JPH09118921A - Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss - Google Patents

Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss

Info

Publication number
JPH09118921A
JPH09118921A JP7279354A JP27935495A JPH09118921A JP H09118921 A JPH09118921 A JP H09118921A JP 7279354 A JP7279354 A JP 7279354A JP 27935495 A JP27935495 A JP 27935495A JP H09118921 A JPH09118921 A JP H09118921A
Authority
JP
Japan
Prior art keywords
grain
steel sheet
iron loss
heating
extremely low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7279354A
Other languages
Japanese (ja)
Inventor
Kenji Kosuge
健司 小菅
Hiroaki Sato
浩明 佐藤
Nobuo Tachibana
伸夫 立花
Kentarou Chikuma
顯太郎 筑摩
Tadao Kiriyama
忠夫 切山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7279354A priority Critical patent/JPH09118921A/en
Publication of JPH09118921A publication Critical patent/JPH09118921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a grain-oriented magnetic steel sheet having extremely low iron loss since Si is contained, the degree of integration of the azimuth of (110) and [001] of a grain is higher and the grain diameter is is smaller. SOLUTION: In this manufacturing method of the grain-oriented magnetic steel sheet by which a strip, which is rolled to the thickness of the final products, consisting of, by weight, <=0.10% C, 2.5-7.0% Si, 0.02-0.15% Mn, 0.001-0.050% S, 0.010-0.040% acid-sol. Al, 0.0030-0.0200% N as an essential component and the balance Fe with inevitable impurities, is annealed for decarburization and the final finish annealing is executed, in heating process of the decarburization annealing, the strip is heated at a heating rate of >=80 deg.C/sec from a temp. range between the normal temp. and <=600 deg.C to the temp. range of at least 750 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、2.5〜7.0%
のSiを含み、結晶粒の(110)〔001〕方位の集
積度が高く、かつ微細な二次再結晶粒径を持つことによ
り、極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
に関するものである。
TECHNICAL FIELD The present invention relates to 2.5 to 7.0%.
And a high degree of integration of (110) [001] orientation of crystal grains and having a fine secondary recrystallized grain size, the present invention relates to a method for producing a grain-oriented electrical steel sheet having extremely low iron loss. It is a thing.

【0002】[0002]

【従来の技術】一般に、一方向性電磁鋼板の磁気特性は
鉄損特性と励磁特性の両方で評価される。励磁特性を高
めることは設計磁束密度を高める機器の小型化に有効で
ある。一方鉄損特性を少なくすることは、電気機器とし
て使用する際、熱エネルギーとして失われるものを少な
くし、消費電力を節約できる点で有効である。さらに、
製品の結晶粒の〈100〉軸を圧延方向に揃えること
は、磁化特性を高め、鉄損特性も低くすることができ、
近年特にこの面で多くの研究が重ねられ、様々な製造技
術が開発された。
2. Description of the Related Art Generally, the magnetic properties of a grain-oriented electrical steel sheet are evaluated based on both iron loss properties and excitation properties. Increasing the excitation characteristics is effective in reducing the size of equipment that increases the design magnetic flux density. On the other hand, reducing the iron loss characteristics is effective in that when it is used as an electric device, heat loss is reduced and power consumption can be saved. further,
Aligning the <100> axes of the crystal grains of the product in the rolling direction can improve the magnetization characteristics and lower the iron loss characteristics.
In recent years, many studies have been made particularly on this aspect, and various manufacturing techniques have been developed.

【0003】この結果、現在、工業生産されている代表
的な一方向性電磁鋼板の製造技術には、3つの代表的な
製造技術がある。第一の技術は、特公昭30−3651
号公報に開示されている、MnSをインヒビターして機
能させる、2回冷延工程による製造技術がある。この製
造方法は、二次再結晶の粒径が小さいので、比較的鉄損
は良好であるが、高い磁束密度が得られないという問題
があった。
As a result, there are three typical manufacturing techniques for the typical industrially produced grain-oriented electrical steel sheet. The first technology is Japanese Examined Japanese Patent Publication 30-3651.
There is a manufacturing technique disclosed in Japanese Patent Application Laid-Open No. 2010-2004 that causes MnS to function as an inhibitor by a two-time cold rolling process. This manufacturing method has a relatively good iron loss due to a small particle size of the secondary recrystallization, but has a problem that a high magnetic flux density cannot be obtained.

【0004】これに対して、高い磁束密度を得るため
に、第二の技術として、特公昭40−15644号公報
に開示された発明がある。これは、AlN+MnSをイ
ンヒビターとして機能させ、最終冷延工程における圧延
率が80%を超える強圧下とする製造技術である。この
方法により二次再結晶粒の(110)〔001〕方位の
集積度が高く、B8 が1.870(T)以上の高磁束密
度を有する方向性電磁鋼板が得られる。
On the other hand, in order to obtain a high magnetic flux density, there is an invention disclosed in Japanese Patent Publication No. 40-15644 as a second technique. This is a manufacturing technique in which AlN + MnS is made to function as an inhibitor and the rolling reduction in the final cold rolling step is under high pressure exceeding 80%. By this method, a grain-oriented electrical steel sheet having a high degree of integration of the (110) [001] orientation of secondary recrystallized grains and a high magnetic flux density of B 8 of 1.870 (T) or more can be obtained.

【0005】さらに第三の技術として、特公昭51−1
3469号公報に開示されている、MnSまたはMnS
e+Sbをインヒビターとして機能させる、2回冷延工
程による製造技術が開発された。しかし、上記第二及び
第三の技術による製造方法では、高磁束密度を有する方
向性電磁鋼板が得られたとしても、二次再結晶粒径が1
0mmオーダの大きなものしか得られていなかった。
A third technique is disclosed in Japanese Patent Publication No.
MnS or MnS disclosed in Japanese Patent No. 3469
A manufacturing technique has been developed in which e + Sb functions as an inhibitor by a double cold rolling process. However, in the manufacturing methods according to the second and third techniques, even if the grain-oriented electrical steel sheet having a high magnetic flux density is obtained, the secondary recrystallized grain size is 1 or less.
Only the big thing of 0mm order was obtained.

【0006】さて、一般に鉄損は大きく分けて履歴損と
渦電流損の二つからなる。履歴損に影響を与える物理的
な要因として、上述の結晶方位の他に材料の純度や内部
歪みがある。また、渦電流損に影響を与える物理的な要
因として、鋼板の電気抵抗(Si等の成分量)、板厚、
磁区幅の大きさ(結晶粒度)や鋼板に及ぼす張力などが
ある。通常の方向性電磁鋼板では渦電流損が全鉄損の3
/4以上を占めるため履歴損より渦電流損を下げる方が
全鉄損を下げる上でより効果的である。
In general, iron loss is roughly divided into hysteresis loss and eddy current loss. Physical factors that affect the hysteresis loss include the purity of the material and internal strain in addition to the above-described crystal orientation. In addition, as physical factors that affect the eddy current loss, electrical resistance of the steel sheet (amount of components such as Si), sheet thickness,
The magnetic domain width (grain size) and the tension exerted on the steel sheet are included. In ordinary grain-oriented electrical steel, eddy current loss is 3 of total iron loss.
Since it occupies / 4 or more, lowering the eddy current loss than the hysteresis loss is more effective in reducing the total iron loss.

【0007】したがって、上記第二および第三の技術に
よる製造方法では、B8 が1.870(T)以上の高磁
束密度を有する方向性電磁鋼板が得られたとしても、二
次再結晶粒径が10mmオーダと大きくなるため、渦電流
損に影響する磁区幅が大きく、さらに鉄損を改善する必
要があった。これを改善するために、特公昭57−22
52号公報に開示されている鋼板にレーザー処理を施す
方法、さらに特公昭58−2569号公報に開示されて
いる鋼板に機械的な歪みを加える方法など、磁区を細分
化する様々な方法が開示されている。
Therefore, in the manufacturing methods according to the second and third techniques, the secondary recrystallized grains are obtained even if the grain-oriented electrical steel sheet having a high magnetic flux density of B 8 of 1.870 (T) or more is obtained. Since the diameter becomes large on the order of 10 mm, the magnetic domain width that affects the eddy current loss is large, and it is necessary to further improve the iron loss. In order to improve this, Japanese Patent Publication No. 57-22
Various methods for subdividing magnetic domains are disclosed, such as a method of subjecting a steel sheet disclosed in Japanese Patent Publication No. 52-52 to laser treatment, and a method of applying mechanical strain to the steel sheet disclosed in Japanese Patent Publication No. 58-2569. Has been done.

【0008】これに対し、微細な二次再結晶粒径を持つ
ことにより、従来よりも低い鉄損を有する一方向性電磁
鋼板の製造方法を提供するものとして、たとえば、特開
平1−290716号公報では、常温圧延された鋼板に
100℃/秒以上の加熱速度で675℃以上の温度へ超
急速焼きなまし処理を施し、該ストリップを脱炭素処理
し、最終高温焼きなまし処理を施して二次成長を行い、
それによって前記ストリップが低減した寸法の二次粒子
及び応力除去焼きなまし処理後も有意の変化なしに持続
する改善された鉄損をもつことを特徴とする方法が開示
されている。
On the other hand, as a method for producing a grain-oriented electrical steel sheet having a finer secondary recrystallized grain size, which has a lower iron loss than before, as disclosed in, for example, JP-A 1-290716. In the publication, a cold rolled steel sheet is subjected to a super rapid annealing treatment at a heating rate of 100 ° C./sec or more to a temperature of 675 ° C. or higher, the strip is decarbonized, and a final high temperature annealing treatment is applied to carry out secondary growth. Done,
A method is thereby disclosed characterized in that said strips have secondary particles of reduced size and improved iron loss which persists without significant changes after stress relief annealing.

【0009】しかし、この方法は、確かに小さな二次再
結晶粒は得られるのではあるが、急速加熱処理におい
て、常温の低温域から675℃以上の高温域までの約7
00℃以上の温度範囲を急速に加熱する必要がある。し
たがって、これを実現するためには脱炭焼鈍設備の抵抗
電気加熱化、誘導加熱化などの大幅な設備改造が必須と
なり、ハード面による制約が多かった、例えば従来の設
備の絶縁、漏電対策、高周波化により妨害電波化対策な
どを講ずる必要があった。
However, although this method surely produces small secondary recrystallized grains, in the rapid heat treatment, it is possible to obtain about 7 to about 675 ° C. or higher temperature from normal temperature low temperature range.
It is necessary to rapidly heat the temperature range of 00 ° C or higher. Therefore, in order to realize this, it is essential to make large facility modifications such as resistance electric heating and induction heating of decarburization annealing equipment, and there were many restrictions due to hardware aspects, such as insulation of conventional equipment, measures against leakage, It was necessary to take measures against interference waves due to higher frequencies.

【0010】[0010]

【発明が解決しようとする課題】上記従来の急速加熱法
で一方向性電磁鋼板を製造する方法では、急速加熱する
温度範囲が広いため設備面での制約が多い。本発明は、
このような不都合を解決するため出来るだけ急速加熱す
る温度範囲を軽減してやる製造方法を提供するものであ
る。
In the conventional method for producing a grain-oriented electrical steel sheet by the rapid heating method, the temperature range for rapid heating is wide, and there are many restrictions on equipment. The present invention
In order to solve such inconvenience, the present invention provides a manufacturing method in which the temperature range for rapid heating is reduced as much as possible.

【0011】[0011]

【課題を解決するための手段】本発明では、上記課題を
解決すべく検討を重ねた結果、重量で、C :0.10
%以下、 Si:2.5〜7.0%、Mn:
0.02〜0.15%、 S :0.001〜0.
050%、酸可溶性Al:0.010〜0.040%、
N :0.0030〜0.0200%を基本成分とし、
残余はFeおよび不可避的不純物よりなる、最終製品厚
まで圧延されたストリップを脱炭焼鈍し、最終仕上焼鈍
する一方向性電磁鋼板の製造方法において、脱炭焼鈍の
加熱過程で、常温超、600℃以下の温度範囲から、少
なくとも750℃までの温度範囲を、80℃/秒以上の
加熱速度で加熱することを特徴とすることにより、極め
て低い鉄損をもつ一方向性電磁鋼板が得られることを見
いだした。
In the present invention, as a result of repeated studies to solve the above-mentioned problems, C: 0.10 by weight.
% Or less, Si: 2.5 to 7.0%, Mn:
0.02-0.15%, S: 0.001-0.
050%, acid-soluble Al: 0.010 to 0.040%,
N: 0.0030 to 0.0200% as a basic component,
In the method for producing a unidirectional electrical steel sheet in which the balance consists of Fe and unavoidable impurities, decarburization annealing is performed on the strip rolled to the final product thickness, and final finishing annealing is performed. A unidirectional electrical steel sheet having an extremely low iron loss can be obtained by heating the temperature range from ℃ or less to at least 750 ℃ at a heating rate of 80 ℃ / sec or more. I found it.

【0012】以下に本発明を詳細に説明する。一方向性
電磁鋼板は、その製造工程の最終焼鈍中に二次再結晶を
充分に起こさせ、所謂ゴス集合組織を得ることにより製
造できる。このゴス集合組織を得るためには、一次再結
晶粒の成長粗大化を抑制し、(110)<001>方位
の再結晶粒のみを或る温度範囲で選択的に成長させる。
すなわち、二次再結晶させる様な素地を作ってやること
が必要である。そのためには、素材に微細な介在物が一
次再結晶粒の成長の抑制材(インヒビター)として均一
に分散させ粒成長抑制効果を高めることと同時に、仕上
焼鈍前の一次再結晶集合組織を適切にすることが重要で
ある。
The present invention will be described in detail below. The grain-oriented electrical steel sheet can be manufactured by sufficiently causing secondary recrystallization during the final annealing in the manufacturing process to obtain a so-called Goss texture. In order to obtain this Goss texture, growth coarsening of primary recrystallized grains is suppressed, and only recrystallized grains of (110) <001> orientation are selectively grown in a certain temperature range.
That is, it is necessary to make a base material for secondary recrystallization. For that purpose, fine inclusions are uniformly dispersed in the material as an inhibitor (growth inhibitor) for the growth of primary recrystallized grains to enhance the grain growth suppression effect, and at the same time, the primary recrystallized texture before finish annealing is appropriately adjusted. It is important to.

【0013】一般に冷延板が加熱され一次再結晶集合組
織が形成される時には、回復、核発生、再結晶、粒成長
の過程がある。このうち特に、核発生、再結晶過程にお
いて、結晶粒の粒内から核発生する場合と、粒界から核
発生する場合とでは、後の一次再結晶後の集合組織に変
化が生じてくることを本発明者らは見いだした。つまり
本発明のように、回復ではなく加熱段階である核発生と
再結晶過程の温度範囲において、急速に加熱すると、粒
界と粒内での核発生、再結晶の優先性に差が生じ、一次
再結晶集合組織で通常加熱法と比較して(110)<0
01>方位粒が増加することが判明した。これにより、
後の二次再結晶の核を増加させ、小さな二次再結晶粒が
得られる。
Generally, when a cold-rolled sheet is heated to form a primary recrystallization texture, there are processes of recovery, nucleation, recrystallization and grain growth. Of these, especially in the nucleation and recrystallization process, there is a change in the texture after the primary recrystallization, depending on whether the nucleation occurs from inside the crystal grain or the nucleation from the grain boundary. The present inventors have found out. That is, like the present invention, in the temperature range of nucleation and recrystallization process which is a heating step rather than recovery, rapid heating causes nucleation in grain boundaries and grains, a difference in priority of recrystallization, (110) <0 compared with normal heating method with primary recrystallization texture
It was found that the 01> oriented grains increased. This allows
The nuclei of the subsequent secondary recrystallization are increased, and small secondary recrystallized grains are obtained.

【0014】これに対し、回復での加熱速度は、何ら一
次再結晶集合組織の変化に影響を及ぼさないことも本発
明者らは見いだした。図1に、急速加熱による硬度変化
を示す。硬度変化から約600℃までに回復は完了して
おり、次に750℃までに核発生、再結晶過程が完了し
ている。
On the other hand, the present inventors have found that the heating rate for recovery does not affect the change of primary recrystallization texture at all. FIG. 1 shows the change in hardness due to rapid heating. The recovery from the hardness change is completed up to about 600 ° C, and the nucleation and recrystallization processes are completed up to 750 ° C.

【0015】こうして、詳細な検討を重ねた結果、脱炭
焼鈍の加熱過程で、核発生、再結晶過程である600℃
から750℃までの温度範囲を80℃/秒以上の加熱速
度で加熱処理を施すことにより、(110)<001>
方位粒が増加することが判明し、微細な二次再結晶粒径
を得られ、極めて低い鉄損を有する一方向性電磁鋼板を
得ることが出来るようになった。
As a result of repeated detailed investigations as described above, 600 ° C. which is a nucleation and recrystallization process in the heating process of decarburization annealing.
To (750) to 750 ° C. at a heating rate of 80 ° C./sec or more to obtain (110) <001>.
It was found that the number of oriented grains increased, a fine secondary recrystallized grain size was obtained, and it became possible to obtain a grain-oriented electrical steel sheet having extremely low iron loss.

【0016】[0016]

【発明の実施の形態】次に本発明において、鋼組成およ
び製造条件を前記のように限定した理由を、詳細に説明
する。この鋼成分の限定理由は下記のとおりである。C
についての上限0.10%は、これ以上多くなると脱炭
所要時間が長くなり、経済的に不利となるので限定し
た。Siは鉄損を良くするために下限を2.5%とする
が、多すぎると冷間圧延の際に割れ易く加工が困難とな
るので上限を7.0%とする。
BEST MODE FOR CARRYING OUT THE INVENTION Next, in the present invention, the reason why the steel composition and manufacturing conditions are limited as described above will be explained in detail. The reasons for limiting the steel components are as follows. C
The upper limit of 0.10% is limited because the decarburization time becomes longer and the economical disadvantage becomes higher. The lower limit of Si is set to 2.5% in order to improve iron loss, but if it is too large, it is likely to break during cold rolling and processing becomes difficult, so the upper limit is set to 7.0%.

【0017】さらに、一方向性電磁鋼板を製造するため
に、通常のインヒビター成分として以下の成分元素を添
加する。インヒビターとしてMnSを利用する場合は、
MnとSを添加する。Mnは、MnSの適当な分散状態
を得るため、0.02〜0.15%に限定する。SはM
nS,(Mn・Fe)Sを形成するために必要な元素
で、適当な分散状態を得るため、0.001〜0.05
%に限定する。
Further, in order to manufacture the grain-oriented electrical steel sheet, the following component elements are added as usual inhibitor components. When using MnS as an inhibitor,
Add Mn and S. Mn is limited to 0.02 to 0.15% in order to obtain an appropriate dispersed state of MnS. S is M
It is an element necessary for forming nS, (Mn.Fe) S, and is 0.001 to 0.05 in order to obtain an appropriate dispersed state.
%.

【0018】さらに、インヒビターとしてAlNを利用
するため、酸可溶性AlとNを添加する。酸可溶性A
l,AlNの適正な分散状態を得るため0.01〜0.
04%に限定する。Nも、AlNの適正な分散状態を得
るため0.003〜0.02%に限定する。その他、C
u,Sn,Sb,Cr,Biはインヒビターを強くする
目的で1.0%以下において少なくとも1種添加しても
良い。
Further, since AlN is used as an inhibitor, acid-soluble Al and N are added. Acid soluble A
1, 0.01 to 0.
Limited to 04%. N is also limited to 0.003 to 0.02% in order to obtain a proper dispersed state of AlN. Other, C
At least one of u, Sn, Sb, Cr and Bi may be added in an amount of 1.0% or less for the purpose of strengthening the inhibitor.

【0019】次に、上記の溶鋼を通常の鋳塊鋳造法また
は連続鋳造法、熱間圧延により中間厚のストリップを得
る。このときストリップ鋳造法も本発明に適用すること
も可能である。さらに、インヒビターとして窒化物を必
要とするため、AlN等の析出のために上記ストリップ
を950〜1200℃で30秒〜30分の中間焼鈍を行
うことが望ましい。次に、1回ないし中間焼鈍を含む2
回以上の圧延により最終製品厚のストリップを得る。こ
のときの最終圧下率は高いゴス集積度をもつ製品を得る
ため、圧下率60%以上が望ましい。下限60%はこれ
以下では必要なゴス核が得られないからである。
Next, the above molten steel is subjected to a conventional ingot casting method or continuous casting method and hot rolling to obtain a strip having an intermediate thickness. At this time, the strip casting method can also be applied to the present invention. Furthermore, since a nitride is required as an inhibitor, it is desirable to perform intermediate annealing of the strip at 950 to 1200 ° C. for 30 seconds to 30 minutes for the precipitation of AlN or the like. Next, 1 to 2 including intermediate annealing
The final product thickness strip is obtained by rolling more than once. The final rolling reduction at this time is preferably 60% or more in order to obtain a product having a high degree of Goss accumulation. The lower limit of 60% is because the required Goss nucleus cannot be obtained below this.

【0020】このように、最終製品厚まで圧延されたス
トリップに脱炭焼鈍を施す。この加熱過程で、常温超、
600℃以下の温度範囲から、少なくとも750℃まで
の温度範囲を、80℃/秒以上の加熱速度で加熱処理を
施し、この後は湿水素雰囲気中で脱炭焼鈍を行う。この
時の温度域の上限600℃は、これ以下では一次再結晶
集合組織の形成過程において回復しか進行しておらず、
核発生と再結晶が開始されないので限定した。さらに温
度域の下限750℃は、これを上まわると一次再結晶集
合組織の形成過程における核発生と再結晶が完了してい
るので限定した。また、750℃以上の温度域では一次
再結晶粒の粗大化、粒成長させるため、温度範囲を75
0℃以上とした。さらに加熱速度の下限80℃/秒は、
これを下まわると(110)<001>方位粒の核発
生、再結晶の進行を促進することが困難なので限定し
た。以上の加熱処理を施すことにより、二次再結晶の核
となる一次再結晶後での(110)<001>方位粒が
増加し、微細な二次再結晶粒が得られる。
Thus, the strip rolled to the final product thickness is subjected to decarburization annealing. In this heating process, above normal temperature,
From the temperature range of 600 ° C. or lower to the temperature range of at least 750 ° C., heat treatment is performed at a heating rate of 80 ° C./sec or more, and then decarburization annealing is performed in a wet hydrogen atmosphere. The upper limit of the temperature range of 600 ° C. at this time is only recovery in the process of forming the primary recrystallized texture below this,
Limited because nucleation and recrystallization do not start. Further, the lower limit of 750 ° C. in the temperature range is limited because nucleation and recrystallization in the formation process of the primary recrystallization texture are completed when the lower limit is exceeded. Further, in the temperature range of 750 ° C. or higher, the primary recrystallized grains are coarsened and the grains are grown.
The temperature was set to 0 ° C. or higher. Furthermore, the lower limit of heating rate of 80 ° C / sec is
Below this value, it is difficult to promote the nucleation of (110) <001> oriented grains and the progress of recrystallization. By performing the above heat treatment, the number of (110) <001> oriented grains after the primary recrystallization, which is the nucleus of the secondary recrystallization, increases, and fine secondary recrystallized grains are obtained.

【0021】なお、本発明では、上記600℃から75
0℃の温度範囲以外の温度域では、加熱速度は何ら磁気
特性に影響を及ぼさない。したがって、600℃以下の
低温域、750℃以上の高温域において約20℃/秒と
いう従来の加熱方法による手段を講じても何ら差支えな
い。
In the present invention, the above-mentioned 600 ° C. to 75 ° C.
In the temperature range other than the temperature range of 0 ° C., the heating rate has no influence on the magnetic properties. Therefore, there is no problem even if the conventional heating method of about 20 ° C./sec is used in the low temperature region of 600 ° C. or lower and the high temperature region of 750 ° C. or higher.

【0022】また、上記の加熱処理は、例えば従来の脱
炭焼鈍設備の加熱帯の終了部に、常温超、600℃以下
の温度域から、少なくとも750℃までの最低限150
℃の温度範囲を急速に加熱する装置を備えれば良い。例
えばプラズマ加熱、高出力の白色アークランプなどによ
り上記温度範囲を加熱してやれば良い。
The above-mentioned heat treatment is carried out, for example, at the end of the heating zone of the conventional decarburization annealing equipment, from the temperature range above room temperature to 600 ° C. to a minimum of 150 ° C.
A device for rapidly heating the temperature range of ° C may be provided. For example, the above temperature range may be heated by plasma heating, a high-output white arc lamp, or the like.

【0023】なお、以上により湿水素雰囲気中で脱炭焼
鈍されたストリップは、製品での磁気特性を劣化させな
いため炭素は0.005%以下に低減されなければなら
ない。さらに、熱延でのスラブ加熱温度が低い場合は、
アンモニア雰囲気中で窒化処理を付加することもある。
つぎに、MgO等の焼鈍分離剤を塗布して、二次再結晶
と純化のため1100℃以上の仕上げ焼鈍を行うこと
で、極めて低い鉄損特性を有する一方向性電磁鋼板が製
造される。以上得られた製品に、さらに鉄損を良好にす
るため、上記一方向性電磁鋼板に、磁区を細分化するた
めの処理を施すことも可能である。
In the strips decarburized and annealed in the wet hydrogen atmosphere as described above, the carbon content must be reduced to 0.005% or less in order not to deteriorate the magnetic properties of the product. Furthermore, if the slab heating temperature in hot rolling is low,
Nitriding treatment may be added in an ammonia atmosphere.
Next, an annealing separator such as MgO is applied, and finish annealing is performed at 1100 ° C. or higher for secondary recrystallization and purification, thereby producing a unidirectional electrical steel sheet having extremely low iron loss characteristics. In order to further improve the iron loss of the obtained product, it is possible to subject the above-mentioned grain-oriented electrical steel sheet to a treatment for subdividing magnetic domains.

【0024】[0024]

【実施例】次に本発明の実施例を挙げて説明する。 (実施例1)表1に示す成分組成を含み、0.27mm厚
にまで最終冷延されたストリップを840℃まで加熱処
理した。この加熱過程において表2に示す温度範囲を8
5℃/秒で急速に加熱し、これ以外の温度範囲では20
℃/秒の加熱速度で加熱した。ただし条件Iのみは、全
温度範囲を20℃/秒の加熱速度で加熱した。続けてス
トリップを840℃の均一温度の湿潤水素中で180秒
間脱炭焼鈍した。この後、MgO粉を塗布した後、12
00℃に10時間、水素ガス雰囲気中で高温焼鈍を行っ
た。
Next, an embodiment of the present invention will be described. (Example 1) A strip containing the composition shown in Table 1 and finally cold rolled to a thickness of 0.27 mm was heat-treated to 840 ° C. In this heating process, the temperature range shown in Table 2 was set to 8
Rapidly heats at 5 ° C / sec and 20 at other temperature ranges
It was heated at a heating rate of ° C / sec. However, only the condition I was heated in the entire temperature range at a heating rate of 20 ° C./sec. The strip was subsequently decarburized annealed in wet hydrogen at a uniform temperature of 840 ° C. for 180 seconds. Then, after applying MgO powder,
High temperature annealing was performed at 00 ° C. for 10 hours in a hydrogen gas atmosphere.

【0025】表2に、得られた製品の、磁気特性を示
す。製品の磁気特性は、脱炭焼鈍の加熱過程において、
常温超、600℃以下の温度範囲から少なくとも750
℃以上の温度域を急速に加熱することにより、従来の急
速加熱処理とほぼ同等の極めて低い鉄損を有する一方向
性電磁鋼板が得られている。
Table 2 shows the magnetic properties of the obtained products. The magnetic properties of the product are as follows:
At least 750 from room temperature above 600 ℃
By rapidly heating a temperature range of ℃ or more, a grain-oriented electrical steel sheet having an extremely low iron loss almost equal to that of the conventional rapid heat treatment has been obtained.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】(実施例2)表3に示す成分組成を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。これを1100℃で5分間焼鈍を行
い、さらに酸洗したのち、冷間圧延により0.23mm厚
にした。圧延された鋼板を580℃まで通常のガス加熱
により加熱し、580℃から780℃までを250℃/
秒の加熱速度でプラズマ加熱により加熱した。また比較
例として圧延された鋼板を25℃の常温から745℃ま
で220℃/秒の加熱速度で電気誘導加熱装置により加
熱した。
(Example 2) A molten steel containing the chemical composition shown in Table 3 was cast, heated to a slab, and hot-rolled to 2.3 mm.
Was obtained. This was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.23 mm. The rolled steel sheet is heated to 580 ° C by normal gas heating, and the temperature from 580 ° C to 780 ° C is 250 ° C /
It was heated by plasma heating at a heating rate of 2 seconds. As a comparative example, the rolled steel sheet was heated from room temperature of 25 ° C. to 745 ° C. at a heating rate of 220 ° C./sec by an electric induction heating device.

【0029】これら加熱された後、続けてストリップを
840℃の均一温度の湿潤水素中で180秒間脱炭焼鈍
した。次にMgO粉を塗布した後、1200℃に10時
間、水素ガス雰囲気中で高温焼鈍を行った。
After being heated, the strip was subsequently decarburized and annealed in wet hydrogen at a uniform temperature of 840 ° C. for 180 seconds. Next, after applying MgO powder, high-temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere.

【0030】これにより得られた製品の特性は、脱炭焼
鈍の加熱過程において580℃から780℃のみの温度
範囲を急速加熱処理を施したものはB8 =1.93T、
17 /50 =0.81(W/kg)、比較例の加熱処理のも
のはB8 =1.94T、W17 /50 =0.80(W/kg)
であった。脱炭焼鈍の加熱過程において、常温超、60
0℃以下の温度範囲から少なくとも750℃以上の温度
域を急速に加熱することにより、従来の加熱処理を施し
たものとほぼ同等の極めて低い鉄損をもつ一方向性電磁
鋼板が得られた。
The characteristics of the product thus obtained are as follows: B 8 = 1.93T when the product subjected to the rapid heat treatment in the temperature range of 580 ° C. to 780 ° C. in the heating process of decarburization annealing,
W 17/50 = 0.81 (W / kg), that of the heat treatment of Comparative Example B 8 = 1.94T, W 17/ 50 = 0.80 (W / kg)
Met. In the heating process of decarburization annealing, the temperature exceeds room temperature, 60
By rapidly heating the temperature range from 0 ° C. or lower to at least 750 ° C. or higher, a grain-oriented electrical steel sheet having an extremely low iron loss almost equal to that of the conventional heat treatment was obtained.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の効果】本発明によれば、脱炭焼鈍の加熱過程に
おいて特定の温度範囲のみを急速に加熱処理することに
より、磁束密度の高い、かつ微細な二次再結晶粒径を持
つことにより、極めて低い鉄損特性を有する一方向性電
磁鋼板を製造することができるので、産業上の貢献する
ところが極めて大である。
According to the present invention, by rapidly heat-treating only a specific temperature range in the heating process of decarburization annealing, a high magnetic flux density and a fine secondary recrystallized grain size are obtained. Since it is possible to manufacture a grain-oriented electrical steel sheet having extremely low iron loss characteristics, the industrial contribution is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加熱温度による冷延板の硬度変化を示す。FIG. 1 shows a change in hardness of a cold rolled sheet depending on heating temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 H01F 1/16 B (72)発明者 筑摩 顯太郎 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 (72)発明者 切山 忠夫 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location H01F 1/16 H01F 1/16 B (72) Inventor Ryutaro Chikuma Fujimachi, Hirohata-ku, Himeji City, Hyogo Prefecture No. 1 Shin Nippon Steel Co., Ltd. Hirohata Works (72) Inventor Tadao Kiriyama No. 1 Fuji-machi, Hirohata-ku, Himeji City, Hyogo Prefecture Shin Nippon Steel Co., Ltd. Hirohata Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量で、 C :0.10%以下、 Si:2.5〜7.0%、 Mn:0.02〜0.15%、 S :0.001〜0.050%、 酸可溶性Al:0.010〜0.040%、 N :0.0030〜0.0200% を基本成分とし、残余はFeおよび不可避的不純物より
なる、最終製品厚まで圧延されたストリップを脱炭焼鈍
し、最終仕上焼鈍する一方向性電磁鋼板の製造方法にお
いて、脱炭焼鈍の加熱過程で、常温超、600℃以下の
温度範囲から、少なくとも750℃までの温度範囲を、
80℃/秒以上の加熱速度で加熱することを特徴とす
る、極めて低い鉄損をもつ一方向性電磁鋼板の製造方
法。
1. By weight, C: 0.10% or less, Si: 2.5 to 7.0%, Mn: 0.02 to 0.15%, S: 0.001 to 0.050%, acid Soluble Al: 0.010 to 0.040%, N: 0.0030 to 0.0200% as a basic component, and the balance consisting of Fe and inevitable impurities. In the manufacturing method of the unidirectional electrical steel sheet for final finish annealing, in the heating process of decarburizing annealing, a temperature range from room temperature over 600 ° C. to at least 750 ° C.
A method for producing a grain-oriented electrical steel sheet having extremely low iron loss, which comprises heating at a heating rate of 80 ° C./second or more.
JP7279354A 1995-10-26 1995-10-26 Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss Pending JPH09118921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7279354A JPH09118921A (en) 1995-10-26 1995-10-26 Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7279354A JPH09118921A (en) 1995-10-26 1995-10-26 Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss

Publications (1)

Publication Number Publication Date
JPH09118921A true JPH09118921A (en) 1997-05-06

Family

ID=17610010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7279354A Pending JPH09118921A (en) 1995-10-26 1995-10-26 Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss

Country Status (1)

Country Link
JP (1) JPH09118921A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062853A1 (en) 2006-11-22 2008-05-29 Nippon Steel Corporation Unidirectionally grain oriented electromagnetic steel sheet having excellent film adhesion, and method for manufacturing the same
US7887646B2 (en) 2005-05-23 2011-02-15 Nippon Steel Corporation Oriented magnetic steel plate excellent in coating adhesion and method of production of same
WO2021054408A1 (en) * 2019-09-18 2021-03-25 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
US11942247B2 (en) * 2013-08-27 2024-03-26 Cleveland-Cliffs Steel Properties Inc. Grain oriented electrical steel with improved forsterite coating characteristics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887646B2 (en) 2005-05-23 2011-02-15 Nippon Steel Corporation Oriented magnetic steel plate excellent in coating adhesion and method of production of same
WO2008062853A1 (en) 2006-11-22 2008-05-29 Nippon Steel Corporation Unidirectionally grain oriented electromagnetic steel sheet having excellent film adhesion, and method for manufacturing the same
US7942982B2 (en) 2006-11-22 2011-05-17 Nippon Steel Corporation Grain-oriented electrical steel sheet excellent in coating adhesion and method of producing the same
US11942247B2 (en) * 2013-08-27 2024-03-26 Cleveland-Cliffs Steel Properties Inc. Grain oriented electrical steel with improved forsterite coating characteristics
WO2021054408A1 (en) * 2019-09-18 2021-03-25 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
JPWO2021054408A1 (en) * 2019-09-18 2021-03-25

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH09118921A (en) Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH075975B2 (en) Method for producing grain-oriented electrical steel sheet
JP2562259B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030225