JPH1030123A - Production of thin grain oriented silicon steel sheet having extremely high magnetic flux density - Google Patents

Production of thin grain oriented silicon steel sheet having extremely high magnetic flux density

Info

Publication number
JPH1030123A
JPH1030123A JP19081396A JP19081396A JPH1030123A JP H1030123 A JPH1030123 A JP H1030123A JP 19081396 A JP19081396 A JP 19081396A JP 19081396 A JP19081396 A JP 19081396A JP H1030123 A JPH1030123 A JP H1030123A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
pickling
silicon steel
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19081396A
Other languages
Japanese (ja)
Inventor
Kazuaki Tamura
和章 田村
Atsuto Honda
厚人 本田
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19081396A priority Critical patent/JPH1030123A/en
Publication of JPH1030123A publication Critical patent/JPH1030123A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably produce a thin grain oriented silicon steel sheet having extremely high magnetic flux density by applying, after degreasing, specific decarburizing annealing to a cold rolled sheet of silicon steel containing Al and N for grain oriented silicon steel sheet and controlling picking loss. SOLUTION: A silicon steel slab for grain oriented silicon steel sheet, containing Al and N as inhibitor components and having a composition containing, e.g. 0.03-0.09% C, 2.0-4.5% Si, 0.05-0.15% Mn, 0.01-0.04% Al, and about 0.004-0.012% N, is used as a stock. After hot rolling, final cold rolled sheet thickness is regulated to <=0.20mm by means of two or more times of cold rolling including process annealing. After degreasing, decarburizing annealing is applied, and then, after the application of a separation agent at annealing, final finish annealing is performed. At the time of producing this thin grain oriented silicon steel sheet, the average temp. raise rate between 400 and 800 deg.C at the decarburizing annealing is regulated to (5 to 25) deg.C/s and also decarburizing annealing conditions are regulated, and, at the time of successive pickling, pickling loss, under the pickling conditions of, e.g. 5% HCl, 60 deg.C, and 60sec, is controlled to (0.1 to 0.4)g/m<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、トランス等の鉄
心に用いられる特に薄手の高磁束密度を有する方向性電
磁鋼板の製造方法を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention proposes a method for manufacturing a grain-oriented electrical steel sheet having a particularly high magnetic flux density, which is used for an iron core such as a transformer.

【0002】方向性電磁鋼板は、軟磁性材料としておも
にトランスその他の電気機器の鉄心材料に使用されてお
り、磁気特性としては励磁特性と鉄損の良好なものが要
求される。このような方向性電磁鋼板は、最終仕上げ焼
鈍工程で2次再結晶を生成させ、鋼板面に{110}
面、圧延方向に<001>軸をもったいわゆるゴス粒組
織を発達させることによって良好な磁気特性が得られ
る。したがって、良好な磁気特性を得るためには磁化容
易軸である<001>軸を圧延方向に高度にそろえるこ
とが重要であり、AlN やMnSeなどをインヒビタとして含
有させることにより極めて高い磁束密度の製品が得られ
るようになった。
[0002] Grain-oriented electrical steel sheets are mainly used as soft magnetic materials for core materials of transformers and other electric equipment, and are required to have good magnetic properties in terms of excitation properties and iron loss. Such a grain-oriented electrical steel sheet generates secondary recrystallization in the final finish annealing step, and causes {110} on the steel sheet surface.
Good magnetic properties can be obtained by developing a so-called Goss grain structure having a <001> axis in the plane and rolling direction. Therefore, in order to obtain good magnetic properties, it is important that the <001> axis, which is the axis of easy magnetization, is highly aligned in the rolling direction, and a product having an extremely high magnetic flux density can be obtained by containing AlN, MnSe, or the like as an inhibitor. Can be obtained.

【0003】しかし、その一方で、板厚が薄くなるにし
たがい脱炭焼鈍や仕上げ焼鈍における微妙な条件変化に
より2次再結晶が不完全となりやすく、この結果磁気特
性が不安定となって、高磁束密度の製品を安定して得る
ことが困難となり、その改善が望まれていた。
However, on the other hand, as the sheet thickness decreases, secondary recrystallization tends to be incomplete due to subtle changes in conditions in decarburizing annealing and finish annealing, and as a result, magnetic properties become unstable and high It has become difficult to stably obtain a product having a magnetic flux density, and improvement thereof has been desired.

【0004】[0004]

【従来の技術】これまで、薄手製品の製造方法として、
例えば、特開平1-316421号公報(一段冷延法による薄手
高磁束密度一方向性電磁鋼板の製造方法)には、Alおよ
びNとAlN 含有量を制御する方法が、特開平2-243721号
公報(一段冷延法による薄手高磁束密度一方向生電磁鋼
板の製造方法)には、AlおよびNとAlN 含有量を制御
し、かつ熱間圧延の仕上げ圧延条件を制御する方法がそ
れぞれ提案開示されている。また、特公昭62-56927号公
報(表面性状の優れた低鉄損一方向性珪素鋼板の製造方
法)および特開昭63-72825号公報(表面性状の優れた低
鉄損一方向性珪素鋼板の製造方法)には、2回の冷間圧
延の圧下率の配分を規制し、かつ中間焼鈍の昇温速度お
よび冷却速度を制御する方法が提案開示されている。し
かし、これらの方法で製造しても最終板厚が0.20mm以下
の薄手製品の場合には、いずれも脱炭焼鈍後の表面状態
の違いにより2次再結晶が不安定となり、高磁束密度の
製品を安定して得ることが困難であった。
2. Description of the Related Art Heretofore, as a method of manufacturing a thin product,
For example, JP-A-1-316421 (a method for producing a thin high magnetic flux density unidirectional magnetic steel sheet by a single-stage cold rolling method) discloses a method for controlling the contents of Al, N and AlN. In the official gazette (a method of manufacturing a thin high magnetic flux density unidirectional magnetic steel sheet by a single-stage cold rolling method), a method of controlling the Al, N, and AlN contents and controlling the finish rolling conditions of hot rolling is proposed and disclosed. Have been. Also, Japanese Patent Publication No. Sho 62-56927 (a method for producing a low iron loss unidirectional silicon steel sheet having excellent surface properties) and Japanese Patent Application Laid-Open No. 63-72825 (a low iron loss unidirectional silicon steel sheet having excellent surface properties) Proposed and disclosed is a method of regulating the distribution of the rolling reduction of the two cold rollings and controlling the temperature rising rate and the cooling rate of the intermediate annealing. However, even with these methods, in the case of a thin product with a final plate thickness of 0.20 mm or less, secondary recrystallization becomes unstable due to the difference in the surface state after decarburization annealing, and high magnetic flux density It was difficult to obtain a stable product.

【0005】一方、特開平6-192847 号公報(方向性珪
素鋼板の脱炭・1次再結晶板の管理方法)には、脱炭1
次再結晶板の表面状況を酸洗による溶解減量で評価しこ
れを制御する方法が提案開示されている。しかしなが
ら、この方法は最終冷延板厚が薄くなった場合には、ば
らつきが大きく必ずしも安定して良好な2次再結晶が得
られず、ひいては磁気特性の安定化が困難であった。
On the other hand, Japanese Patent Application Laid-Open No. 6-192847 (Decarburization of grain-oriented silicon steel sheet / management method of primary recrystallized sheet) discloses a decarburization method.
There has been proposed a method of evaluating the surface condition of the secondary recrystallized plate by the dissolution loss by pickling and controlling the loss. However, in this method, when the thickness of the final cold-rolled sheet is reduced, the dispersion is large, and it is not always possible to obtain a stable and good secondary recrystallization, and it is difficult to stabilize the magnetic properties.

【0006】[0006]

【発明が解決しようとする課題】この発明は、極めて高
い磁束密度が安定して得られるAlN をインヒビタとする
板厚:0.20mm以下の薄手方向性電磁鋼板の製造方法を提
案することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to propose a method for producing a thin grain-oriented electrical steel sheet having a thickness of 0.20 mm or less using AlN as an inhibitor that can stably obtain an extremely high magnetic flux density. I do.

【0007】[0007]

【課題を解決するための手段】この発明の要旨とすると
ころは以下の通りである。
The gist of the present invention is as follows.

【0008】 AlおよびNを含有する方向性電磁鋼板
用けい素鋼スラブを素材として、熱間圧延し、中間焼鈍
を挟む2回以上の冷間圧延を施して最終冷延板厚を0.20
mm以下とし、ついで脱脂後、脱炭焼鈍ののち、焼鈍分離
剤を塗布してから最終仕上げ焼鈍を施す一連の工程によ
り薄手方向性電磁鋼板を製造するにあたり、脱炭焼鈍工
程にて、加熱時の 400℃から 800℃までの温度域での平
均昇温速度を5℃/s〜25℃/sの範囲とし、かつ、
脱炭焼鈍条件を調整して脱炭焼鈍後鋼板の所定酸洗条件
における酸洗減量を特定範囲内に制御することを特徴と
する磁束密度の極めて高い薄手方向性電磁鋼板の製造方
法(第1発明)。
[0008] Using a silicon steel slab for grain-oriented electrical steel sheets containing Al and N as a raw material, hot rolling is performed, and cold rolling is performed two or more times with intermediate annealing to obtain a final cold rolled sheet thickness of 0.20.
mm or less, then, after degreasing, after decarburizing annealing, to produce thin grain-oriented electrical steel sheets by a series of steps of applying an annealing separator and then performing final finish annealing, heating in the decarburizing annealing step The average heating rate in the temperature range from 400 ° C to 800 ° C is in the range of 5 ° C / s to 25 ° C / s, and
A method for producing a thin grain-oriented electrical steel sheet having an extremely high magnetic flux density, characterized in that the decarburizing annealing conditions are adjusted to control the amount of pickling loss of the steel sheet after the decarburizing annealing under predetermined pickling conditions within a specific range (first method). invention).

【0009】 脱炭焼鈍後鋼板の5% Hcl・60℃・60
秒間の酸洗条件での酸洗減量が 0.1〜0.4 g/m2 の範
囲である第1発明に記載の磁束密度の極めて高い薄手方
向性電磁鋼板の製造方法(第2発明)。
5% of steel sheet after decarburization annealing Hcl ・ 60 ℃ ・ 60
The method for producing a thin grain-oriented electrical steel sheet having an extremely high magnetic flux density according to the first aspect of the invention, wherein the pickling loss under the condition of pickling for 2 seconds is in the range of 0.1 to 0.4 g / m 2 (second invention).

【0010】ここで、脱炭焼鈍条件とは、加熱温度や保
持時間のほか、特に、冷延板の前処理条件として脱脂後
の鋼板表面の清浄度や、加熱条件として雰囲気などを含
むものとする。
Here, the decarburizing annealing conditions include, in addition to the heating temperature and the holding time, in particular, the cleanliness of the steel sheet surface after degreasing as pretreatment conditions for the cold rolled sheet, and the atmosphere as the heating conditions.

【0011】[0011]

【発明の実施の形態】まず、この発明を達成するに至っ
た実験例について以下に述べる。素材とし、C:0.068
wt%(以下、単に%であらわす)Si:3.2 %、solAl :
0.028 %、N:0.0080%、Se:0.024 %、Sb:0.029 %
およびCu:0.05%を含有する鋼塊を用意し、該鋼塊を13
50℃の温度に加熱したのち熱間圧延し、板厚:2.3mm お
よび1.5mm の熱延板とした。ついで、1000℃・3分間の
熱延板焼鈍を施したのち、1000℃・2分間の中間焼鈍を
挟む2回の冷間圧延で、それぞれ2.3mm からは0.23mmに
および1.5mm からは0.15mmの最終板厚に仕上げた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an experimental example which has achieved the present invention will be described below. Material: C: 0.068
wt% (hereinafter simply expressed as%) Si: 3.2%, solAl:
0.028%, N: 0.0080%, Se: 0.024%, Sb: 0.029%
And a steel ingot containing 0.05% of Cu:
After being heated to a temperature of 50 ° C., it was hot-rolled to obtain hot-rolled sheets having a thickness of 2.3 mm and 1.5 mm. Then, after hot-rolled sheet annealing at 1000 ° C for 3 minutes, two cold rollings with an intermediate annealing at 1000 ° C for 2 minutes are performed, and from 2.3mm to 0.23mm and from 1.5mm to 0.15mm, respectively. Finished to the final thickness.

【0012】その後、これらの冷延板に湿水素雰囲気中
で 840℃・4分間の脱炭・1次再結晶焼鈍を施した。そ
の際、雰囲気はH2 を50%として露点を制御することで
酸化度P(H2O) /P(H2)を 0.3から0.6 の範囲で変化
させ、さらに 400℃から 800℃の温度までの平均昇温速
度を3℃/sから40℃/sの範囲で変化させた。
Thereafter, these cold-rolled sheets were subjected to decarburization and primary recrystallization annealing at 840 ° C. for 4 minutes in a wet hydrogen atmosphere. At that time, the atmosphere is changed the oxidation degree P (H 2 O) / P (H 2 ) in the range of 0.3 to 0.6 by controlling the dew point with H 2 as 50%, and further, from 400 ° C. to 800 ° C. Was changed in the range of 3 ° C./s to 40 ° C./s.

【0013】これらの脱炭焼鈍板にMgO を主成分とする
焼鈍分離剤を塗布し、800 ℃の温度まで50℃/hで急熱
し、 800℃の温度から1200℃までは10℃/hで徐熱する
最終仕上げ焼鈍を行い製品板とした。
These decarburized annealed sheets are coated with an annealing separator containing MgO as a main component and rapidly heated to a temperature of 800 ° C. at a rate of 50 ° C./h, and from a temperature of 800 ° C. to 1200 ° C. at a rate of 10 ° C./h. Final finish annealing was performed by gradually heating to obtain a product plate.

【0014】かくして得られた各製品板について磁束密
度(B8) を測定するとともに、先の脱炭焼鈍板について
は酸洗による酸洗減量を測定した。この酸洗条件は、酸
洗液:5%Hcl 、液温度:60℃および酸洗時間:60秒間
とした。
The magnetic flux density (B 8 ) of each of the product sheets thus obtained was measured, and the loss of pickling by pickling was measured for the annealed decarburized sheet. The pickling conditions were: pickling solution: 5% Hcl, solution temperature: 60 ° C., and pickling time: 60 seconds.

【0015】製品板厚が0.23mmと0.15mmとのそれぞれの
場合について、脱炭焼鈍板の酸洗減量と製品板の磁束密
度(B8) との関係のグラフをそれぞれ図1および図2に
示す。なお酸洗減量は鋼板表面積1m2 当たりの重量減
少量(g/m2 )であらわした。
FIGS. 1 and 2 show graphs of the relationship between the amount of pickling loss of the decarburized annealed plate and the magnetic flux density (B 8 ) of the product plate when the product plate thickness is 0.23 mm and 0.15 mm, respectively. Show. The pickling loss was represented by the weight loss (g / m 2 ) per 1 m 2 of the steel sheet surface area.

【0016】図1から明らかなように、板厚が0.23mmの
製品の場合には、酸洗減量と磁束密度との間にはよい相
関が認められ、酸洗減量が増加するほど磁束密度は劣化
している。これに対して板厚が0.15mmの薄手製品の場合
には、板厚が0.23の場合のような相関関係はなく、図2
から明らかなように、脱炭焼鈍時の昇温速度により磁束
密度の酸洗減量に対する依存性が変わってくる。
As is clear from FIG. 1, in the case of a product having a plate thickness of 0.23 mm, a good correlation is recognized between the pickling weight loss and the magnetic flux density, and the magnetic flux density increases as the pickling weight loss increases. Has deteriorated. On the other hand, in the case of a thin product with a thickness of 0.15 mm, there is no correlation as in the case of a thickness of 0.23.
As is clear from FIG. 7, the dependence of the magnetic flux density on the pickling loss changes depending on the heating rate during the decarburizing annealing.

【0017】すなわち、板厚が0.15mmの薄手製品におい
ては、脱炭焼鈍時の昇温速度が25℃/s以下の場合に
は、酸洗減量により磁束密度の制御が可能で、磁束密度
(B8)≧1.92Tの高磁束密度製品が得られるのに対し、
昇温速度が25℃/sを超える場合には、高磁束密度製品
を得ることが困難であることがわかる。
That is, in the case of a thin product having a sheet thickness of 0.15 mm, if the heating rate during decarburization annealing is 25 ° C./s or less, the magnetic flux density can be controlled by reducing the amount of pickling. B 8 ) While high flux density products of ≧ 1.92T can be obtained,
If the heating rate exceeds 25 ° C./s, it can be seen that it is difficult to obtain a high magnetic flux density product.

【0018】そこで、脱炭焼鈍時の昇温速度と脱炭焼鈍
板の酸洗減量に注目し、これらと磁束密度(B8) との関
係について整理した結果を図3および図4に示す。図3
は製品板厚が0.23mmの場合、図4は製品板厚が0.15mmの
場合のもので、ともに脱炭焼鈍時の昇温速度および脱炭
焼鈍板の酸洗減量と製品板の磁束密度(B8) との関係を
示すグラフである。
Therefore, attention is paid to the rate of temperature rise during decarburization annealing and the amount of pickling loss of the decarburized annealed plate, and the results of the relationship between these and the magnetic flux density (B 8 ) are shown in FIGS. 3 and 4. FIG.
Fig. 4 shows the case where the product plate thickness is 0.23 mm, and Fig. 4 shows the case where the product plate thickness is 0.15 mm. In both cases, the heating rate during the decarburization annealing, the pickling loss of the decarburized annealing plate, and the magnetic flux density of the product plate ( 18 is a graph showing the relationship with B 8 ).

【0019】これらの図から、製品板厚が0.23mmの場合
には(図3)、脱炭焼鈍板の酸洗減量を特定範囲内に制
御すれば良好な磁束密度を有する製品を得ることができ
るが、製品板厚が0.15mmの場合には(図4)、その酸洗
減量に加えて脱炭焼鈍時の昇温速度範囲を規制しなけれ
ば良好な磁束密度を有する製品を得ることができなく、
具体的には、脱炭焼鈍板の5% Hcl・60℃・60秒間の酸
洗条件での酸洗減量を0.1 〜0.4 g/m2 の範囲とし、
かつ、脱炭焼鈍時の 400〜800 ℃の温度間の平均昇温速
度を5〜25℃/sの範囲とした場合に、磁束密度(B8)
が1.92Tを超える2次再結晶の良好な薄手の製品が得ら
れることが明らかとなった。
From these figures, when the product thickness is 0.23 mm (FIG. 3), it is possible to obtain a product having a good magnetic flux density by controlling the pickling loss of the decarburized annealed plate within a specific range. However, if the product thickness is 0.15mm (Fig. 4), it is possible to obtain a product with good magnetic flux density unless the heating rate range during decarburization annealing is regulated in addition to the acid washing loss. Can not,
Specifically, the pickling weight loss of the decarburized annealed plate under 5% Hcl at 60 ° C. for 60 seconds in the pickling condition is set in the range of 0.1 to 0.4 g / m 2 ,
In addition, when the average heating rate between the temperatures of 400 to 800 ° C. during the decarburizing annealing is in the range of 5 to 25 ° C./s, the magnetic flux density (B 8 )
It is clear that a thin product having a good secondary recrystallization of more than 1.92 T can be obtained.

【0020】つぎに、この発明の対象とする薄手方向性
電磁鋼板の製造工程および成分組成について以下に述べ
る。従来より用いられいてる製鋼法で溶製した溶鋼を連
続鋳造法あるいは造塊法で鋳造し、必要に応じて分塊工
程を挟んでけい素鋼スラブとする。この時のけい素鋼ス
ラブの成分組成を以下に列記する。
Next, the manufacturing process and component composition of the thin grain-oriented electrical steel sheet to which the present invention is applied will be described below. Molten steel smelted by a conventionally used steelmaking method is cast by a continuous casting method or an ingot-making method, and a silicon steel slab is interposed, if necessary, through a sizing process. The component composition of the silicon steel slab at this time is listed below.

【0021】solAl およびNは、良好な2次再結晶を生
じさせるためのインヒビタ形成成分として必須である。
これらは、AlN として2次再結晶前に微細に分散し、結
晶粒の成長に対し強い抑制作用を有する。このために
は、solAl の含有量は、0.01%以上とすることが重要で
あるが、0.04%を超えると析出物が粗大化して抑制力が
減少するので、0.01〜0.04%の範囲がよく、またNの含
有量は、0.004 %未満ではAlN 量が不足し、0.012 %を
超えると製品にブリスタが発生する場合があるので、0.
004 〜0.012 %の範囲がよい。
[0021] SolAl and N are essential as inhibitor-forming components for producing good secondary recrystallization.
These are finely dispersed as AlN before secondary recrystallization and have a strong inhibitory effect on the growth of crystal grains. For this purpose, the content of solAl is important to be 0.01% or more, but if it exceeds 0.04%, the precipitates are coarsened and the suppressing power is reduced, so the range of 0.01 to 0.04% is good. If the N content is less than 0.004%, the AlN content is insufficient, and if it exceeds 0.012%, blisters may be generated in the product.
The range of 004 to 0.012% is good.

【0022】Cは、熱延組織改善に重要な成分である
が、多すぎると脱炭が困難となるため、その含有量は、
0.03〜0.09%の範囲が好ましい。
C is an important component for improving the hot-rolled structure, but if it is too large, decarburization becomes difficult.
A range of 0.03 to 0.09% is preferred.

【0023】Siは、電気抵抗を増大させ鉄損低減のため
に有用な成分であるが、多すぎると冷間圧延が困難にな
るので、その含有量は 2.0〜4.5 %の範囲が好ましい。
Si is a component useful for increasing electric resistance and reducing iron loss. However, if it is too large, it becomes difficult to perform cold rolling. Therefore, the content of Si is preferably in the range of 2.0 to 4.5%.

【0024】また、MnおよびS、Seをインヒビタ形成成
分として含有させてもよい。MnおよびS、SeはMnS 、Mn
Seなどのインヒビタを形成し、AlN を補強するインヒビ
タとして有効である。Mnは、多すぎると溶体化が困難な
ため、含有量は0.05〜0.15%の範囲が好ましく、Sおよ
びSeは、MnS およびMnSeを析出させるために、それらの
含有量は、それぞれ単独の場合および併用の場合の合計
ともに0.01〜0.04%の範囲が好適である。
Further, Mn, S and Se may be contained as an inhibitor-forming component. Mn and S and Se are MnS and Mn
It forms an inhibitor such as Se and is effective as an inhibitor for reinforcing AlN. If Mn is too large, it is difficult to form a solution, so the content is preferably in the range of 0.05 to 0.15%. In order to precipitate MnS and MnSe, the contents of S and Se are set individually and individually. In the case of combined use, the total range is preferably 0.01 to 0.04%.

【0025】さらに、インヒビタ補強成分として知られ
てるSb(0.005〜0.20%) 、Cu(0.02〜0.20%) 、Sn(0.02
〜0.30%) 、Ge(0.01 〜0.30) 、Ni(0.02 〜0.20%)
およびMo(0.01 〜0.05%) をそれぞれ単独または複合し
て含有させることもよい。
Further, Sb (0.005 to 0.20%), Cu (0.02 to 0.20%), and Sn (0.02%), which are known as inhibitor reinforcing components.
~ 0.30%), Ge (0.01 ~ 0.30), Ni (0.02 ~ 0.20%)
And Mo (0.01 to 0.05%) may be contained alone or in combination.

【0026】ついで、このような成分組成になるけい素
鋼スラブを熱間圧延したのち、必要に応じて熱延板焼鈍
を行い、中間焼鈍を挟む2回以上の冷間圧延により0.20
mm以下の最終板厚の冷延板とする。この最終冷間圧延に
おける圧下率は、80%未満では2次再結晶粒の方位が悪
くなり95%を超えると2次再結晶が困難になることから
80〜95%の範囲が好適である。
Next, after the silicon steel slab having such a composition is hot-rolled, if necessary, hot-rolled sheet annealing is carried out, and 0.20 or more cold rolling is carried out two or more times with intermediate annealing.
A cold-rolled sheet with a final thickness of not more than mm. If the rolling reduction in the final cold rolling is less than 80%, the orientation of the secondary recrystallized grains is deteriorated, and if it exceeds 95%, the secondary recrystallization becomes difficult.
A range of 80-95% is preferred.

【0027】その後、この発明に適合する脱炭焼鈍を行
ったのち、MgO を主成分とする焼鈍分離剤を塗布してか
ら最終仕上げ焼鈍を施し製品板とする。
Then, after decarburizing annealing conforming to the present invention is performed, an annealing separator containing MgO as a main component is applied, followed by final finish annealing to obtain a product sheet.

【0028】この脱炭焼鈍は、前記したように、加熱時
の 400℃から 800℃までの温度域での平均昇温速度を5
℃/s〜25℃/sの範囲とし、かつ、脱脂後の前処理条
件や加熱雰囲気など脱炭焼鈍条件を調整して所定酸洗条
件における酸洗減量を特定範囲内に制御することを必須
とする。
As described above, the decarburizing annealing is performed by increasing the average heating rate in the temperature range from 400 ° C. to 800 ° C. during heating by 5%.
C./s to 25.degree. C./s, and it is necessary to adjust the pre-treatment conditions after degreasing and the decarburization annealing conditions such as heating atmosphere to control the pickling weight loss under specified pickling conditions within a specific range. And

【0029】上記の一連の工程において、最終冷延板厚
が0.20mm以下の材料につき、製品板での良好な磁束密度
を得るために、脱炭焼鈍板の酸洗減量を特定範囲内に制
御することの理由を以下に述べる。
In the above series of steps, for a material having a final cold rolled sheet thickness of 0.20 mm or less, the pickling loss of the decarburized annealed sheet is controlled within a specific range in order to obtain a good magnetic flux density on the product sheet. The reasons for doing so are described below.

【0030】前述の実験例において、酸洗減量を測定し
たものと同じ条件で得た脱炭焼鈍板を、ドライN2 中で
900℃・20時間の焼鈍を行い、窒化量を測定した。その
結果、酸洗減量の少ないものいほど窒化量が少なくなる
傾向のあることが分かった。この焼鈍中の窒化量の大小
は、鋼板表面での雰囲気との反応性、すなわち、活性度
をあらわすものと考えられる。そして、この活性度が高
い材料では、2次再結晶焼鈍中に過度な窒化がおこり、
このためインヒビタが適正な粒成長抑制力より強くなる
ことにより、焼鈍初期段階で2次再結晶前の1次再結晶
粒の粒径が過度に抑えられ、このため、方向性の悪い2
次再結晶粒の発現する余地を与えてしまう。
In the above-described experimental example, the decarburized annealed sheet obtained under the same conditions as those for measuring the loss in pickling was dried in dry N 2 .
Annealing was performed at 900 ° C. for 20 hours, and the amount of nitriding was measured. As a result, it was found that the smaller the pickling loss, the lower the amount of nitriding. It is considered that the magnitude of the nitriding amount during the annealing indicates the reactivity with the atmosphere on the steel sheet surface, that is, the activity. And, in this highly active material, excessive nitridation occurs during the secondary recrystallization annealing,
For this reason, when the inhibitor becomes stronger than the appropriate grain growth suppressing power, the grain size of the primary recrystallized grains before the secondary recrystallization in the initial stage of annealing is excessively suppressed, and therefore, the orientation is poor.
This gives room for secondary recrystallized grains to appear.

【0031】また、活性度が高いと2次再結晶焼鈍中の
追加酸化量も増えると考えられる。この追加酸化量が多
いと表面に鉄酸化物あるいは鉄けい酸塩を生成してフォ
ルステライトの形成を妨げるため、粗雑で密着性の悪い
皮膜を形成する。さらに追加酸化は、インヒビタである
AlN やMnSeなどの酸化をもたらすため、粒成長抑制力の
低下を引き起こす。
Further, it is considered that when the activity is high, the amount of additional oxidation during the secondary recrystallization annealing increases. If the amount of additional oxidation is large, iron oxide or iron silicate is formed on the surface to prevent the formation of forsterite, so that a coarse and poorly adhered film is formed. Further oxidation is an inhibitor
It causes oxidation of AlN and MnSe, etc., which causes a decrease in the ability to suppress grain growth.

【0032】いずれにせよ鋼板表面の活性度の増加は2
次再結晶の生成を不安定にさせることから、脱炭焼鈍板
表面の活性度を適正化するために酸洗減量を最適範囲に
規定することは、磁気特性の向上に極めて有効な手段で
あることがわかる。
In any case, the increase in the activity of the steel sheet surface is 2
Specifying the pickling weight loss in the optimum range in order to optimize the activity of the surface of the decarburized annealed sheet is an extremely effective means for improving the magnetic properties because it makes the generation of the secondary recrystallization unstable. You can see that.

【0033】しかしながら、上記窒化量測定結果からプ
ロットした図5の脱炭焼鈍時の加熱速度をパラメータと
する酸洗減量と窒化量との関係のグラフから明らかなよ
うに、酸洗減量が少なくなるにしたがい窒化量のばらつ
きは大きくなり、このばらつきが脱炭焼鈍時の昇温速度
の違いによるものであることがわかる。
However, as is clear from the graph of the relationship between the amount of pickling loss and the amount of nitriding using the heating rate during decarburization annealing as a parameter in FIG. 5 plotted from the results of the nitriding amount measurement, the amount of pickling loss decreases. Accordingly, the variation in the amount of nitriding increases with the increase in the amount of nitriding. It can be seen that the variation is due to the difference in the rate of temperature rise during the decarburizing annealing.

【0034】この理由については、必ずしも明確ではな
いが、先の実験結果では、板厚が0.20mm以下の場合に
は、昇温速度が5〜25℃/sのとき磁気特性が良好であ
り、昇温速度の違いにより鋼板表面の酸化物の組成・構
造等が変化するものと考えられる。
Although the reason for this is not necessarily clear, the above experimental results show that when the plate thickness is 0.20 mm or less, the magnetic properties are good when the heating rate is 5 to 25 ° C./s. It is considered that the composition, structure, etc. of the oxide on the steel sheet surface change depending on the difference in the heating rate.

【0035】一方、板厚が0.20mm以下の薄物の場合に
は、板厚が0.23mmや0.30mmのように比較的厚い材料に比
し、その表層部で同じ量だけ窒素もしくは酸素と反応
し、表面が窒化もしくは酸化したとしても、鋼板全体と
してのそれらの濃度は高くなり、より敏感に磁気特性な
どに影響することが推察される。
On the other hand, in the case of a thin material having a plate thickness of 0.20 mm or less, the same amount of the material reacts with nitrogen or oxygen at the surface layer as compared with a relatively thick material such as 0.23 mm or 0.30 mm. However, even if the surface is nitrided or oxidized, it is assumed that their concentration in the whole steel sheet becomes high and more sensitively affects magnetic properties and the like.

【0036】そして、上記の鋼板表面の酸化物の組成・
構造等の微妙な変化によって、表面での窒素、酸素との
反応性が微妙に変化し、しかも、それらの変化が酸洗減
量の大小として検出されない。そのため酸洗減量の少な
い範囲では、昇温速度の違いにより窒化量が変化したも
のと考えられる。
The composition of the oxide on the surface of the steel sheet
Due to subtle changes in the structure or the like, the reactivity of the surface with nitrogen and oxygen is subtly changed, and these changes are not detected as the magnitude of the pickling loss. Therefore, it is considered that in the range where the pickling loss is small, the nitriding amount changes due to the difference in the heating rate.

【0037】よって、板厚が0.20mm以下の薄手方向性電
磁鋼板の製造にあたっては、脱炭焼鈍板の酸洗減量の管
理に加えて、脱炭焼鈍時の昇温速度も規定する必要のあ
ることがわかる。
Therefore, when manufacturing a thin grain-oriented electrical steel sheet having a sheet thickness of 0.20 mm or less, it is necessary to regulate the rate of temperature rise during decarburizing annealing in addition to controlling the pickling loss of the decarburized annealing sheet. You can see that.

【0038】ここで、昇温速度が25℃/sより高いと、
表面の酸化物の組成・構造の変化から活性度が高い状態
となって雰囲気との反応性が高まり、2次再結晶が不良
となる。また、5℃/sより低くなると、脱炭焼鈍初期
の1次再結晶の再結晶粒が大きくなりすぎ、これにより
発生する2次再結晶の核が1次再結晶粒を蚕食できず、
2次再結晶が不安定となる。
Here, when the heating rate is higher than 25 ° C./s,
A change in the composition and structure of the oxide on the surface results in a high activity state, which increases the reactivity with the atmosphere, resulting in poor secondary recrystallization. On the other hand, when the temperature is lower than 5 ° C./s, the recrystallized grains of the primary recrystallization in the early stage of the decarburization annealing become too large, and the nuclei of the secondary recrystallization generated thereby cannot eat the primary recrystallized grains.
Secondary recrystallization becomes unstable.

【0039】また、前記実験例では、5% Hcl・60℃・
60秒間の酸洗条件で、製品板の磁束密度が良好となる最
適酸洗減量範囲は0.1 〜0.4 g/m2であったが、この最
適酸洗減量範囲は、酸の種類や温度、時間等の酸洗条件
によって当然のことながら変化する。酸の種類として
は、Hcl 以外にHNO3,H2SO4 などを用いることができ、
これらの酸を用いての他の酸洗条件は、温度:50〜90
℃、時間:30〜200 秒間程度がよい。
In the above experimental example, 5% HCl / 60 ° C.
The optimum pickling weight loss range under which the magnetic flux density of the product plate is good under the pickling conditions for 60 seconds was 0.1 to 0.4 g / m 2 , but this optimum pickling weight loss range depends on the type of acid, temperature, and time. It naturally changes depending on pickling conditions such as As the type of the acid, HNO 3 and H 2 SO 4 can be used in addition to Hcl.
Other pickling conditions using these acids include temperature: 50-90.
C, time: about 30 to 200 seconds is good.

【0040】このように酸洗条件を変更した場合でも、
それぞれの酸洗条件で決まる最適範囲に酸洗減量を制御
することで磁気特性の良好な製品を得ることができる。
なお、最適酸洗減量は基本的には鋼の成分組成によって
も変化する。しかしながら、前述したように、良好な2
次再結晶を生じさせるために必要な化学成分の好適範囲
内においては、それらの範囲内での各成分の変化が酸洗
減量に及ぼす影響は小さく、問題はないものと考えられ
る。
Even when the pickling conditions are changed as described above,
By controlling the pickling weight loss within the optimum range determined by the respective pickling conditions, a product having good magnetic properties can be obtained.
In addition, the optimal pickling loss basically varies depending on the composition of the steel. However, as mentioned above, a good 2
Within the preferred range of the chemical components required to cause the next recrystallization, the change of each component within those ranges has little effect on the pickling weight loss, and it is considered that there is no problem.

【0041】[0041]

【実施例】【Example】

実施例1 C:0.065 %、Si:3.35%、solAl :0.029 %、N:0.
0080%、Mn:0.077 %およびS:0.038 %を含有し、残
部は実質的にFeの組成になる板厚:2.2 mmの熱延板を10
00℃・3分間の加熱後急冷する熱延板焼鈍を施したの
ち、1100℃・2分間の中間焼鈍を挟む2回の冷間圧延に
より板厚:0.20mmの冷延板とした。その後、脱脂し、84
0 ℃・4分間の脱炭焼鈍を施したのち、TiO2を5%添加
したMgO を焼鈍分離剤として塗布してから最終仕上げ焼
鈍を行い製品板とした。
Example 1 C: 0.065%, Si: 3.35%, solAl: 0.029%, N: 0.
0080%, Mn: 0.077% and S: 0.038%, the balance being substantially Fe composition.
After hot-rolled sheet annealing, which was quenched after heating at 00 ° C. for 3 minutes, a cold-rolled sheet having a sheet thickness of 0.20 mm was obtained by performing two cold rollings with intermediate annealing at 1100 ° C. for 2 minutes. Then degrease, 84
After decarburizing annealing at 0 ° C. for 4 minutes, MgO to which 5% of TiO 2 was added was applied as an annealing separator, followed by final finish annealing to obtain a product sheet.

【0042】上記の脱炭焼鈍工程において、400 〜800
℃の温度域の平均昇温速度をそれぞれ、3, 12 および30
℃/sと変化させ、加熱帯での雰囲気の酸化度P(H2O)
/P(H2)をそれぞれ、0.35、0.45および0.55と変化させ
た。
In the above decarburizing annealing step, 400 to 800
The average rate of temperature rise in the temperature range of
° C / s, and the degree of oxidation P (H 2 O) of the atmosphere in the heating zone
/ P (H 2 ) was varied to 0.35, 0.45 and 0.55, respectively.

【0043】そして、各脱炭焼鈍板については、5%Hc
l ・60℃・60秒間の酸洗条件での酸洗減量をそれぞれ測
定するとともに、ドライN2 雰囲気中で850 ℃・20時間
の窒化焼鈍を施し、窒化焼鈍後の鋼中窒素量の増分を窒
化量としてそれぞれ調査した。また、各製品板について
は、エプスタイン試験により磁束密度(B8) をそれぞれ
測定するとともに、酸洗したマクロ組織から2次再結晶
の形成状態をそれぞれ調査した。
Then, for each decarburized annealed plate, 5% Hc
l ・ The pickling loss under the pickling conditions of 60 ° C for 60 seconds was measured respectively, and nitriding annealing at 850 ° C for 20 hours in a dry N 2 atmosphere was performed to determine the increase in the amount of nitrogen in the steel after nitriding annealing. Each was examined as the amount of nitriding. For each product plate, the magnetic flux density (B 8 ) was measured by an Epstein test, and the formation state of secondary recrystallization was examined from the pickled macrostructure.

【0044】これらの脱炭焼鈍条件と調査結果を表1に
まとめて示す。
Table 1 summarizes these decarburizing annealing conditions and investigation results.

【表1】 [Table 1]

【0045】なお、表1の2次再結晶状態は、ほぼ完全
に2次再結晶している場合を○印、20〜50%の未再結晶
の細粒が残っている場合を△印、50%超えの未再結晶の
細粒がのこっている場合を×印とした。表1から明らか
なように、この発明の適合例は全て高磁束密度を示して
いる。
The secondary recrystallized state in Table 1 is indicated by a circle when secondary recrystallization is almost complete, and a triangle when 20 to 50% of unrecrystallized fine particles remain. The case where more than 50% of unrecrystallized fine grains were present was marked with x. As is clear from Table 1, all of the applicable examples of the present invention show high magnetic flux densities.

【0046】実施例2 C:0.070 %、Si:3.25%、solAl :0.025 %、N:0.
0080%、Mn:0.073 %Se:0.038 %およびSb:0.026 %
を含有し、残部は実質的にFeの組成になる板厚:1.8 mm
の熱延板を1000℃・3分間の加熱後急冷する熱延板焼鈍
を施したのち、1100℃・2分間の中間焼鈍を挟む2回の
冷間圧延により板厚:0.16mmの冷延板とした。その後、
脱脂し、そのまま、ならびに鋼板表面の汚れ、不純物に
相当するものとしてそれぞれ1および3%のNa3PO4を塗
布したのち、840 ℃・4分間の脱炭焼鈍を施し、TiO2
5%添加したMgO を焼鈍分離剤として塗布してから最終
仕上げ焼鈍を行い製品板とした。
Example 2 C: 0.070%, Si: 3.25%, solAl: 0.025%, N: 0.
0080%, Mn: 0.073% Se: 0.038% and Sb: 0.026%
, The balance being substantially Fe composition: 1.8 mm
Hot-rolled sheet is heated at 1000 ° C for 3 minutes, then quenched, and then cold-rolled twice with intermediate annealing at 1100 ° C for 2 minutes. And afterwards,
After degreasing, as it is, as well as applying 1% and 3% of Na 3 PO 4 as equivalents to dirt and impurities on the steel sheet surface, decarburizing annealing at 840 ° C. for 4 minutes, and adding 5% of TiO 2 MgO was applied as an annealing separator, and then subjected to final finish annealing to obtain a product sheet.

【0047】上記の脱炭焼鈍工程において、400 〜800
℃の温度域の平均昇温速度をそれぞれ、4,11, 20およ
び35℃/sと変化させ、加熱帯での雰囲気の酸化度P
(H2O)/P(H2) を0.45と一定にした。そして、各脱炭
焼鈍板および各製品板について、実施例1と同様の調査
を行った。
In the above decarburization annealing step, 400 to 800
The average rate of temperature rise in the temperature range of 4 ° C. was changed to 4, 11, 20, and 35 ° C./s, respectively.
(H 2 O) / P (H 2 ) was kept constant at 0.45. Then, the same investigation as in Example 1 was conducted for each decarburized annealed plate and each product plate.

【0048】これらの脱炭焼鈍条件と調査結果を表2に
まとめて示す。
Table 2 summarizes these decarburizing annealing conditions and investigation results.

【表2】 表2から明らかなように、この発明の適合例は全て高磁
束密度を示している。
[Table 2] As is apparent from Table 2, all of the applicable examples of the present invention show high magnetic flux densities.

【0049】[0049]

【発明の効果】この発明は、AlN 系インヒビタを用いる
薄手方向性けい素鋼板の製造にあたり、脱炭焼鈍工程に
て、平均昇温速度範囲を規制し、かつ、脱炭焼鈍条件を
調整して脱炭焼鈍板の酸洗減量を特定範囲内に制御する
ものであり、この発明によれば、磁束密度が極めて高い
薄手方向性電磁鋼板を安定して製造することが可能にな
る。
According to the present invention, in the production of a thin grain oriented silicon steel sheet using an AlN-based inhibitor, in the decarburization annealing step, the average heating rate range is regulated and the decarburization annealing conditions are adjusted. The purpose of the present invention is to control the pickling loss of the decarburized annealed sheet within a specific range. According to the present invention, it is possible to stably produce a thin grain-oriented electrical steel sheet having an extremely high magnetic flux density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】製品板厚が0.23mmの場合の、脱炭焼鈍板の酸洗
減量と製品板の磁束密度(B8)との関係のグラフであ
る。
FIG. 1 is a graph showing the relationship between the pickling loss of a decarburized annealed plate and the magnetic flux density (B 8 ) of a product plate when the product plate thickness is 0.23 mm.

【図2】製品板厚が0.15mmの場合の、脱炭焼鈍板の酸洗
減量と製品板の磁束密度(B8)との関係のグラフであ
る。
FIG. 2 is a graph showing the relationship between the pickling loss of a decarburized annealed plate and the magnetic flux density (B 8 ) of a product plate when the product plate thickness is 0.15 mm.

【図3】製品板厚が0.23mmの場合の、脱炭焼鈍時の昇温
速度および脱炭焼鈍板の酸洗減量と製品板の磁束密度
(B8) との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a heating rate during decarburization annealing, a reduction in pickling of a decarburized annealed plate, and a magnetic flux density (B 8 ) of the product plate when the product plate thickness is 0.23 mm.

【図4】製品板厚が0.15mmの場合の、脱炭焼鈍時の昇温
速度および脱炭焼鈍板の酸洗減量と製品板の磁束密度
(B8) との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a heating rate during decarburization annealing, a pickling loss of a decarburized annealed sheet, and a magnetic flux density (B 8 ) of the product sheet when the product sheet thickness is 0.15 mm.

【図5】脱炭焼鈍時の加熱速度をパラメータとする酸洗
減量と窒化量との関係のグラフである。
FIG. 5 is a graph showing the relationship between the amount of pickling loss and the amount of nitriding using the heating rate during decarburizing annealing as a parameter.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 AlおよびNを含有する方向性電磁鋼板用
けい素鋼スラブを素材として、熱間圧延し、中間焼鈍を
挟む2回以上の冷間圧延を施して最終冷延板厚を0.20mm
以下とし、ついで脱脂後、脱炭焼鈍ののち、焼鈍分離剤
を塗布してから最終仕上げ焼鈍を施す一連の工程により
薄手方向性電磁鋼板を製造するにあたり、 脱炭焼鈍工程にて、加熱時の 400℃から 800℃までの温
度域での平均昇温速度を5℃/s〜25℃/sの範囲と
し、かつ、脱炭焼鈍条件を調整して脱炭焼鈍後鋼板の所
定酸洗条件における酸洗減量を特定範囲内に制御するこ
とを特徴とする磁束密度の極めて高い薄手方向性電磁鋼
板の製造方法。
1. Using a silicon steel slab for a grain-oriented electrical steel sheet containing Al and N as a raw material, hot rolling is performed, and cold rolling is performed two or more times with intermediate annealing to obtain a final cold rolled sheet thickness of 0.20. mm
Then, after degreasing, after decarburizing annealing, to produce a thin grain-oriented electrical steel sheet by a series of steps of applying an annealing separator and then performing final finish annealing, in the decarburizing annealing step, The average rate of temperature rise in the temperature range from 400 ° C to 800 ° C is in the range of 5 ° C / s to 25 ° C / s, and the decarburizing annealing conditions are adjusted to obtain a predetermined pickling condition of the steel sheet after decarburizing annealing. A method for producing a thin grain-oriented electrical steel sheet having an extremely high magnetic flux density, wherein the pickling loss is controlled within a specific range.
【請求項2】 脱炭焼鈍後鋼板の5% HCl・60℃・60秒
間の酸洗条件での酸洗減量が 0.1〜0.4 g/m2 の範囲
である請求項1に記載の磁束密度の極めて高い薄手方向
性電磁鋼板の製造方法。
2. The magnetic flux density according to claim 1, wherein the steel sheet after decarburizing annealing has a pickling loss of 5% HCl at 60 ° C. for 60 seconds in a pickling condition of 0.1 to 0.4 g / m 2 . A method for manufacturing extremely thin, grain-oriented electrical steel sheets.
JP19081396A 1996-07-19 1996-07-19 Production of thin grain oriented silicon steel sheet having extremely high magnetic flux density Withdrawn JPH1030123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19081396A JPH1030123A (en) 1996-07-19 1996-07-19 Production of thin grain oriented silicon steel sheet having extremely high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19081396A JPH1030123A (en) 1996-07-19 1996-07-19 Production of thin grain oriented silicon steel sheet having extremely high magnetic flux density

Publications (1)

Publication Number Publication Date
JPH1030123A true JPH1030123A (en) 1998-02-03

Family

ID=16264184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19081396A Withdrawn JPH1030123A (en) 1996-07-19 1996-07-19 Production of thin grain oriented silicon steel sheet having extremely high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH1030123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496892B (en) * 2012-10-16 2015-08-21 Jfe Steel Corp Hot rolled steel sheet for producing non-oriented electromagnetic steel sheet and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496892B (en) * 2012-10-16 2015-08-21 Jfe Steel Corp Hot rolled steel sheet for producing non-oriented electromagnetic steel sheet and method for producing the same
US9947446B2 (en) 2012-10-16 2018-04-17 Jfe Steel Corporation Hot-rolled steel sheet for production of non-oriented electrical steel sheet and method of manufacturing same

Similar Documents

Publication Publication Date Title
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3481567B2 (en) Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more
JPH0578744A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic property
JPH0567683B2 (en)
US5139582A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0816259B2 (en) Grain-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH1030123A (en) Production of thin grain oriented silicon steel sheet having extremely high magnetic flux density
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH11269543A (en) Production of grain oriented electric steel sheet
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JP2001192732A (en) Cold rolling method for obtaining grain oriented silicon steel sheet excellent in magnetic property
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH07138643A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JPH11172382A (en) Silicon steel sheet excellent in magnetic property, and its production
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050304