷却を施す。
Further, as one of the above rapid heating and cooling treatments, there is a method of energizing between rolls. FIG. 2 shows a schematic diagram of one embodiment of the present invention. Two pairs of upper and lower rolls sandwiching the strip are provided, and the strip S between the rolls R1 and R2 is energized, so that the strip S is moved to 8
By heating to a temperature range of 00 ° C or higher at a heating rate of 80 ° C / sec or higher, and further cooling at point P by the roll R2 on the heated side, heating is performed within 0.1 seconds after reaching the maximum temperature. By the roll on the raised side, cooling is performed at a cooling rate of 50 ° C./sec or more to a temperature range of less than 800 ° C.

【0018】以上の処理は皮膜形成等の問題から、装置
ボックスBはできるだけ還元雰囲気中で実施することが
望ましい。また、この微少な歪みを導入により、加熱さ
れたストリップの形状を改善することも可能である。
From the problems of film formation and the like, the above-mentioned treatment is preferably carried out in the apparatus box B in a reducing atmosphere as much as possible. It is also possible to improve the shape of the heated strip by introducing this slight distortion.

【0019】この後は、湿水素雰囲気中で脱炭焼鈍を行
う。この時製品での磁気特性を劣化させないため炭素は
0.005%以下に低減されなければならない。ここ
で、熱延でのスラブ加熱温度が低く、AlNのみをイン
ヒビターとして利用する場合は、アンモニア雰囲気中で
窒化処理を施すこともある。さらに、MgO等の焼鈍分
離剤を塗布して、二次再結晶と純化のため1100℃以
上の仕上焼鈍を行うことで、極めて低い鉄損特性を有す
る一方向性電磁鋼板が製造される。以上得られた製品
に、さらに鉄損を良好にするため、上記一方向性電磁鋼
板に、磁区を細分化するための処理を施すことも可能で
ある。
After that, decarburization annealing is performed in a wet hydrogen atmosphere. At this time, carbon must be reduced to 0.005% or less so as not to deteriorate the magnetic properties of the product. Here, when the slab heating temperature in hot rolling is low and only AlN is used as an inhibitor, nitriding may be performed in an ammonia atmosphere. Furthermore, by applying an annealing separator such as MgO and performing secondary annealing and finishing annealing at 1100 ° C. or higher for purification, a unidirectional electrical steel sheet having extremely low iron loss characteristics is manufactured. In order to further improve the iron loss of the obtained product, it is possible to subject the above-mentioned grain-oriented electrical steel sheet to a treatment for subdividing magnetic domains.

【0020】[0020]

【実施例】【Example】

(実施例1)表1に示す成分組成を含む溶鋼を鋳造し、
スラブ加熱後、熱間圧延を行い、2.3mmの熱延鋼板を
得た。次に1100℃で5分間焼鈍を行い、さらに酸洗
した後、冷間圧延により0.22mm厚にした。圧延され
た鋼板を一組の加熱電極を有する直接通電加熱装置によ
り種々の条件で加熱した。また、加熱直後鋼板に種々の
均熱時間、冷却条件を施した。その時の加熱速度と到達
温度、加熱後の冷却条件を表2に示す。
(Example 1) A molten steel containing the component composition shown in Table 1 was cast,
After slab heating, hot rolling was performed to obtain a 2.3 mm hot-rolled steel sheet. Next, it was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.22 mm. The rolled steel sheet was heated under various conditions by a direct current heating device having a set of heating electrodes. Further, the steel sheet immediately after heating was subjected to various soaking times and cooling conditions. Table 2 shows the heating rate and the ultimate temperature at that time, and the cooling conditions after heating.

【0021】次に湿潤水素中で脱炭焼鈍し、MgO粉を
塗布した後、1200℃に10時間、水素ガス雰囲気中
で高温焼鈍を行った。表2に、得られた製品の、二次再
結晶粒径と、磁気特性を示す。製品の磁気特性は、80
0℃以上の温度域に80℃/秒以上の加熱速度で加熱
し、最高温度に到達後0.1秒以内に、50℃/秒以上
の冷却速度で800℃未満の温度域へ冷却を施すことに
より、従来よりも微細な二次再結晶粒径が得られ、極め
て低い鉄損を有する一方向性電磁鋼板が得られている。
Next, decarburization annealing was performed in wet hydrogen, MgO powder was applied, and then high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Table 2 shows the secondary recrystallized grain size and magnetic properties of the obtained product. The magnetic properties of the product are 80
Heating to a temperature range of 0 ° C or more at a heating rate of 80 ° C / sec or more
And, within 0.1 seconds after reaching the maximum temperature, by applying cooling to the temperature range below 800 ° C. at a cooling rate of more than 50 ° C. / sec, the secondary recrystallized grain size fine is obtained than the conventional , A grain-oriented electrical steel sheet having an extremely low iron loss has been obtained.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】(実施例2)表3に示す成分組成を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。次に1100℃で5分間焼鈍を行
い、さらに酸洗した後、冷間圧延により0.22mm厚に
した。圧延された鋼板を図2に示す直接通電ロール加熱
装置により種々の条件で加熱した。また、加熱直後に出
側ロールを予熱、通板速度を制御することにより、種々
の均熱時間、冷却条件を施した。その時の加熱速度と到
達温度、出側ロールでの冷却条件を表4に示す。
(Example 2) A molten steel containing the composition shown in Table 3 was cast, heated to a slab, and then hot-rolled to 2.3 mm.
Was obtained. Next, it was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.22 mm. The rolled steel sheet was heated under various conditions by the direct current roll heating device shown in FIG. Immediately after heating, the exit roll was preheated and the passage speed was controlled, so that various soaking times and cooling conditions were applied. Table 4 shows the heating rate and the ultimate temperature at that time, and the cooling conditions for the outlet roll.

【0025】次に湿潤水素中で脱炭焼鈍し、アンモニア
雰囲気中で窒化処理を実施し、MgO粉を塗布した後、
1200℃に10時間、水素ガス雰囲気中で高温焼鈍を
行った。表4に、得られた製品の、二次再結晶粒径と、
磁気特性を示す。製品の磁気特性は、通電により800
℃以上の温度域に80℃/秒以上の加熱速度で加熱し、
最高温度に到達後0.1秒以内に加熱された側のロール
により、50℃/秒以上の冷却速度で800℃未満の温
度域へ冷却を施すことにより、従来よりも微細な二次再
結晶粒径が得られ、極めて低い鉄損を有する一方向性電
磁鋼板が得られている。
Next, decarburization annealing is performed in wet hydrogen, nitriding treatment is performed in an ammonia atmosphere, and MgO powder is applied.
High temperature annealing was performed in a hydrogen gas atmosphere at 1200 ° C. for 10 hours. Table 4 shows the secondary recrystallized grain size of the obtained product,
It shows magnetic properties. The magnetic characteristics of the product are 800 when energized.
Heating to a temperature range of ℃ or more at a heating rate of 80 ℃ / second or more,
Secondary recrystallization finer than conventional by performing cooling to a temperature range of less than 800 ° C. at a cooling rate of 50 ° C./sec or more by a roll on the side heated within 0.1 seconds after reaching the maximum temperature. Grain-sized, grain-oriented electrical steel sheets having extremely low iron loss have been obtained.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】(実施例3)表5に示す成分組成を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。これを、1100℃で5分間焼鈍を
行い、さらに酸洗した後、冷間圧延により0.27mm厚
にした。圧延された鋼板を直接通電加熱ロールにより2
50℃/秒の昇温速度で825℃まで加熱し、出側ロー
ルで最高到達後0.01秒後、680℃まで23000
℃/秒の冷却速度で冷却した。
(Example 3) A molten steel containing the composition shown in Table 5 was cast, heated to a slab, and hot-rolled to 2.3 mm.
Was obtained. This was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.27 mm. The rolled steel plate is directly heated by an electric heating roll. 2
It is heated up to 825 ° C at a heating rate of 50 ° C / sec, and 0.01 seconds after reaching the maximum on the exit side roll, and then reached 680 ° C to 23000
Cooled at a cooling rate of ° C / sec.

【0029】次に湿潤水素中で脱炭焼鈍し、MgO粉を
塗布した後、1200℃に10時間、水素ガス雰囲気中
で高温焼鈍を行った。これにより得られた製品の、平均
二次再結晶粒径は3.5mmであった。また、磁気特性
は、B8 =1.94T、W17/50 =0.89(W/kg)の極
めて低い鉄損をもつ一方向性電磁鋼板が得られた。さら
に、得られた鋼板にレーザ処理により磁区細分化を行
い、磁気特性は、B8 =1.92T、W17/50 =0.8
1(W/kg)の極めて低い鉄損をもつ一方向性電磁鋼板が得
られた。
Next, decarburization annealing was performed in wet hydrogen, MgO powder was applied, and then high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. The product thus obtained had an average secondary recrystallized grain size of 3.5 mm. In addition, the magnetic properties of the grain -oriented electrical steel sheet were B 8 = 1.94T and W 17/50 = 0.89 (W / kg), which had extremely low iron loss. Further, the obtained steel sheet was subdivided into magnetic domains by laser treatment, and the magnetic properties were B 8 = 1.92T and W 17/50 = 0.8.
A grain-oriented electrical steel sheet having an extremely low iron loss of 1 (W / kg) was obtained.

【0030】[0030]

【表5】 [Table 5]

【0031】(実施例4)表6に示す成分組成を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。これを、1100℃で5分間焼鈍を
行い、さらに酸洗した後、冷間圧延により0.22mm厚
にした。圧延された鋼板を二対の直接通電加熱ロールに
より250℃/秒の加熱速度で851℃まで加熱し、出
側ロールで最高到達後0.01秒後、790℃まで24
500℃/秒の冷却速度で冷却した。次に湿潤水素中で
脱炭焼鈍した。
(Example 4) Molten steel containing the chemical composition shown in Table 6 was cast, heated to a slab, and then hot-rolled to 2.3 mm.
Was obtained. This was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.22 mm. The rolled steel sheet is heated to 851 ° C. at a heating rate of 250 ° C./sec by two pairs of direct current heating rolls, and 0.01 sec after reaching the maximum on the exit roll, and then to 790 ° C. 24
It cooled at the cooling rate of 500 degreeC / sec. Next, decarburization annealing was performed in wet hydrogen.

【0032】また同じ鋼板を誘導加熱により746℃ま
で250℃/秒の加熱速度で加熱し、そのまま冷却せ
ず、さらに850℃まで15℃/秒で加熱し湿潤水素中
で脱炭焼鈍した。以上二通りの脱炭焼鈍板にMgO粉を
塗布した後、1200℃に10時間、水素ガス雰囲気中
で高温焼鈍を行った。表7に、得られた製品の磁気特性
を示す。製品の磁性は、通電ロール方式で満足できるも
のが得られた。
The same steel sheet was heated to 746 ° C. at a heating rate of 250 ° C./second by induction heating, was not cooled as it was, and was further heated to 850 ° C. at 15 ° C./second for decarburization annealing in wet hydrogen. After applying MgO powder to the above two types of decarburized annealed plates, high-temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Table 7 shows the magnetic properties of the obtained products. The magnetism of the product was satisfactory with the current-carrying roll method.

【0033】[0033]

【表6】 [Table 6]

【0034】[0034]

【表7】 [Table 7]

【0035】[0035]

【発明の効果】本発明によれば、急速加熱法と急速冷却
法により、二次再結晶粒径が従来になく小さく、磁束密
度の高い、極めて低い鉄損特性を有する一方向性電磁鋼
板を製造することができるので、産業上の貢献するとこ
ろが極めて大である。
According to the present invention, by the rapid heating method and the rapid cooling method, a unidirectional electrical steel sheet having a secondary recrystallized grain size smaller than ever before, a high magnetic flux density and an extremely low iron loss characteristic can be obtained. Since it can be manufactured, its industrial contribution is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】出側ロールでの冷却速度と鉄損値との関係の図
表である。
FIG. 1 is a chart showing a relationship between a cooling rate of an exit roll and an iron loss value.

【図2】本発明による通電加熱法の実施例の概略図であ
る。
FIG. 2 is a schematic view of an example of an electric heating method according to the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量でC:0.10%以下、Si:2.
5〜7.0%ならびに通常のインヒビター成分を含み、
残余はFeおよび不可避的不純物よりなる溶鋼を出発素
材として、最終製品厚まで圧延されたストリップを、
00℃以上の温度域へ80℃/秒以上の加熱速度で加熱
し、最高温度に到達後0.1秒以内に、50℃/秒以上
の冷却速度で800℃未満の温度域へ冷却を施す処理を
し、得られたストリップを脱炭焼鈍および最終仕上焼鈍
を施すことを特徴とする極めて低い鉄損をもつ一方向性
電磁鋼板の製造方法。
1. C: 0.10% or less by weight, Si: 2.
5 to 7.0% as well as the usual inhibitor components,
Remainder as a starting material molten steel consisting of Fe and unavoidable impurities, the strips rolled to the final product thickness, 8
Heating to a temperature range of 00 ℃ or more at a heating rate of 80 ℃ / sec or more, and cooling to a temperature range of less than 800 ℃ at a cooling rate of 50 ℃ / sec or more within 0.1 seconds after reaching the maximum temperature. A method for producing a grain-oriented electrical steel sheet having an extremely low iron loss, which is characterized by subjecting the obtained strip to decarburization annealing and final finishing annealing.
【請求項2】 ストリップの急速加熱および冷却処理
が、ロール間で通電することにより急速加熱され、かつ
ストリップが加熱された側のロールで冷却処理が行われ
ることを特徴とする請求項1記載の方法。
2. The rapid heating and cooling treatment of the strip is performed by conducting current between the rolls, and the cooling treatment is performed by the roll on the side where the strip is heated. Method.
【請求項3】 一方向性電磁鋼板に、磁区を細分化する
ための処理を施すことを特徴とする請求項1または2記
載の方法。
3. The method according to claim 1, wherein the grain-oriented electrical steel sheet is subjected to a treatment for subdividing a magnetic domain.
JP5003439A 1993-01-12 1993-01-12 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss Expired - Lifetime JP2679927B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5003439A JP2679927B2 (en) 1993-01-12 1993-01-12 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR1019940000334A KR0182802B1 (en) 1993-01-12 1994-01-11 Grain-oriented electrical steel sheet with very low core loss and method of producing the same
DE69420058T DE69420058T2 (en) 1993-01-12 1994-01-11 Grain-oriented electrical sheet with very low iron losses and manufacturing processes
EP94100292A EP0606884B1 (en) 1993-01-12 1994-01-11 Grain-oriented electrical steel sheet with very low core loss and method of producing the same
US08/612,611 US5833768A (en) 1993-01-12 1996-03-08 Grain-oriented electrical steel sheet with very low core loss and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5003439A JP2679927B2 (en) 1993-01-12 1993-01-12 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Publications (2)

Publication Number Publication Date
JPH06212262A JPH06212262A (en) 1994-08-02
JP2679927B2 true JP2679927B2 (en) 1997-11-19

Family

ID=11557391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5003439A Expired - Lifetime JP2679927B2 (en) 1993-01-12 1993-01-12 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Country Status (1)

Country Link
JP (1) JP2679927B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107130B1 (en) 2000-08-08 2013-10-09 Nippon Steel & Sumitomo Metal Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
JP5772410B2 (en) 2010-11-26 2015-09-02 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6156646B2 (en) * 2013-10-30 2017-07-05 Jfeスチール株式会社 Oriented electrical steel sheet with excellent magnetic properties and coating adhesion

Also Published As

Publication number Publication date
JPH06212262A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR0182802B1 (en) Grain-oriented electrical steel sheet with very low core loss and method of producing the same
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP2562259B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH09118921A (en) Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 16