JPS61149432A - Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss - Google Patents

Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Info

Publication number
JPS61149432A
JPS61149432A JP59275268A JP27526884A JPS61149432A JP S61149432 A JPS61149432 A JP S61149432A JP 59275268 A JP59275268 A JP 59275268A JP 27526884 A JP27526884 A JP 27526884A JP S61149432 A JPS61149432 A JP S61149432A
Authority
JP
Japan
Prior art keywords
annealing
rolling
silicon steel
flux density
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59275268A
Other languages
Japanese (ja)
Inventor
Hiroshi Koho
光法 弘視
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59275268A priority Critical patent/JPS61149432A/en
Publication of JPS61149432A publication Critical patent/JPS61149432A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling

Abstract

PURPOSE:To improve iron loss without deteriorating flux density, by controlling cooling rate and induced strain quantity during cooling after intermediate annealing at cold rolling hot rolled Si steel plate contg. Sb, Mn, S or Se, Mo at two times interposing intermediate annealing. CONSTITUTION:Si steel contg. by weight, 0.01-0.06% C, 2.0-4.0% Si, 0.01-0.2% Mn, further 0.003-0.1% Mo, 0.005-0.5% Sb, 0.005-0.1% S and or Se is hot rolled and cold rolled at two times interposing intermediate annealing to the finally cold rolled sheet. Thereat, the sheet is annealed intermediately, successively cooled at >=10 deg.C/sec rate, given by 1-30% working strain at the cooling stage, then rolled finally at 100-400 deg.C. Primary recrystallization annealing used also for decarbonization is applied to the finally cold rolled sheet, further the final finish annealing is applied to develop secondarily recrystallized grains having {110} <001> orientation, but refining of secondarily recrystallized grains becomes advantageous by said intermediate annealing.

Description

【発明の詳細な説明】 (産業上の利用分野) 一方向性珪素鋼板の製造工程中における、中間焼鈍後の
降温に際し、鋼板を急冷処理するとともに歪を導入する
ことによって磁束密度が高く鉄損の低い一方向性珪素鋼
板が有利に製造され得ることについての開発研究の成果
をここに述べる。
Detailed Description of the Invention (Industrial Application Field) During the manufacturing process of unidirectional silicon steel sheets, when the temperature is lowered after intermediate annealing, the steel sheets are rapidly cooled and strain is introduced to increase magnetic flux density and iron loss. Here, we will describe the results of development research on the advantageous production of unidirectional silicon steel sheets with low .

一方向性珪素鋼板は軟磁性材料として主にトランス、そ
の他の電気機器の鉄心材料として使用され、磁気特性と
して励磁特性と鉄損特性が良好でなくてはならない。
Unidirectional silicon steel sheets are soft magnetic materials that are mainly used as core materials for transformers and other electrical equipment, and must have good magnetic properties such as excitation properties and iron loss properties.

磁気特性の優れた材料を得るには磁化容易軸である< 
001>軸を圧延方向に高度に揃えることが基本的に重
要であるが、鉄損を低下させるためには二次再結晶粒径
、固有抵抗、表面被膜などが大きな影響を与えることも
知られているとおりである。
To obtain a material with excellent magnetic properties, the axis of easy magnetization is
001>Although it is fundamentally important to highly align the axes in the rolling direction, it is also known that secondary recrystallized grain size, specific resistance, surface coating, etc. have a large effect on reducing iron loss. As it is.

1934年にN、P、Goss氏によって二段冷延法に
よる一方向性珪素鋼板の製造法が提案されて以来、この
製造法に対し数多くの改良が加えられ、励磁特性および
鉄損特性は年を追って改善されてきた。
Since N. P. Goss proposed a method for manufacturing unidirectional silicon steel sheets by two-stage cold rolling in 1934, numerous improvements have been made to this manufacturing method, and the excitation characteristics and iron loss characteristics have improved over the years. It has been improved since then.

(従来の技術) それらの中で特に代表的なものは、 AJ2Nをインヒビターとして利用する特公昭40−1
5644号公報に開示の方法と、 SbとMnSおよび/または1yln 3eをインヒビ
ターとして利用する特公昭51−13469号公報に開
示の方法と、 であり、これらの方法によりB、。が1.89 Tを超
える製品が得られるようになった。
(Prior art) Among them, the most representative one is the Japanese Patent Publication No. 40-1, which uses AJ2N as an inhibitor.
The method disclosed in Japanese Patent Publication No. 5644, and the method disclosed in Japanese Patent Publication No. 13469/1983, which utilizes Sb, MnS and/or 1yln3e as inhibitors.B. It is now possible to obtain products with a value exceeding 1.89 T.

しかしながら、前者は強冷延−回法を特徴とし、AuN
析出相を利用する方法のため、高い磁束密度は得られる
反面、二次再結晶粒が粗大で鉄損値が高いという欠点が
あった。この問題を解消するものとして、ごく最近に至
り、特開昭53−137016号公報や同56−515
22号公報においてスクラッチやレーザービームにより
製品板表面にその圧延方向と直角に線状微小歪を数I間
隔で導入することにより鉄損をさらに低くする方法が提
案されてはいる。しかしながら、これらの方法は工業的
規模での実施にあたっては経済的ではない上、ざらに微
小歪の導入による人工粒界の形成は局部的に転位を高密
度の状態に維持する必要があるため、350℃以下程度
の低温域でしか安定した使用はできないという大きな欠
点がある。
However, the former is characterized by a strong cold rolling process, and the AuN
Since the method utilizes precipitated phases, a high magnetic flux density can be obtained, but the disadvantage is that the secondary recrystallized grains are coarse and the iron loss value is high. Very recently, attempts have been made to solve this problem, such as in Japanese Patent Application Laid-open No. 53-137016 and No. 56-515.
No. 22 proposes a method for further lowering iron loss by introducing minute linear strains at intervals of several I perpendicular to the rolling direction on the surface of a product plate using scratches or a laser beam. However, these methods are not economical to implement on an industrial scale, and the formation of artificial grain boundaries by introducing microstrain requires maintaining a locally high density of dislocations. A major drawback is that it can only be used stably in a low temperature range of about 350°C or less.

一方、後者のsbとMnSおよび/またはMn Seと
をインヒビターとして利用する方法についてもその後、
改良が加えられ素材中にMoを複合添加(特公昭56−
4613号公報、特公昭57−14737号公報)する
ことにより最近では磁束密度B Iff値が1.90 
Tを超え鉄損W17150値が1.O5W/廟の高磁束
密度一方向性珪素鋼板が安定して製造されるようになっ
ている。しかしながら、実際の工業的規模での製造にお
いてさらに磁気特性を改善しようとした場合、次のよう
な問題がある。
On the other hand, regarding the latter method of using sb and MnS and/or MnSe as inhibitors,
Improvements were made and the compound addition of Mo to the material
4613, Japanese Patent Publication No. 57-14737), the magnetic flux density B iff value has recently been reduced to 1.90.
T is exceeded and the iron loss W17150 value is 1. The high magnetic flux density unidirectional silicon steel plate of O5W/Miao is being manufactured stably. However, when attempting to further improve the magnetic properties in actual production on an industrial scale, the following problems arise.

すなわち、製品の二次再結晶粒の<  100>軸を圧
延方向に揃えようとする二次粒径が大きくなるので、磁
束密度は高(なるが、それに見合った鉄損の改善は認め
られない。一方、二次再結晶粒径を小さくしようとする
と、二次再結晶不良が発生しく 100>軸の圧延方向
への配向性がわるくなるため、磁束密度、鉄損ともに優
れた一方向性珪素鋼板を安定して得ることは困難であっ
た。
In other words, as the secondary grain size increases to align the <100> axes of the product's secondary recrystallized grains in the rolling direction, the magnetic flux density becomes high (but no commensurate improvement in iron loss is observed). On the other hand, if an attempt is made to reduce the secondary recrystallized grain size, secondary recrystallization defects will occur and the orientation of the 100> axis in the rolling direction will deteriorate, resulting in unidirectional silicon with excellent magnetic flux density and iron loss. It has been difficult to stably obtain steel plates.

(発明が解決しようとする問題点) 上記欠点を除去し、磁束密度を劣化させることなく二次
再結晶粒を効果的に細粒にすることにより、鉄損を改善
することがこの発明の目的である。
(Problems to be Solved by the Invention) An object of the present invention is to improve iron loss by eliminating the above drawbacks and effectively making secondary recrystallized grains finer without deteriorating magnetic flux density. It is.

(問題点を解決するための手段) この本発明は、C:0,01〜0.06 wI% Si
 :2.0〜4.0wt% Mn :  0.01〜0
,2wt%を含み、かつ、Mo:  0.003〜0.
1wt% Sb :  0.005〜0、5wt%、そ
してSとSeのいずれか1種また2種を合計0.005
〜0.1wt%において含有する組成の11索鋼を熱間
圧延し、その後、中間焼鈍をはさむ2回の冷間圧延で最
終冷延板とし、次いで脱炭をかねた一次再結晶焼鈍を施
し、さらに最終仕上げ焼鈍を施して(110) < 0
01>方位の二次再結晶粒を発達させる一連の工程より
なる一方向性珪素鋼板の製造方法において、上記の中間
焼鈍に引続く降温の際の冷却速度を10℃/s以上とし
、この冷却段階において1〜30%の加工ひずみを鋼板
に付与した後、100〜400℃の温度で最終圧延を行
うことを特徴とする磁束密度が高く鉄損の低い一方向性
珪素鋼板の製造方法である。
(Means for solving the problems) The present invention provides C: 0.01 to 0.06 wI% Si
:2.0~4.0wt% Mn: 0.01~0
, 2wt%, and Mo: 0.003-0.
1 wt% Sb: 0.005 to 0, 5 wt%, and either one or two of S and Se for a total of 0.005
11 cable steel with a composition containing ~0.1 wt% was hot rolled, then cold rolled twice with intermediate annealing to form a final cold rolled sheet, and then subjected to primary recrystallization annealing that also served as decarburization. , further subjected to final finish annealing (110) < 0
01> In a method for manufacturing a grain-oriented silicon steel sheet comprising a series of steps of developing secondary recrystallized grains in the orientation, the cooling rate during temperature reduction following the above-mentioned intermediate annealing is set to 10°C/s or more, and this cooling A method for producing a unidirectional silicon steel sheet with high magnetic flux density and low core loss, characterized by applying a processing strain of 1 to 30% to the steel sheet in a step, and then final rolling at a temperature of 100 to 400°C. .

つまり、方向性珪素鋼熱延板に中間焼鈍を含む2回の冷
間圧延を施す工程において、中間焼鈍後の降温時に鋼板
の冷却速度と導入歪量を同時に制御することによって鋼
板の組織を改善するとともに、Cをできるだけ固溶に近
い状態に保つことにより、後に続く温間圧延の効果がよ
り強まって、二次再結晶粒の微細化に有利となって、鉄
損の極めて低い方向性珪素鋼の製造に著しい寄与をもた
らすことを発見したことに由来する。
In other words, in the process of cold-rolling a grain-oriented silicon steel hot-rolled sheet twice including intermediate annealing, the structure of the steel sheet is improved by simultaneously controlling the cooling rate and the amount of strain introduced when the temperature drops after intermediate annealing. At the same time, by keeping C in a state as close to a solid solution as possible, the effect of the subsequent warm rolling becomes stronger, which is advantageous for refining secondary recrystallized grains, resulting in oriented silicon with extremely low iron loss. It originates from the discovery that it makes a significant contribution to the production of steel.

ここに温間圧延の効果というのは、2回冷延法における
最終冷延を温間で処理することにより、変形帯およびそ
れを取りまくマトリックスの転位歪エネルギーを増し、
ゴス粒の発生を容易にして、磁性改善をもたらすことで
ある。
The effect of warm rolling is that by treating the final cold rolling in the double cold rolling process warmly, the dislocation strain energy of the deformation zone and the matrix surrounding it is increased.
The purpose is to facilitate the generation of Goss grains and improve magnetic properties.

(作  用) 以上の事実をだしかめた実験の内容は次のとおりである
(Effect) The details of the experiment that confirmed the above facts are as follows.

(:、 :  0,045wt%、 Si  :  3
.35wt%、Mn:0.070wt%、を含み、そし
てM O:  0,012wt%。
(:, : 0,045wt%, Si: 3
.. 35 wt%, Mn: 0.070 wt%, and M O: 0,012 wt%.

3 e :  0,018wt%、 Sb :  0.
025wt%を含有する鋼塊を1350℃で1時間加熱
後、熱間圧延して2.11Im厚に仕上げた。
3 e: 0,018wt%, Sb: 0.
A steel ingot containing 025 wt% was heated at 1350° C. for 1 hour and then hot rolled to a thickness of 2.11 Im.

その後、900℃で3分間の均一化焼鈍後に0.78m
mまで一次冷延し、ついで950℃で3分間の中間焼鈍
を行った。
Then, after homogenization annealing at 900℃ for 3 minutes, 0.78m
It was first cold-rolled to a thickness of 1.5 m, and then intermediate annealed at 950°C for 3 minutes.

この中間焼鈍後、その温度から、 ただちに20℃/sで冷却途中に圧延ロールで5%の圧
延を施す工程■、 ただちに20℃/sで冷部処理する工程0、および同じ
く5℃/sで冷却処理する工程0、に供した。
After this intermediate annealing, from that temperature, there is a step (2) in which 5% rolling is performed with a rolling roll immediately during cooling at 20°C/s, a step (0) in which cold section treatment is immediately performed at 20°C/s, and a step 0 in which the temperature is also rolled at 5°C/s. It was subjected to step 0 of cooling treatment.

その後室温から600℃の温度範囲で温間圧延による最
終冷延を施し、最終板厚0.3111111の鋼板に仕
上げた。最終冷延手法は各バス毎に所定の圧延温度に到
達後5分間保持してただちに圧延する方法で行った。
Thereafter, final cold rolling by warm rolling was carried out in a temperature range from room temperature to 600° C. to produce a steel plate with a final thickness of 0.3111111. The final cold rolling method was carried out in such a manner that after reaching a predetermined rolling temperature for each bath, it was held for 5 minutes and immediately rolled.

その後、鋼板表面を脱脂し、湿水素中において820℃
で3分間の脱炭焼鈍を行った後、マグネシアを主成分と
する焼鈍分離剤を鋼板表面に塗布し850℃で50時間
の二次再結晶焼鈍を施した後、1200℃で5時間吃水
素中で純化焼鈍を施した。
After that, the steel plate surface was degreased and heated to 820℃ in wet hydrogen.
After performing decarburization annealing for 3 minutes at 1200°C, an annealing separator mainly composed of magnesia was applied to the surface of the steel plate, and secondary recrystallization annealing was performed at 850°C for 50 hours, followed by hydrogen annealing at 1200°C for 5 hours. Purification annealing was performed inside.

かくして得られた製品の磁気特性を第1図に示す。The magnetic properties of the product thus obtained are shown in FIG.

第1図から明らかなように、中間焼鈍後の冷却速度を早
くすると同時に□鋼板にひずみを導入する工程のにおい
て、温間圧延の効果がより顕在化して、良好磁性が得ら
れることが注目される。
As is clear from Figure 1, it is noteworthy that in the process of increasing the cooling rate after intermediate annealing and at the same time introducing strain into the steel sheet, the effect of warm rolling becomes more apparent and good magnetic properties are obtained. Ru.

すなわち、中間焼鈍後高温でひずみを導入することによ
り転位にCを集めると同時に、急冷によって粒界、粒内
のカーバイド粗大化を阻止し、固溶C又は極微細Cωが
増し、このCは次に続く最終冷延における、動的および
静的ひずみ時効に有効に作用し、最終圧延板の変形帯お
よび蓄積歪エネルギー密度を増し、圧延方向に< 00
1>軸が良く揃った二次再結晶粒の発生、成長に有利な
組織となるわけである。
That is, by introducing strain at high temperature after intermediate annealing, C is collected at dislocations, and at the same time, by rapid cooling, carbide coarsening at grain boundaries and within grains is prevented, solid solution C or ultrafine Cω increases, and this C is In the final cold rolling followed by the final cold rolling, it effectively affects the dynamic and static strain aging, increasing the deformation band and accumulated strain energy density of the final rolled plate, and reducing the rolling direction to < 00
1> This results in a structure that is advantageous for the generation and growth of secondary recrystallized grains with well-aligned axes.

従ってその後適正な温度で二次再結晶焼鈍することによ
り、< 001>軸が圧延方向に良く揃った微細な二次
再結晶組織が得られ極めて鉄損の低い製品が得られる。
Therefore, by subsequently performing secondary recrystallization annealing at an appropriate temperature, a fine secondary recrystallized structure in which the <001> axes are well aligned in the rolling direction can be obtained, and a product with extremely low core loss can be obtained.

°  以上述べたように、従来冷W速度のみで制御して
いた炭化物の微細化を、この発明に従い転位の導入を付
加することによって、一段と効果的に実現するのである
° As described above, by adding the introduction of dislocations according to the present invention, the refinement of carbides, which has conventionally been controlled only by the cold W speed, can be achieved more effectively.

従って中間焼鈍の急冷過程において歪を導入し、そして
そのまま冷却することがこの発明の特徴の一つである。
Therefore, one of the features of the present invention is to introduce strain in the quenching process of intermediate annealing and then to cool the material as it is.

以上の基礎実験の結果を踏まえてひずみの導入の度合に
つき、次の実験を進めた。
Based on the results of the above basic experiments, we proceeded with the following experiments regarding the degree of strain introduction.

C:  0,043wt%、 St  :  3.37
wt%、Mn:0.065wt%を含みかつ、M O:
  0.012wt%、 Se :0.018v1t%
、 Sb :  0.025wt%を含有する鋼塊を、
公知の方法で熱間圧延して2.7mm厚みに仕上げ、そ
の後、900℃で3分間の均一化焼鈍後に0.78m1
llまで圧延し、1050℃で3分間の中間焼鈍を行っ
た後、冷却速度15℃/sでただちに1000℃、90
0’C,500℃、200℃に鋼板を湿度制御し、それ
ぞれの温度で0.5%〜40%のひずみ付与後、15℃
/sの冷却速度でただちに常温まで冷却した。
C: 0,043wt%, St: 3.37
wt%, Mn: 0.065 wt%, and M O:
0.012wt%, Se: 0.018v1t%
, Sb: A steel ingot containing 0.025 wt%,
Finished by hot rolling to a thickness of 2.7 mm using a known method, and then homogenized by annealing at 900°C for 3 minutes to 0.78 m1.
After rolling to 100°C and intermediate annealing at 1050°C for 3 minutes, immediately annealing was performed at 1000°C at 90°C at a cooling rate of 15°C/s.
After controlling the humidity of the steel plate at 0'C, 500C, and 200C, and applying a strain of 0.5% to 40% at each temperature, it was heated to 15C.
It was immediately cooled to room temperature at a cooling rate of /s.

次に200℃加熱による温間圧延で最終冷延を施し最終
板厚0.3mmの鋼板に仕上げた。最終冷延手法は各パ
ス毎に所定の圧延温度に到達後5分間保持してただちに
圧延する方法で行った。
Next, final cold rolling was performed by warm rolling by heating at 200° C. to produce a steel plate with a final thickness of 0.3 mm. The final cold rolling method was such that after reaching a predetermined rolling temperature for each pass, it was held for 5 minutes and immediately rolled.

その後、鋼板表面を脱脂し、湿水素中において820℃
で3分間の脱炭焼鈍を行った後、マグネシアを主成分と
する焼鈍分離剤を鋼板に塗布し、850℃で50時間の
二次再結晶焼鈍を施した後、1200℃で5時間吃水素
中で純化焼鈍を施した。
After that, the steel plate surface was degreased and heated to 820℃ in wet hydrogen.
After performing decarburization annealing for 3 minutes at 1200°C, an annealing separator containing magnesia as the main component was applied to the steel plate, and secondary recrystallization annealing was performed at 850°C for 50 hours, followed by hydrogen annealing at 1200°C for 5 hours. Purification annealing was performed inside.

得られた成品の磁気特性を第2図に示す。第2図から判
るように加工ひずみが0.5%以下では導入される転位
密度が不充分のためCの微細化も不充分で期待した効果
が得られない。したがって降温の際のひずみ付与量は1
〜30%でこの発明の目的に適合するわけである。
The magnetic properties of the obtained product are shown in FIG. As can be seen from FIG. 2, when the processing strain is less than 0.5%, the introduced dislocation density is insufficient, so that the refinement of C is also insufficient and the expected effect cannot be obtained. Therefore, the amount of strain applied when lowering the temperature is 1
~30% is suitable for the purpose of this invention.

次に、この発明において素材の成分組成を限定した理由
について説明する。
Next, the reason why the component composition of the material is limited in this invention will be explained.

Cは、0.01wt%より少ないと熱延集合組織制御が
困難で大きな伸長粒が形成されるため磁気特性が劣化し
、一方Cが0.06wt%より多いと脱炭工程で脱炭に
時間がかかり経済的でないので0.01〜0.06wt
%の範囲とする必要がある。
When C is less than 0.01wt%, it is difficult to control the hot rolling texture and large elongated grains are formed, resulting in deterioration of magnetic properties.On the other hand, when C is more than 0.06wt%, it takes longer to decarburize in the decarburization process. 0.01~0.06wt as it is not economical.
% range.

3iは、2.0wt%より少ないと電気抵抗が低く渦電
流損増大に基づく鉄損値が大きくなり、一方4.0wt
%より多いと冷延の際に脆性割れが生じやすくなるため
2.0〜4.0wt%の範囲内にすることが必要である
When 3i is less than 2.0wt%, the electrical resistance is low and the iron loss value based on increased eddy current loss becomes large;
%, brittle cracks are likely to occur during cold rolling, so it is necessary to keep the content within the range of 2.0 to 4.0 wt%.

Mnは、0.01wt%より少ないと充分なMnSeの
析出物を作ることが、困難となり、一方0.2vt%よ
り多いとMn Seの析出物を溶体化するのに加熱温度
を高くしなければならないためMnは0.01〜0,2
wt%の範囲にする必要がある。
When Mn is less than 0.01wt%, it becomes difficult to form sufficient MnSe precipitates, while when it is more than 0.2wt%, heating temperature must be raised to solutionize MnSe precipitates. Therefore, Mn is 0.01 to 0.2
It is necessary to keep it within the range of wt%.

Moについては、発明者らが先に特公昭57−1473
7号公報および特公昭56−4613号公報において開
示したように、O,1wt%までの少量のMo添加で一
次再結晶粒成長抑制効果があり、この発明においても同
様の効果が期待できる。Moが0.1wt%より多いと
熱間および冷間加工性が低下し、また鉄損が劣化するの
でMoは0,1wt%以下の範囲内にする必要があり、
他方0.003wt%より低いと、−次回結晶粒の成長
抑制効果が小さいためMoは0.003〜0,1wt%
の範囲内にする必要がある。
Regarding Mo, the inventors first published the
As disclosed in Japanese Patent Publication No. 7 and Japanese Patent Publication No. 56-4613, the addition of a small amount of Mo, up to 1 wt %, has the effect of suppressing the growth of primary recrystallized grains, and the same effect can be expected in the present invention. If Mo is more than 0.1 wt%, hot and cold workability will decrease, and iron loss will deteriorate, so Mo needs to be within the range of 0.1 wt% or less.
On the other hand, if it is lower than 0.003 wt%, the effect of suppressing the growth of -next crystal grains is small, so Mo is 0.003 to 0.1 wt%.
Must be within the range.

Sbは、発明者らがかつて開示した特公昭38−821
4号公報によればo、oos〜0.1wt%含有され、
また同様に発明者らがさきに開示した特公昭51−13
469号公報によればo、oos〜o、2wt%におい
て、微量のSeまたはSととも含有されることにより、
−数粒の成長が抑制されることが知られているとおりで
あり、Sbは0.005wt%より少ないと一次再結晶
粒抑制効果が少なく、一方0,5wt%より多いと磁束
密度が低下し始めて磁気特性を劣化させるので、sbは
0.005〜0.5wt%の範囲内にする必要がある。
Sb is derived from Japanese Patent Publication No. 38-821, which was previously disclosed by the inventors.
According to Publication No. 4, it contains o, oos ~ 0.1 wt%,
Similarly, the inventors previously disclosed the Japanese Patent Publication No. 51-13
According to Publication No. 469, by containing a trace amount of Se or S at o, oos to o, 2 wt%,
- It is known that the growth of several grains is suppressed, and if Sb is less than 0.005 wt%, the effect of suppressing primary recrystallized grains is small, while if it is more than 0.5 wt%, the magnetic flux density decreases. Since the magnetic properties are deteriorated for the first time, sb needs to be within the range of 0.005 to 0.5 wt%.

S、Seはいずれも、0,1wt%以下、なかでもSは
0.008〜0,1wt%、またSeは0.003〜0
,1wt%の範囲とする。それというのはこれらが0,
1wt%をこえると熱間および冷間加工性が劣化し、ま
たそれぞれ下限に満たないと、MnS。
Both S and Se are 0.1 wt% or less, especially S is 0.008 to 0.1 wt%, and Se is 0.003 to 0.
, 1wt%. That means these are 0,
If it exceeds 1 wt%, hot and cold workability deteriorates, and if the lower limit is not reached, MnS.

MnSeとしての一次再結晶粒成長抑制機能に格別の効
果を生じないからであるが、すでに実験例について述べ
たようにSb 、Moなどによる既知の一次粒成長抑制
を有利に併用し得るので、SおよびSeの下限値は合計
でo、ooswt%で足りる。
This is because MnSe does not have a particular effect on the primary recrystallization grain growth inhibition function, but as already mentioned in the experimental example, known primary grain growth inhibition by Sb, Mo, etc. can be used advantageously in combination. The lower limit value of Se and O in total is sufficient to be o, ooswt%.

この発明においては、上述の如く珪素鋼素材中にc:o
、o1〜0.06wt%、3i:2.0〜4.owt%
、 Mn :  0,01〜0.2wt%を含みかつ、
Mo二0.003〜0.1wt%、 3b :  o、
oos〜o、swt%そしてSおよびSeのいずれか1
種または2種を合計o、oos〜o、10wt%におい
て含有することを基本とするが、その他に通常珪素鋼中
に添加される公知の元素、たとえばCr、Ti 、V、
Zr。
In this invention, c:o is added to the silicon steel material as described above.
, o1-0.06wt%, 3i:2.0-4. wt%
, Mn: 0.01 to 0.2 wt%, and
Mo2 0.003-0.1wt%, 3b: o,
oos~o, swt% and any one of S and Se
Basically, it contains one or two species in a total amount of o, oos to o, 10 wt%, but in addition, known elements that are usually added to silicon steel, such as Cr, Ti, V,
Zr.

Nb、Ta、Co、Ni 、Sr1.PおよびAsなど
が微量含有されることも妨げない。
Nb, Ta, Co, Ni, Sr1. There is no problem with the inclusion of trace amounts of P, As, and the like.

また酸可溶Ai:0,01〜0.09wt%、N:0.
001〜0,01wt%又は3 :  0.003〜0
.005wt%或いはcu :  0.06〜0.5w
t%の如きを含有させることによっても優れた磁気特性
の製品が安定して得られ、とくにこのうちAβは0.0
1wt%以上であればs、seやSb 、Moなどの助
成を要しないが、もとより併用も可能である。
Also, acid-soluble Ai: 0.01 to 0.09 wt%, N: 0.
001~0.01wt% or 3: 0.003~0
.. 005wt% or cu: 0.06~0.5w
A product with excellent magnetic properties can be stably obtained by containing Aβ of 0.0%.
If it is 1wt% or more, it is not necessary to support s, se, Sb, Mo, etc., but it is also possible to use them in combination.

次にこの発明における一連の製造工程について説明する
Next, a series of manufacturing steps in this invention will be explained.

まず、従来公知の造塊−分塊法あるいは連続鋳造法によ
って前記組成のスラブを得る。次いでこのスラブを12
50℃以上に加熱し公知の熱間圧延を施して板厚1.2
〜5一層の熱延板を得る。
First, a slab having the above composition is obtained by a conventionally known agglomeration-blooming method or continuous casting method. Then this slab is 12
The plate is heated to 50°C or higher and subjected to known hot rolling to obtain a plate with a thickness of 1.2
~5 Obtain a single layer hot rolled sheet.

そして必要に応じて均一化焼鈍を経る冷開圧延にて、中
間厚0.50 mm〜1.51に仕上げた後、中間焼鈍
を施す。
Then, after finishing to an intermediate thickness of 0.50 mm to 1.51 mm by cold-open rolling through uniform annealing if necessary, intermediate annealing is performed.

これら均一化焼鈍および中間焼鈍は圧延後の結晶組織を
均質化する再結晶処理を目的とし、通常800℃〜11
00℃で30秒〜10分間保持して行なう。
These homogenizing annealing and intermediate annealing are for the purpose of recrystallization treatment to homogenize the crystal structure after rolling, and are usually performed at temperatures ranging from 800°C to 11°C.
The temperature is maintained at 00°C for 30 seconds to 10 minutes.

中間焼鈍に引続く降温の際の加工ひずみの付与は、その
加工直前温度が1000℃をこえるときは転位が消滅し
やすくなり、一方400℃を割るとCが動きにくくなる
ため所期した効果がうすれる。したがって加工前温度は
1000℃〜400℃の間が望ましい。
When the temperature immediately before processing exceeds 1000°C, dislocations tend to disappear when the temperature is lowered following intermediate annealing, but when the temperature drops below 400°C, C becomes difficult to move, so the desired effect is not achieved. It fades. Therefore, the temperature before processing is preferably between 1000°C and 400°C.

次にこの発明の方法においては中間焼鈍に引続く降温の
際の冷却速度を10℃/s以上とし、この冷却段階にお
いて1〜30%の加工歪を鋼板に付与し、これに続く最
終圧延を100〜400℃の温度で実施することを必須
条件とする。ここで加工歪の鋼板への付与は、引張、圧
延など公知のいかなる方法でもよい。
Next, in the method of the present invention, the cooling rate during temperature reduction following intermediate annealing is set at 10°C/s or more, a working strain of 1 to 30% is applied to the steel plate in this cooling stage, and the subsequent final rolling is performed. It is an essential condition that the process be carried out at a temperature of 100 to 400°C. Here, the processing strain may be imparted to the steel plate by any known method such as tensioning or rolling.

ここで降温の際の冷却速度を10℃/s以上としたのは
、鋼板に導入した転位又は粒界などへの過度のC析出を
防ぐためである。
The reason why the cooling rate during temperature reduction is set to 10° C./s or more is to prevent excessive C precipitation at dislocations or grain boundaries introduced into the steel sheet.

また加工ひずみが1%未満では、導入される転位密度が
不充分のためCの微細化も不充分で期待した効果が得ら
れないし、30%こえると二次再結晶に不利な集合組織
となり充分な効果が得られない。したがって、降温の際
の加工ひずみ付与量は1〜30%とした。
In addition, if the processing strain is less than 1%, the introduced dislocation density is insufficient, so the C refinement is insufficient and the expected effect cannot be obtained, and if it exceeds 30%, the texture becomes unfavorable to secondary recrystallization. No effect can be obtained. Therefore, the amount of processing strain applied during temperature reduction was set to 1 to 30%.

次にこれに続く最終圧延温度を100℃〜400℃とし
た理由は、圧延温度が100℃を割ると活動する< 1
11>すべり系とCの相互作用が少なくなり転位の増殖
が不活発となり硬度が上がらず、一方400℃を越える
と転位が消滅回復し硬度の確保が困難となり、いずれの
場合も一次再結晶集合組織が不適切となり微細な二次再
結晶集合IIIが得られなくなるためである。
Next, the reason why the subsequent final rolling temperature was set at 100°C to 400°C is that when the rolling temperature is below 100°C, the activity occurs < 1
11> The interaction between the slip system and C decreases, dislocation growth becomes inactive, and hardness does not increase.On the other hand, when the temperature exceeds 400℃, dislocations disappear and recover, making it difficult to maintain hardness, and in both cases, primary recrystallization aggregation occurs. This is because the structure becomes inappropriate and fine secondary recrystallization aggregates III cannot be obtained.

また、仕上板厚は0.1511〜0.511IIllと
する慣例に従うが、最近成品板厚を薄くして、例えば0
.23. 0.15+g−にすることにより鉄損を改善
する傾向が広がりつつあり、このように薄手化しようと
すると二次再結晶不良が増加して、成品結晶粒が大きく
なるといった間′題があるのに対し、その対策としても
この発明は、特に有効である。
In addition, the finished plate thickness follows the custom of 0.1511 to 0.511IIll, but recently the finished plate thickness has been reduced, for example 0.
.. 23. There is a growing trend to improve core loss by making the steel 0.15+g-, but trying to make it thinner in this way has the problem of increasing secondary recrystallization defects and making the crystal grains of the finished product larger. However, the present invention is particularly effective as a countermeasure against this problem.

このように最終冷延を施した冷延板は次に750〜85
0℃の湿水素中で脱炭・−次頁結晶焼鈍が施される。こ
の焼鈍は鋼中のCを除去するとともに、次の最終焼鈍で
(110) < 001>方位の二次再結晶粒を発達さ
せるのに有利な一次再結晶集合組織を形成させる。
The cold-rolled sheet subjected to final cold rolling in this way is then given a grade of 750 to 85
Decarburization and crystal annealing are performed in wet hydrogen at 0°C. This annealing removes C in the steel and forms a primary recrystallized texture that is advantageous for developing secondary recrystallized grains with (110) <001> orientation in the next final annealing.

次に鋼板表面にマグネシアを主成分とした焼鈍分離剤を
塗布した後、コイル状に巻取り箪焼鈍炉を用いて最終焼
鈍を施す。最終焼鈍は(110}〈 001>方位の二
次再結晶粒を充分発達させるために施されるものであり
通常は箱焼鈍によって直らに1000℃以上に昇温し、
その温度に保持することによって行なわれるが(11G
) < 001>方位に極度に揃った二次再結晶組織を
発達させるためには820℃から900℃程度の低温で
保持焼鈍することが有利であり、また場合によっては例
えば0.5℃〜15℃/hr程度の低昇温速度での体熱
焼鈍を行ってもよい。
Next, an annealing separator containing magnesia as a main component is applied to the surface of the steel sheet, and then final annealing is performed using a winding annealing furnace. Final annealing is performed to sufficiently develop secondary recrystallized grains with (110}<001> orientation, and is usually box annealed to immediately raise the temperature to 1000°C or higher.
This is done by holding it at that temperature (11G
) In order to develop a secondary recrystallized structure that is extremely aligned in the <001> orientation, it is advantageous to carry out holding annealing at a low temperature of about 820°C to 900°C, and in some cases, for example at a temperature of 0.5°C to 15°C. Body thermal annealing may be performed at a low temperature increase rate of about °C/hr.

(実施例) 次に本発明を実施例について説明する。(Example) Next, the present invention will be explained with reference to examples.

実施例1 C:  0,055wt%、 3i  :  3.so
wt%、Mn:0.080wt%、 Mo :  0,
030wt%、 3e :  0,021℃%、 Sb
 :  0.025wt%を含有し残余は鉄の組成にな
る鋼塊を熱間圧延して2.71厚に仕上げ、900℃で
3分間の均一化焼鈍を施したのち、70%の冷間圧延を
施し、ついで950℃で3分間の中間焼鈍を施した。
Example 1 C: 0,055wt%, 3i: 3. so
wt%, Mn: 0.080wt%, Mo: 0,
030wt%, 3e: 0,021℃%, Sb
: A steel ingot containing 0.025 wt% with the remainder being iron is hot rolled to a thickness of 2.71, homogenized at 900°C for 3 minutes, and then cold rolled to 70%. was then subjected to intermediate annealing at 950°C for 3 minutes.

ついでただちに10%の圧延を施すとともに50℃/s
で常温まで冷却した。次に250℃で3分間保持してた
だちに圧延する手法をくりかえして最終板厚0.30m
mの鋼板に仕上げた。その後は慣例に従い湿水素中にお
いて820℃で3分間の脱炭焼鈍を行った後、マグネシ
アを主体とする焼鈍分離剤を塗布し、840℃での50
時間保持と1200℃での5時間保持とを組合せた最終
焼鈍を施した。(qられた製品の磁気特性はB le 
= 1.92 T 、 W 17/ 50=0.96 
W/kgであった。
Then, it is immediately rolled at 10% and rolled at 50°C/s.
It was cooled to room temperature. Next, the method of holding at 250℃ for 3 minutes and immediately rolling was repeated to obtain a final plate thickness of 0.3m.
Finished with m steel plate. After that, following customary decarburization annealing at 820°C in wet hydrogen for 3 minutes, an annealing separator mainly composed of magnesia was applied, and 50°C at 840°C was applied.
A final annealing was performed using a combination of time holding and holding at 1200° C. for 5 hours. (The magnetic properties of the q product are B le
= 1.92 T, W 17/50=0.96
It was W/kg.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は製品磁性に及ぼす、中間焼鈍後の冷却条件と最
終圧延温度の影響、また 第2図は同じくひずみ導入温度と導入ひずみ量の影響を
それぞれ示したグラフである。 第1図 5WL間圧延雇膚(’C) 第2図 ffi識E牢 (5ζ)
FIG. 1 is a graph showing the influence of cooling conditions after intermediate annealing and final rolling temperature on product magnetism, and FIG. 2 is a graph showing the influence of strain introduction temperature and amount of strain introduced, respectively. Fig. 1 5WL rolling surface ('C) Fig. 2 ffi knowledge E cell (5ζ)

Claims (1)

【特許請求の範囲】 1、C:0.01〜0.06wt% Si:2.0〜4.0wt% Mn:0.01〜0.2wt% を含み、かつ Mo:0.003〜0.1wt% Sb:0.005〜0.5wt% そしてSとSeのいずれか1種また2種を 合計0.005〜0.1wt%において含有する組成の
珪素鋼を熱間圧延し、その後、中間焼鈍をはさむ2回の
冷間圧延で最終冷延板とし、次いで脱炭をかねた一次再
結晶焼鈍を施し、さらに最終仕上げ焼鈍を施して{11
0} 〈001〉方位の二次再結晶粒を発達させる一連の工程
よりなる一方向性珪素鋼板の製造方法において、 上記の中間焼鈍に引続く降温の際の冷却速 度を10℃/s以上とし、この冷却段階において1〜3
0%の加工ひずみを鋼板に付与した後、100〜400
℃の温度で最終圧延を行うことを特徴とする磁束密度が
高く鉄損の低い一方向性珪素鋼板の製造方法。
[Claims] 1. Contains C: 0.01 to 0.06 wt%, Si: 2.0 to 4.0 wt%, Mn: 0.01 to 0.2 wt%, and Mo: 0.003 to 0.06 wt%. 1 wt% Sb: 0.005 to 0.5 wt% and a silicon steel having a composition containing one or both of S and Se in a total of 0.005 to 0.1 wt%, and then an intermediate The final cold-rolled plate is obtained by cold rolling twice with annealing in between, then primary recrystallization annealing which also serves as decarburization, and final finish annealing {11
0} In a method for producing a unidirectional silicon steel sheet comprising a series of steps of developing secondary recrystallized grains with <001> orientation, the cooling rate during temperature reduction subsequent to the above intermediate annealing is set to 10°C/s or more. , 1 to 3 in this cooling stage
After applying 0% processing strain to the steel plate, 100 to 400
A method for producing a unidirectional silicon steel sheet with high magnetic flux density and low core loss, characterized by performing final rolling at a temperature of ℃.
JP59275268A 1984-12-25 1984-12-25 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss Pending JPS61149432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275268A JPS61149432A (en) 1984-12-25 1984-12-25 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275268A JPS61149432A (en) 1984-12-25 1984-12-25 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Publications (1)

Publication Number Publication Date
JPS61149432A true JPS61149432A (en) 1986-07-08

Family

ID=17553052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275268A Pending JPS61149432A (en) 1984-12-25 1984-12-25 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Country Status (1)

Country Link
JP (1) JPS61149432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475710A2 (en) * 1990-09-10 1992-03-18 Kawasaki Steel Corporation Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
EP0767249A2 (en) * 1995-10-06 1997-04-09 Nkk Corporation Silicon steel sheet and method thereof
JP2011052302A (en) * 2009-09-04 2011-03-17 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475710A2 (en) * 1990-09-10 1992-03-18 Kawasaki Steel Corporation Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
EP0767249A2 (en) * 1995-10-06 1997-04-09 Nkk Corporation Silicon steel sheet and method thereof
EP0767249A3 (en) * 1995-10-06 1997-04-23 Nkk Corporation Silicon steel sheet and method thereof
US5902419A (en) * 1995-10-06 1999-05-11 Nkk Corporation Silicon steel sheet and method thereof
US6045627A (en) * 1995-10-06 2000-04-04 Nkk Corporation Silicon steel sheet and method thereof
US6241829B1 (en) 1995-10-06 2001-06-05 Nkk Corporation Silicon steel sheet and method thereof
JP2011052302A (en) * 2009-09-04 2011-03-17 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2787776B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
EP3733914A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPS5832214B2 (en) Method for manufacturing unidirectional silicon steel sheet with extremely high magnetic flux density and low iron loss
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH05279742A (en) Manufacture of silicon steel sheet having high magnetic flux density
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPS62284017A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH11264018A (en) Production of grain oriented magnetic steel sheet
JPH08176666A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPS60135524A (en) Production of grain oriented silicon steel sheet
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JPS6250528B2 (en)
JPH08143962A (en) Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JPH09104922A (en) Production of grain-oriented silicon steel sheet extremely high in magnetic flux density
JPH0222422A (en) Production of unidirectional type silicon steel sheet excellent in magnetic property