JPH075975B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet

Info

Publication number
JPH075975B2
JPH075975B2 JP63140735A JP14073588A JPH075975B2 JP H075975 B2 JPH075975 B2 JP H075975B2 JP 63140735 A JP63140735 A JP 63140735A JP 14073588 A JP14073588 A JP 14073588A JP H075975 B2 JPH075975 B2 JP H075975B2
Authority
JP
Japan
Prior art keywords
annealing
temperature
hot
oriented electrical
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63140735A
Other languages
Japanese (ja)
Other versions
JPH01309924A (en
Inventor
裕義 屋鋪
輝雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63140735A priority Critical patent/JPH075975B2/en
Publication of JPH01309924A publication Critical patent/JPH01309924A/en
Publication of JPH075975B2 publication Critical patent/JPH075975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、低コストでしかも圧延方向に良好な磁気特
性を有する方向性電磁鋼板の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a grain-oriented electrical steel sheet having low cost and good magnetic properties in the rolling direction.

〔従来の技術〕[Conventional technology]

方向性電磁鋼板は圧延方向の励磁特性と鉄損特性に優れ
る電磁気材料で、変圧器鉄心をはじめとする様々の電気
機器用途に広く用いれている。
The grain-oriented electrical steel sheet is an electromagnetic material that excels in excitation characteristics and iron loss characteristics in the rolling direction, and is widely used in various electrical equipment applications such as transformer cores.

ところで、方向性電磁鋼板は、一般の冷延鋼板や無方向
性電磁鋼板に比べて、製造工程が複雑で特殊なために、
コストが非常に高くつく。こうしたことから、方向性電
磁鋼板にあっては製造工程の改善によるコストダウンが
重要な課題となっている。
By the way, the grain-oriented electrical steel sheet is complicated and special in the manufacturing process as compared with general cold-rolled steel sheet and non-oriented electrical steel sheet.
The cost is very high. For these reasons, cost reduction by improving the manufacturing process has become an important issue for grain-oriented electrical steel sheets.

方向性電磁鋼板の一般的な製造プロセスは、まずスラブ
を1300℃以上に高温加熱し、AlN、MnSを溶体化して熱間
圧延し、熱延板焼鈍後、1回または中間焼鈍を伴う2回
以上の冷間圧延を行って最終板厚とする。そして、脱炭
焼鈍により鋼中Cを低レベルに下げるとともに、一次再
結晶を調整する。最後にバッチ炉において1100〜1200℃
の仕上焼鈍を行って、二次再結晶を生じさせるととも
に、鋼の純化(脱硫・脱窒)を図る、というものであ
る。
The general manufacturing process of grain-oriented electrical steel sheets is as follows: first heat the slab to a temperature of 1300 ° C or higher, solution heat AlN and MnS and hot-roll it, and then hot-roll it once or twice with intermediate annealing. The above cold rolling is performed to obtain the final plate thickness. Then, C in steel is lowered to a low level by decarburization annealing, and primary recrystallization is adjusted. Finally 1100-1200 ℃ in batch furnace
The second step is to perform secondary annealing to produce secondary recrystallization and to purify steel (desulfurization and denitrification).

スラブの高温加熱は、二次再結晶のインヒビターとなる
AlNやMnSの分散状態の適正化に不可欠なものあるが、13
00℃以上の加熱には特殊な専用炉が必要とされる上、ス
ケールロスやエネルギーコストの点でも問題がある。
High temperature heating of slabs inhibits secondary recrystallization
Some are essential for optimizing the dispersion state of AlN and MnS.
Heating above 00 ℃ requires a special dedicated furnace, and there are problems in terms of scale loss and energy cost.

また脱炭焼鈍は、熱延板焼鈍までの工程においてAlN、M
nSの分散状態の適正化という意味から必要とされるCを
磁気特性上問題のないレベルまで下げるために行うもの
であるが、コストが非常に高くつく。
In addition, decarburization annealing uses AlN, M
This is done in order to lower the C required to optimize the dispersion state of nS to a level at which there is no problem in terms of magnetic properties, but the cost is very high.

更に仕上焼鈍としての高温長時間焼鈍は、成品の磁気特
性にとっては有害な析出物、とくにMnSの除去のために
必要とされるが、1100〜1200℃いう高温での長時間に及
ぶ処理はコスト上昇の大きな原因となる。すなわち、方
向性電磁鋼板のコストダウンを図るためには、これらの
熱処理の低コスト化が不可欠となってくる。
Furthermore, high-temperature long-time annealing as finish annealing is required to remove precipitates that are harmful to the magnetic properties of the product, especially MnS, but long-time treatment at a high temperature of 1100 to 1200 ° C is costly. It is a big cause of the rise. That is, in order to reduce the cost of the grain-oriented electrical steel sheet, it is essential to reduce the cost of these heat treatments.

熱処理の低コスト化を実現する試みとしては、例えば特
開昭58−100627号に示される方法がある。
As an attempt to reduce the cost of heat treatment, for example, there is a method disclosed in JP-A-58-100627.

これは、C0.02%以下、Si5%以下、S0.015%以下、Al0.
01〜0.08%、N0.01%以下の鋼素材を1270℃以下でスラ
ブ加熱し、熱延、熱延板焼鈍、冷延、一次再結晶焼鈍を
行ったのち、鋼板板面に平行な1cm当り2℃以上の温度
差を付与する焼鈍を行って二次再結晶を生じさせるとい
うものである。
This is C0.02% or less, Si5% or less, S0.015% or less, Al0.
After slab-heating a steel material of 01 to 0.08% and N0.01% or less at 1270 ° C or less, hot rolling, hot rolled sheet annealing, cold rolling, and primary recrystallization annealing, then per 1 cm parallel to the steel sheet surface Annealing is performed to impart a temperature difference of 2 ° C. or more to cause secondary recrystallization.

この方法は、スラブ加熱を1300℃未満の温度で行えばよ
いので、特殊な専用炉を必要とせず、スケールロスやエ
ネルギーコストも低減される。またC量を予め低くして
おけるので、工程途中での脱炭処理が不要となる等のメ
リットがある。
In this method, since the slab heating may be performed at a temperature lower than 1300 ° C, a special dedicated furnace is not required and scale loss and energy cost are reduced. Further, since the amount of C can be lowered in advance, there is an advantage that decarburization treatment is unnecessary during the process.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、この方法ではAlNのインヒビター効果が
十分に発揮されず、二次再結晶を安定して得ることが難
しい。しかも、二次再結晶処理として鋼板板面に平行に
温度差を付与する特殊な焼鈍を必要とし、実用的な方法
とは言えない。
However, with this method, the inhibitor effect of AlN is not sufficiently exerted, and it is difficult to stably obtain secondary recrystallization. In addition, a special annealing that imparts a temperature difference in parallel to the steel plate surface is required as the secondary recrystallization treatment, which is not a practical method.

ところで、方向性電磁鋼板については本発明者らも以前
より研究を行っており、有用な製造法をすでにいくつか
提案している。その中の1つが特開昭62−83421号(以
下、先願とする)の方法である。
By the way, the present inventors have been studying grain-oriented electrical steel sheets for some time, and have already proposed some useful manufacturing methods. One of them is the method disclosed in JP-A-62-83421 (hereinafter referred to as the prior application).

これは、基本的には極低炭素(C≦0.010%)でAlを極
微量(0.003〜0.015%)含ませた鋼を素材として用い、
熱延−冷延後、所要の条件で一次再結晶を行わしめる焼
鈍と二次再結晶を行わしめる仕上焼鈍とを行うものであ
る。この方法は、AlNのインヒビター効果を有効に引き
出すことができ、しかも脱炭焼鈍が省略できる上、仕上
焼鈍もα領域での低温焼鈍で二次再結晶を発生させるこ
とができるので、コスト面で非常に有利である。
This is basically made of steel with extremely low carbon (C ≦ 0.010%) and a very small amount of Al (0.003 to 0.015%),
After hot rolling-cold rolling, annealing for performing primary recrystallization and finish annealing for performing secondary recrystallization are performed under required conditions. This method can effectively bring out the inhibitor effect of AlN, and further, decarburization annealing can be omitted, and in finishing annealing also secondary recrystallization can be generated by low temperature annealing in the α region, so in terms of cost. Very advantageous.

先願の方法はこのように、有効性の高いものであるが、
磁気特性については、これを上廻る性能の要求も多く、
より一層の改善が望まれるところである。
Although the method of the earlier application is highly effective,
Regarding magnetic characteristics, there are many demands for performance exceeding this,
Further improvement is desired.

本発明は、先願の技術を更に発展させ、その有利性を生
かしながら、より高くかつ安定した磁気特性が確保でき
るようにした方向性電磁鋼板の製造方法の提供を目的と
する。
It is an object of the present invention to further develop the technique of the prior application and to provide a method for producing a grain-oriented electrical steel sheet which can ensure higher and stable magnetic properties while making the most of its advantages.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者らは、先願技術の適用時における、仕上焼鈍工
程での二次再結晶挙動、すなわち二次再結晶粒のゴス方
位{110}〈001〉集積度を改善する有効な手段を見出す
べく、鋭意実験、研究を重ねた結果、下記の如き知見を
得た。
The present inventors have found an effective means for improving the secondary recrystallization behavior in the finish annealing step, that is, the Goss orientation {110} <001> integration degree of the secondary recrystallized grains when the prior application technique is applied. Therefore, as a result of repeated diligent experiments and researches, the following findings were obtained.

二次再結晶粒のゴス方位集積度を高めるには、AlNの外
に、少量のMnSをインヒビターとして活用する必要があ
る。
In addition to AlN, a small amount of MnS must be utilized as an inhibitor in order to increase the goss orientation integration of secondary recrystallized grains.

そして、スラブ加熱温度が1270℃以下の低温の条件下に
おいてMnSのインヒビター効果を有効に引き出すために
は、Mn0.05%〜0.20%、S0.003〜0.015%の範囲とする
ことが重要である。
And, in order to effectively bring out the inhibitory effect of MnS under the condition that the slab heating temperature is 1270 ° C. or lower, it is important to set the ranges of Mn0.05% to 0.20% and S0.003 to 0.015%. .

またこの場合、処理条件としては、熱延の仕上温度を70
0〜900℃の範囲とすることが必要であり、更に熱延板焼
鈍及び冷延後の一次再結晶焼鈍を、950〜1050℃の高温
連続焼鈍とすることが有効である。
In this case, the processing conditions include a hot rolling finishing temperature of 70
It is necessary to set the temperature in the range of 0 to 900 ° C, and it is effective to further perform the high temperature continuous annealing of 950 to 1050 ° C for the hot-rolled sheet annealing and the primary recrystallization annealing after cold rolling.

本発明は、上記のような知見に基づくものであって、下
記の方法を要旨とする。
The present invention is based on the above findings, and has as its gist the following method.

C0.01%以下、Si1.8〜4.0%、Mn0.05〜0.20%、S0.003
〜0.015%、Sol・Al0.003〜0.015%、N0.0010〜0.0100
%含有し、残部はFeおよび不可避的不純物からなるスラ
ブを1270℃以下に加熱し、仕上温度700〜900℃にて熱間
圧延を行い、600℃以下の温度で巻取ったのち、950℃ご
え1050℃以下の温度で10秒以上10分以内の連続焼鈍によ
り熱延板焼鈍を行い、次いで1回または中間焼鈍を伴う
2回以上の冷間圧延を施して最終板厚としたのち、950
℃ごえ1050℃以下の温度で10秒以上10分以内の連続焼鈍
を行って一次再結晶を生じさせ、更に800℃〜1000℃の
仕上焼鈍により二次再結晶を生じさせることを特徴とす
る方向性電磁鋼板の製造方法。
C0.01% or less, Si1.8-4.0%, Mn0.05-0.20%, S0.003
~ 0.015%, Sol ・ Al0.003 ~ 0.015%, N0.0010 ~ 0.0100
%, With the balance Fe and inevitable impurities heated to 1270 ° C or lower, hot-rolled at a finishing temperature of 700 to 900 ° C, wound at a temperature of 600 ° C or lower, and then 950 ° C. A hot-rolled sheet is annealed by continuous annealing for 10 seconds or more and 10 minutes or less at a temperature of 1050 ° C or less, and then cold rolling is performed once or twice or more with intermediate annealing to obtain a final sheet thickness, and then 950
Characteristically, continuous annealing is performed at a temperature of 1050 ° C. or lower for 10 seconds or more and within 10 minutes to cause primary recrystallization, and further secondary annealing is caused by finish annealing at 800 ° C. to 1000 ° C. Method for manufacturing grain-oriented electrical steel sheet.

〔作用〕[Action]

以下、本発明の各構成要件について具体的かつ詳細に説
明し、作用を明らかにする。
Hereinafter, each constituent element of the present invention will be described specifically and in detail to clarify the operation.

○まず使用するスラブの鋼成分の限定理由は次のとおり
である。
○ First, the reasons for limiting the steel composition of the slab used are as follows.

C:鋼中のC量が0.01%をこえると、鉄損の悪化や磁気時
効の劣化など、磁気特性上好ましくない現象が顕著とな
る。よってCは0.01%以下とした。なお、Cは、磁気特
性上少なければ少ないほど有利であることから、下限は
とくに規定しない。
C: When the C content in the steel exceeds 0.01%, unfavorable phenomena in magnetic properties such as deterioration of iron loss and deterioration of magnetic aging become remarkable. Therefore, C is set to 0.01% or less. It should be noted that the lower the C value, the more advantageous it is in terms of magnetic properties, so the lower limit is not specified.

因に、従来の方向性電磁鋼板は、素材(熱延板)の段階
では0.025〜0.085%程度のCを含ませているのが通例で
あり、これを冷延以降の過程で脱炭焼鈍により低減して
製品C量としている。これは工程途中までのC含有量
が、インヒビターとしてのAlN、NnSの分散状態を適正化
して最終成品の磁性向上に役立つとの考えからである
が、本発明はこのようなC含有を行わずともAlN、MnSを
インヒビターとして効果的に作用させることができるも
のであり、素材鋼中へのC含有は必要ない。むしろ脱炭
焼鈍を省略する意味から予め極低にしておくことが必要
となるのである。
Incidentally, the conventional grain-oriented electrical steel sheet usually contains about 0.025 to 0.085% of C at the stage of the material (hot rolled sheet), which is decarburized and annealed in the process after cold rolling. Reduced the amount to be product C. This is because the C content up to the middle of the process is considered to optimize the dispersed state of AlN and NnS as inhibitors and to improve the magnetism of the final product, but the present invention does not include such C content. In both cases, AlN and MnS can effectively act as inhibitors, and it is not necessary to include C in the material steel. Rather, it is necessary to make it extremely low in advance in order to omit the decarburization annealing.

Si:比抵抗の増加により鉄損低減に有効であり、1.8%以
上の含有によりその効果を顕著に示す。しかし4%を超
える含有は冷間圧延を困難とする。したがって1.8〜4.0
%とした。
Si: It is effective in reducing iron loss by increasing the specific resistance, and the effect is remarkable when the content is 1.8% or more. However, if the content exceeds 4%, cold rolling becomes difficult. Therefore 1.8-4.0
%.

なお、実際上Si量はこの規定のレンジ内において、求め
られる磁気特性(鉄損、磁束密度)が得られるように決
められる。
Note that the Si amount is practically determined so that the required magnetic characteristics (iron loss, magnetic flux density) can be obtained within the specified range.

Mn:MnはSとともにインヒビターとして作用するMnSを生
成し、二次再結晶の安定化に重要な役割を果たす。しか
しMn含有量が0.20%を超えると1270℃以下のスラブ加熱
ではMnSの溶体化が十分に行えず、MnSのインヒビター効
果が発揮されない場合がある。また、0.05%未満の場合
にはFeSによる熱間圧延中の脆性が問題となる。従ってM
n量は0.05〜0.20%とした。
Mn: Mn produces MnS that acts as an inhibitor together with S, and plays an important role in stabilizing secondary recrystallization. However, if the Mn content exceeds 0.20%, solution heating of MnS cannot be sufficiently performed by slab heating below 1270 ° C, and the inhibitory effect of MnS may not be exhibited. If it is less than 0.05%, the brittleness during hot rolling due to FeS becomes a problem. Therefore M
The amount of n was 0.05 to 0.20%.

S:Sは前述したMnとインヒビターとなるMnSを形成し二次
再結晶を安定化する重要な元素である。
S: S is an important element that stabilizes the secondary recrystallization by forming MnS as an inhibitor with Mn described above.

S添加量が0.003%未満と0.015%を超えた範囲において
磁気特性に大きなバラツキが生じる。これはそのような
S量ではインヒビターとなるMnSの量と析出形態が不適
切となるためと考えられる。これに対してS量が0.003
〜0.015%の範囲にあるときは、確実に磁気特性はつね
に高レベルにあり、二次再結晶が安定している。したが
ってS量は0.003〜0.015%とした。
In the range where the S addition amount is less than 0.003% and more than 0.015%, the magnetic characteristics greatly vary. This is considered to be because the amount of MnS serving as an inhibitor and the precipitation morphology become unsuitable with such an amount of S. On the other hand, the amount of S is 0.003
In the range of ~ 0.015%, the magnetic properties are always at a high level and the secondary recrystallization is stable. Therefore, the S amount is set to 0.003 to 0.015%.

Sol.Al:Alは本発明の主要なインヒビターとなるAlNを形
成し一次再結晶粒の粒成長を抑えるのに必要な元素であ
り、その添加量の規定は本発明において重要な意味をも
つ。
Sol.Al:Al is an element required to form AlN, which is the main inhibitor of the present invention, and suppress the grain growth of primary recrystallized grains, and the definition of the addition amount thereof has an important meaning in the present invention.

Alの含有量はSol.Al量で0.003〜0.015%と定めたのは、
その下限値未満ではインヒビターとしてのAlN量の絶対
量が不足して十分な効果が期待できず、一方上限値を超
えるとインヒビターとしての分布形態が不適切となり、
仕上焼鈍で安定した二次再結晶が得られないからであ
る。
The content of Al is 0.003 to 0.015% in terms of Sol.Al content,
Below the lower limit, the absolute amount of AlN as an inhibitor is insufficient and a sufficient effect cannot be expected, while above the upper limit, the distribution form as an inhibitor becomes inappropriate,
This is because stable secondary recrystallization cannot be obtained by finish annealing.

N:インヒビターとしてのAlN形成に不可欠な元素であ
り、その意味から少なくとも0.0010%以上必要とされ
る。ただし、0.0100%を超えて含有させても、インヒビ
ター効果の面で意味がない。よってNは0.0010〜0.0100
%と定めた。
N: An element essential for the formation of AlN as an inhibitor, and in that sense, it is required to be at least 0.0010% or more. However, if the content exceeds 0.0100%, it is meaningless in terms of inhibitor effect. Therefore, N is 0.0010 to 0.0100
Defined as%.

○次に製造プロセスについて述べる。○ Next, the manufacturing process will be described.

本発明の方法は、基本的には上記のような成分条件に適
合したスラブを用い、スラブ加熱熱延巻取熱延板
焼鈍冷延連続焼鈍(冷延後の焼鈍)仕上焼鈍の工
程を経て方向性電磁鋼板を製造するものである。
The method of the present invention basically uses a slab that conforms to the above component conditions, and undergoes a slab heating hot rolling hot rolling sheet annealing cold rolling continuous annealing (annealing after cold rolling) finish annealing step. A grain-oriented electrical steel sheet is manufactured.

各工程について、以下に説明する。Each step will be described below.

スラブ加熱 方向性電磁鋼板の製造においてスラフ加熱は、1300〜14
00℃の超高温で行うのが通例であった。これは、熱間圧
延以降の工程でAlNやMnSがインヒビターとして有効な状
態(大きさ、分散状態)に析出するためには、スラブ熱
の段階でAlN、MnSを十分に溶体化させておく必要がある
との認識からである。しかしこのようなスラブの高温加
熱は、ノロ発生に伴う歩留低下やエネルギコストの増
大、加熱炉のトラブル発生など問題が多く、特殊な専用
炉を用意しなければならないこともあって実施コストが
非常に高くつく。
Slab heating Slough heating is 1300 to 14
It was customary to carry out at an ultrahigh temperature of 00 ° C. This is because AlN and MnS must be sufficiently solution-treated at the slab heat stage in order to precipitate AlN and MnS in an effective state (size and dispersion state) as an inhibitor in the process after hot rolling. It is from the recognition that there is. However, such high temperature heating of the slab has many problems such as yield reduction due to slag generation, increase in energy cost, troubles in the heating furnace, etc. Very expensive.

本発明は、このスラブ加熱の加熱温度を下げてコストを
引下げることを1つの狙いとしている。そしてこの目的
のために、鋼中AlN,MnSの量を通常より少なくし、少量
のAlN,MnSをインヒビターとして効率的に活用する手法
をとっている。
One of the aims of the present invention is to reduce the heating temperature of the slab heating to reduce the cost. For this purpose, the amount of AlN and MnS in steel is made smaller than usual, and a small amount of AlN and MnS is efficiently used as an inhibitor.

このような方法によれば、スラブの加熱温度は冷延鋼板
並みの1270℃以下で十分で、この低温での加熱によりイ
ンヒビター効果が十分に発現し、仕上焼鈍工程において
二次再結晶が安定的に確保されることになるのである。
したがって本発明では、スラブの加熱温度を、1270℃以
下に限定した。
According to such a method, it is sufficient that the heating temperature of the slab is 1270 ° C. or lower, which is equivalent to that of a cold rolled steel sheet, and the inhibitor effect is sufficiently exhibited by heating at this low temperature, and secondary recrystallization is stable in the finish annealing step. Will be ensured.
Therefore, in the present invention, the heating temperature of the slab is limited to 1270 ° C or lower.

因に、このような低温ならば、近年省エネルギーの観点
から盛んに行われているダイレクトチャージ(ロー
ル)、すなわちスラブを冷却することなく直接加熱炉に
装入し、加熱、復熱処理を行って直ちに熱間圧延にかけ
る方式を採用することも可能となる。
At such a low temperature, direct charge (roll), which has been actively used in recent years from the viewpoint of energy saving, that is, the slab is directly charged into a heating furnace without being cooled, and immediately heated and reheated. It is also possible to adopt the method of applying hot rolling.

なお、スラブ加熱温度の下限については特に限定しない
が、圧延機の能力等実操業面から考えて、1000℃以上の
加熱が望ましい。
The lower limit of the slab heating temperature is not particularly limited, but it is preferable to heat the slab at 1000 ° C or higher in consideration of the actual operation such as the ability of the rolling mill.

熱間圧延の仕上温度 二次再結晶の安定化をはかる上で重要な製造条件であ
る。仕上温度が900℃を超えると二次再結晶が不安定と
なり磁気特性にバラツキを生じる。これは熱間圧延中の
AlNやMnSの析出状態、あるいは熱延板の集合組織がゴス
本位({110}〈001〉)の二次再結晶に不適切になるた
めと考えられるが、詳細は未だ明らかでない。
Finishing temperature of hot rolling This is an important manufacturing condition for stabilizing secondary recrystallization. When the finishing temperature exceeds 900 ° C, the secondary recrystallization becomes unstable and the magnetic properties vary. This is during hot rolling
It is considered that the precipitation state of AlN or MnS or the texture of the hot-rolled sheet becomes unsuitable for Goss-oriented ({110} <001>) secondary recrystallization, but the details have not been clarified yet.

一方、仕上温度が700℃以下になると現行の熱延設備で
は形状制御等に問題が生じる。したがって、熱延以上温
度は700〜900℃の範囲とした。
On the other hand, if the finishing temperature is 700 ° C or lower, problems will occur in shape control etc. in the current hot rolling equipment. Therefore, the temperature of hot rolling or higher is set in the range of 700 to 900 ° C.

巻取温度 本発明では、熱延板焼鈍およびそれ以降の工程で析出し
てくるAlNがインヒビターとして重要な役割を果たして
いる。したがって巻取温度が600℃を超え、巻取状態で
のAlNの量が減少し二次再結晶が不安定となる。したが
って巻取温度は600℃以下とした。なお、下限について
は、磁気特性上問題とならないので定めない。
Winding Temperature In the present invention, AlN precipitated in the hot-rolled sheet annealing and subsequent steps plays an important role as an inhibitor. Therefore, the winding temperature exceeds 600 ° C, the amount of AlN in the wound state decreases, and the secondary recrystallization becomes unstable. Therefore, the winding temperature was set to 600 ° C or lower. The lower limit is not set because it does not cause a problem in terms of magnetic properties.

熱延板焼鈍 熱延板焼鈍はリジングの発生防止とAlNの析出分散のた
めに必要である。リジングとは、本発明鋼のような高Si
鋼にて、熱延板に未再結晶部を残したまま冷間圧延する
と発生する圧延方向に線状に伸びた表面起伏である。こ
の防止には熱延板を完全に再結晶させる必要があり、こ
のためには800℃で10秒以上の連続焼鈍が必要となる。
また熱延板焼鈍時に析出するAlNは二次再結晶のための
インヒビターとして重要であり、この適正な分散析出状
態を実現してゴス方位粒の集積度を上げるためには急速
加熱で950℃を超えの焼鈍が適している。また1050を超
える熱延板焼鈍は、AlNの分散にとって不適切である。
なお、熱延板焼鈍の均熱時間が10分を超えても実用上の
意味はない。したがって950℃超え1050℃以下で10秒以
上10分以内とした。
Hot-rolled sheet annealing Hot-rolled sheet annealing is necessary to prevent ridging and to disperse AlN. Ridging means high Si like steel of the present invention.
This is a surface undulation that linearly extends in the rolling direction that occurs when cold rolling is performed on steel while leaving an unrecrystallized portion on the hot-rolled sheet. To prevent this, it is necessary to completely recrystallize the hot-rolled sheet, which requires continuous annealing at 800 ° C for 10 seconds or longer.
Also, AlN precipitated during hot-rolled sheet annealing is important as an inhibitor for secondary recrystallization, and in order to realize this proper dispersed precipitation state and increase the degree of integration of Goss-oriented grains, 950 ° C is used for rapid heating. Exceeding annealing is suitable. Also, hot rolled sheet annealing exceeding 1050 is not suitable for AlN dispersion.
It should be noted that even if the soaking time for hot-rolled sheet annealing exceeds 10 minutes, there is no practical meaning. Therefore, it was set to 10 seconds or more and 10 minutes or more at 950 ° C or higher and 1050 ° C or lower.

冷間圧延 冷間圧延は1回冷延であるが、中間焼鈍を伴う二回以上
の冷間圧延であるかを問わない。中間焼鈍の条件として
は800〜950℃での連続焼鈍が望ましいが特に規定しな
い。
Cold rolling Cold rolling is one cold rolling, but it does not matter whether it is cold rolling twice or more with intermediate annealing. As the condition of the intermediate annealing, continuous annealing at 800 to 950 ° C is desirable, but it is not particularly specified.

冷間圧延後連続焼鈍 ゴス方位への集積度の高い二次再結晶を発生させるに
は、一次再結晶集合組織と粒径およびインヒビターとな
るAlN,MnSの析出状態(分布および形態)が適切な組み
合せとなる必要がある。これを実現するのが最終板厚と
した後の連続焼鈍である。この焼鈍は急速加熱の焼鈍が
必要で連続焼鈍が適している。焼鈍の条件としては、加
熱速度は5℃/S以上が望ましい。
Continuous annealing after cold rolling In order to generate secondary recrystallization with a high degree of integration in the Goss orientation, the primary recrystallization texture and grain size and the precipitation state (distribution and morphology) of AlN and MnS as inhibitors are appropriate. Must be a combination. This is achieved by continuous annealing after the final plate thickness. This annealing requires rapid heating and continuous annealing is suitable. As the annealing condition, the heating rate is preferably 5 ° C./S or more.

焼鈍温度は950℃以下または1050℃ごえでは、前述した
集合組織・フェライト粒径・インヒビターの析出等が適
正とならず、二次再結晶でのゴス方位集積度が低くな
る。また、焼鈍時間としては、10秒未満では焼鈍の効果
が得られず、10分をこえる均熱は実際上不必要である。
If the annealing temperature is below 950 ° C or around 1050 ° C, the above-mentioned texture, ferrite grain size, precipitation of inhibitors, etc. are not appropriate, and the Goss orientation integration degree in secondary recrystallization becomes low. If the annealing time is less than 10 seconds, the effect of annealing cannot be obtained, and soaking for more than 10 minutes is actually unnecessary.

以上のことから、冷間圧延後の連続焼鈍条件を950℃ご
え1050℃以下で10秒以上10分以内とした。
From the above, the continuous annealing condition after cold rolling was set to 950 ° C to 1050 ° C and 10 seconds to 10 minutes.

仕上焼鈍 本発明は、主として成分の適正化により低温の仕上焼鈍
で安定な二次再結晶を生じさせるものであり、仕上焼鈍
ではいわゆる1000℃以上の高温の鈍化焼鈍も行わない。
このことが、コストの低減にむすびつく。
Finishing Annealing The present invention is intended to cause stable secondary recrystallization by finishing annealing at a low temperature mainly by optimizing the components, and in the finishing annealing, so-called annealing annealing at a high temperature of 1000 ° C. or higher is not performed.
This leads to cost reduction.

仕上焼鈍の温度は、800℃未満では二次再結晶が生じ
ず、良好な磁気特性が期待できない。また、本発明は比
較的少量のlNとMnSをインヒビターとしており、二次再
結晶は1000℃以下で十分である。したがって800〜1000
℃の焼鈍とした。
If the temperature of finish annealing is less than 800 ° C, secondary recrystallization does not occur, and good magnetic properties cannot be expected. In addition, the present invention uses a relatively small amount of 1N and MnS as inhibitors, and secondary recrystallization at 1000 ° C. or lower is sufficient. Therefore 800-1000
Annealed at ℃.

仕上焼鈍の雰囲気は特に限定しないが、AlNのインヒビ
ター効果を強化する意味で二次再結晶が完了するまでは
窒素を含む雰囲気とするのが望ましい。
The atmosphere for finish annealing is not particularly limited, but it is desirable to set the atmosphere containing nitrogen until the secondary recrystallization is completed in order to enhance the inhibitor effect of AlN.

なお仕上焼鈍の前には、焼付防止の為に焼鈍分離材等の
表面処理を施す工程が入るのが一般的ある。
Before the finish annealing, a step of surface-treating an annealing separator or the like is generally performed to prevent seizure.

〔実施例〕〔Example〕

第1表に示す種々の成分系の連続鋳造スラブを、室温ま
で冷却することなく、直接スラブ加熱炉に装入し、同表
の条件で熱間圧延→熱延板焼鈍→冷間圧延→連続焼鈍→
仕上焼鈍を施し、圧延方向の鉄損W17/50と磁束密度B8
測定した。なお、各試験材とも熱延板焼鈍の前あるいは
後に脱スケールを実施している。また、仕上焼鈍の前に
は焼鈍分離材の塗布を行った。磁気測定はJIS C2550に
より幅30mm、長さ280mmのエプスタイン試片を圧延方向
より切断採取して800℃×2hの歪取焼鈍後に行った。
Continuously cast slabs of various components shown in Table 1 were directly charged into a slab heating furnace without cooling to room temperature, and hot rolling → hot rolled sheet annealing → cold rolling → continuous under the conditions shown in the table. Annealing →
Subjected to finish annealing was measured rolling direction of the iron loss W17 / 50 and magnetic flux density B 8. In addition, descaling is performed on each test material before or after annealing the hot-rolled sheet. Also, an annealing separator was applied before the finish annealing. The magnetic measurement was carried out by JIS C2550, after cutting and sampling an Epstein test piece having a width of 30 mm and a length of 280 mm from the rolling direction and after strain relief annealing at 800 ° C. for 2 hours.

試験の結果について説明する。 The test results will be described.

No.1〜6は、S量以外は実質的に同一組成で、同一の熱
延仕上げ・巻取り条件で、S量を種々変化させた例であ
る。熱延条件は全て本発明範囲にあり、S量以外は全て
の鋼種とも本発明範囲の組成となっている。
Nos. 1 to 6 are examples in which the amount of S is variously changed under the same hot rolling finishing and winding conditions with substantially the same composition except for the amount of S. The hot rolling conditions are all within the scope of the present invention, and all steel types except the S content have compositions within the scope of the present invention.

S量が本発明から低目と高目に外れた(以下「外れた」
は「本発明範囲からの外れた」の意味とする)No.1,6
は、熱延板焼鈍以降は本発明範囲であるが、本発明範囲
のS量でしたも熱延板焼鈍以降は同一条件のNo.3,5と比
べ、鉄損、磁束密度とも大きく劣っている。また、No.
2,4のように本発明範囲の組成となっていても、連続焼
鈍の温度が低目や高目に外れた場合にはやはり良好な磁
気特性は得られていない。
The amount of S deviates from the present invention to the low and high levels (hereinafter, “deviation”).
Means "outside the scope of the invention") No. 1,6
Is within the scope of the present invention after the hot rolled sheet annealing, but the S content was within the scope of the present invention, but after the hot rolled sheet annealing, compared with Nos. 3 and 5 under the same conditions, the core loss and the magnetic flux density were significantly inferior. There is. Also, No.
Even if the composition is within the range of the present invention as in Nos. 2 and 4, good magnetic properties are not obtained even when the temperature of the continuous annealing deviates from the lower or higher values.

No.7〜11は、本発明範囲の組成の同一鋼種であるが、熱
延以降も本発明条件を満たしたNo.9,11で良好な磁気特
性が得られているのに対し、熱延仕上温度が高目に外れ
たNo.7や連続焼鈍温度が低目に外れたNo.8及び高目に外
れたNo.10では、良好な磁気特性は得られていない。
No. 7 to 11 are the same steel grades of the composition of the present invention range, while good magnetic properties are obtained in No. 9 and 11 satisfying the conditions of the present invention even after hot rolling, whereas hot rolling is performed. No. 7 with a higher finishing temperature, No. 8 with a lower continuous annealing temperature and No. 10 with a higher annealing temperature did not have good magnetic properties.

No.12〜17は、本発明範囲の組成の同一鋼種で、熱延板
焼鈍条件を種々変化させた例である。本発明範囲のNo.1
5,16はリジング性、磁気特性共良好なレベルにある。一
方、熱延板焼鈍条件以外は全て本発明範囲であるが、熱
延板焼鈍が連続焼鈍であってもその温度が低目に外れた
No.12〜14ではリジング性、磁気特性共に劣っている。
また、バッチ焼鈍で熱延板焼鈍を実施したNo.17は、リ
ジング性は良好であるが、二次再結晶が安定せず磁気特
性は悪い。
Nos. 12 to 17 are examples of the same steel type having the composition within the range of the present invention, and the hot-rolled sheet annealing conditions were variously changed. No. 1 of the scope of the present invention
Nos. 5 and 16 have good ridging properties and magnetic properties. On the other hand, all of the conditions other than the hot rolled sheet annealing conditions are within the scope of the present invention, but even if the hot rolled sheet annealing is continuous annealing, the temperature deviates to a low level.
Nos. 12 to 14 are inferior in ridging property and magnetic property.
Further, No. 17 which was subjected to hot-rolled sheet annealing by batch annealing has good ridging property, but secondary recrystallization is not stable and magnetic properties are poor.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように本発明の方法は、スラブ
高温加熱、脱炭焼鈍、高温仕上焼鈍等、コストのかかる
熱処理を行うことなく、高レベルの磁気特性を有する方
向性電磁鋼板を安定して製造することができる。
As is clear from the above description, the method of the present invention stabilizes a grain-oriented electrical steel sheet having a high level of magnetic properties without performing costly heat treatment such as slab high temperature heating, decarburizing annealing, high temperature finishing annealing, etc. Can be manufactured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C0.01%以下、Si1.8〜4.0%、M
n0.05〜0.20%、S0.003〜0.015%、Sol.Al0.003〜0.015
%、N0.0010〜0.0100%で、残部はFeおよび不可避的不
純物からなるスラブを1270℃以下に加熱し、仕上温度70
0〜900℃にて熱間圧延を行い、600℃以下の温度で巻取
ったのち、950℃ごえ1050℃以下の温度で10秒以上10分
以内の連続焼鈍による熱延板焼鈍を行い、次いで1回ま
たは中間焼鈍を伴う2回以上の冷間圧延を施して最終板
厚としたのち、950℃ごえ1050℃以下の温度で10秒以上1
0分以内の連続焼鈍を行って一次再結晶を生じさせ、更
に800〜1000℃の仕上焼鈍により二次再結晶を生じさせ
ることを特徴とする方向性電磁鋼板の製造方法。
1. By weight%, C0.01% or less, Si1.8-4.0%, M
n0.05 to 0.20%, S0.003 to 0.015%, Sol.Al0.003 to 0.015%
%, N 0.0010 to 0.0100%, with the balance being Fe and unavoidable impurities, the slab is heated to 1270 ° C or lower and the finishing temperature 70
Hot rolling is performed at 0 to 900 ° C, wound at a temperature of 600 ° C or less, and then hot-rolled sheet is annealed by continuous annealing at a temperature of 950 ° C or 1050 ° C for 10 seconds or more and 10 minutes or less, Then, cold rolling is performed once or twice or more with intermediate annealing to obtain the final plate thickness, and then at a temperature of 950 ° C or less than 1050 ° C for 10 seconds or more 1
A method for producing a grain-oriented electrical steel sheet, which comprises performing continuous annealing within 0 minutes to cause primary recrystallization, and further performing secondary annealing at 800 to 1000 ° C for finish annealing.
JP63140735A 1988-06-08 1988-06-08 Method for producing grain-oriented electrical steel sheet Expired - Lifetime JPH075975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140735A JPH075975B2 (en) 1988-06-08 1988-06-08 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140735A JPH075975B2 (en) 1988-06-08 1988-06-08 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH01309924A JPH01309924A (en) 1989-12-14
JPH075975B2 true JPH075975B2 (en) 1995-01-25

Family

ID=15275490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140735A Expired - Lifetime JPH075975B2 (en) 1988-06-08 1988-06-08 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPH075975B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259329A (en) * 1991-02-12 1992-09-14 Sumitomo Metal Ind Ltd Production of grain-oriented silicon steel sheet excellent in blankability
AU2698897A (en) * 1997-04-16 1998-11-11 Acciai Speciali Terni S.P.A. New process for the production of grain oriented electrical steel from thin slabs
KR100340644B1 (en) * 1997-10-01 2002-07-18 이구택 Method for manufacturing ultra thin silicon steel sheet
PL2578706T3 (en) 2010-05-25 2016-12-30 Method of manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH01309924A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
CN109906284B (en) Oriented electrical steel sheet and method for manufacturing the same
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2883226B2 (en) Method for producing thin grain silicon steel sheet with extremely excellent magnetic properties
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0121851B2 (en)
JPH075975B2 (en) Method for producing grain-oriented electrical steel sheet
JP4259269B2 (en) Method for producing grain-oriented electrical steel sheet
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3132936B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH0564701B2 (en)
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2005146295A (en) Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH0625381B2 (en) Method for producing grain-oriented electrical steel sheet
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JPH01309923A (en) Production of grain-oriented magnetic steel sheet
JP3621712B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet