JPS6253572B2 - - Google Patents
Info
- Publication number
- JPS6253572B2 JPS6253572B2 JP56123226A JP12322681A JPS6253572B2 JP S6253572 B2 JPS6253572 B2 JP S6253572B2 JP 56123226 A JP56123226 A JP 56123226A JP 12322681 A JP12322681 A JP 12322681A JP S6253572 B2 JPS6253572 B2 JP S6253572B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- rolling
- steel sheet
- rolled steel
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005096 rolling process Methods 0.000 claims description 51
- 238000000137 annealing Methods 0.000 claims description 48
- 229910000831 Steel Inorganic materials 0.000 claims description 35
- 239000010959 steel Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 18
- 238000005097 cold rolling Methods 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 10
- 230000009467 reduction Effects 0.000 claims description 9
- 238000005261 decarburization Methods 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 239000003112 inhibitor Substances 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 238000005554 pickling Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 238000011282 treatment Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 8
- 238000001953 recrystallisation Methods 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910000976 Electrical steel Inorganic materials 0.000 description 6
- 230000005389 magnetism Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Description
本発明は、各結晶粒の方位が結晶学上のミラー
指数で{110}<001>と表示される二次再結晶粒
で構成された、圧延方向に磁化し易い一方向性電
磁鋼板の製造方法に関するもので、その製造工程
途上の圧延の方法に特徴を持たせることにより優
れた磁気特性を確保する方法を提供するものであ
る。
ところで、一方向性電磁鋼板の製造方法は、過
去数10年来の歴史を有する二回圧延法と、新らた
に10数年前に開発された一回圧延法との二種に大
別される。一回圧延法材は磁束密度が特に優れて
いるため、高磁場での鉄損、たとえば50サイクル
の交番磁界下で磁束密度値が1.7Tの時の鉄損W17
/50の値が優れているため、従来の二回圧延法材
の使用分野に浸透しつつある。しかし、昨今の様
に省エネルギー的要請が益々強くなりつつある時
代になると、変圧器等の設計磁束密度値を低下さ
せて使用することも検討される様になり、使用さ
れる鉄心に要求される材質特性、いわゆる中、低
磁場の鉄損(例えばW15/50)が鋼板購入価格に
比して良い二回冷延法材が見直しされる動きも見
られるようになつて来た。
本発明は、かかる背景のもとに二回圧延法によ
る方向性電磁鋼板の鉄損を改善する方法を提供す
るものである。つまり、C0.08%以下、Sl4.0%以
下、その他方向性電磁鋼板に必要とされる成分を
含んだ熱延鋼板を、必要に応じて熱延板焼鈍を施
こした後、酸洗し、30〜75%の圧下率での一回目
の圧延、750〜1150℃の温度での中間焼鈍、40〜
80%の圧下率で最終板厚とする二回目の圧延およ
び湿潤水素気流中での脱炭焼鈍を行ない、さらに
必要に応じて焼鈍分離剤の塗布を施こしたのち、
二次再結晶の発達と鈍化のための800〜1250℃の
温度での仕上焼鈍を行なう一連の工程から成る方
向性電磁鋼板の製造に際し、一回目の圧延工程あ
るいは一回目ならびに二回目の圧延工程における
途中板厚段階の少くとも一つの段階で、被圧延鋼
板を100〜600℃の保持温度範囲内で
0.13exp1700/T(〓)≦保持時間(秒)
≦3.7×10-4exp8100/T(〓) ……
なる式を満足する時間保持することを特徴とす
るものである(但しTは被圧延鋼板の保持温度の
絶対温度を意味する)。
本発明はまた、上記の本発明方法をさらに有効
ならしめるために、中間焼鈍工程から第二回目の
圧延に至る間の被圧延鋼板の熱履歴を規制するこ
とを特徴とするものである。
すなわち中間焼鈍工程完了後二回目の圧延工程
に入るまでの間に、該鋼板の絶対温度とその温度
における保定時間との間に
保定時間(秒)≦3.5×10-12exp12800/T(〓
)……
なる不等式を満足する様に被圧延鋼板の熱履歴
を規制することである。
前記した本発明に従つた方法の磁性に対する改
善効果のメカニズムは、詳細には明らかではない
が、以下の様に考えられる。
一般に、一方向性電磁鋼板は{110}<001>方
位に近い方位を有する二次再結晶粒から成る。こ
の二次再結晶粒は、ある特定条件下にある一次再
結晶粒が周囲の他の一次再結晶粒の成長に先がけ
て大きく成長したものである。かかる特定条件下
とは、ひとつは一次再結晶粒から成る鋼板素地が
適切であること、すなわち結晶粒方位サイズなら
びに均質性が適切なことであり、他のひとつは二
次再結晶粒として特定の一次再結晶粒が急速に成
長する間に他の一次再結晶粒の成長を阻止する役
割をもつたいわゆるインヒビター効果が存在する
ことである。かかるインヒビターとしては、通常
MnS,MnSe,AlNなどで代表される微細析出分
散相とかS,N,Se,Sb,Sn,Pなどで代表さ
れる粒界偏析元素などがある。以上の様な一次再
結晶ストラクチヤーが良好なことと、適切なイン
ヒビターが存在することの二条件が兼備して始め
て{110}<001>方位に近い方位粒から成る二次
再結晶が鋼板全面を覆いつくすことが出来る。ま
た、磁気的性質は、これら二条件がより完全な場
合においてより勝れたものになると推定される。
本発明は、かかる条件を兼ねそなえた一方向性電
磁鋼板の製造工程のうち、特に二回圧延法材に関
連し一回目の圧延工程、中間焼鈍工程、二回目の
圧延工程の条件を規制することにより、かかる二
次再結晶粒が従来より、磁気特性をより改善向上
せしめたものであり、その原因としては前記のイ
ンヒビターの改善と云うよりも一次再結晶ストラ
クチヤーを改善せしめたことによるものと推定さ
れる。つまり、本発明に従つて圧延時において、
鋼板を所定範囲内の温度に所定範囲の時間保持さ
せることにより、圧延中に形成される転位線等の
格子欠陥部にC,Nなどの固溶元素が固着され、
引続いての圧延時の変形機構に変化を及ぼし、そ
の結果最終板厚での再結晶粒ならびに集合組織、
即ち一次再結晶ストラクチヤーをより改善して、
結果的に磁気特性の良好な二次再結晶粒が成長す
るものと推定される。
1ところで、かかる二回冷延法における電磁鋼板
の製造途上で、二回目の冷延時に時効処理を施こ
すこと、ならびにこの時効処理に関連して二回目
の冷延前工程である中間焼鈍の冷却速度を規制す
ることについては特公昭56−3892号公報に記載さ
れている。
これに対し、本発明者らは、二回目の冷延時の
みならず、一回目の冷延の場合にも効果があるこ
と、さらには一回目と二回目との両者に時効処理
を施こせば効果がさらに増加することを見出し、
その場合の有効な条件を検討し規制したものであ
る。
また、かかる効果を充分に発揮させるために
は、中間焼鈍工程完了時点から第二回目の冷延工
程に入るまでの鋼板の熱履歴を規制すべきことを
見出したものである。
以下、本発明を詳細に説明する。
先ず本発明者らは次の実験を行つた。C0.045
%、Si3.20%、Mn0.06%、S0.026%を含み残部
Feからなる板厚2.5mmの熱延板を酸洗いしたの
ち、0.75mmまで一回目の熱延を行ない、970℃で
4分間の中間焼鈍を行なつたのち、圧下率60%の
第二回目の圧延を施こして0.30mmの最終板厚に仕
上げ、840℃で脱炭焼鈍を施し、MgOを塗布して
水素気流中で毎時20℃で1180℃まで昇温し20時間
の仕上焼鈍を行なつて成品板とした。
その際、一回目の圧延途上、板厚が1.30mmなら
びに0.9mmの時、さらには二回目の圧延途上の板
厚が0.55mmの時に、鋼板を200℃×10分の本発明
処理を行ない、かかる処理の無い場合と比較し
た。第1図には成品の鉄損値を示した。同図によ
れば、本発明処理を実施しない場合のW17/50の
値の平均値が1.27(w/Kg)であるのに対し、本
発明を実施した場合には1.16〜1.21(w/Kg)ま
で鉄損値が向上していることが判る。特に一回
目、二回目共に本発明処理を施こした場合にも著
しく向上している。
第2図は、前記と同一成分組成の試料を用いて
本発明法に従つて一回目の圧延途上の板厚1.30mm
と0.9mm時、ならびに二回目の圧延途上の板厚
0.55mm時に、100〜600℃の温度範囲内で各時間処
理した時の成品のW17/50値を示したものであ
る。なおかかる処理が600℃を超える場合には、
再結晶が生じ結果的に二次再結晶が得られ難くな
ること及び100℃より低温では処理時間が著しく
長くなるので、処理温度範囲を100〜600℃に限定
した。被圧延鋼板を本発明の範囲内、すなわち
100〜600℃の範囲内で下記式を満足する絶対温
度に所定時間だけ保持すれば、第1図に示すよう
に、比較材のW17/50の平均値が1.27(w/Kg)
であるのに対して、本発明例のそれは1.25(w/
Kg)より小さい値になつていることが判る。
0.13exp1700/T(〓)≦保持時間(秒)
≦3.7×10-4exp8100/T(〓) ……
中間焼鈍工程を経た鋼板はコイル状に巻かれ、
次工程である二回目の圧延に供される。実際の工
場生産に際しては工程スケジユールの関係から、
かかる鋼帯は数日以上この状態で放置されること
があり、夏場であると鋼板温度が40℃以上にもな
ることがある。またSi含有量が3.2%以上の場合
などは次の圧延時に破断しやすいため、前以つて
コイルの温度を上昇させることがある。ところ
が、かかる中間焼鈍工程から次の二回目の圧延工
程までの間の熱サイクル履歴は、本発明の特徴と
する圧延途上の鋼板の加熱処理効果に影響を及ぼ
すことを見い出した。つまり、第3図は、第1図
の本発明例Bに示したと同じ実験を行なうに際し
て、970℃で4分間の中間焼鈍加熱を行なつた
後、600℃までを20秒間で冷却し、次いで600℃か
ら室温までを毎秒10℃で冷却し、そののち鋼板を
各温度に各所定時間保持したのち第2回目の圧延
(途中、板厚0.55mmにて200℃×10分間の処理)を
行なつた場合の成品のW17/50値を示すものであ
る。第3図から明らかな如く、中間焼鈍工程完了
後、二回目の圧延工程に入るまでの間に、該鋼板
の絶対温度とその温度におる保定時間との間に下
記式
保定時間(秒)≦3.5×10-12exp12800/T(〓
)……
を満足させる本発明の範囲内(図中1の範囲内)
で良い磁性を示している。
なお、特に保定時間(秒)≦2.65×10-13exp
13300/T(〓)にあることが、より好ましい(図
中2の範
囲内)。
本発明の基本となる圧延途上の鋼板の加熱処理
効果が、上記の様な中間焼鈍工程から第2回目の
冷延に至るまでの熱履歴に影響を及ぼす理由につ
いては、恐らくC,Nなどの固溶元素の挙動に関
連することであると推定される。即ち、前述した
如く、圧延途上の鋼板の加熱処理効果が圧延中に
形成される格子欠陥部へのC,Nなどの固溶元素
の固着に原因しているとするならば、第二回目の
圧延開始時点においてC,Nなどが多量固溶して
いる方がより有効であることによるものと推察さ
れる。
次に、本発明において対象とする一方向性電磁
鋼板用熱延板の成分組成を限定する理由を説明す
る。Cは0.08%より多いと連続焼鈍による脱炭が
困難になり、成品の磁気特性が劣化するので、C
は0.08%以下にする必要がある。Siは鉄損を支配
する重要な元素であり、含有量の多い方が好まし
いのであるが、4.0%を上廻ると圧延性が著るし
く劣化するので4.0%以下にする必要がある。ま
た、2.5%より少ないと、変態を生じ製品の磁気
特性を著しく劣化させるので、Si含有量は、実質
上2.5〜4.0%の範囲とする。一方向性電磁鋼板の
熱延板には、通常Mn,Sなど含まれるが、本発
明の場合、何らこれに限定されることなく、その
他それ自体公知のインヒビター形成元素も含まれ
て良いことは、前記の本発明効果のメカニズムか
らも容易に推察されるところである。
次に本発明の処理条件の限定理由などについて
説明する。上記の如き成分を含有する熱延板は、
そのまま第一回目の圧延を行なつても良いが、
750〜1150℃の範囲のノルマライジング焼鈍を行
なつた方がより効果的である。かかる焼鈍は750
℃より低いと結晶組織の十分なノルマライジング
効果が得られず、他方1150℃より高いと結晶が粗
大化するなどのため最終成品の磁性上好ましくな
い。引続く第一回目の圧延、中間焼鈍ならびに第
二回目の圧延に関しては、本発明の基本となると
ころであり、第1〜3図に示した実験データに基
ずいてその限定理由を既に説明した通りである
が、圧下率の限定についてはかかる範囲にないと
二次再結晶が得られないため第一回目を30〜75
%、第二回目を40〜80%の圧延率に限定した。ま
た中間焼鈍温度は750℃より低いと焼鈍効果が得
られないこと、1150℃より高温の場合には結晶粒
が過剰に粗大化するため750〜1150℃で行なうの
が通常であり、またその焼鈍雰囲気は中性あるい
は還元性となすことが好ましく、強度の酸化性雰
囲気は不利である。
なお、本発明の圧延途上の鋼板加熱処理後の圧
延は、鋼板が室温まで低下してからでも、加熱処
理温度近辺になつていてもその効果には大差が無
いことが別の実験により確認されている。また、
加熱処理は従来公知のいずれの加熱方法によつて
でも良く、また圧延による発熱によつても良い。
かくして得られた最終板厚となつた冷延板を、公
知の方法により脱炭焼鈍を施こしたのち、焼鈍分
離剤を塗布して最終仕上焼鈍を施す。最終仕上焼
鈍温度が800℃以下の場合には二次再結晶粒が得
られないだけでなく、純化不足となつて磁性が得
られず、また1250℃以上では熱エネルギー的に不
経済であるばかりでなく、グラス特性が劣化する
ので、800〜1250℃に限定した。
以下に本発明を実施例について説明する。
実施例 1
C0.055%,Si3.30%,Mn0.085%,Se0.022%,
As0.015%、残部実質的にFeよりなる珪素鋼素材
を熱間圧延して2.8mmの厚の熱延板とした。920℃
で2分間焼鈍したのち酸洗し、第一回の圧延によ
り0.75mmの厚みとなし、980℃3分間の中間焼鈍
を行ない、室温まで4分間で冷却した。次いで、
直ちに軽酸洗を行なつたのち、第二回目の圧延に
より最終板厚0.30mmまで減厚した。かかる圧延に
際しては下記の3種の処理を施こした。(1)一回
目、二回目の圧延を従来法にて行なう。(2)一回目
の圧延途上1.6mm、1.2mm、0.9mmの時に400℃で10
秒の加熱処理を加えた。(3)一回目、二回目各々板
厚1.2mm、0.50mmの時に300℃で3分間の加熱処理
を加えた。
かかる冷延板を840℃で5分間湿水素中で脱炭
焼鈍を施し、焼鈍分離剤MgOを塗布して積層
し、水素気流中1180℃にて25時間焼鈍を行なつ
た。
以上の処理によるそれぞれの成品の磁気特性は
第1表の通りであつた。
The present invention is a method for manufacturing unidirectional electrical steel sheets that are easily magnetized in the rolling direction and are composed of secondary recrystallized grains in which the orientation of each grain is expressed as {110}<001> by the crystallographic Miller index. The present invention relates to a method for ensuring excellent magnetic properties by imparting characteristics to the rolling method during the manufacturing process. By the way, the manufacturing methods for grain-oriented electrical steel sheets are roughly divided into two types: the double rolling method, which has been around for several decades, and the single rolling method, which was newly developed over 10 years ago. Ru. Since the single-rolled material has particularly excellent magnetic flux density, the iron loss in a high magnetic field, for example, the iron loss W 17 when the magnetic flux density value is 1.7T under 50 cycles of an alternating magnetic field.
Since the value of /50 is excellent, it is becoming widespread in the field of use of conventional double-rolled materials. However, in the current era where demands for energy conservation are becoming stronger and stronger, consideration is being given to lowering the design magnetic flux density value of transformers, etc., and the requirements for the iron cores used are There is also a movement to reconsider double-cold-rolled materials, which have better material properties, so-called medium and low magnetic field iron loss (for example, W 15/50 ) compared to the purchase price of the steel sheet. In view of this background, the present invention provides a method for improving the core loss of a grain-oriented electrical steel sheet by double rolling. In other words, hot-rolled steel sheets containing C0.08% or less, Sl4.0% or less, and other components required for grain-oriented electrical steel sheets are annealed as necessary and then pickled. , first rolling at a reduction rate of 30~75%, intermediate annealing at a temperature of 750~1150℃, 40~
After a second rolling to achieve the final plate thickness at a rolling reduction of 80%, decarburization annealing in a humid hydrogen stream, and application of an annealing separator if necessary,
In the production of grain-oriented electrical steel sheets, which consists of a series of processes including final annealing at a temperature of 800 to 1250°C for the development and slowing of secondary recrystallization, the first rolling process or the first and second rolling processes are performed. At at least one of the intermediate plate thickness stages, the steel plate to be rolled is heated within the holding temperature range of 100 to 600 °C. 〓)... It is characterized by being held for a time that satisfies the following formula (where T means the absolute temperature of the holding temperature of the rolled steel plate). The present invention is also characterized in that, in order to make the above-described method of the present invention even more effective, the thermal history of the rolled steel sheet from the intermediate annealing step to the second rolling is regulated. In other words, after the completion of the intermediate annealing process and before entering the second rolling process, the relationship between the absolute temperature of the steel plate and the holding time at that temperature is: holding time (seconds) ≦3.5×10 -12 exp12800/T (〓
)... The purpose is to regulate the thermal history of the rolled steel plate so that it satisfies the following inequality. Although the mechanism of the improvement effect on magnetism of the method according to the present invention described above is not clear in detail, it is thought to be as follows. Generally, grain-oriented electrical steel sheets consist of secondary recrystallized grains having an orientation close to the {110}<001> orientation. These secondary recrystallized grains are primary recrystallized grains that have grown larger under certain specific conditions prior to the growth of other surrounding primary recrystallized grains. One of these specific conditions is that the steel sheet base consisting of primary recrystallized grains is appropriate, that is, the grain orientation size and homogeneity are appropriate, and the other is that the steel sheet substrate made of primary recrystallized grains is appropriate, and the other is that the steel sheet substrate consisting of primary recrystallized grains is appropriate, and the other is that the steel sheet substrate consisting of The so-called inhibitor effect exists, which has the role of inhibiting the growth of other primary recrystallized grains while the primary recrystallized grains grow rapidly. Such inhibitors usually include
There are fine precipitated dispersed phases represented by MnS, MnSe, AlN, etc., and grain boundary segregated elements represented by S, N, Se, Sb, Sn, P, etc. The secondary recrystallization consisting of grains oriented close to the {110}<001> orientation can occur over the entire surface of the steel sheet only when the two conditions of a good primary recrystallization structure and the presence of an appropriate inhibitor are met. It can be completely covered. Furthermore, it is estimated that the magnetic properties will be better when these two conditions are more perfect.
The present invention regulates the conditions of the first rolling process, intermediate annealing process, and second rolling process, particularly in relation to double-rolled materials among the manufacturing processes of unidirectional electrical steel sheets that meet these conditions. As a result, these secondary recrystallized grains have improved magnetic properties more than before, and the reason for this is thought to be due to an improvement in the primary recrystallization structure rather than an improvement in the above-mentioned inhibitor. Presumed. That is, during rolling according to the present invention,
By holding the steel plate at a temperature within a predetermined range for a predetermined period of time, solid solution elements such as C and N are fixed to lattice defects such as dislocation lines formed during rolling.
This changes the deformation mechanism during subsequent rolling, resulting in a change in recrystallized grains and texture at the final plate thickness.
That is, by further improving the primary recrystallization structure,
It is presumed that secondary recrystallized grains with good magnetic properties grow as a result. 1. By the way, during the production of electrical steel sheets in the double cold rolling method, aging treatment is performed during the second cold rolling, and in connection with this aging treatment, intermediate annealing, which is a step before the second cold rolling, is carried out. Regulation of the cooling rate is described in Japanese Patent Publication No. 56-3892. On the other hand, the present inventors have discovered that the effect is effective not only during the second cold rolling but also during the first cold rolling, and that if aging treatment is applied to both the first and second cold rolling. We found that the effect further increased,
The regulations are based on consideration of the effective conditions in such cases. In addition, in order to fully exhibit this effect, it has been discovered that the thermal history of the steel sheet from the time of completion of the intermediate annealing process to the start of the second cold rolling process should be regulated. The present invention will be explained in detail below. First, the present inventors conducted the following experiment. C0.045
%, Si3.20%, Mn0.06%, S0.026% and the balance
After pickling a hot-rolled Fe plate with a thickness of 2.5 mm, it was hot-rolled for the first time to 0.75 mm, intermediately annealed at 970°C for 4 minutes, and then rolled for the second time at a rolling reduction of 60%. The plate was rolled to a final thickness of 0.30mm, decarburized annealed at 840°C, coated with MgO, and finished annealed at 20°C per hour to 1180°C in a hydrogen stream for 20 hours. Eventually, it was made into a finished board. At that time, during the first rolling, when the plate thickness was 1.30 mm and 0.9 mm, and further during the second rolling, when the plate thickness was 0.55 mm, the steel plate was subjected to the present invention treatment at 200 ° C. for 10 minutes, A comparison was made with the case without such treatment. Figure 1 shows the iron loss value of the finished product. According to the figure, the average value of W 17/50 when the present invention is not carried out is 1.27 (w/Kg), whereas when the present invention is carried out, it is 1.16 to 1.21 (w/Kg). It can be seen that the iron loss value has improved up to Kg). In particular, when the present invention treatment was applied both for the first and second time, there was a remarkable improvement. Figure 2 shows a plate with a thickness of 1.30 mm during the first rolling process according to the method of the present invention using a sample with the same component composition as above.
and plate thickness at 0.9 mm and during the second rolling process.
The figure shows the W 17/50 value of the finished product when processed at a temperature of 100 to 600° C. for various times at 0.55 mm. In addition, if such treatment exceeds 600℃,
The processing temperature range was limited to 100 to 600°C because recrystallization occurs and it becomes difficult to obtain secondary recrystallization as a result, and the processing time becomes significantly longer at temperatures lower than 100°C. The rolled steel plate is within the scope of the present invention, i.e.
If the absolute temperature within the range of 100 to 600℃ satisfies the following formula for a specified period of time, the average value of W 17/50 of the comparative material will be 1.27 (w/Kg), as shown in Figure 1.
On the other hand, that of the example of the present invention is 1.25 (w/
It can be seen that the value has become smaller than Kg). 0.13exp1700/T(〓)≦Holding time (seconds) ≦3.7×10 -4 exp8100/T(〓)...The steel plate that has gone through the intermediate annealing process is wound into a coil shape,
It is then subjected to the second rolling process. Due to the process schedule during actual factory production,
Such steel strips may be left in this state for several days or more, and the steel strip temperature may reach 40° C. or higher in summer. Furthermore, if the Si content is 3.2% or more, the coil is likely to break during the next rolling, so the temperature of the coil may be raised in advance. However, it has been found that the thermal cycle history from the intermediate annealing step to the second rolling step affects the heat treatment effect of the steel plate in the middle of rolling, which is a feature of the present invention. In other words, Fig. 3 shows that when conducting the same experiment as shown in Example B of the present invention in Fig. 1, intermediate annealing heating was performed at 970°C for 4 minutes, then cooling to 600°C for 20 seconds, and then The steel plate was cooled at a rate of 10°C per second from 600°C to room temperature, and then the steel plate was held at each temperature for a predetermined period of time before being rolled a second time (in the middle, it was treated at 200°C for 10 minutes at a plate thickness of 0.55 mm). This shows the W 17/50 value of the finished product when aged. As is clear from Figure 3, after the completion of the intermediate annealing process and before entering the second rolling process, the relationship between the absolute temperature of the steel plate and the holding time at that temperature is determined by the following formula: Holding time (seconds) ≦ 3.5×10 -12 exp12800/T(〓
)... Within the scope of the present invention that satisfies (within the range 1 in the figure)
shows good magnetism. In particular, retention time (seconds) ≦2.65×10 -13 exp
13300/T (〓) is more preferable (within the range 2 in the figure). The reason why the heat treatment effect of the steel sheet in the process of rolling, which is the basis of the present invention, affects the thermal history from the intermediate annealing process to the second cold rolling is probably because of carbon, nitrogen, etc. It is presumed that this is related to the behavior of solid solution elements. That is, as mentioned above, if the heat treatment effect of the steel plate during rolling is caused by the fixation of solid solution elements such as C and N to the lattice defects formed during rolling, then the second This is presumed to be because it is more effective if a large amount of C, N, etc. are dissolved in solid solution at the start of rolling. Next, the reason for limiting the composition of the hot-rolled sheet for unidirectional electrical steel sheet, which is the object of the present invention, will be explained. If C exceeds 0.08%, decarburization by continuous annealing becomes difficult and the magnetic properties of the product deteriorate.
must be below 0.08%. Si is an important element that controls iron loss, and a higher content is preferable, but if it exceeds 4.0%, the rollability will deteriorate significantly, so it is necessary to keep it below 4.0%. Moreover, if it is less than 2.5%, transformation occurs and the magnetic properties of the product are significantly deteriorated, so the Si content should be substantially in the range of 2.5 to 4.0%. Hot-rolled grain-oriented electrical steel sheets usually contain Mn, S, etc., but in the case of the present invention, they are not limited to these in any way, and may also contain other inhibitor-forming elements that are known per se. This can be easily inferred from the mechanism of the effects of the present invention described above. Next, the reasons for limiting the processing conditions of the present invention will be explained. The hot-rolled sheet containing the above components is
You can continue with the first rolling, but
It is more effective to perform normalizing annealing in the range of 750 to 1150°C. Such annealing is 750
If it is lower than 1150°C, a sufficient normalizing effect of the crystal structure cannot be obtained, while if it is higher than 1150°C, the crystals will become coarse, which is unfavorable in terms of the magnetism of the final product. The subsequent first rolling, intermediate annealing, and second rolling are the basis of the present invention, and the reasons for their limitations have already been explained based on the experimental data shown in Figures 1 to 3. However, regarding the limitation of the rolling reduction rate, secondary recrystallization cannot be obtained unless it is within this range, so the first rolling reduction is set at 30 to 75.
%, and the second round was limited to a rolling ratio of 40 to 80%. In addition, if the intermediate annealing temperature is lower than 750℃, the annealing effect cannot be obtained, and if the temperature is higher than 1150℃, the crystal grains will become excessively coarse, so it is normal to perform the intermediate annealing at a temperature of 750 to 1150℃. The atmosphere is preferably neutral or reducing, and a strongly oxidizing atmosphere is disadvantageous. In addition, it has been confirmed through another experiment that there is no significant difference in the effect of rolling after the heat treatment of the steel sheet in the process of rolling according to the present invention, even after the steel sheet has cooled to room temperature or when the temperature is close to the heat treatment temperature. ing. Also,
The heat treatment may be performed by any conventionally known heating method, or may be performed by heating by rolling.
The thus obtained cold-rolled sheet having the final thickness is subjected to decarburization annealing by a known method, and then an annealing separator is applied and final finish annealing is performed. If the final annealing temperature is below 800°C, not only will secondary recrystallized grains not be obtained, but magnetism will not be obtained due to insufficient purification, and if it is above 1250°C, it will be uneconomical in terms of thermal energy. However, since the glass properties deteriorate, the temperature was limited to 800 to 1250°C. The present invention will be described below with reference to Examples. Example 1 C0.055%, Si3.30%, Mn0.085%, Se0.022%,
A silicon steel material consisting of 0.015% As and the remainder substantially Fe was hot rolled into a hot rolled sheet with a thickness of 2.8 mm. 920℃
After annealing for 2 minutes at 980° C., it was pickled, rolled to a thickness of 0.75 mm for the first time, intermediate annealed at 980° C. for 3 minutes, and cooled to room temperature for 4 minutes. Then,
Immediately after light pickling, the plate was rolled a second time to reduce the final plate thickness to 0.30 mm. During this rolling, the following three types of treatments were performed. (1) Perform the first and second rolling using the conventional method. (2) 10 at 400℃ during the first rolling at 1.6mm, 1.2mm, and 0.9mm.
A second heat treatment was added. (3) For the first and second times, heat treatment was applied at 300°C for 3 minutes when the plate thickness was 1.2 mm and 0.50 mm, respectively. This cold-rolled sheet was subjected to decarburization annealing at 840°C for 5 minutes in wet hydrogen, coated with an annealing separator MgO, laminated, and annealed at 1180°C in a hydrogen stream for 25 hours. The magnetic properties of each product obtained by the above treatment are shown in Table 1.
【表】
実施例 2
C0.038%,Si3.15%,Mn0.065%,S0.020%、
残部実質的にFeよりなる板厚2.1mmの珪素鋼板を
酸洗して、0.68mmまで圧延し、900℃×7分間の
中間焼鈍を行なつたのち、0.30mmまで第2回の圧
延を行なつた。なお、一回目の圧延途上では、板
厚1.5mm、0.95mm時点で200℃10分間の加熱処理を
行ない、さらに二回目の圧延途中0.53mmの時点で
250℃で5分間の加熱処理を施こした。
この際、中間焼鈍後に下記の各種の処理を行な
つた。
(1) 中間焼鈍完了後、直ちに二回目の圧延を行な
う。
(2) 中間焼鈍後、50℃の恒温槽に3時間放置した
のちに二回目の圧延を行なう。
(3) 中間焼鈍後、100℃の湯の中に2分間放置し
たのちに二回目の圧延を行なう。
(4) 中間焼鈍後、50℃の恒温槽に20日間放置した
のちに二回目の圧延を行なう。
(5) 中間焼鈍後、100℃の湯中に3時間放置した
のち二回目の圧延を行なう。
かかる冷延板を脱炭焼鈍工程以降実施例1と同
じ方法により処理した。成品の磁気特性は下表の
通りであつた。[Table] Example 2 C0.038%, Si3.15%, Mn0.065%, S0.020%,
A silicon steel plate with a thickness of 2.1 mm, the remainder of which was essentially Fe, was pickled, rolled to 0.68 mm, intermediately annealed at 900°C for 7 minutes, and then rolled a second time to 0.30 mm. Summer. In addition, during the first rolling, heat treatment was performed at 200℃ for 10 minutes at the plate thickness of 1.5 mm and 0.95 mm, and then during the second rolling, at the point of 0.53 mm.
Heat treatment was performed at 250°C for 5 minutes. At this time, the following various treatments were performed after intermediate annealing. (1) Immediately after the intermediate annealing is completed, the second rolling is performed. (2) After intermediate annealing, the product is left in a constant temperature bath at 50°C for 3 hours and then rolled for the second time. (3) After intermediate annealing, it is left in hot water at 100°C for 2 minutes and then rolled a second time. (4) After intermediate annealing, it is left in a constant temperature bath at 50°C for 20 days and then rolled for the second time. (5) After intermediate annealing, it is left in hot water at 100°C for 3 hours and then rolled for the second time. This cold-rolled sheet was treated in the same manner as in Example 1 after the decarburization annealing step. The magnetic properties of the product were as shown in the table below.
【表】
このように、本発明の式を満足する(1),(2)の
場合には良好な磁性を保ち得るが、本発明の式
を満足しなければ磁気特性が劣ることがが判る。
以上の如く本発明によれば最終成品の磁束密度値
を改善すると共に、鉄損値を大巾に改善すること
が出来る。[Table] As shown, good magnetism can be maintained in the cases of (1) and (2) that satisfy the formulas of the present invention, but it can be seen that the magnetic properties are inferior if the formulas of the present invention are not satisfied. .
As described above, according to the present invention, the magnetic flux density value of the final product can be improved, and the iron loss value can be greatly improved.
第1図は本発明の圧延途上加熱処理法の効果例
を示す図、第2図は加熱処理法の温度・時間範囲
領域を示す図、第3図は圧延途上加熱処理法採用
の場合の中間焼鈍工程から第二回目の圧延に至る
間の熱履歴制限範囲を示す図である。第2図およ
び第3図
●W17/50≦1.20(w/Kg)
凡例〇1.20<W17/50≦1.25
×1.25<W17/50
Figure 1 is a diagram showing an example of the effect of the mid-rolling heat treatment method of the present invention, Figure 2 is a diagram showing the temperature and time range of the heat treatment method, and Figure 3 is a diagram showing an intermediate effect when the mid-rolling heat treatment method is adopted. It is a figure which shows the thermal history restriction range from the annealing process to the second rolling. Figures 2 and 3 ●W 17/50 ≦1.20 (w/Kg) Legend〇1.20<W 17/50 ≦1.25 ×1.25<W 17/50
Claims (1)
他MnSを主要インヒビターとし、残部Feおよび
不可避的不純物からなる熱延鋼板を、焼鈍した
後、酸洗、30〜75%の圧下率での1回目の冷間圧
延、750〜1150℃の温度域での中間焼鈍、40〜80
%の圧下率での2回目の冷間圧延および湿水素雰
囲気中での脱炭焼鈍を行ないさらに、焼鈍分離剤
を塗布し、仕上焼鈍することからなる方向性電磁
鋼板の製造方法において、前記1回目の冷間圧延
工程における途中板厚段階の少なくとも1つの段
階において、被圧延鋼板を100〜600℃の温度域で
下記式()を満足する時間保持するとともに、
前記中間焼鈍工程完了後2回目の冷間圧延工程の
前段で、被圧延鋼板の絶対温度とその温度におけ
る保持時間とが、下記式()を満足するよう
に、被圧延鋼板の熱履歴を制御することを特徴と
する方向性電磁鋼板の製造方法。 0.13exp(1700/T(〓)≦保持時間(s) ≦3.7×10-4exp(8100/T(〓))…() 保持時間(s)≦3.5 ×10-12exp(12800/T(〓)) …() 2 重量%で、C≦0.08%,Si:2.5〜4.0%その
他MnSを主要インヒビターとし、残部Feおよび
不可避的不純物からなる熱延鋼板を、焼鈍した
後、酸洗、30〜75%の圧下率での1回目の冷間圧
延、750〜1150℃の温度域での中間焼鈍、40〜80
%の圧下率での2回目の冷間圧延および湿水素雰
囲気中での脱炭焼鈍を行ないさらに、焼鈍分離剤
を塗布し、仕上焼鈍することからなる方向性電磁
鋼板の製造方法において、前記1回目および2回
目の冷間圧延工程における途中板厚段階の少なく
とも1つの段階において、被圧延鋼板を100〜600
℃の温度域で、下記式()を満足する時間保持
するとともに、前記中間焼鈍工程完了後2回目の
冷間圧延工程の前段で、被圧延鋼板の絶対温度と
その温度における保持時間とが、下記式()を
満足するように、被圧延鋼板の熱履歴を制御する
ことを特徴とする方向性電磁鋼板の製造方法。 0.13exp(1700/T(〓)≦保持時間(s) ≦3.7×10-4exp(8100/T(〓))…() 保持時間(s)≦3.5 ×10-12exp(12800/T(〓)) …()[Claims] After annealing a hot rolled steel sheet consisting of 1% by weight, C≦0.08%, Si: 2.5 to 4.0%, and MnS as the main inhibitor, with the remainder being Fe and unavoidable impurities, pickling was performed for 30 minutes. First cold rolling at ~75% reduction, intermediate annealing at a temperature range of 750~1150℃, 40~80℃
% of the rolling reduction and decarburization annealing in a wet hydrogen atmosphere, further applying an annealing separator and finishing annealing, the method for producing a grain-oriented electrical steel sheet, comprising: In at least one intermediate plate thickness stage in the second cold rolling process, the rolled steel plate is held in a temperature range of 100 to 600°C for a time that satisfies the following formula (),
In the first stage of the second cold rolling process after completion of the intermediate annealing process, the thermal history of the rolled steel plate is controlled so that the absolute temperature of the rolled steel plate and the holding time at that temperature satisfy the following formula (). A method for producing a grain-oriented electrical steel sheet. 0.13exp (1700/T(〓)≦Holding time (s) ≦3.7×10 -4 exp(8100/T(〓))…() Holding time (s)≦3.5× 10-12 exp(12800/T( 〓)) ...() 2 After annealing a hot-rolled steel sheet consisting of C≦0.08%, Si: 2.5-4.0% and other MnS as the main inhibitor, and the balance being Fe and unavoidable impurities in weight%, pickling, 30% by weight. First cold rolling at ~75% reduction, intermediate annealing at a temperature range of 750~1150℃, 40~80℃
% of the rolling reduction and decarburization annealing in a wet hydrogen atmosphere, further applying an annealing separator and finishing annealing, the method for producing a grain-oriented electrical steel sheet, comprising: In at least one of the intermediate plate thickness stages in the second and second cold rolling processes, the rolled steel plate is
℃ temperature range for a time that satisfies the following formula (), and in the first stage of the second cold rolling process after the completion of the intermediate annealing process, the absolute temperature of the rolled steel plate and the holding time at that temperature are as follows: A method for producing a grain-oriented electrical steel sheet, comprising controlling the thermal history of a rolled steel sheet so as to satisfy the following formula (). 0.13exp (1700/T(〓)≦Holding time (s) ≦3.7×10 -4 exp(8100/T(〓))…() Holding time (s)≦3.5× 10-12 exp(12800/T( 〓)) …()
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12322681A JPS5825425A (en) | 1981-08-06 | 1981-08-06 | Manufacture of directional electromagnetic steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12322681A JPS5825425A (en) | 1981-08-06 | 1981-08-06 | Manufacture of directional electromagnetic steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5825425A JPS5825425A (en) | 1983-02-15 |
JPS6253572B2 true JPS6253572B2 (en) | 1987-11-11 |
Family
ID=14855317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12322681A Granted JPS5825425A (en) | 1981-08-06 | 1981-08-06 | Manufacture of directional electromagnetic steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5825425A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62202024A (en) | 1986-02-14 | 1987-09-05 | Nippon Steel Corp | Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties |
JPS63259024A (en) * | 1987-11-20 | 1988-10-26 | Kawasaki Steel Corp | Manufacture of grain-oriented silicon steel sheet excellent in magnetic property |
JPH0753885B2 (en) * | 1989-04-17 | 1995-06-07 | 新日本製鐵株式会社 | Method for producing unidirectional electrical steel sheet with excellent magnetic properties |
DE69025537T2 (en) * | 1989-05-15 | 1996-10-31 | Kawasaki Steel Co | METHOD FOR PRODUCING DIRECTED SILICON STEEL SHEETS WITH EXCELLENT MAGNETIC PROPERTIES |
JP3160281B2 (en) * | 1990-09-10 | 2001-04-25 | 川崎製鉄株式会社 | Method for producing grain-oriented silicon steel sheet with excellent magnetic properties |
BR112022024114A2 (en) * | 2020-06-24 | 2023-01-03 | Nippon Steel Corp | METHOD FOR PRODUCING GRAIN-ORIENTED ELECTRIC STEEL SHEET |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5026493A (en) * | 1973-07-06 | 1975-03-19 | ||
JPS5429182A (en) * | 1977-12-15 | 1979-03-05 | Ntn Toyo Bearing Co Ltd | Device for forming pocket bores in ring |
JPS5621050A (en) * | 1979-07-31 | 1981-02-27 | Toshiba Corp | Measuring cell |
-
1981
- 1981-08-06 JP JP12322681A patent/JPS5825425A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5026493A (en) * | 1973-07-06 | 1975-03-19 | ||
JPS5429182A (en) * | 1977-12-15 | 1979-03-05 | Ntn Toyo Bearing Co Ltd | Device for forming pocket bores in ring |
JPS5621050A (en) * | 1979-07-31 | 1981-02-27 | Toshiba Corp | Measuring cell |
Also Published As
Publication number | Publication date |
---|---|
JPS5825425A (en) | 1983-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2983128B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH02274815A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPS5948934B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
KR950005793B1 (en) | Process for producing grain-oriented electrical steel strip having high magnetic flux density | |
KR20240004679A (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPH08188824A (en) | Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density | |
JPS6256923B2 (en) | ||
JPS6253572B2 (en) | ||
JP4205816B2 (en) | Method for producing unidirectional electrical steel sheet with high magnetic flux density | |
US3932235A (en) | Method of improving the core-loss characteristics of cube-on-edge oriented silicon-iron | |
JPS5836048B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent iron loss | |
KR950002895B1 (en) | Ultrahigh-silicon directional electrical steel sheet and production thereof | |
JPH02125815A (en) | Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic | |
JP7221480B6 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
JPH01309924A (en) | Grain-oriented magnetic steel sheet and its production | |
JPH04350124A (en) | Production of grain-oriented silicon steel sheet reduced in thickness | |
JPH0762437A (en) | Production of grain oriented silicon steel sheet having extremely low iron loss | |
JPH04235221A (en) | Production of grain-oriented silicon steel sheet reduced in iron loss | |
JPH042724A (en) | Production of thin grain-oriented silicon steel sheet excellent in magnetic property | |
JP3392699B2 (en) | Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics | |
JPH0257125B2 (en) | ||
JPS60138014A (en) | Manufacture of nonoriented silicon steel sheet | |
JPS61149432A (en) | Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss | |
JP3253111B2 (en) | Manufacturing method of unidirectional silicon steel sheet | |
WO2022210503A1 (en) | Production method for grain-oriented electrical steel sheet |