JPH01309924A - Grain-oriented magnetic steel sheet and its production - Google Patents

Grain-oriented magnetic steel sheet and its production

Info

Publication number
JPH01309924A
JPH01309924A JP63140735A JP14073588A JPH01309924A JP H01309924 A JPH01309924 A JP H01309924A JP 63140735 A JP63140735 A JP 63140735A JP 14073588 A JP14073588 A JP 14073588A JP H01309924 A JPH01309924 A JP H01309924A
Authority
JP
Japan
Prior art keywords
annealing
hot
temperature
rolled
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63140735A
Other languages
Japanese (ja)
Other versions
JPH075975B2 (en
Inventor
Hiroyoshi Yashiki
裕義 屋鋪
Teruo Kaneko
金子 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63140735A priority Critical patent/JPH075975B2/en
Publication of JPH01309924A publication Critical patent/JPH01309924A/en
Publication of JPH075975B2 publication Critical patent/JPH075975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To stably produce the subject grain-oriented magnetic steel sheet having a high magnetic characteristic at a low cost by hot-rolling a slab consisting of C, Si, Mn, S, Al, N, and Fe and having a specified composition, annealing, then cold-rolling, and annealing the obtained sheet under specified conditions. CONSTITUTION:A slab contg., by weight, <=0.01% C, 1.8-4.0% Si, 0.05-0.20% Mn, 0.003-0.015% S, 0.003-0.015% soluble Al, 0.0010-0.0100% N, the balance Fe, and inevitable impurities is heated at <=1270 deg.C, hot-rolled at the finish temp. of 700-900 deg.C, and wound at <=600 deg.C. The hot-rolled sheet is then continuously annealed at 950-1050 deg.C for 10sec-10min. The hot-rolled sheet is cold-rolled once or >=2 times with process annealing to the final thickness. The cold-rolled sheet is then continuously annealed at 950-1050 deg.C for 10sec-10min to cause primary recrystallization. The cold-rolled sheet is further finish-annealed at 800-1000 deg.C to cause secondary recrystallization. By this method, a grain-oriented magnetic steel sheet having an excellent magnetic characteristic in the rolling direction is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、低コストでしかも圧延方向に良好な磁気特
性を有する方向外電ms板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a directional magnetic MS plate at low cost and having good magnetic properties in the rolling direction.

(従来の技術) 方向性電磁鋼板は圧延方向の励磁特性と鉄bJ特性に優
れる7!1磁気材料で、変圧器鉄心をはじめとする様々
の電気機器用途に広く用いれている。
(Prior Art) Grain-oriented electrical steel sheets are 7!1 magnetic materials with excellent excitation characteristics in the rolling direction and iron bJ characteristics, and are widely used in various electrical equipment applications including transformer cores.

ところで、方向性型る1鋼板は、一般の冷延鋼板や無方
向性電磁鋼板に比べ、製造工程が複雑で特殊なために、
コストが非常に高くつく。こうしたことから、方向性電
磁鋼板にあっては製造工程の改善によるコストダウンが
重要な課題となっている。
By the way, the manufacturing process for grain-oriented steel sheets is more complex and special than that of general cold-rolled steel sheets or non-oriented electrical steel sheets.
The cost is very high. For these reasons, cost reduction by improving the manufacturing process has become an important issue for grain-oriented electrical steel sheets.

方向性電磁鋼板の一般的な製造プロセスは、まずスラブ
を1300℃以上に高温加熱し、AIN、MnSを溶体
化して熱間圧延し、熱延板焼鈍後、1回または中間焼鈍
を伴う2回以上の冷間圧延を行って最終板厚とする。そ
して、脱炭焼鈍により鋼中Cを低レベルに下げるととも
に、−次頁結晶を調整する。最後にバッチ炉において1
100〜1200℃の仕上焼鈍を行って、二次再結晶を
生じさせるとともに、綱の純化(脱硫・脱窒)を図る、
というもでのである。
The general manufacturing process for grain-oriented electrical steel sheets is to first heat a slab to a high temperature of 1,300°C or higher, solutionize AIN and MnS, hot-roll it, and then annealing the hot-rolled sheet and then rolling it once or twice with intermediate annealing. The above cold rolling is performed to obtain the final plate thickness. Then, C in the steel is lowered to a low level by decarburization annealing, and crystals are adjusted. Finally, in the batch furnace, 1
Final annealing is performed at 100 to 1200°C to cause secondary recrystallization and to purify the steel (desulfurization and denitrification).
That's why.

スラブの高温加熱は、二次再結晶のインヒビターとなる
AINやMnSの分散状態の適正化に不可欠なものある
が、1300℃以上の加熱には特殊な専用炉が必要とさ
れる上、スケールロスやエネルギーコストの点でも問題
がある。
High-temperature heating of slabs is essential for optimizing the dispersion state of AIN and MnS, which are inhibitors of secondary recrystallization, but heating above 1300°C requires a special dedicated furnace and requires scale loss. There are also problems in terms of energy costs.

また脱炭焼鈍は、熱延板焼鈍までの工程においてAI!
、N、MnSの分散状態の適正化という意味から必要と
されるCを磁気特性上問題のないレベルまで下げるため
に行うものであるが、コストが非常に高くつく。
In addition, decarburization annealing uses AI!
, N, and MnS in order to reduce the amount of C necessary for the purpose of optimizing the dispersion state of MnS to a level that does not cause problems in terms of magnetic properties, but it is very costly.

更に仕上焼鈍としての高温長時間焼鈍は、成品の磁気特
性にとっては有害な析出物、とくにMnSの除去のため
に必要とされるが、1100〜1200℃いう高温での
長時間に及ぶ処理はコスト上昇の大きな原因となる。す
なわち、方向性F iff鋼板のコストダウンを図るた
めには、これらの熱処理の低コスト化が不可欠となって
(る。
Furthermore, high-temperature, long-term annealing as final annealing is required to remove precipitates that are harmful to the magnetic properties of the finished product, especially MnS, but long-term treatment at high temperatures of 1100 to 1200°C is costly. This is a major cause of the increase. That is, in order to reduce the cost of grain-oriented F iff steel sheets, it is essential to reduce the cost of these heat treatments.

熱処理の低コスト化を実現する試みとしては、例えば特
開昭58−100627号に示される方法がある。
As an attempt to reduce the cost of heat treatment, there is, for example, a method shown in Japanese Patent Application Laid-open No. 100627/1983.

これは、C0,02%以下、Si5%以下、SO。This is less than 0.02% CO, less than 5% Si, and SO.

015%以下、Ai、01〜0.08%、No、01%
以下の鋼素材を1270 ℃以下でスラブ加熱し、熱延
、熱延板焼鈍、冷延、−次頁結晶焼鈍を行ったのち、w
4板仮面に平行な1cn+当り2℃以上の温度差を付与
する焼鈍を行って二次再結晶を生じさせるというもので
ある。
015% or less, Ai, 01-0.08%, No, 01%
The following steel materials are slab-heated at 1270°C or less, hot-rolled, hot-rolled plate annealed, cold-rolled, and crystal annealed.
Annealing is performed to provide a temperature difference of 2° C. or more per 1 cn+ parallel to the four-plate mask to cause secondary recrystallization.

この方法は、スラブ加熱を1300 ℃未満の温度で行
えばよいので、特殊な専用炉を必要とせず、スケールロ
スやエネルギーコストも低減される。
In this method, the slab can be heated at a temperature of less than 1300° C., so a special dedicated furnace is not required, and scale loss and energy costs are reduced.

またclを予め低くしておけるので、工程途中での脱炭
処理が不要となる等のメリットがある。
Furthermore, since Cl can be lowered in advance, there are advantages such as no need for decarburization treatment during the process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この方法ではAp、Nのインヒビター効
果が十分に発揮されず、二次再結晶を安定して得ること
が難しい、しかも、二次再結晶処理としてt!il板板
面板平面に温度差を付与する特殊な焼鈍を必要とし、実
用的な方法とは言えない。
However, in this method, the inhibitory effect of Ap and N is not sufficiently exhibited, and it is difficult to obtain stable secondary recrystallization. This cannot be said to be a practical method as it requires a special annealing process that applies a temperature difference to the plane of the IL plate face plate.

ところで、方向性電磁鋼板については本発明者らも以前
より研究を行っており、有用な製造法をすでにいくつか
提案している。その中の1つが特開昭62−83421
号(以下、先願とする)の方法である。
By the way, the present inventors have been conducting research on grain-oriented electrical steel sheets for some time, and have already proposed several useful manufacturing methods. One of them is JP-A-62-83421.
(hereinafter referred to as "first application").

これは、基本的には極低炭素(C50,010%)でA
lを極微量(0,003〜0.015%)含ませた綱を
素材として用い、熱延−冷延後、所要の条件で一次再結
晶を行わしめる焼鈍と二次再結晶を行わしめる仕上焼鈍
とを行うものである。この方法は、AINのインヒビタ
ー効果を有効に引き出すことができ、しかも脱炭焼鈍が
省略できる上、仕上焼鈍もα領域での低温焼鈍で二次再
結晶を発生させることができるので、コスト面で非常に
有利である。
This is basically an extremely low carbon (C50,010%) and A
A steel material containing a very small amount of L (0,003 to 0.015%) is used as a raw material, and after hot rolling and cold rolling, it is finished by annealing to perform primary recrystallization under the required conditions and secondary recrystallization. Annealing is performed. This method can effectively bring out the inhibitor effect of AIN, can omit decarburization annealing, and can generate secondary recrystallization with low-temperature annealing in the α region for final annealing, so it is cost effective. Very advantageous.

先願の方法はこのように、有効性の高いものであるが、
磁気特性については、これを上進る性能の要求も多く、
より一層の改善が望まれるところである。
The method of the earlier application is thus highly effective, but
Regarding magnetic properties, there are many demands for better performance than this.
Further improvement is desired.

本発明は、先願の技術を更に発展させ、その有利性を生
かしながら、より高くかつ安定した磁気特性が確保でき
るようにした方向性電磁鋼板の製造方法の従供を目的と
する。
The present invention further develops the technology of the prior application and aims to provide a method for manufacturing a grain-oriented electrical steel sheet that can ensure higher and more stable magnetic properties while taking advantage of its advantages.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、先願技術の適用時における、仕。 The inventors of the present invention have described the work when applying the prior art.

上焼鈍工程での二次再結晶挙動、すなわち二次再結晶粒
のゴス方位fl101  <001>集積度を改善する
有効な手段を見出すべく、鋭意実験、研究を重ねた結果
、下記の如き知見を得た。
In order to find an effective means to improve the secondary recrystallization behavior in the upper annealing process, that is, the Goss orientation fl101 <001> integration degree of the secondary recrystallized grains, we have conducted intensive experiments and research, and have found the following knowledge. Obtained.

二次再結晶粒のゴス方位集積度を高めるには、AINの
外に、少量のMnSをインヒビターとして活用する必要
がある。
In order to increase the degree of Goss orientation integration of secondary recrystallized grains, it is necessary to utilize a small amount of MnS as an inhibitor in addition to AIN.

そして、スラブ加熱温度が1270℃以下の低温の条件
下においてMnSのインヒビター効果を有効に引き出す
ためには、Mn0.05%〜0.20%、30.003
〜0.015%の範囲とすることが重要である。
In order to effectively bring out the inhibitor effect of MnS under a low temperature condition where the slab heating temperature is 1270°C or less, Mn 0.05% to 0.20%, 30.003
It is important that the content be in the range of 0.015%.

またこの場合、処理条件としては、熱延の仕上温度を7
00〜900 ℃の範囲とすることが必要であり、更に
熱延Fi焼鈍及び冷延後の一次再結晶焼鈍を、950〜
1050℃の高温連続焼鈍とすることが有効である。
In this case, the processing conditions include a hot rolling finishing temperature of 7.
It is necessary to set the temperature in the range of 00 to 900 °C, and furthermore, the hot rolled Fi annealing and the primary recrystallization annealing after cold rolling should be carried out in the range of 950 to 900 °C.
Continuous high temperature annealing at 1050°C is effective.

本発明は、上記のような知見に基づくものであって、下
記の方法を要旨とする。
The present invention is based on the above findings, and its gist is the method described below.

C0,01%以下、Si1.8〜4.0%、Mr+0.
05〜0.20%、30.003〜0.015%、S、
ol・Aβa、oos〜0.015%、N0.0010
−0゜0100%含有し、残部はFeおよび不可避的不
純物からなるスラブを1270℃以下に加熱し、仕上温
度700〜900 ”Cにて熱間圧延を行い、600℃
以下の温度で巻取ったのち、950℃ごえ1050℃以
下の温度で10秒以上10分以内の連続焼鈍により熱延
板焼鈍を行い、次いで1回または中間焼鈍を伴う2回以
上の冷間圧延を施して最終板厚としたのち、950℃ご
え1050 ℃以下の温度で10秒以上10分以内の連
続焼鈍を行って一次再結晶を律しさせ、更に800℃−
1o o o ’cの仕上焼鈍により二次再結晶を生じ
させることを特徴とする方向性電磁鋼板の製造方法。
C0.01% or less, Si1.8-4.0%, Mr+0.
05-0.20%, 30.003-0.015%, S,
ol・Aβa, oos~0.015%, N0.0010
A slab containing 100% -0゜0 with the remainder consisting of Fe and unavoidable impurities is heated to 1270℃ or less, hot rolled at a finishing temperature of 700 to 900''C, and then heated to 600℃.
After coiling at the following temperature, hot-rolled plate is annealed by continuous annealing at a temperature of 950℃ and 1050℃ for 10 seconds or more and 10 minutes, followed by cold annealing once or twice or more with intermediate annealing. After rolling to obtain the final plate thickness, continuous annealing is performed at a temperature of 950°C to 1050°C for 10 seconds or more and 10 minutes to control primary recrystallization, and then further annealed at 800°C -
1. A method for producing a grain-oriented electrical steel sheet, characterized in that secondary recrystallization is caused by final annealing of 1 o o o'c.

〔作  用〕[For production]

以下、本発明の各構成要件について具体的かつ詳細に説
明し、作用を明らかにする。
Hereinafter, each constituent feature of the present invention will be explained specifically and in detail, and its effects will be clarified.

○ まず使用するスラブの鋼成分の限定理由は次のとお
りである。
○ First, the reasons for limiting the steel composition of the slab used are as follows.

C:鋼中のC量が0.01%をこえると、鉄を員の悪化
や磁気時効の劣化など、磁気特性上好ましくない現象が
顕著となる。よってCは0.01%以下とした。なお、
Cは、磁気特性上好なければ少ないほど有利であること
から、下限はと(に規定しない。
C: When the amount of C in the steel exceeds 0.01%, unfavorable phenomena in terms of magnetic properties, such as deterioration of the strength of the iron and deterioration of magnetic aging, become noticeable. Therefore, C was set to 0.01% or less. In addition,
The lower limit of C is not specified because it is more advantageous to have less C in terms of magnetic properties.

因に、従来の方向性電磁鋼板は、素材(熱延板)の段階
では0.025〜0.085%程度のCを含ませている
のが通例であり、これを冷延以降の過程で脱炭焼鈍によ
り低減して製品C量としている。これは工程途中までの
C含有量が、インヒビターとしてのAfN、MnSの分
散状態を適正化して最終成品の磁性向上に役立つとの考
えからであるが、本発明はこのようなC含有を行わずと
もAl!N、MnSをインヒビターとして効果的に作用
させることができるものであり、素材鋼中へのC含有は
必要ない。むしろ脱炭焼鈍を省略する意味から予め極低
にしておくことが必要となるのである。
Incidentally, conventional grain-oriented electrical steel sheets usually contain about 0.025 to 0.085% C at the raw material (hot rolled sheet) stage, and this is added in the process after cold rolling. The amount of C in the product is reduced by decarburization annealing. This is based on the idea that the C content up to the middle of the process optimizes the dispersion state of AfN and MnS as inhibitors and helps improve the magnetism of the final product, but the present invention does not include such C. TomoAl! This allows N and MnS to act effectively as inhibitors, and there is no need to include C in the steel material. Rather, it is necessary to keep it extremely low in advance in order to omit decarburization annealing.

Sl:比抵抗の増加により鉄を員低減に有効であり、1
.8%以上の含有によりその効果を顕著に示す。しかし
4%を超える含有は冷間圧延を困難とする。したがって
1.8〜4.0%とした。
Sl: Effective in reducing iron content by increasing specific resistance, 1
.. The effect is noticeable when the content is 8% or more. However, a content exceeding 4% makes cold rolling difficult. Therefore, it was set at 1.8 to 4.0%.

なお、実際上Silはこの規定のレンジ内において、求
められる磁気特性(鉄損、磁束密度)が得られるように
決められる。
Incidentally, in practice, Sil is determined so that the required magnetic properties (iron loss, magnetic flux density) can be obtained within this specified range.

Mn:MnはSとともにインヒビターとして作用するM
nSを生成し、二次再結晶の安定化に重要な役割を果た
す。しかしMn含有量が0.20%を超えると1270
 ”C以下のスラブ加熱ではMnSの溶体化が十分に行
えず、MnSのインヒビター効果が発揮されない場合が
ある。また、0.05%未溝の場合にはFeSによる熱
間圧延中の脆性が問題となる。従ってMn@は0.05
〜0.20%とした。
Mn: Mn acts as an inhibitor together with S
It generates nS and plays an important role in stabilizing secondary recrystallization. However, when the Mn content exceeds 0.20%, 1270
``If the slab is heated below C, MnS may not be sufficiently dissolved, and the inhibitor effect of MnS may not be exhibited.Furthermore, in the case of 0.05% grooves, brittleness during hot rolling due to FeS may be a problem. Therefore, Mn@ is 0.05
~0.20%.

SO3は前述したMnとMnSを形成し二次再結晶を安
定化する重要な元素である。
SO3 is an important element that forms the aforementioned Mn and MnS and stabilizes secondary recrystallization.

第1図はS景を変化させて圧延方向の6f1束密度B、
(磁化力800A/mで磁化した場合の磁束密度)の変
化を調査した結果である。
Figure 1 shows the 6f1 flux density B in the rolling direction by changing the S view.
(Magnetic flux density when magnetized with a magnetizing force of 800 A/m) was investigated.

すなわち、供試材としてC0,001〜0.003%、
Si2.9〜3.1%、Mn0.010〜0.015%
、S o 1. Aj20.006〜o、 o o s
%、No、0025〜0.0035%(本発明範囲)で
S量を変化させたスラブを、スラブ加熱温度1230℃
1熱間圧延の仕上温度820〜880 ℃1巻取温度5
10〜570℃で2.3 m厚の熱延板とした後、連続
焼鈍により950 ℃で1時間の熱延板焼鈍と酸洗によ
る脱スケールを行い、次に0.30aまで冷間圧延後9
50℃で30秒の連続焼鈍を行い、焼鈍分離材塗布後9
00℃で24時間均熱のバッチ焼鈍炉による仕上焼鈍を
実施したものである。
That is, as the sample material, C0,001-0.003%,
Si2.9~3.1%, Mn0.010~0.015%
, S o 1. Aj20.006~o, o o s
%, No. 0025 to 0.0035% (range of the present invention), slabs were heated at a slab heating temperature of 1230°C.
1 Finishing temperature of hot rolling 820-880℃ 1 Coiling temperature 5
After hot-rolling the sheet to a thickness of 2.3 m at 10 to 570°C, the hot-rolled sheet was continuously annealed at 950°C for 1 hour and descaled by pickling, and then cold-rolled to 0.30a. 9
Continuous annealing was performed at 50°C for 30 seconds, and after applying the annealing separation material, 9
Finish annealing was performed in a batch annealing furnace soaking at 00° C. for 24 hours.

S添加量が0.003%末溝と0.015%を超えた範
囲においてB、の値に大きなバラツキが生じている。こ
れはそのようなS量ではインヒビターとなるMnSの量
と析出形態が不適切となるためと考えられる。これに対
してslが0.003〜0゜015%の範囲にあるとき
は、確実にB、の値はつねに高レベルにあり、二次再結
晶が安定していることが理解される。したがってslは
0.003〜0.015%とした。
There is a large variation in the value of B in the range where the amount of S added exceeds 0.003% and 0.015%. This is considered to be because such an amount of S makes the amount and precipitation form of MnS, which acts as an inhibitor, inappropriate. On the other hand, when sl is in the range of 0.003 to 0.015%, the value of B is always at a high level, and it is understood that the secondary recrystallization is stable. Therefore, sl was set to 0.003 to 0.015%.

Sol、Al:Alは本発明の主要なインヒビターとな
るAlNを形成し一次再結晶粒の粒成長を抑えるのに必
要な元素であり、その添加量の規定は本発明において重
要な意味をもつ。
Sol, Al: Al is an element necessary to form AlN, which is the main inhibitor of the present invention, and to suppress grain growth of primary recrystallized grains, and the regulation of its addition amount has an important meaning in the present invention.

Alの含有量はSof、A/!量で0.0.03〜0゜
015%と定めたのは、その下限値未満ではインヒビタ
ーとしてのAffiNlの絶対量が不足して十分な効果
が期待できず、一方正限値を超えるとインヒビターとし
ての分布形態が不適切となり、仕上焼鈍で安定した二次
再結晶が得られないからである。
The Al content is Sof, A/! The reason why the amount was set at 0.0.03% to 0.015% is that if it is less than the lower limit, the absolute amount of AffiNl as an inhibitor will be insufficient and a sufficient effect cannot be expected, whereas if it exceeds the positive limit, the inhibitor This is because the distribution form of the steel becomes inappropriate, and stable secondary recrystallization cannot be obtained in final annealing.

N:インヒビターとしてのAlN形成に不可欠な元素で
あり、その意味から少なくとも0.0010%以上必要
とされる。ただし、0.0100%を超えて含有させて
も、インヒビター効果の面で意味がない。よってNは0
.0010〜0.0100%と定めた。
N: An element essential for the formation of AlN as an inhibitor, and from this point of view, it is required to be at least 0.0010%. However, even if the content exceeds 0.0100%, there is no meaning in terms of inhibitor effect. Therefore, N is 0
.. It was determined to be 0.0010% to 0.0100%.

O次に製造プロセスについて述べる。Next, the manufacturing process will be described.

本発明の方法は、基本的には上記のような成分条件に適
合したスラブを用い、スラブ加熱−0熱延−+巻取叫熱
延板焼鈍仲冷延に)連続焼鈍(冷延後の焼鈍)悼仕上焼
鈍の工程を経て方向性電磁鋼板を製造するものである。
The method of the present invention basically uses a slab that conforms to the above-mentioned component conditions, and performs continuous annealing (slab heating - 0 hot rolling - + coiling screaming hot rolled plate annealing intermediate cold rolling) (continuous annealing (after cold rolling) A grain-oriented electrical steel sheet is manufactured through the process of finishing annealing (annealing).

各工程について、以下に説明する。Each step will be explained below.

■ スラブ加熱 方向性!磁鋼板の製造においてスラブ加熱は、1300
〜1400 ℃の超高温で行うのが通例であった。これ
は、熱間圧延以降の工程でAlNやMnSがインヒビタ
ーとして有効な状態(大きさ、分散状態)に析出するた
めには、スラブ熱の段階でAIN%MnSを十分に溶体
化させておく必要があるとの認識からである。しかしこ
のようなスラブの高温加熱は、ノロ発生に伴う歩留低下
やエネルギコストの増大、加熱炉のトラブル発生など問
題が多く、特殊な専用炉を用意しなければならないこと
もあって実施コストが非常に裔くつく。
■ Slab heating direction! Slab heating in the manufacture of magnetic steel sheets requires 1300
It was customary to carry out at very high temperatures of ~1400°C. This is because in order for AlN and MnS to precipitate in a state (size, dispersion state) that is effective as an inhibitor in the process after hot rolling, it is necessary to sufficiently dissolve AIN%MnS at the slab heating stage. This is because we recognize that there is. However, such high-temperature heating of slabs is fraught with problems, such as reduced yields due to slag generation, increased energy costs, and problems with the heating furnace, and the implementation cost is high due to the need to prepare a special dedicated furnace. Very descendant.

本発明は、このスラブ加熱の加熱温度を下げてコストを
引下げることを1つの狙いとしている。
One aim of the present invention is to reduce costs by lowering the heating temperature of this slab heating.

そしてこの目的のために、鋼中AIN、MnSの量を通
常より少なくし、少量のAlN、MnSをインヒビター
として効率的に活用する手法をとっている。
For this purpose, a method is adopted in which the amount of AIN and MnS in the steel is made smaller than usual, and a small amount of AIN and MnS is efficiently utilized as an inhibitor.

このような方法によれば、スラブの加熱温度は冷延鋼板
並みの1270℃以下で十分で、この低温での加熱によ
りインヒビター効果が十分に発現し、仕上焼鈍工程にお
いて二次再結晶が安定的に確保されることになるのであ
る。したがって本発明では、スラブの加熱温度を、12
70℃以下に限定した。
According to this method, the heating temperature of the slab is sufficient to be 1270°C or lower, which is the same as that for cold-rolled steel sheets, and by heating at this low temperature, the inhibitor effect is sufficiently expressed, and the secondary recrystallization is stable in the final annealing process. It will be ensured that Therefore, in the present invention, the heating temperature of the slab is set to 12
The temperature was limited to 70°C or lower.

因に、このような低温ならば、近年省エネルギーの観点
から盛んに行われているダイレクトチャージ(ロール)
、すなわちスラブを冷却することなく直接加熱炉に装入
し、加熱、復熱処理を行って直ちに熱間圧延にかける方
式を採用することも可能となる。
Incidentally, at such a low temperature, direct charging (roll), which has been popularly used in recent years from the perspective of energy conservation, is necessary.
That is, it is also possible to adopt a method in which the slab is directly charged into a heating furnace without being cooled, subjected to heating and recuperation treatment, and immediately subjected to hot rolling.

なお、スラブ加熱温度の下限については特に限定しない
が、圧延機の能力等実操業面から考えて、1000℃以
上の加熱が望ましい。
The lower limit of the slab heating temperature is not particularly limited, but heating to 1000° C. or higher is desirable in view of actual operation such as the capacity of the rolling mill.

■ 熱間圧延の仕上温度 二次再結晶の安定化をはかる上で重要な製造条件である
。仕上温度が900 ℃を超えると二次再結晶が不安定
となり磁気特性にバラツキを生じる。
■ Finishing temperature of hot rolling This is an important manufacturing condition for stabilizing secondary recrystallization. If the finishing temperature exceeds 900°C, secondary recrystallization becomes unstable, causing variations in magnetic properties.

これは熱間圧延中の/INやM n Sの析出状態、あ
るいは熱延板の集合&ll織がゴス本位((1101<
001>1の二次再結晶に不適切になるためと考えられ
るが、詳細は未だ明らかでない。
This is due to the precipitation state of /IN and MnS during hot rolling, or the aggregated texture of the hot rolled sheet is Goss-oriented ((1101<
It is thought that this is because it becomes unsuitable for secondary recrystallization where 001>1, but the details are not yet clear.

一方、仕上温度が700 ℃以下になると現行の熱延設
備では形状制御等に問題が生しる。したがって、熱延仕
上温度は700〜900℃の範囲とした。
On the other hand, when the finishing temperature falls below 700°C, problems arise in shape control, etc. with current hot rolling equipment. Therefore, the hot rolling finishing temperature was set in the range of 700 to 900°C.

■ 巻取温度 本発明では、熱延板焼鈍およびそれ以降の工程で析出し
てくるAINがインヒビターとして重要な役割を果たし
ている。したがって巻取温度が600℃を超え、巻取状
態でのAlNの析出か進行すると、冷延以降の工程で析
出するAffiNの量が減少し二次再結晶が不安定とな
る。したがって巻取温度は600℃以下とした。なお、
下限については、磁気特性上問題とならないので定めな
い。
(2) Coiling temperature In the present invention, AIN precipitated during hot-rolled sheet annealing and subsequent steps plays an important role as an inhibitor. Therefore, when the coiling temperature exceeds 600° C. and precipitation of AlN progresses in the coiled state, the amount of AffiN precipitated in the steps after cold rolling decreases, and secondary recrystallization becomes unstable. Therefore, the winding temperature was set to 600° C. or lower. In addition,
The lower limit is not set because it does not pose a problem in terms of magnetic properties.

■ 熱延板焼鈍 熱延板焼鈍はりジングの発生防止とAlNの析出分散の
ために必要である。リジングとは、本発明鋼のような高
Si鋼にて、熱延板に未再結晶部を残したまま冷間圧延
すると発生する圧延方向に線状に伸びた表面起伏である
。この防止には熱延板を完全に再結晶させる必要があり
、このためには800℃で10秒以上の連続焼鈍が必要
となる。
■ Hot-rolled sheet annealing Hot-rolled sheet annealing is necessary to prevent the occurrence of flashing and to precipitate and disperse AlN. Ridging is a surface undulation extending linearly in the rolling direction that occurs when a hot-rolled sheet of high-Si steel such as the steel of the present invention is cold-rolled with unrecrystallized portions remaining. To prevent this, it is necessary to completely recrystallize the hot rolled sheet, which requires continuous annealing at 800° C. for 10 seconds or more.

また熱延板焼鈍時に析出するAINは二次再結晶のため
のインヒビターとして重要であり、この適正な分散析出
状態を実現してゴス方位粒の集積度を上げるためには急
速加熱で950 ℃を超えの焼鈍が適している。また1
050を超える熱延板焼鈍は、AINの分散にとって不
適切である。なお、熱延板焼鈍の均熱時間が10分を超
えても実用上の意味はない、したがって950℃超え1
05゜℃以下で10秒以上10分以内とした。
In addition, AIN precipitated during hot-rolled sheet annealing is important as an inhibitor for secondary recrystallization, and in order to achieve this appropriate dispersed precipitation state and increase the degree of accumulation of Goss-oriented grains, rapid heating to 950 °C is necessary. Exceeding annealing is suitable. Also 1
Hot-rolled sheet annealing above 0.050 is inappropriate for AIN dispersion. In addition, there is no practical meaning even if the soaking time for hot-rolled sheet annealing exceeds 10 minutes.
The temperature was 10 seconds or more and 10 minutes or less at 05°C or lower.

■冷間圧延 冷間圧延は1回冷延であるが、中間焼鈍を伴う二回以上
の冷間圧延であるかを問わない。中間焼鈍の条件として
は800〜950℃での連続焼鈍が望ましいが特に規定
しない。
■Cold rolling Cold rolling is cold rolling once, but it does not matter if it is cold rolling twice or more with intermediate annealing. The conditions for intermediate annealing are preferably continuous annealing at 800 to 950°C, but are not particularly specified.

■ 冷間圧延後連続焼鈍 ゴス方位への集積度の高い二次再結晶を発生させるには
、−次頁結晶集合組織と粒径およびインヒビターとなる
AIN、MnSの析出状態(分布および形U>が適切な
組み合せとなる必要がある。
■ In order to generate secondary recrystallization with a high degree of accumulation in the Goss orientation after continuous annealing after cold rolling, it is necessary to need to be an appropriate combination.

これを実現するのが最終板厚とした後の連続焼鈍である
。この焼鈍は急、速加熱の焼鈍が必要で連続焼鈍が適し
ている。焼鈍の条件としては、加熱速度は5℃/S以上
が望ましい。
This is achieved by continuous annealing after achieving the final plate thickness. This annealing requires rapid and rapid heating, and continuous annealing is suitable. As conditions for annealing, a heating rate of 5° C./S or higher is desirable.

焼鈍温度は950 ℃以下または1050℃ごえでは、
前述した集合組織・フェライト粒径・インヒビターの析
出等が適正とならず、二次再結晶でのゴス方位集積度が
低くなる。また、焼鈍時間としては、10秒未満では焼
鈍の効果が得られず、10分をこえる均熱は実際上不必
要である。
If the annealing temperature is below 950℃ or 1050℃,
The aforementioned texture, ferrite grain size, inhibitor precipitation, etc. are not appropriate, and the degree of Goss orientation accumulation in secondary recrystallization becomes low. Further, if the annealing time is less than 10 seconds, the annealing effect cannot be obtained, and soaking for more than 10 minutes is actually unnecessary.

以上のことから、冷間圧延後の連続焼鈍条件を950℃
ごえ1050℃以下で10秒以上10分以内とした。
From the above, the continuous annealing conditions after cold rolling were set at 950°C.
The temperature was 10 seconds or more and 10 minutes or less at a temperature of 1050°C or less.

■ 仕上焼鈍 本発明は、主として成分の適正比により低温の仕上焼鈍
で安定な二次再結晶を生しさせるものであり、仕上焼鈍
ではいわゆる1000℃以上の高温の純化焼鈍も行わな
い。このことが、コストの低減にむすびつく。
(2) Final annealing The present invention is mainly aimed at producing stable secondary recrystallization through low-temperature final annealing through proper ratio of components, and final annealing does not include so-called high-temperature purification annealing of 1000° C. or higher. This leads to cost reduction.

仕上焼鈍の温度は、800℃未満では二次再結晶が生じ
ず、良好な磁気特性が期待できない。また、本発明は比
較的少量のAP、NとM n Sをインヒビターとして
おり、二次再結晶はi o o o ’c以下で十分で
ある。したがって800〜1000℃の焼鈍とした。
If the final annealing temperature is less than 800°C, secondary recrystallization will not occur and good magnetic properties cannot be expected. Further, in the present invention, relatively small amounts of AP, N, and MnS are used as inhibitors, and secondary recrystallization is sufficient at less than io o o'c. Therefore, it was annealed at 800 to 1000°C.

仕上焼鈍の雰囲気は特に限定しないが、AP、Nのイン
ヒビター効果を強化する意味で二次再結晶が完了するま
では窒素を含む雰囲気とするのが望ましい。
Although the atmosphere for final annealing is not particularly limited, it is desirable to use an atmosphere containing nitrogen until the secondary recrystallization is completed in order to strengthen the inhibitory effect of AP and N.

なお仕上焼鈍の前には、焼付防止の為に焼鈍分離材等の
表面処理を施す工程が入るのが一般的ある。
Note that before final annealing, there is generally a step of applying a surface treatment such as an annealing separation material to prevent seizure.

〔実施例] 第1表に示す種々の成分系の連続鋳造スラブを、室温ま
で冷却することなく、直接スラブ加熱炉に装入し、同表
の条件で熱間圧延→熱延板焼鈍→冷間圧延→連続焼錬→
仕上焼鈍を施し、圧延方向の鉄tJIW1?150と磁
束密度B、を測定した。なお、各試験材とも熱延板焼鈍
の前あるいは後に脱スケールを実施している。また、仕
上焼鈍の前には焼鈍分離材の塗布を行った。磁気測定は
JIS  C2550により幅30購、長さ280mm
のエプスタイン試片を圧延方向より切断採取して800
 ”CX2hの歪取焼鈍後に行った。
[Example] Continuously cast slabs with various component systems shown in Table 1 were directly charged into a slab heating furnace without being cooled to room temperature, and subjected to hot rolling → hot rolled sheet annealing → cooling under the conditions shown in the table. Inter-rolling → continuous sintering →
Finish annealing was performed, and the iron tJIW1-150 in the rolling direction and the magnetic flux density B were measured. In addition, each test material was descaled before or after hot-rolled plate annealing. Furthermore, an annealing separation material was applied before final annealing. Magnetic measurement is 30 mm wide and 280 mm long according to JIS C2550.
An Epstein specimen was cut and collected from the rolling direction.
“This was done after strain relief annealing of CX2h.

試験の結果について説明する。Explain the test results.

胤1〜4はsl以外は全条件が実質的に同一(本発明条
件を満足)で、slを種々変化させた例である。
Seeds 1 to 4 are examples in which all conditions except sl are substantially the same (satisfying the conditions of the present invention), and sl is varied in various ways.

本発明例のNα2.3に対しslが本発明範囲から低目
と高目に外れた(以下「外れた」は「本発明範囲から外
れた」の意味とする)Nlll、4はいずれも鉄…、磁
束密度が大きく劣っている。
With respect to Nα2.3 of the present invention example, sl deviated from the range of the present invention at low and high levels (hereinafter, "deviated" means "deviated from the range of the present invention"). ..., the magnetic flux density is greatly inferior.

Nα5〜7は、同一組成で熱間圧延の仕上温度を変化さ
せたもので仕上げ温度が高目に外れたNα5は適正条件
のN116.7に比べ、鉄損、f11東密度ともに劣っ
ている。
Nα5 to Nα7 have the same composition but have different finishing temperatures during hot rolling, and Nα5 with a higher finishing temperature is inferior to N116.7 under proper conditions in both iron loss and f11 east density.

Nf18〜13は、同一組成で熱延板焼鈍条件を変化さ
せたもので、連続焼鈍を採用した漱8〜12のうち焼鈍
温度が低目に外れたに8.9は、磁気特性は良好である
がリジングの発生が認められる。
Nf18-13 are hot-rolled sheets with the same composition but with different annealing conditions.Among the strips 8-12 that adopted continuous annealing, Nf18-13 had a lower annealing temperature and had good magnetic properties. However, occurrence of ridging is observed.

これに対し適正温度のklO〜12は、リジング性、磁
気特性とも良好である。またバッチ焼鈍で熱延板焼鈍を
実施したNα13は、リジング性は良好であるが、二次
再結晶が安定せず磁気特性は悪〔発明の効果) 以上の説明から明らかなように本発明の方法は、スラブ
高温加熱、脱炭焼純、高温仕上焼鈍等、コストのかかる
熱処理を行うことなく、高レベルの磁気特性を有する方
向性電磁鋼板を安定して製造することができる。
On the other hand, at an appropriate temperature of klO~12, both the ridging properties and magnetic properties are good. In addition, Nα13, which was subjected to hot-rolled sheet annealing by batch annealing, has good ridging properties, but the secondary recrystallization is not stable and the magnetic properties are poor. The method can stably produce grain-oriented electrical steel sheets with high-level magnetic properties without performing costly heat treatments such as high-temperature slab heating, decarburization annealing, and high-temperature finishing annealing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はS含有量と磁束密度B、の関係を示す実験デー
タのプロット図。
FIG. 1 is a plot of experimental data showing the relationship between S content and magnetic flux density B.

Claims (1)

【特許請求の範囲】[Claims] 1、重量%で、C0.01%以下、Si1.8〜4.0
%、Mn0.05〜0.20%、S0.003〜0.0
15%、Sol.Al0.003〜0.015%、N0
.0010〜0.0100%で、残部はFeおよび不可
避的不純物からなるスラブを1270℃以下に加熱し、
仕上温度700〜900℃にて熱間圧延を行い、600
℃以下の温度で巻取ったのち、950℃ごえ1050℃
以下の温度で10秒以上10分以内の連続焼鈍による熱
延板焼鈍を行い、次いで1回または中間焼鈍を伴う2回
以上の冷間圧延を施して最終板厚としたのち、950℃
ごえ1050℃以下の温度で10秒以上10分以内の連
続焼鈍を行って一次再結晶を生じさせ、更に800〜1
000℃の仕上焼鈍により二次再結晶を生じさせること
を特徴とする方向性電磁鋼板の製造方法。
1. In weight%, C 0.01% or less, Si 1.8 to 4.0
%, Mn0.05-0.20%, S0.003-0.0
15%, Sol. Al0.003-0.015%, N0
.. 0010 to 0.0100%, with the remainder being Fe and unavoidable impurities, is heated to below 1270°C,
Hot rolling is carried out at a finishing temperature of 700 to 900°C,
After winding at a temperature below ℃, 950℃ and 1050℃
Hot-rolled plate is annealed by continuous annealing for 10 seconds to 10 minutes at the following temperature, and then cold rolled once or twice or more with intermediate annealing to obtain the final thickness, and then heated to 950°C.
Continuous annealing for 10 seconds to 10 minutes at a temperature of 1050°C or lower to cause primary recrystallization, and further
A method for producing a grain-oriented electrical steel sheet, characterized in that secondary recrystallization is caused by final annealing at 000°C.
JP63140735A 1988-06-08 1988-06-08 Method for producing grain-oriented electrical steel sheet Expired - Lifetime JPH075975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140735A JPH075975B2 (en) 1988-06-08 1988-06-08 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140735A JPH075975B2 (en) 1988-06-08 1988-06-08 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH01309924A true JPH01309924A (en) 1989-12-14
JPH075975B2 JPH075975B2 (en) 1995-01-25

Family

ID=15275490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140735A Expired - Lifetime JPH075975B2 (en) 1988-06-08 1988-06-08 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPH075975B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259329A (en) * 1991-02-12 1992-09-14 Sumitomo Metal Ind Ltd Production of grain-oriented silicon steel sheet excellent in blankability
WO1998046802A1 (en) * 1997-04-16 1998-10-22 Acciai Speciali Terni S.P.A. New process for the production of grain oriented electrical steel from thin slabs
KR100340644B1 (en) * 1997-10-01 2002-07-18 이구택 Method for manufacturing ultra thin silicon steel sheet
WO2011148849A1 (en) * 2010-05-25 2011-12-01 新日本製鐵株式会社 Process for production of unidirectional electromagnetic steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259329A (en) * 1991-02-12 1992-09-14 Sumitomo Metal Ind Ltd Production of grain-oriented silicon steel sheet excellent in blankability
WO1998046802A1 (en) * 1997-04-16 1998-10-22 Acciai Speciali Terni S.P.A. New process for the production of grain oriented electrical steel from thin slabs
KR100340644B1 (en) * 1997-10-01 2002-07-18 이구택 Method for manufacturing ultra thin silicon steel sheet
WO2011148849A1 (en) * 2010-05-25 2011-12-01 新日本製鐵株式会社 Process for production of unidirectional electromagnetic steel sheet
US8778095B2 (en) 2010-05-25 2014-07-15 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH075975B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH0241565B2 (en)
CN109906284B (en) Oriented electrical steel sheet and method for manufacturing the same
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH01309924A (en) Grain-oriented magnetic steel sheet and its production
JPH0121851B2 (en)
KR20190078160A (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPS6253572B2 (en)
KR101130724B1 (en) A method for grain-oriented electrical steel sheet with uniform magnetic properties
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH01119644A (en) Directional electromagnetic steel plate and its manufacture
JPH01309923A (en) Production of grain-oriented magnetic steel sheet
KR100701195B1 (en) A grain-oriented electrical steel sheet manufacturing method without hot band annealing
KR100650554B1 (en) A method for manufacturing thick gauge grain-oriented electrical steel sheet
JPS6250528B2 (en)
KR100817156B1 (en) A method for grain-oriented electrical steel sheet with good magnetic properties
KR100359751B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP3169427B2 (en) Method for producing bidirectional silicon steel sheet with excellent magnetic properties
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH0257125B2 (en)
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
KR101141281B1 (en) A method for manufacturing grain-oriented electrical steel sheet