JPH0762437A - Production of grain oriented silicon steel sheet having extremely low iron loss - Google Patents

Production of grain oriented silicon steel sheet having extremely low iron loss

Info

Publication number
JPH0762437A
JPH0762437A JP5209576A JP20957693A JPH0762437A JP H0762437 A JPH0762437 A JP H0762437A JP 5209576 A JP5209576 A JP 5209576A JP 20957693 A JP20957693 A JP 20957693A JP H0762437 A JPH0762437 A JP H0762437A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
rolled
iron loss
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5209576A
Other languages
Japanese (ja)
Other versions
JP2983129B2 (en
Inventor
Kenji Kosuge
健司 小菅
Mikio Itou
美樹雄 伊藤
Shinji Ueno
伸二 上野
Haruo Fukazawa
晴雄 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5209576A priority Critical patent/JP2983129B2/en
Priority to EP94100292A priority patent/EP0606884B1/en
Priority to KR1019940000334A priority patent/KR0182802B1/en
Priority to DE69420058T priority patent/DE69420058T2/en
Publication of JPH0762437A publication Critical patent/JPH0762437A/en
Priority to US08/612,611 priority patent/US5833768A/en
Application granted granted Critical
Publication of JP2983129B2 publication Critical patent/JP2983129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a good iron loss characteristic by applying an intermediate heating treatment to a strip during finish cold-rolling to a silicon steel having a fixed composition and further, executing rapid heating treatment just before decarburization-annealing. CONSTITUTION:Hot-rolled sheet annealing is executed to the hot-rolled grain oriented silicon steel sheet composed of <=0.10wt.% C, 2.5-7.0% Si and the ordinary inhibitor components and the balance Fe with inevitable impurities. Cold- rollings containing the finish cold-rolling in >=60% the finish rolling reduction ratio at one time or two or more times inserting the intermediate annealing are executed, and after the decarburization-annealing, the last finishing annealing is executed to make the grain oriented silicon steel sheet. In this manufacturing method, the heat treatment held at least at one or more times at >=100 deg.C for >=1mm is given to the steel sheet in the intermediate stage of the finish-rolling and the rapid heating treatment is executed to >=700 deg.C at >=50 deg.C/sec heating speed just before the decarburization-annealing to the strip rolled to the finish thickness. By this method, the silicon steel sheet having extremely low iron loss can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2.5〜7.0%のS
iを含み、低い鉄損をもつ一方向性電磁鋼板の製造方法
を提供するものである。
BACKGROUND OF THE INVENTION The present invention has an S content of 2.5 to 7.0%.
The present invention provides a method for producing a grain-oriented electrical steel sheet containing i and having a low iron loss.

【0002】[0002]

【従来の技術】一般に、一方向性電磁鋼板の磁気特性は
鉄損特性と励磁特性の両方で評価される。励磁特性を高
めることは設計磁束密度を高める機器の小型化に有効で
ある。一方鉄損特性を少なくすることは、電気機器とし
て使用する際、熱エネルギーとして失われるものを少な
くし、消費電力を節約できる点で有効である。たとえ
ば、特公昭54−13846号公報に開示されているよ
うに、冷間圧延中の鋼板温度を50〜350℃の温度範
囲で1分以上の時間保持する熱効果を与えることによ
り、磁気特性の非常に優れた一方向性電磁鋼板が得られ
る。しかし、この製造方法はある程度の鉄損の低減は図
れるのであるが、未だに二次再結晶マクロ粒径が10mm
オーダと大きく、鉄損に影響する因子である渦電流損を
減らすことができず、良好な鉄損値が得られていなかっ
た。これを改善するために、特公昭57−2252号公
報に開示されている鋼板にレーザ処理を施す方法、さら
に特公昭58−2569号公報に鋼板に機械的な歪みを
加える方法など、磁区を細分化する様々な方法が開示さ
れている。
2. Description of the Related Art Generally, the magnetic properties of a grain-oriented electrical steel sheet are evaluated by both the iron loss property and the excitation property. Increasing the excitation characteristics is effective for downsizing equipment that increases the design magnetic flux density. On the other hand, reducing the iron loss characteristics is effective in reducing the loss of heat energy when used as an electric device and saving the power consumption. For example, as disclosed in Japanese Examined Patent Publication No. 54-13846, by imparting a thermal effect of maintaining a steel plate temperature during cold rolling in a temperature range of 50 to 350 ° C. for 1 minute or more, the magnetic properties A very good grain-oriented electrical steel sheet can be obtained. However, although this manufacturing method can reduce iron loss to some extent, the secondary recrystallization macro grain size is still 10 mm.
The order was large, and the eddy current loss, which is a factor affecting iron loss, could not be reduced, and a good iron loss value was not obtained. In order to improve this, the magnetic domain is subdivided by a method of subjecting a steel sheet disclosed in JP-B-57-2252 to a laser treatment, and a method of applying a mechanical strain to the steel sheet in JP-B-58-2569. A variety of methods for implementing the above are disclosed.

【0003】また、特開平1−290716号公報で
は、常温圧延された鋼板に100℃/秒以上の加熱速度
で657℃以上の温度へ超急速焼きなまし処理を施し、
該ストリップを脱炭素処理し、最終高温焼きなまし処理
を施して二次成長を行い、それによって前記ストリップ
が低減した寸法の二次粒子及び応力除去焼きなまし処理
後も有意の変化なしに持続する改善された鉄損をもつこ
とを特徴とする方法が開示されている。しかし、この製
造方法により単に二次再結晶粒径を微細化するだけで
は、フォルステライト皮膜上に絶縁皮膜を塗布した際、
従来の磁区の細分化並みの鉄損特性を得ることは困難で
あった。
Further, in Japanese Patent Application Laid-Open No. 1-290716, a cold rolled steel sheet is subjected to an ultra-rapid annealing treatment at a heating rate of 100 ° C./sec or more to a temperature of 657 ° C. or more,
The strips were decarbonized and subjected to a final high temperature anneal to undergo secondary growth, which improved secondary particles of reduced size and stress relief anneal persisted without significant change. A method characterized by having iron loss is disclosed. However, by simply refining the secondary recrystallized grain size by this manufacturing method, when the insulating film is applied on the forsterite film,
It was difficult to obtain iron loss characteristics comparable to conventional magnetic domain subdivision.

【0004】[0004]

【発明が解決しようとする課題】以上の従来の製造方法
では、十分に低い鉄損をもつ一方向性電磁鋼板を得るこ
とは困難であり、本発明はそれを解決する製造方法を提
供するものである。
With the above conventional manufacturing method, it is difficult to obtain a grain-oriented electrical steel sheet having a sufficiently low iron loss, and the present invention provides a manufacturing method for solving the problem. Is.

【0005】[0005]

【課題を解決するための手段】本発明では、上記課題を
解決すべく検討を重ねた結果、重量でC:0.10%以
下、Si:2.5〜7.0%ならびに通常のインヒビタ
ー成分を含み、残余はFeおよび不可避的不純物よりな
る一方向性電磁鋼熱延板に熱延板焼鈍を施し、最終圧下
率60%以上の最終冷間圧延を含む、1回あるいは中間
焼鈍をはさむ2回以上の冷間圧延を実施し、脱炭焼鈍し
た後、最終仕上焼鈍を施して一方向性電磁鋼板を製造す
る方法において、上記最終冷間圧延に際し、少なくとも
1回以上の途中板厚段階において鋼板に100℃以上の
温度範囲で1分以上の時間保持する熱処理を与え、かつ
最終板厚まで圧延されたストリップを、脱炭焼鈍する直
前に50℃/秒以上の加熱速度で700℃以上の温度へ
加熱処理することにより、極めて低い鉄損をもつ一方向
性電磁鋼板の製造方法が得られることを見い出した。
In the present invention, as a result of repeated studies to solve the above-mentioned problems, C: 0.10% or less by weight, Si: 2.5 to 7.0% and usual inhibitor components were obtained. The rest of which is hot-rolled unidirectional electrical steel consisting of Fe and unavoidable impurities and is subjected to hot-rolled sheet annealing, including final cold rolling with a final reduction of 60% or more, and one or two intermediate annealings. In a method for producing a unidirectional electrical steel sheet by performing cold rolling at least once and then performing decarburization annealing after decarburization annealing, in the final cold rolling, at least one or more intermediate plate thickness steps The steel sheet is subjected to a heat treatment of holding it in a temperature range of 100 ° C. or more for 1 minute or more, and the strip rolled to the final plate thickness is heated to 50 ° C./sec or more and 700 ° C. or more immediately before decarburization annealing. Heat treatment to temperature More it was found that the production method of the grain-oriented electrical steel sheet having a very low iron loss is obtained.

【0006】以下に本発明を詳細に説明する。一方向性
電磁鋼板は、その製造工程の最終焼鈍中に二次再結晶を
十分に起こさせ、所謂ゴス集合組織を得ることにより製
造できる。このゴス集合組織を得るためには、一次再結
晶粒の成長粗大化を抑制し、圧延方向に揃った(11
0)〈001〉方位の再結晶粒のみをある温度範囲で選
択的に成長させる。つまり、二次再結晶させるような素
地を作ってやることが必要である。そのためには、素材
にMnS,AlN,Cu2 Sなどの微細な介在物が一次
再結晶粒の成長の抑制材(インヒビター)として、均一
に分散していなければならない。さらに、一次再結晶の
段階で、(110)面方位再結晶粒をできるだけ増やし
てやる必要がある。
The present invention will be described in detail below. The unidirectional electrical steel sheet can be manufactured by sufficiently causing secondary recrystallization during the final annealing in the manufacturing process to obtain a so-called Goss texture. In order to obtain this Goss texture, growth coarsening of primary recrystallized grains is suppressed and they are aligned in the rolling direction (11
0) Only recrystallized grains of <001> orientation are selectively grown in a certain temperature range. In other words, it is necessary to make a base material for secondary recrystallization. For that purpose, fine inclusions such as MnS, AlN, and Cu 2 S must be uniformly dispersed in the material as an inhibitor (inhibitor) for the growth of primary recrystallized grains. Further, it is necessary to increase the number of (110) plane oriented recrystallized grains as much as possible at the stage of primary recrystallization.

【0007】しかし、従来での製造方法は、数mm以上の
ある程度大きな粒径の二次再結晶粒は圧延方向に揃った
(110)〈001〉方位をもつことができるのである
が、数mm以下の小さな粒径になると圧延方向から大きく
ずれた二次再結晶になるという問題点があった。この傾
向は特に、特開平1−290716号公報のような平均
二次再結晶粒径を低減することにより磁区幅を小さくし
て目標の低鉄損を得る方策をとる場合、どうしても(1
10)〈001〉方位が圧延方向からずれた微細な二次
再結晶粒の比率が多くなり、後の鋼板表面にフォルステ
ライトや絶縁皮膜などの皮膜を付与した際の鉄損値の向
上率が余り大きくならないという問題点があった。
However, according to the conventional manufacturing method, secondary recrystallized grains having a relatively large grain size of several mm or more can have a (110) <001> orientation aligned in the rolling direction. When the grain size is smaller than the following, there is a problem that secondary recrystallization that is largely deviated from the rolling direction occurs. This tendency is unavoidable especially in the case of taking a measure as in Japanese Patent Laid-Open No. 1-290716 to reduce the average secondary recrystallized grain size to reduce the magnetic domain width to obtain a target low iron loss.
10) The ratio of fine secondary recrystallized grains in which the <001> orientation is deviated from the rolling direction increases, and the improvement rate of the iron loss value when a film such as forsterite or an insulating film is applied to the surface of the steel sheet later is improved. There was a problem that it did not grow so much.

【0008】そこで、結晶粒径が小さな二次再結晶粒に
おいても圧延方向に揃った(110)〈001〉方位を
得るため、一次再結晶組織の改善について検討を重ねた
結果、冷間圧延の圧延条件と脱炭焼鈍する直前あるいは
昇温段階の条件が、結晶粒径が小さな二次再結晶粒の方
位に大きな影響を及ぼすことを見い出した。すなわち、
冷延の途中板厚段階で所定の温度で熱処理することによ
り、侵入型固溶元素たとえば固溶Cなどが冷延により形
成された転位に固着され、変形機構に変化を及ぼし冷延
集合組織を変え、かつ脱炭焼鈍する直前に50℃/秒以
上の加熱速度で700℃以上の温度へ加熱処理すること
により、(110)〈001〉方位が圧延方向に揃った
数mm以下の微細な二次再結晶粒が得られることを見い出
した。これにより後の鋼板表面に皮膜を付与した際の鉄
損値の向上代が大きく、低鉄損を得ることが可能とな
る。
Therefore, in order to obtain the (110) <001> orientation aligned in the rolling direction even in the case of secondary recrystallized grains having a small crystal grain size, as a result of repeated studies on improvement of the primary recrystallized structure, cold rolling It was found that the rolling conditions and the conditions immediately before decarburization annealing or at the temperature rising stage have a great influence on the orientation of secondary recrystallized grains having a small grain size. That is,
By performing heat treatment at a predetermined temperature in the plate thickness stage during cold rolling, interstitial solid solution elements such as solid solution C are fixed to the dislocations formed by cold rolling, and the deformation mechanism is changed to form a cold rolled texture. By changing the temperature, and immediately before decarburizing and annealing, a heat treatment is performed at a heating rate of 50 ° C./sec or more to a temperature of 700 ° C. or more, so that the (110) <001> orientation is aligned with the rolling direction to form a fine grain of two mm or less. It was found that the next recrystallized grains were obtained. As a result, there is a large margin of improvement in the iron loss value when a coating is applied to the surface of the steel sheet later, and it is possible to obtain a low iron loss.

【0009】図1に粒径5mm以下の微細な二次再結晶粒
の(100)極点図を示す。(a)は従来の製造方法
で、常温圧延されたストリップに対して脱炭焼鈍するに
際し、昇温を300℃/秒の加熱速度で実施し、二次再
結晶させた場合の微細二次再結晶粒の方位、(b)は本
発明例で冷間圧延中に230℃で10分間の熱処理を施
し、最終製品まで冷間圧延した後、脱炭焼鈍での昇温を
300℃/秒の加熱速度で実施し、二次再結晶させた場
合の微細二次再結晶粒の方位である。本発明により微細
な二次再結晶粒でも圧延方向に揃った(110)〈00
1〉方位が得られている。これにより、二次再結晶した
鋼板表面のフォルステライトや、絶縁皮膜などにより皮
膜張力を付与することにより、大きな鉄損の向上率があ
り、極めて低い鉄損値を得ることができる。
FIG. 1 shows a (100) pole figure of fine secondary recrystallized grains having a grain size of 5 mm or less. (A) is a conventional manufacturing method. When decarburizing and annealing a cold-rolled strip, the temperature is raised at a heating rate of 300 ° C./sec, and fine secondary recrystallization is performed when secondary recrystallization is performed. The orientation of the crystal grains, (b), in the example of the present invention, heat treatment was carried out at 230 ° C. for 10 minutes during cold rolling, and after cold rolling to the final product, the temperature was raised by decarburizing annealing at 300 ° C./sec. This is the orientation of fine secondary recrystallized grains when secondary recrystallization is performed at a heating rate. According to the present invention, even fine secondary recrystallized grains are aligned in the rolling direction (110) <00.
1> Direction is obtained. Thus, by applying film tension by forsterite on the surface of the secondarily recrystallized steel sheet, an insulating film, or the like, there is a large improvement rate of iron loss, and an extremely low iron loss value can be obtained.

【0010】[0010]

【作用】次に本発明において、鋼組成および製造条件を
前記のように限定した理由を、詳細に説明する。この鋼
成分の限定理由は下記のとおりである。Cについての上
限0.10%は、これ以上多くなると脱炭所要時間が長
くなり、経済的に不利となるので限定した。Siは鉄損
をよくするために下限を2.5%とするが、多すぎると
冷間圧延の際に割れ易く加工が困難となるので上限を
7.0%とする。
In the present invention, the reason why the steel composition and manufacturing conditions are limited as described above will be explained in detail. The reasons for limiting the steel composition are as follows. The upper limit of 0.10% for C is limited because if the amount exceeds C, the time required for decarburization becomes long, which is economically disadvantageous. Si has a lower limit of 2.5% in order to improve iron loss, but if it is too much, it is easily cracked during cold rolling and working becomes difficult, so the upper limit is made 7.0%.

【0011】さらに、一方向性電磁鋼板を製造するため
に、通常のインヒビター成分として以下の成分元素を添
加することが好ましい。インヒビターとしてMnSを利
用する場合は、MnとSを添加する。Mnは、MnSの
適当な分散状態を得るため、0.02〜0.15%が望
ましい。SはMnS,(Mn・Fe)Sを形成するため
に必要な元素で、適当な分散状態を得るため、0.00
1〜0.05%が望ましい。さらに、インヒビターとし
てAlNを利用する場合は、酸可溶性AlとNを添加す
る。酸可溶性Al,AlNの適正な分散状態を得るため
0.01〜0.04%が望ましい。Nも、AlNを得る
ため0.003〜0.02%が望ましい。その他、C
u,Sn,Sb,Cr,Biはインヒビターを強くする
目的で1.0%以下において少なくとも1種添加しても
よい。
Further, in order to produce a grain-oriented electrical steel sheet, it is preferable to add the following component elements as usual inhibitor components. When using MnS as an inhibitor, Mn and S are added. In order to obtain an appropriate dispersed state of MnS, Mn is preferably 0.02 to 0.15%. S is an element necessary for forming MnS, (Mn.Fe) S, and is 0.00 to obtain an appropriate dispersed state.
1 to 0.05% is desirable. Furthermore, when using AlN as an inhibitor, acid-soluble Al and N are added. To obtain a proper dispersed state of acid-soluble Al and AlN, 0.01 to 0.04% is desirable. N is also preferably 0.003 to 0.02% in order to obtain AlN. Other, C
At least one of u, Sn, Sb, Cr and Bi may be added in an amount of 1.0% or less for the purpose of strengthening the inhibitor.

【0012】次に、上記の溶鋼を通常の鋳塊鋳造法また
は連続鋳造法、熱間圧延により中間厚のストリップを得
る。この時ストリップ鋳造法も本発明に適用することも
可能である。
Next, the above molten steel is subjected to a conventional ingot casting method or continuous casting method and hot rolling to obtain a strip having an intermediate thickness. At this time, the strip casting method can also be applied to the present invention.

【0013】さらに、インヒビターとして窒化物を必要
とする場合は、AlNなどの析出のために950〜12
00℃で30秒〜30分の中間焼鈍を行うことが望まし
い。次に、1回ないし中間焼鈍を含む2回以上の圧延に
より最終製品厚のストリップを得る。中間焼鈍を含む2
回以上の圧延をする際の、1回目の圧延は圧下率5〜5
0%、中間焼鈍は950〜1200℃で30秒〜30分
の中間焼鈍を行うことが望ましい。次に最終圧下率は高
いゴス集積度をもつ製品を得るため、圧下率60%以上
が必要である。下限60%は、これ以下では必要なゴス
核が得られないからである。
Further, when a nitride is required as an inhibitor, it is necessary to deposit 950 to 12 because of precipitation of AlN or the like.
It is desirable to perform intermediate annealing for 30 seconds to 30 minutes at 00 ° C. Next, a strip of the final product thickness is obtained by rolling once or twice or more including intermediate annealing. 2 including intermediate annealing
When rolling more than once, the first rolling is a reduction ratio of 5 to 5
For 0%, the intermediate annealing is preferably performed at 950 to 1200 ° C. for 30 seconds to 30 minutes. Next, a final rolling reduction of 60% or more is required in order to obtain a product with a high degree of goss accumulation. The lower limit of 60% is because the necessary Goss nucleus cannot be obtained below this.

【0014】この時の冷間圧延方法として、磁気特性を
向上させるため、冷間圧延中に複数回のパスにより各板
厚段階を経て最終板厚となるが、その少なくとも、1回
以上の途中板厚段階において鋼板に100℃以上の温度
範囲で1分以上の時間保持する熱効果を与える。温度の
下限100℃、均熱時間の下限1分はこれ以下では固溶
Cなどが転位に固着されず、後の一次再結晶集合組織を
変化させ、(110)〈001〉が圧延方向に揃った微
細な二次再結晶が十分に発達されにくいので限定した。
As the cold rolling method at this time, in order to improve the magnetic properties, the final sheet thickness is obtained by passing through each sheet thickness step by a plurality of passes during the cold rolling. In the plate thickness stage, the steel plate is given a thermal effect of holding it in a temperature range of 100 ° C. or higher for a time of 1 minute or longer. When the lower limit of the temperature is 100 ° C. and the lower limit of the soaking time is 1 minute, the solid solution C and the like are not fixed to the dislocations below this and the subsequent primary recrystallization texture is changed, and (110) <001> is aligned in the rolling direction. Since fine secondary recrystallization is hard to develop sufficiently, it was limited.

【0015】以上、最終製品厚まで圧延されたストリッ
プに加熱処理を施す。まず、ストリップを50℃/秒以
上の加熱速度で700℃以上の温度へ急速加熱する。こ
の時の加熱速度の下限50℃/秒は、これ以下では二次
再結晶の核となる一次再結晶後での(110)〈00
1〉方位粒が減少し、微細な二次再結晶粒が得られない
ので限定した。また、下限700℃は、これ以下では再
結晶が開始されないので限定した。なお、この急速加熱
処理は皮膜形成などの問題から、できるだけ還元雰囲
気、あるいは非酸化雰囲気中で実施することが望まし
い。なお、上記の急速加熱処理は、次に施される脱炭焼
鈍前に行われても、脱炭焼鈍の加熱段階として脱炭焼鈍
工程に組み込むことも可能であるが、後者の方が、工程
数を少なくするので望ましい。この後は、湿水素雰囲気
中で脱炭焼鈍を行う、この時製品での磁気特性を劣化さ
せないため炭素は0.005%以下に低減されなければ
ならない。ここで、熱延のスラブ加熱温度が低く、Al
Nのみをインヒビターとして利用する場合は、アンモニ
ア雰囲気中で窒化処理を付加することもある。さらに、
MgOなどの焼鈍分離剤を塗布して、二次再結晶と純化
のため1100℃以上の仕上焼鈍を行うことで、フォル
ステライトなどの皮膜を鋼板表面に形成した微細な二次
再結晶粒を得る。
As described above, the strip rolled to the final product thickness is heat-treated. First, the strip is rapidly heated to a temperature of 700 ° C. or higher at a heating rate of 50 ° C./sec or higher. At this time, the lower limit of the heating rate of 50 ° C./sec is (110) <00 after the primary recrystallization, which becomes the nucleus of the secondary recrystallization below this.
1> The number of oriented grains is reduced, and fine secondary recrystallized grains cannot be obtained, so this is limited. The lower limit of 700 ° C. is limited because recrystallization does not start below this temperature. It should be noted that this rapid heat treatment is preferably carried out in a reducing atmosphere or a non-oxidizing atmosphere as much as possible because of problems such as film formation. The rapid heat treatment described above can be performed before the decarburization annealing to be performed next, or can be incorporated into the decarburization annealing step as a heating step of the decarburization annealing, but the latter is a process. It is desirable because it reduces the number. After that, decarburization annealing is performed in a wet hydrogen atmosphere. At this time, carbon must be reduced to 0.005% or less so as not to deteriorate the magnetic characteristics of the product. Here, the slab heating temperature of hot rolling is low,
When only N is used as an inhibitor, nitriding treatment may be added in an ammonia atmosphere. further,
By applying an annealing separator such as MgO and performing secondary annealing and finishing annealing at 1100 ° C or higher for purification, fine secondary recrystallized grains with a film such as forsterite formed on the surface of the steel sheet are obtained. .

【0016】これに対して、フォルステライトなどの皮
膜の上に、さらに絶縁皮膜を塗布することにより極めて
低い鉄損特性を有する一方向性電磁鋼板が製造される。
以上の磁気特性は、後の歪み取り焼鈍を施しても、変化
しない低鉄損を保持している。なお、得られた製品で、
さらに鉄損を良好にするため、上記一方向性電磁鋼板
に、磁区を細分化するための処理を施すことも可能であ
る。
On the other hand, a unidirectional electrical steel sheet having extremely low iron loss characteristics is manufactured by further applying an insulating coating on the coating of forsterite or the like.
The above-mentioned magnetic characteristics maintain a low iron loss that does not change even after the subsequent strain relief annealing. In addition, in the obtained product,
Further, in order to improve the iron loss, the unidirectional electrical steel sheet can be subjected to a treatment for subdividing the magnetic domains.

【0017】[0017]

【実施例】【Example】

(実施例1)表1に示す化学成分を含み、2.3mm厚に
まで熱間圧延させた熱延板に1100℃で1分間焼鈍を
施した。この後、圧延中に鋼板温度を200℃で2分焼
鈍を施して圧延した場合と、30℃の常温で圧延した場
合の2種の冷間圧延方法により最終板厚0.27mmにま
で圧延した。さらに、得られたストリップを脱炭焼鈍す
る際、加熱段階で10℃/秒、85℃/秒、300℃/
秒の3条件で加熱し、その後、湿潤水素中で脱炭焼鈍
し、MgO粉を塗布した後、1200℃に10時間、水
素ガス雰囲気中で高温焼鈍を行った。得られた鋼板の余
剰MgOを除去し、形成されたフォルステライト皮膜上
に、絶縁皮膜を塗布した。表2に、得られた製品の磁気
特性を示す。本発明により、鉄損特性に優れた一方向性
電磁鋼板が得られている。
(Example 1) A hot rolled sheet containing the chemical components shown in Table 1 and hot rolled to a thickness of 2.3 mm was annealed at 1100 ° C for 1 minute. Then, during rolling, the steel sheet was annealed at a temperature of 200 ° C. for 2 minutes and rolled, and rolled at a normal temperature of 30 ° C. by two kinds of cold rolling methods to a final sheet thickness of 0.27 mm. . Further, when the obtained strip is decarburized and annealed, it is heated at 10 ° C./sec, 85 ° C./sec, 300 ° C./sec.
After heating for 3 seconds, decarburization annealing was performed in wet hydrogen, MgO powder was applied, and then high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Excess MgO of the obtained steel sheet was removed, and an insulating film was applied on the formed forsterite film. Table 2 shows the magnetic properties of the obtained products. According to the present invention, a grain-oriented electrical steel sheet having excellent iron loss characteristics is obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】(実施例2)表3に示す成分組成を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。これを、1100℃で5分間焼鈍を
行い、さらに酸洗した後、圧延中に250℃の鋼板温度
で5分焼鈍を施して、冷間圧延を行い0.22mm厚にし
た。圧延された鋼板を二対の直接通電加熱ロールにより
290℃/秒の加熱速度で845℃まで加熱した。この
後、同じ845℃の均一温度、湿潤水素中で脱炭焼鈍し
た。次にMgO粉を塗布した後、1200℃に10時
間、水素ガス雰囲気中で高温焼鈍を行った。得られた鋼
板の余剰MgOを除去し、形成されたフォルステライト
皮膜上に、絶縁皮膜を塗布した。これにより得られた製
品の磁気特性は、B8 =1.94T、W17/50 =0.7
6w/kgの低い鉄損をもつ一方向性電磁鋼板が得られた。
(Example 2) Molten steel containing the chemical composition shown in Table 3 was cast, heated to a slab, and then hot-rolled to 2.3 mm.
The hot-rolled steel sheet of was obtained. This was annealed at 1100 ° C. for 5 minutes, further pickled, then annealed at a steel plate temperature of 250 ° C. for 5 minutes during rolling, and cold-rolled to a thickness of 0.22 mm. The rolled steel sheet was heated to 845 ° C at a heating rate of 290 ° C / sec with two pairs of direct-current heating rolls. After that, decarburization annealing was performed in wet hydrogen at the same uniform temperature of 845 ° C. Next, after applying MgO powder, high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Excess MgO of the obtained steel sheet was removed, and an insulating film was applied on the formed forsterite film. The magnetic properties of the product thus obtained are B 8 = 1.94T, W 17/50 = 0.7
A grain-oriented electrical steel sheet having a low iron loss of 6 w / kg was obtained.

【0021】[0021]

【表3】 [Table 3]

【0022】(実施例3)表3に示す成分組成を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。これを1000℃で4分間焼鈍を行
い、1.60mmまで圧延した。これを1120℃で5分
間焼鈍を行い、さらに酸洗した後、冷間圧延中に250
℃の鋼板温度で6分焼鈍を施して冷間圧延を行い、0.
22mm厚にした。圧延された鋼板を二対の直接通過加熱
ロールにより300℃/秒の加熱速度で840℃まで加
熱した。この後、同じ840℃の均一温度、湿潤水素中
で脱炭焼鈍した。次にMgO粉を塗布した後、1200
℃に10時間、水素ガス雰囲気中で高温焼鈍を行った。
得られた鋼板の余剰MgOを除去し、形成されたフォル
ステライト皮膜上に、絶縁皮膜を塗布した。これにより
得られた製品の磁気特性は、B8 =1.93T、W
17/50 =0.75w/kgの低い鉄損をもつ一方向性電磁鋼
板が得られた。
(Example 3) A molten steel containing the composition shown in Table 3 was cast, heated to a slab, and then hot-rolled to 2.3 mm.
The hot-rolled steel sheet of was obtained. This was annealed at 1000 ° C. for 4 minutes and rolled to 1.60 mm. This is annealed at 1120 ° C. for 5 minutes, further pickled, and then 250 during cold rolling.
The steel sheet was annealed at a steel sheet temperature of 6 ° C. for 6 minutes, cold-rolled,
22mm thick. The rolled steel sheet was heated to 840 ° C. at a heating rate of 300 ° C./sec with two pairs of direct passage heating rolls. After that, decarburization annealing was performed in the same uniform temperature of 840 ° C. and wet hydrogen. Next, after applying MgO powder, 1200
High temperature annealing was performed in a hydrogen gas atmosphere at 10 ° C. for 10 hours.
Excess MgO of the obtained steel sheet was removed, and an insulating film was applied on the formed forsterite film. The magnetic properties of the product thus obtained are B 8 = 1.93T, W
A grain -oriented electrical steel sheet having a low iron loss of 17/50 = 0.75 w / kg was obtained.

【0023】[0023]

【発明の効果】本発明によれば、良好な鉄損特性を有す
る一方向性電磁鋼板を製造することができるので、産業
上の貢献するところが極めて大である。
According to the present invention, it is possible to produce a grain-oriented electrical steel sheet having good iron loss characteristics, and therefore, the industrial contribution is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は冷間圧延方法による粒径5mm
以下の二次再結晶粒方位の変化を示す極点図である。
1 (a) and 1 (b) are grain sizes of 5 mm obtained by the cold rolling method.
It is a pole figure which shows the change of the following secondary recrystallized grain orientations.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深沢 晴雄 姫路市広畑区富士町1番地 新日本製鐵株 式会社広畑製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Haruo Fukasawa 1 Fuji-machi, Hirohata-ku, Himeji City Nippon Steel Corporation Hirohata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量でC:0.10%以下、Si:2.
5〜7.0%ならびに通常のインヒビター成分を含み、
残余はFeおよび不可避的不純物よりなる一方向性電磁
鋼熱延板に熱延板焼鈍を施し、最終圧下率60%以上の
最終冷間圧延を含む、1回あるいは中間焼鈍をはさむ2
回以上の冷間圧延を実施し、脱炭焼鈍した後、最終仕上
焼鈍を施して一方向性電磁鋼板を製造する方法におい
て、上記最終冷間圧延に際し、少なくとも1回以上の途
中板厚段階において鋼板に100℃以上の温度範囲で1
分以上の時間保持する熱処理を与え、かつ最終板厚まで
圧延されたストリップを脱炭焼鈍する直前に50℃/秒
以上の加熱速度で700℃以上の温度へ加熱処理するこ
とを特徴とする極めて低い鉄損をもつ一方向性電磁鋼板
の製造方法。
1. C: 0.10% or less by weight, Si: 2.
5 to 7.0% as well as the usual inhibitor components,
The balance is a hot-rolled unidirectional electrical steel sheet consisting of Fe and unavoidable impurities that is subjected to hot-rolled sheet annealing, and one-time or intermediate annealing including final cold rolling with a final reduction of 60% or more.
In a method for producing a unidirectional electrical steel sheet by performing cold rolling at least once and then performing decarburization annealing after decarburization annealing, in the final cold rolling, at least one or more intermediate plate thickness steps 1 on steel plate in the temperature range of 100 ℃ or more
It is characterized in that a heat treatment for holding for a time of not less than a minute is given, and that a strip rolled to a final plate thickness is heated to a temperature of 700 ° C. or more at a heating rate of 50 ° C./sec or more immediately before decarburization annealing. A method for producing a grain-oriented electrical steel sheet having low iron loss.
【請求項2】 急速加熱処理が脱炭焼鈍の加熱段階とし
て行われる請求項1記載の方法。
2. The method according to claim 1, wherein the rapid heat treatment is performed as a heating step of decarburization annealing.
JP5209576A 1993-01-12 1993-08-24 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss Expired - Lifetime JP2983129B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5209576A JP2983129B2 (en) 1993-08-24 1993-08-24 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
EP94100292A EP0606884B1 (en) 1993-01-12 1994-01-11 Grain-oriented electrical steel sheet with very low core loss and method of producing the same
KR1019940000334A KR0182802B1 (en) 1993-01-12 1994-01-11 Grain-oriented electrical steel sheet with very low core loss and method of producing the same
DE69420058T DE69420058T2 (en) 1993-01-12 1994-01-11 Grain-oriented electrical sheet with very low iron losses and manufacturing processes
US08/612,611 US5833768A (en) 1993-01-12 1996-03-08 Grain-oriented electrical steel sheet with very low core loss and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5209576A JP2983129B2 (en) 1993-08-24 1993-08-24 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Publications (2)

Publication Number Publication Date
JPH0762437A true JPH0762437A (en) 1995-03-07
JP2983129B2 JP2983129B2 (en) 1999-11-29

Family

ID=16575127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5209576A Expired - Lifetime JP2983129B2 (en) 1993-01-12 1993-08-24 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Country Status (1)

Country Link
JP (1) JP2983129B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017591A1 (en) 2012-07-26 2014-01-30 Jfeスチール株式会社 Oriented electromagnetic steel plate production method
WO2014017590A1 (en) 2012-07-26 2014-01-30 Jfeスチール株式会社 Oriented electromagnetic steel plate production method
US9617616B2 (en) 2012-07-26 2017-04-11 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854233B2 (en) * 2013-02-14 2016-02-09 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017591A1 (en) 2012-07-26 2014-01-30 Jfeスチール株式会社 Oriented electromagnetic steel plate production method
WO2014017590A1 (en) 2012-07-26 2014-01-30 Jfeスチール株式会社 Oriented electromagnetic steel plate production method
KR20150015044A (en) 2012-07-26 2015-02-09 제이에프이 스틸 가부시키가이샤 Oriented electromagnetic steel plate production method
US9617616B2 (en) 2012-07-26 2017-04-11 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US9738949B2 (en) 2012-07-26 2017-08-22 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US9748028B2 (en) 2012-07-26 2017-08-29 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US9748029B2 (en) 2012-07-26 2017-08-29 Ginza Maronie P.C. Method of producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2983129B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
US4824493A (en) Process for producing a grain-oriented electrical steel sheet having improved magnetic properties
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
US4888066A (en) Method for producing grain-oriented electrical steel sheet with very high magnetic flux density
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JPH10280040A (en) Production of grain-oriented electrical steel sheet excellent in iron loss characteristic
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JPH1180835A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss
JPH1030123A (en) Production of thin grain oriented silicon steel sheet having extremely high magnetic flux density

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 14

EXPY Cancellation because of completion of term