JPH09104922A - Production of grain-oriented silicon steel sheet extremely high in magnetic flux density - Google Patents

Production of grain-oriented silicon steel sheet extremely high in magnetic flux density

Info

Publication number
JPH09104922A
JPH09104922A JP7258824A JP25882495A JPH09104922A JP H09104922 A JPH09104922 A JP H09104922A JP 7258824 A JP7258824 A JP 7258824A JP 25882495 A JP25882495 A JP 25882495A JP H09104922 A JPH09104922 A JP H09104922A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
hot
temperature
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7258824A
Other languages
Japanese (ja)
Inventor
Yasunari Yoshitomi
康成 吉冨
Takashi Mogi
尚 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7258824A priority Critical patent/JPH09104922A/en
Publication of JPH09104922A publication Critical patent/JPH09104922A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a grain-oriented silicon steel sheet extremely high in magnetic flux density by regulating the average grain size of primarily crystallized grains before final finish annealing in a steel slab having a specified componental compsn. and specifying nitriding treatment till the start of secondary recrystallization in final finish annealing after hot rolling. SOLUTION: At the time of producing a grain-oriented silicon steel sheet from a slab contg., by weight, 0.025 to 0.075% C, 2.5 to 4.5% Si, 0.010 to 0.060% acid soluble Al, 0.0010 to 0.0130% N, and the balance Fe, the coiling temp. after the completion of hot rolling is regulated to 650 deg.C. The coil after coiling is subjected to forced cooling at a cooling rate more than that of air cooling to regulate the recrystallizing rate in the center of the sheet thickness of the hot rolled sheet to <=95%, and the average grain size of primarily recrystallized grains till the start of final finish annealing after the completion of decarburizing annealing is regulated to 18 to 35μm. Next, till the start of secondary recrystallization in final finish annealing after the hot rolling, the steel sheet is subjected to nitriding treatment with >=0.0020% by increasing the amt. of nitrogen, and in the case of temp. rising of 900 to 1200 deg.C in the final finish annealing, annealing is executed in an annealing atmosphere under >=15% partial pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トランス等の鉄心
として使用される磁気特性の優れた一方向性電磁鋼板の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表わす数値としては、通常磁場の強さ8
00A/mにおける磁束密度B 8 が使用される。また、
鉄損特性を表わす数値としては、周波数50H2で1.7
テスラー(T)まで磁化した時の1kg当りの鉄損W
17/50 を使用している。
2. Description of the Prior Art Unidirectional electrical steel sheets are mainly used for transformers.
It is used as a core material for other electrical equipment and
Magnetic properties such as magnetic properties and iron loss properties are required.
You. As a numerical value showing the excitation characteristic, the strength of a normal magnetic field is 8
Magnetic flux density B at 00 A / m 8Is used. Also,
As a numerical value showing the iron loss characteristic, the frequency is 50H.TwoAt 1.7
Iron loss W per 1kg when magnetized to Tessler (T)
17/50You are using

【0003】磁束密度は、鉄損特性の最大支配因子であ
り、一般的にいって磁束密度が高いほど鉄損特性が良好
になる。なお、一般的に磁束密度を高くすると二次再結
晶粒が大きくなり、鉄損特性が不良となる場合がある。
これに対しては、磁区制御により、二次再結晶粒の粒径
に拘らず、鉄損特性の改善をすることができる。この一
方向性電磁鋼板は、最終仕上焼鈍工程で二次再結晶を起
こさせ、鋼板面に{110}、圧延方向に<001>軸
を持ったいわゆるゴス組織を発達させることにより製造
されている。良好な磁気特性を得るためには、磁気容易
軸である<001>を圧延方向に高度に揃えることが必
要である。
[0003] The magnetic flux density is the largest controlling factor of iron loss characteristics. Generally, the higher the magnetic flux density, the better the iron loss characteristics. In general, when the magnetic flux density is increased, the secondary recrystallized grains become large, and the iron loss characteristics may become poor.
On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains. This unidirectional electrical steel sheet is manufactured by causing secondary recrystallization in the final finishing annealing step and developing a so-called Goss structure having {110} on the steel sheet surface and <001> axis in the rolling direction. . In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy magnetic axis, in the rolling direction.

【0004】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに特公昭40−15644
号公報及び特公昭51−13469号公報記載の方法が
ある。前者においては主なインヒビターとしてMnS及
びAlNを、後者ではMnS,MnSe、Sb等を用い
ている。従って現在の技術においてはこれらのインヒビ
ターとして機能する析出物の大きさ、形態及び分散状態
を適正に制御することが不可欠である。MnSに関して
いえば、現在の工程では熱延前のスラブ加熱時にMnS
を一旦完全固溶させた後、熱延時に析出する方法がとら
れている。
A typical technique for producing such a high magnetic flux density unidirectional electrical steel sheet is Japanese Patent Publication No. 40-15644.
And JP-B-51-13469. In the former, MnS and AlN are used as main inhibitors, and in the latter, MnS, MnSe, Sb, etc. are used. Therefore, in the current technology, it is essential to appropriately control the size, morphology and dispersion state of the precipitates that function as these inhibitors. Speaking of MnS, in the current process, MnS is generated when the slab is heated before hot rolling.
A method is used in which the solid solution is once completely dissolved and then precipitated during hot rolling.

【0005】二次再結晶に必要な量のMnSを完全固溶
するためには1400℃程度の温度が必要である。これ
は普通鋼のスラブ加熱温度に比べて200℃以上も高
く、この高温スラブ加熱処理には以下に述べるような不
利な点がある。1)方向性電磁鋼専用の高温スラブ加熱
炉が必要。2)加熱炉のエネルギー原単位が高い。3)
溶融スケール量が増大し、いわゆる加熱炉々床に蓄積し
たノロかき出し等に見られるように操業上の悪影響が大
きい。
A temperature of about 1400 ° C. is required to completely dissolve the required amount of MnS for secondary recrystallization. This is more than 200 ° C. higher than the slab heating temperature of ordinary steel, and this high-temperature slab heating treatment has the following disadvantages. 1) A high-temperature slab heating furnace dedicated to directional magnetic steel is required. 2) The unit energy consumption of the heating furnace is high. 3)
The amount of molten scale increases, and the adverse effects on operation are large, as can be seen from the so-called shavings accumulated in the so-called heating furnace beds.

【0006】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並みに下げればよいわけであるが、
このことは同時にインヒビターとして有効なMnSの量
を少なくするかあるいは全く用いないことを意味し、必
然的に二次再結晶の不安定化をもたらす。このため低温
スラブ加熱化を実現するためには何らかの形でMnS以
外の析出物等によりインヒビターを強化し、仕上焼鈍時
の正常粒成長の抑制を充分にする必要がある。
In order to avoid such a problem, the slab heating temperature should be lowered to the level of ordinary steel.
This means that at the same time, the amount of MnS effective as an inhibitor is reduced or not used at all, and inevitably results in destabilization of secondary recrystallization. Therefore, in order to realize low-temperature slab heating, it is necessary to strengthen the inhibitor in some form with precipitates other than MnS to sufficiently suppress normal grain growth during finish annealing.

【0007】このようなインヒビターとしては硫化物の
他、窒化物、酸化物及び粒界析出元素等が考えられ、公
知の技術として例えば次のようなものがあげられる。特
公昭54−24685号公報ではAs,Bi,Sn,S
n等の粒界偏析元素を鋼中に含有することにより、スラ
ブ加熱温度を1050〜1350℃の範囲にする方法が
開示され、特開昭52−24116号公報ではAlの
他、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の
窒化物生成元素を含有することによりスラブ加熱温度を
1100〜1260℃の範囲にする方法を開示してい
る。
As such inhibitors, sulfides, nitrides, oxides, grain boundary precipitation elements, and the like are considered, and known techniques include, for example, the following. In Japanese Patent Publication No. 54-24685, As, Bi, Sn, S
A method of controlling the slab heating temperature in the range of 1050 to 1350 ° C. by including grain boundary segregating elements such as n in the steel is disclosed in Japanese Patent Laid-Open No. 52-24116, in addition to Al, Zr, Ti, It discloses a method for controlling the slab heating temperature in the range of 1100 to 1260 ° C. by containing a nitride forming element such as B, Nb, Ta, V, Cr and Mo.

【0008】また、特開昭57−158322号公報で
はMn含有量を下げ、Mn/Sの比率を2.5以下にす
ることにより低温スラブ加熱化を行い、さらにCuの添
加により二次再結晶を安定化する技術を開示している。
これらインヒビターの補強と組み合わせて金属組織の側
から改良を加えた技術も開示された。すなわち特開昭5
7−89433号公報ではMnに加えS,Se,Sb,
Bi,Pb,Sn,B等の元素を加え、これにスラブの
柱状晶率と二次冷延圧下率を組み合わせることにより1
100〜1250℃の低温スラブ加熱化を実現してい
る。さらに特開昭59−190324号公報ではSある
いはSeに加え、Al及びBと窒素を主体としてインヒ
ビターを構成し、これに冷延後の一次再結晶焼鈍時にパ
ルス焼鈍を施すことにより二次再結晶を安定化する技術
を開示している。
Further, in Japanese Patent Application Laid-Open No. 57-158322, low temperature slab heating is performed by lowering the Mn content and setting the Mn / S ratio to 2.5 or less, and secondary recrystallization is performed by adding Cu. The technology for stabilizing the is disclosed.
Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is,
In JP-A-89433, in addition to Mn, S, Se, Sb,
By adding elements such as Bi, Pb, Sn, and B, and combining them with the columnar crystal ratio of the slab and the secondary cold rolling reduction ratio, 1
A low temperature slab heating of 100 to 1250 ° C is realized. Further, in JP-A-59-190324, an inhibitor is composed mainly of Al and B and nitrogen in addition to S or Se, and secondary annealing is performed by performing pulse annealing at the time of primary recrystallization annealing after cold rolling. The technology for stabilizing the is disclosed.

【0009】このように方向性電磁鋼板製造における低
温スラブ加熱化実現のためには、これまでに多大な努力
が続けられてきている。さらに、特開昭59−5652
2号公報においてはMnを0.08〜0.45%、Sを
0.007%以下にすることにより低温スラブ加熱化を
可能にする技術が開示された。この方法による高温スラ
ブ加熱時のスラブ結晶粒粗大化に起因する製品の線状二
次再結晶不良発生の問題が解消された。
As described above, in order to realize the low temperature slab heating in the production of grain-oriented electrical steel sheet, great efforts have been made so far. Furthermore, JP-A-59-5652
Japanese Patent Publication No. 2 discloses a technique that enables low temperature slab heating by setting Mn to 0.08 to 0.45% and S to 0.007% or less. With this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.

【0010】ところで、一方向性電磁鋼板の製造におい
ては通常熱延後組織の不均一化、析出処理等を目的とし
て熱延板焼鈍が行われている。例えばAlNを主インヒ
ビターとする製造方法においては、特公昭40−238
20号公報に示すように熱延板焼鈍においてAlNの析
出処理を行ってインヒビターを制御する方法がとられて
いる。
By the way, in the production of unidirectional electrical steel sheets, hot-rolled sheet annealing is usually performed for the purpose of making the structure non-uniform after hot rolling, precipitation treatment and the like. For example, in the production method using AlN as the main inhibitor, Japanese Patent Publication No. 40-238
As disclosed in Japanese Patent Publication No. 20, a method of controlling the inhibitor by performing AlN precipitation treatment in hot-rolled sheet annealing has been adopted.

【0011】通常、一方向性電磁鋼板は鋳造−熱延−焼
鈍−冷延−脱炭焼鈍−仕上焼鈍のような主工程を経て製
造され、多量のエネルギーを必要としており、加えて普
通鋼製造プロセス等と比較して製造コストも高くなって
いる。近年多量のエネルギー消費をするこのような製造
工程に対する見直しが進められ、工程、エネルギーの簡
省略化の要請が強まってきた。このような要請に応える
べく、特公昭59−45730号公報ではAlNを主イ
ンヒビターとする製造方法において、熱延板焼鈍でのA
lNの析出処理を、熱延後の高温巻取で代替する方法が
提案された。
Usually, the grain-oriented electrical steel sheet is manufactured through main processes such as casting-hot rolling-annealing-cold rolling-decarburizing annealing-finish annealing, and requires a large amount of energy. The manufacturing cost is higher than that of the process. In recent years, the review of such a manufacturing process which consumes a large amount of energy has been promoted, and a demand for simplification of the process and energy has been increased. In order to meet such a request, Japanese Patent Publication No. 59-45730 discloses a manufacturing method using AlN as a main inhibitor, in which A in hot rolled sheet annealing is used.
A method has been proposed in which the precipitation treatment of 1N is replaced by high temperature winding after hot rolling.

【0012】確かにこの方法によって熱延板焼鈍を省略
しても、磁気特性をある程度確保することはできるが、
5〜20トンのコイル状で巻取られる通常の方法におい
ては、冷却過程でコイル内での場所的な熱履歴の差が生
じ、必然的にAlNの析出が不均一となり最終的な磁気
特性はコイル内の場所によって変動し、歩留が低下する
結果となる。
Certainly, even if the hot-rolled sheet annealing is omitted by this method, the magnetic characteristics can be secured to some extent,
In the usual method of winding in a coil shape of 5 to 20 tons, a local difference in thermal history occurs in the coil during the cooling process, and inevitably the precipitation of AlN becomes non-uniform and the final magnetic characteristics are It varies depending on the location in the coil, resulting in reduced yield.

【0013】また、特開昭59−50118号公報で
は、MnS,MnSe,Sbを主インヒビターとする一
方向性電磁鋼板の製造方法において、仕上最終スタンド
を離れてから巻取るまでの熱延鋼帯の冷却速度に応じて
決まる温度以下では鋼帯を巻取ることによって、製品に
おける帯状の二次再結晶不良の発生を抑制する方法が提
案された。
Further, in Japanese Patent Laid-Open No. 59-50118, a method of manufacturing a grain-oriented electrical steel sheet using MnS, MnSe, and Sb as main inhibitors is a hot rolled steel strip from the finishing final stand to the winding. It has been proposed to suppress the occurrence of strip-shaped secondary recrystallization defects in products by winding a steel strip at a temperature below the temperature determined by the cooling rate.

【0014】この方法は、高温スラブ加熱に起因する製
品における帯状の二次再結晶不良発生を抑制する技術で
あり、熱延板焼鈍を省略した1回冷延法での製造は検討
は全くされていない。本発明者らは、低温スラブ加熱で
かつ、熱延板焼鈍を省略して一方向性電磁鋼板を製造す
るプロセスにおいて、良好な磁気特性を得るための手法
について広範な検討を行ってきた。例えば、特開平2−
274814号公報においては、冷延前鋼板の再結晶率
に応じて冷延率を決定する方法を開示した。また、特開
平2−274815号公報において熱延後の巻取り温度
を低めにし、冷延時パス間時効を施す方法を開示し、特
開平3−294427号公報において、熱延後の巻取り
温度を特段低めとする方法を開示した。
This method is a technique for suppressing the occurrence of band-shaped secondary recrystallization defects in products caused by high-temperature slab heating, and the production by the single cold-rolling method in which hot-rolled sheet annealing is omitted has not been studied at all. Not not. The present inventors have extensively studied a method for obtaining good magnetic properties in a process of producing a unidirectional electrical steel sheet by low-temperature slab heating and omitting hot-rolled sheet annealing. For example, Japanese Unexamined Patent Publication
Japanese Patent No. 274814 discloses a method of determining the cold rolling rate according to the recrystallization rate of the steel sheet before cold rolling. Further, JP-A-2-274815 discloses a method of lowering the coiling temperature after hot rolling and performing inter-pass aging during cold rolling, and JP-A-3-294427 discloses the coiling temperature after hot rolling. A method for making it particularly low has been disclosed.

【0015】このように、熱延の巻取り条件、熱延板の
再結晶率、冷延条件との関係で、磁気特性向上のための
技術開発を行ってきた。しかしながら、製造現場におい
てこれらの技術を実施する場合、熱延時の熱履歴や巻取
り温度のバラツキが生じ、その結果、二次再結晶焼鈍後
の製品において磁気特性が変動するという問題が生じ
た。
As described above, the technical development for improving the magnetic properties has been carried out in relation to the winding condition of hot rolling, the recrystallization rate of the hot rolled sheet, and the cold rolling condition. However, when these techniques are carried out at the manufacturing site, variations occur in the heat history and the winding temperature during hot rolling, and as a result, the magnetic properties of the product after secondary recrystallization annealing fluctuate.

【0016】[0016]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としているもの
の、当然のことながら良好な磁気特性を安定して得る技
術でなければ、工業化できない。本発明者らは、低温ス
ラブ加熱の工業化のため、最終仕上焼鈍前の一次再結
晶の平均粒径制御と、熱延後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施すことを柱とす
る技術を構築してきた。
Although the method using low temperature slab heating is originally intended to reduce the manufacturing cost, it cannot be industrialized unless it is a technique that can stably obtain good magnetic characteristics. The present inventors, for industrialization of low-temperature slab heating, control the average grain size of primary recrystallization before final finishing annealing, and after hot rolling, nitriding the steel sheet between the start of secondary recrystallization of final finishing annealing. We have built a technology that is based on

【0017】この技術体系をベースに熱延板焼鈍省略技
術を開発してきたが、熱延時の熱履歴や熱延後の巻取り
温度のバラツキによる二次再結晶焼鈍後の製品の磁気特
性が変動するという問題が起こった。本発明の目的は、
この低温スラブ加熱と熱延板焼鈍省略を同時達成しよう
とした場合、磁気特性の変動が生じて好ましくないとい
う問題点を解決する方法を提供することにある。
While the technology for omitting hot-rolled sheet annealing has been developed based on this technical system, the magnetic properties of the product after secondary recrystallization annealing fluctuate due to variations in the heat history during hot rolling and the winding temperature after hot rolling. There was a problem of doing. The purpose of the present invention is
It is an object of the present invention to provide a method for solving the problem that when the low temperature slab heating and the annealing of the hot rolled sheet are omitted at the same time, the magnetic characteristics fluctuate, which is not preferable.

【0018】[0018]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。 (1)重量比で、C:0.025〜0.075%、S
i:2.5〜4.5%、酸可溶性Al:0.010〜
0.060%、N:0.0010〜0.0130%、残
部がFe及び不可避的不純物からなるスラブを1280
℃未満の温度で加熱し、熱延し、引き続き、圧下率80
%以上の冷延を施し、次いで脱炭焼鈍、最終仕上焼鈍を
施して一方向性電磁鋼板を製造する方法において、該熱
延終了後の巻取り温度を650℃以下とし、巻取り後の
コイルを空冷以上の冷却速度で強制冷却し、熱延板の板
厚中心の再結晶率を95%以下とし、脱炭焼鈍完了後最
終仕上焼鈍開始までの一次再結晶粒の平均粒径を18〜
35μmとし、熱延後最終仕上焼鈍の二次再結晶開始ま
での間に鋼板に増窒素量で0.0010%以上の窒化処
理を施し、最終仕上焼鈍の昇温時900〜1200℃の
間を窒素分圧15%以上の焼鈍雰囲気中で焼鈍すること
を特徴とする磁束密度の極めて高い一方向性電磁鋼板の
製造方法と、(2)鋼成分として更には、S+0.40
5Se:0.005〜0.02%、Mn:0.05〜
0.8%、を含有するスラブを用いることを特徴とする
(1)記載の磁束密度の極めて高い一方向性電磁鋼板の
製造方法と、(3)更には、800〜1200℃の温度
で熱延板焼鈍を施し、200〜650℃の間の冷却速度
を5℃/秒以上とすることを特徴とする(1)又は
(2)記載の磁束密度の極めて高い一方向性電磁鋼板の
製造方法を提供するものである。
The gist of the present invention is as follows. (1) C: 0.025 to 0.075% by weight, S
i: 2.5-4.5%, acid-soluble Al: 0.010-
0.060%, N: 0.0010 to 0.0130%, the balance 1280 slab consisting of Fe and unavoidable impurities
It is heated at a temperature of less than ℃, hot-rolled, and then rolled down to 80
% Of cold rolling, followed by decarburizing annealing and final finishing annealing to produce a grain-oriented electrical steel sheet, wherein the coiling temperature after the hot rolling is set to 650 ° C. or less, and the coil after coiling is used. Is forcedly cooled at a cooling rate of air cooling or more, the recrystallization rate of the thickness center of the hot rolled sheet is set to 95% or less, and the average grain size of primary recrystallized grains after completion of decarburizing annealing is 18 to 18
After the hot rolling, the steel sheet is subjected to a nitriding treatment of 0.0010% or more with a nitrogen increase amount before the secondary recrystallization of the final finish annealing. A method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density, characterized by annealing in an annealing atmosphere having a nitrogen partial pressure of 15% or more, and (2) further as a steel component, S + 0.40
5Se: 0.005-0.02%, Mn: 0.05-
(1) A method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density, characterized in that a slab containing 0.8% is used, and (3) further heating at a temperature of 800 to 1200 ° C. A method for producing a unidirectional electrical steel sheet having an extremely high magnetic flux density according to (1) or (2), characterized in that the sheet is annealed and the cooling rate between 200 and 650 ° C is set to 5 ° C / sec or more. Is provided.

【0019】[0019]

【発明の実施の形態】本発明が対象としている一方向性
電磁鋼板は、従来用いられている製鋼法で得られた溶鋼
を連続鋳造法あるいは造塊法で鋳造し、必要に応じて分
塊工程をはさんでスラブとし、引き続き熱間圧延して熱
延板とし、次いで、必要に応じて熱延板焼鈍を施し、圧
下率が80%以上の1回の冷延を施し、次いで、脱炭焼
鈍、最終仕上焼鈍を順次行うことによって製造される。
BEST MODE FOR CARRYING OUT THE INVENTION The grain-oriented electrical steel sheet to which the present invention is applied is obtained by casting a molten steel obtained by a conventional steelmaking method by a continuous casting method or an ingot making method, and if necessary, slabbing Slabs are sandwiched between the steps, and subsequently hot-rolled into hot-rolled sheets. Then, hot-rolled sheets are annealed as necessary, cold rolled once with a rolling reduction of 80% or more, and then de-rolled. It is manufactured by sequentially performing carbon annealing and final finish annealing.

【0020】本発明者らは、低温スラブ加熱と熱延板焼
鈍省略を両立して、かつ、良好な磁気特性を得る方策を
種々検討した結果、熱延巻取り温度の制御、熱延巻
取り後の強制冷却、熱延板再結晶率制御、最終仕上
焼鈍昇温時の窒素分圧制御を組み合わせることが、極め
て有効であるという新知見を得た。以下、実験結果を基
に説明する。
The inventors of the present invention have studied various measures to obtain good magnetic properties while achieving both low-temperature slab heating and omitting hot-rolled sheet annealing, and as a result, control of hot-rolling temperature and hot-rolling We have obtained a new finding that it is extremely effective to combine the following forced cooling, control of the recrystallization rate of the hot-rolled sheet, and control of the nitrogen partial pressure during the final finishing annealing temperature rise. Hereinafter, it demonstrates based on an experimental result.

【0021】図1は、熱延後の巻取り温度と引き続く冷
却条件が磁気特性に与える影響を示したものである。こ
の場合、重量で、C=0.041%、Si=3.08
%、酸可溶性Al=0.031%、N=0.0062
%、を含有し、残部Fe及び不可避的不純物からなる2
50mm厚の20トンスラブを製造した。そして、115
0℃に約60分加熱した後、5パスで粗熱延し、40mm
厚とした後、仕上熱延開始温度、圧下配分を種々変更し
て、6パスで仕上熱延して、2.8mmの熱延板とし、30
0 〜800 ℃まで水冷し、直ちに、コイル状に巻き取っ
た。その後放冷、注水、水槽に浸漬して冷却、な
る3条件で冷却した。
FIG. 1 shows the influence of the winding temperature after hot rolling and the subsequent cooling conditions on the magnetic properties. In this case, by weight, C = 0.041%, Si = 3.08
%, Acid-soluble Al = 0.031%, N = 0.0062
%, And the balance Fe and unavoidable impurities 2
A 20 ton slab 50 mm thick was produced. And 115
After heating to 0 ° C for about 60 minutes, rough hot rolling in 5 passes, 40mm
After the thickness is changed, the finish hot rolling start temperature and the reduction distribution are variously changed, and the finish hot rolling is performed in 6 passes to obtain a 2.8 mm hot rolled sheet.
It was water-cooled to 0 to 800 ° C and immediately wound into a coil. Then, it was cooled under three conditions of standing cooling, pouring water, immersing in a water tank and cooling.

【0022】かかる熱延コイルに熱延板焼鈍を施すこと
なく約88%の強圧下圧延を行って最終板厚0.335
mmの冷延板とした。これらの最終板厚の冷延板を840
℃に150秒保持する脱炭焼鈍を施した。次いで、77
0℃に30秒保持する焼鈍時、焼鈍雰囲気中にNH3
スを混入させ、鋼板に窒素吸収を生ぜしめた。この窒化
処理後のN量は、0.0198〜0.0230重量%で
あり、一次再結晶粒の平均粒径が21〜26μmであっ
た。かかる窒化後の鋼板にMgOを主成分とする焼鈍分
離剤を塗布し、1200℃に20時間保持する最終仕上
焼鈍を行った。この時、昇温中の焼鈍雰囲気の窒素分圧
を(a)N2 :25%,H2 :75%、(b)N2 :1
0%,H2 :90%の2通りとした。
The hot-rolled coil was subjected to strong reduction rolling of about 88% without annealing the hot-rolled sheet to give a final sheet thickness of 0.335.
mm cold rolled sheet. 840 cold-rolled sheets of these final thicknesses
Decarburization annealing was performed at 150 ° C. for 150 seconds. Then 77
During annealing at 0 ° C. for 30 seconds, NH 3 gas was mixed into the annealing atmosphere to cause the steel sheet to absorb nitrogen. The amount of N after this nitriding treatment was 0.0198 to 0.0230% by weight, and the average grain size of the primary recrystallized grains was 21 to 26 μm. An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding, and a final finish annealing was performed at 1200 ° C. for 20 hours. At this time, the nitrogen partial pressure of the annealing atmosphere during the temperature rise is (a) N 2 : 25%, H 2 : 75%, (b) N 2 : 1.
There are two types, 0% and H 2 : 90%.

【0023】図1から明らかなように、熱延後の巻取り
温度が650℃以下で、引き続き強制冷却を施し、更
に、最終仕上焼鈍昇温中の焼鈍雰囲気の窒素分圧が25
%と高めの条件がB8 ≧1.95Tを実現する必要条件
である。本発明者らは、図1に示した知見をさらに詳細
に検討した。図2は、図1で熱延後の巻取り温度650
℃以下で、引き続き強制冷却を施し更に、最終仕上焼鈍
昇温中の焼鈍雰囲気の窒素分圧が25%の場合の熱延板
の板厚中心での再結晶率と磁気特性の関係を示したもの
である。
As is apparent from FIG. 1, the coiling temperature after hot rolling was 650 ° C. or less, continuous forced cooling was performed, and the nitrogen partial pressure in the annealing atmosphere during the final finish annealing temperature rise was 25.
%, Which is a high condition, is a necessary condition for realizing B 8 ≧ 1.95T. The present inventors examined the findings shown in FIG. 1 in more detail. FIG. 2 shows the winding temperature 650 after hot rolling in FIG.
After forced cooling was continued at a temperature of ℃ or below, the relationship between the recrystallization rate at the plate thickness center and the magnetic properties was shown when the nitrogen partial pressure in the annealing atmosphere during the final finish annealing was 25%. It is a thing.

【0024】図2から明らかなように、最終仕上焼鈍昇
温中の焼鈍雰囲気の窒素分圧が25%を前提とし、熱延
巻取り温度が650℃以下でかつ強制冷却を施したもの
の中で、熱延板の板厚中心での再結晶率が95%以下と
いう条件が、B8 ≧1.95Tを実現する十分条件であ
る。図1,2で示された現象のメカニズムについては必
ずしも明らかではないが、本発明者らは次のように考え
ている。
As is apparent from FIG. 2, assuming that the nitrogen partial pressure of the annealing atmosphere during the final finish annealing temperature increase is 25%, the hot rolling temperature is 650 ° C. or less and the cooling is conducted forcibly. The condition that the recrystallization rate at the plate thickness center of the hot rolled plate is 95% or less is a sufficient condition for achieving B 8 ≧ 1.95T. Although the mechanism of the phenomenon shown in FIGS. 1 and 2 is not always clear, the present inventors consider as follows.

【0025】熱延後の巻取り温度を下げることによって
生じる金属学的変化としては、変態相のパーライトか
らベイナイトへの変化、炭窒化物の粒界析出から粒内
析出への変化、及び、Fe3 Cからε−炭化物への変
化、Si3 4 からFe162への変化が考えられる。
更に、熱延後の巻取りに引き続く強制冷却の効果は、上
記粒内析出物の粗大化を抑制し、冷延時転位のタングリ
ングを十分生ぜしめることにあると考えられる。この粒
内微細炭窒化物の回りの転位の高集積領域は、冷延再結
晶時ランダム方位の生成サイトとなるため、冷延再結晶
集合組織(一次再結晶集合組織)は、ランダム化する。
このランダム化は、従来の一方向性電磁鋼板の製造メタ
ラジーからすると、必ずしもよい傾向とはいえない。し
かしながら、本発明者らは一次再結晶集合組織におい
て、{100}<025>方位粒が減少することに注目
している。
The metallurgical changes caused by lowering the coiling temperature after hot rolling include changes in the transformation phase from pearlite to bainite, changes from grain boundary precipitation of carbonitrides to intragranular precipitation, and Fe. A change from 3 C to ε-carbide and a change from Si 3 N 4 to Fe 16 N 2 are considered.
Furthermore, it is considered that the effect of the forced cooling subsequent to the winding after hot rolling is to suppress the coarsening of the intragranular precipitates and sufficiently generate the tongue ring of dislocation during cold rolling. The region of high dislocation concentration around the intragranular fine carbonitride serves as a site for generating random orientation during cold rolling recrystallization, so the cold rolling recrystallization texture (primary recrystallization texture) is randomized.
This randomization is not always a good tendency from the viewpoint of the conventional metallurgy for producing a grain-oriented electrical steel sheet. However, the present inventors have noticed that {100} <025> oriented grains decrease in the primary recrystallization texture.

【0026】{100}<025>方位粒は、他の方位
粒と比較して、サイズが大きい傾向があり、かつ、等価
な2つの{100}<025>方位粒がΣ5対応方位の
関係にあることから、最終仕上焼鈍時、双方を侵食し合
って、粗粒を形成しやすい傾向がある。一次再結晶板に
粗粒が増すと、{110}<001>方位二次再結晶粒
の粒成長の駆動力が局所的に低下し、二次再結晶が遅延
する。
The {100} <025> oriented grains tend to be larger in size than the other oriented grains, and two equivalent {100} <025> oriented grains have a Σ5-corresponding orientation relationship. Therefore, during the final finish annealing, they tend to corrode each other to form coarse grains. When coarse grains increase in the primary recrystallized plate, the driving force for grain growth of {110} <001> oriented secondary recrystallized grains locally decreases, and the secondary recrystallization is delayed.

【0027】その結果、通常行われる昇温過程の二次再
結晶の場合、二次再結晶完了温度が上昇することとな
り、インヒビター強度の急激な低下、粒界移動の粒界性
格依存性の低下が生じ、このため、二次再結晶集合組織
の{110}<001>方位集積度の低下、及び、極端
な場合は、二次再結晶不良が生じることとなる。従っ
て、低温巻取りと引き続く強制冷却を組み合わせること
によって一次再結晶集合組織において、{100}<0
25>方位を減少させたことが、良好な磁気特性を得る
ことに繋がっているものと推定される。
As a result, in the case of secondary recrystallization in the normal temperature rising process, the secondary recrystallization completion temperature rises, the inhibitor strength rapidly decreases, and the grain boundary character dependence of grain boundary migration decreases. Therefore, the degree of integration of {110} <001> orientation of the secondary recrystallization texture decreases, and in an extreme case, secondary recrystallization failure occurs. Therefore, by combining low temperature winding with subsequent forced cooling, {100} <0 in the primary recrystallization texture.
It is estimated that the reduction of the 25> azimuth is linked to obtaining good magnetic characteristics.

【0028】次に、上記熱延後の巻取り温度説明と引き
続く強制冷却と熱延板の再結晶率制御との相乗効果につ
いては、次のように推定している。低温巻取り時の炭化
物の粒内析出については、巻取り後室温に至るまでの冷
却過程で、炭素が粒界まで拡散すればFe3 C等として
析出するが、粒界まで拡散しなければ、粒内析出する。
一方、熱延板の再結晶率を所定量以下にするというの
は、粒内の転位密度を高めに確保することと等しく、粒
内の炭窒化物の析出サイトとしての転位の量を確保する
意味がある。
Next, the synergistic effect of the above description of the coiling temperature after hot rolling and the subsequent forced cooling and control of the recrystallization rate of the hot rolled sheet is estimated as follows. Regarding the precipitation of carbides in the grains during low-temperature winding, if carbon diffuses to the grain boundaries during the cooling process up to room temperature after winding, it precipitates as Fe 3 C, but if it does not diffuse to the grain boundaries, Precipitates in the grains.
On the other hand, setting the recrystallization rate of the hot-rolled sheet to a predetermined amount or less is equivalent to securing a high dislocation density in the grains, and securing the amount of dislocations as precipitation sites for carbonitrides in the grains. It makes sense.

【0029】さらに加えて、熱延板で再結晶しにくい方
位は、{100}系の方位であり、この方位粒は、板厚
中心層に多く存在する。磁気特性を良好にするための熱
延板の板厚中心の再結晶率の上限が存在する理由は、板
厚中心の{100}系方位を未再結晶状態に確保する必
要があるためである。熱延後{100}系方位が未再結
晶状態にあるということは、炭窒化物の析出核としての
転位密度が高く、炭窒化物が粒内析出しやすい状況にあ
ると理解できる。つまり、熱延後の巻取り温度と引き続
く強制冷却との相乗効果を生ぜしめるための熱延板再結
晶率の上限値は、熱延板の{100}系方位粒の粒内に
炭窒化物を析出させるための具備条件となっていると考
えられる。
In addition, the orientation that is difficult to recrystallize in the hot-rolled sheet is the {100} system orientation, and many of these orientation grains are present in the sheet thickness center layer. The reason why there is an upper limit of the recrystallization rate at the plate thickness center of the hot rolled plate for improving the magnetic properties is that it is necessary to secure the {100} system orientation of the plate thickness center in an unrecrystallized state. . It can be understood that the {100} orientation after hot rolling is in a non-recrystallized state because the dislocation density as the precipitation nucleus of the carbonitride is high and the carbonitride is likely to be intragranularly precipitated. That is, the upper limit value of the recrystallization rate of the hot-rolled sheet for producing the synergistic effect of the coiling temperature after hot rolling and the forced cooling that follows is the carbonitride in the grains of the {100} -oriented grains of the hot-rolled sheet. It is considered that this is a necessary condition for precipitating.

【0030】熱延板の状態で{100}系方位粒の粒内
に多数の炭窒化物の析出を実現できれば、引き続く冷延
時、{100}系方位粒の粒内で炭窒化物に転位がタン
グリングされ、粒内に多数の高歪領域が形成されると考
えられる。これらの高歪領域は、ランダム方位、一次再
結晶方位の核生成サイトとなるため、冷延再結晶集合組
織において、熱延板の{100}系方位の位置から発生
しやすい{100}<025>方位粒が相対的に減少す
るものと考えられる。この{100}<025>方位粒
の減少は、前述の如く、二次再結晶時{110}<00
1>方位集積度を高めるのに役立つものと考えられる。
If a large number of carbonitrides can be precipitated in the grains of {100} -oriented grains in the state of hot-rolled sheet, dislocations in carbonitrides will occur in the grains of {100} -oriented grains during the subsequent cold rolling. It is considered that tangling occurs and many high strain regions are formed in the grains. Since these high strain regions serve as nucleation sites of random orientation and primary recrystallization orientation, {100} <025 which is likely to occur from the position of {100} orientation of the hot rolled sheet in the cold rolled recrystallization texture. > It is considered that oriented grains are relatively reduced. As described above, the reduction of {100} <025> oriented grains is caused by {110} <00 at the time of secondary recrystallization.
1> It is considered to be useful for increasing the degree of orientation integration.

【0031】一方、図2に示したように、最終仕上焼鈍
の焼鈍雰囲気の制御が本発明の必須条件となる理由につ
いては次のように考えている。熱延後の巻取りに引き続
く冷却速度が速いために、微細な窒化物(Fe162
が形成されるが、この析出物は脱炭焼鈍昇温時分解して
微細なAlNが析出する。この微細なAlNは、粒成長
の抑制力が強く結晶粒径を適性な範囲に制御するため、
脱炭焼鈍温度を高めたり、時間を延ばしたりする必要が
生じる。このようなインヒビター強度が高い状態での粒
成長の場合、粒界移動の粒界性格依存性が強調されるの
で、一部の方位粒が異常粒成長し混粒組織となりやす
い。この現象は、二次再結晶の不安定化を引き起こすの
で、最終仕上焼鈍時の二次再結晶温度域での焼鈍雰囲気
の窒素分圧を高めて、二次再結晶時のインヒビターの分
解を抑制する必要があるものと考えられる。
On the other hand, as shown in FIG. 2, the reason why the control of the annealing atmosphere of the final finish annealing is an essential condition of the present invention is considered as follows. Fine nitrides (Fe 16 N 2 ) due to high cooling rate following winding after hot rolling
However, this precipitate decomposes when the temperature of decarburization annealing rises, and fine AlN precipitates. Since this fine AlN has a strong inhibitory effect on grain growth and controls the crystal grain size within an appropriate range,
It is necessary to raise the decarburization annealing temperature and extend the time. In the case of grain growth in a state where the inhibitor strength is high, since the grain boundary character dependence of grain boundary movement is emphasized, some oriented grains are likely to grow abnormally to form a mixed grain structure. This phenomenon causes the destabilization of the secondary recrystallization, so the nitrogen partial pressure of the annealing atmosphere in the secondary recrystallization temperature range during the final finish annealing is increased to suppress the decomposition of the inhibitor during the secondary recrystallization. It seems necessary to do.

【0032】次に本発明の構成要件を限定した理由につ
いて述べる。先ず、スラブ成分とスラブ加熱温度に関し
て限定理由を詳細に説明する。Cは0.025重量%
(以下単に%と略述)未満になると二次再結晶が不安定
になり、かつ二次再結晶した場合でもB8 >1.80
(T)が得がたいので0.025%以上とした。一方、
Cが多くなりすぎると脱炭焼鈍時間が長くなり経済的で
ないので0.075%以下とした。
Next, the reasons for limiting the constituent features of the present invention will be described. First, the reasons for limiting the slab components and the slab heating temperature will be described in detail. C is 0.025% by weight
(Hereinafter simply abbreviated as%), the secondary recrystallization becomes unstable, and even when secondary recrystallization occurs, B 8 > 1.80.
Since (T) is hard to obtain, it was set to 0.025% or more. on the other hand,
If C is too much, the decarburization annealing time becomes long and it is not economical, so the content was made 0.075% or less.

【0033】Siは4.5%を超えると冷延時の割れが
著しくなるので4.5%以下とした。また、2.5%未
満では素材の固有抵抗が低すぎ、トランス鉄心材料とし
て必要な低鉄損が得られないので2.5%以上とした。
望ましくは3.2%以上である。Alは二次再結晶の安
定化に必要なAlNもくしは(Al,Si)Nを確保す
るため、酸可溶性Alとして0.010%以上が必要で
ある。酸可溶性Alが0.060%を超えると熱延板の
AlNが不適切となり二次再結晶が不安定となるので
0.060%以下とした。
If Si exceeds 4.5%, cracking during cold rolling becomes remarkable, so Si is set to 4.5% or less. On the other hand, if it is less than 2.5%, the specific resistance of the material is too low, and the low iron loss required for the transformer core material cannot be obtained.
Desirably, it is at least 3.2%. Since Al secures AlN or (Al, Si) N necessary for stabilizing secondary recrystallization, 0.010% or more is required as acid-soluble Al. If the acid-soluble Al exceeds 0.060%, the AlN of the hot-rolled sheet becomes unsuitable and the secondary recrystallization becomes unstable, so the content was made 0.060% or less.

【0034】Nについては通常の製鋼作業では0.00
10%未満にすることが困難であり、かつ経済的に好ま
しくないので0.0010%以上とし、一方、0.01
30%を超えるとブリスターと呼ばれる“鋼板表面ふく
れ”が発生するので0.0130%以下とした。Mn
S,MnSeが鋼中に存在しても、製造工程の条件を適
正に選ぶことによって磁気特性を良好にすることが可能
である。しかしながらSやSeが高いと線状細粒と呼ば
れる二次再結晶不良部が発生する傾向があり、この二次
再結晶不良部の発生を予防するためには(S+0.40
5Se)≦0.014%であることが望ましい。また、
SあるいはSeが上記値を超える場合には製造条件をい
かに変更しても二次再結晶不良部が発生する確率が高く
なり好ましくない。また最終仕上焼鈍で純化するのに要
する時間が長くなりすぎて好ましくなく、このような観
点からSあるいはSeを不必要に増すことは意味がな
い。
N is 0.00 in the ordinary steelmaking work.
Since it is difficult to make it less than 10% and it is not economically preferable, it is set to 0.0010% or more, while 0.01
When it exceeds 30%, "steel plate surface blistering" called blister occurs, so the content was made 0.0130% or less. Mn
Even if S and MnSe are present in the steel, it is possible to improve the magnetic characteristics by properly selecting the conditions of the manufacturing process. However, if S and Se are high, secondary recrystallization defective portions called linear fine grains tend to occur, and in order to prevent the generation of this secondary recrystallization defective portion, (S + 0.40
It is desirable that 5Se) ≦ 0.014%. Also,
If S or Se exceeds the above value, the probability of occurrence of defective secondary recrystallization is increased no matter how the manufacturing conditions are changed, which is not preferable. In addition, the time required for purification in the final finish annealing is too long, which is not preferable. From such a viewpoint, it is meaningless to increase S or Se unnecessarily.

【0035】Mnは0.05%未満では、熱間圧延によ
って得られる熱延板の形状(平坦さ)、就中、ストリッ
プの側縁部が波形状となり製品歩留りを低下させる問題
が発生する。一方、Mn量が0.8%を超えると製品の
磁束密度を低下させ、好ましくないので、Mn量の上限
を0.8%とした。この他、インヒビター構成元素とし
て知られているSn,Sb,Cr,Cu,Ni,B,T
i等を微量に含有することは差し支えない。
If the Mn content is less than 0.05%, the shape (flatness) of the hot-rolled sheet obtained by hot rolling, especially the side edges of the strip, becomes corrugated, which lowers the product yield. On the other hand, if the Mn content exceeds 0.8%, the magnetic flux density of the product is lowered, which is not preferable. Therefore, the upper limit of the Mn content is set to 0.8%. In addition, Sn, Sb, Cr, Cu, Ni, B, T known as inhibitor constituent elements
There is no problem in containing a small amount of i or the like.

【0036】スラブ加熱温度は、普通鋼並みにしてコス
トダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。引き続く熱延工
程は、通常100〜400mm厚のスラブを加熱した後、
いずれも複数回のパスで行う粗熱延と仕上熱延よりな
る。粗熱延と仕上熱延の方法については、特に限定する
ものではないが、後述するように、熱延板の再結晶率を
制御することは留意すべきである。また、本発明のよう
に、熱延板焼鈍を省略する場合には、AlNの析出を熱
延中に行わしめることが一次再結晶粒径制御の点で好ま
しい。従って、AlNの析出温度域である800〜10
00℃の温度範囲に長時間滞在するような熱延の温度履
歴をとることは好ましい。
The heating temperature of the slab is limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. Preferably it is 1200 ° C or lower. In the subsequent hot rolling process, after heating a slab with a thickness of 100 to 400 mm,
Both of them consist of rough hot rolling and finish hot rolling performed in multiple passes. The methods of rough hot rolling and finish hot rolling are not particularly limited, but it should be noted that the recrystallization rate of the hot rolled sheet is controlled as described later. When the hot-rolled sheet annealing is omitted as in the present invention, it is preferable in terms of controlling the primary recrystallized grain size that precipitation of AlN is performed during hot rolling. Therefore, the precipitation temperature range of AlN is 800 to 10
It is preferable to take a temperature history of hot rolling so as to stay in the temperature range of 00 ° C for a long time.

【0037】仕上熱延終了後は、数秒間空冷された後、
20〜200℃/sec で水冷され、鋼板は5〜20トン
のコイル状で巻取られる。この鋼板の冷却過程について
は特に限定するものではないが、後述するように、熱延
板の再結晶率を制御することは留意すべきである。ま
た、本発明のように、熱延板焼鈍を省略する場合には、
仕上熱延後空冷時間を延ばしてAlNを積極的に析出さ
せることは、一次再結晶粒径制御の点で好ましい。
After finishing hot rolling, after air cooling for several seconds,
It is water-cooled at 20 to 200 ° C./sec, and the steel sheet is wound in a coil shape of 5 to 20 tons. The cooling process of the steel sheet is not particularly limited, but it should be noted that the recrystallization rate of the hot rolled sheet is controlled, as will be described later. Further, as in the present invention, when omitting the hot rolled sheet annealing,
It is preferable to prolong the air-cooling time after finish hot rolling to positively precipitate AlN from the viewpoint of controlling the primary recrystallized grain size.

【0038】熱延後の鋼板の巻取り温度を650℃以下
とし、かつ、巻取り後のコイルを空冷以上の冷速で強制
冷却する必要がある。これは、図1に示したように、こ
の範囲にすることがB8 ≧1.95Tなる良好な磁気特
性を得るための必要条件となるためである。巻取り温度
の下限値については特に限定しないが、200℃未満で
巻取ることは工業的には容易でないので、200〜65
0℃の範囲が工業的には好ましい。
It is necessary to set the coiling temperature of the steel sheet after hot rolling to 650 ° C. or lower, and to forcibly cool the coil after coiling at a cooling speed higher than that of air cooling. This is because, as shown in FIG. 1, setting this range is a necessary condition for obtaining good magnetic characteristics of B 8 ≧ 1.95T. The lower limit of the coiling temperature is not particularly limited, but it is industrially not easy to coil the coiling at a temperature of less than 200 ° C., and therefore 200 to 65 is possible.
The range of 0 ° C is industrially preferable.

【0039】巻取り後の強制冷却方法については特に限
定するものではない。コイルを水槽に浸漬する方法、コ
イルに水や水のミストを注水する方法、コイルを油槽に
浸漬する方法等いずれの方法でも冷却速度を高めること
により微細炭窒化物を析出させかつ粗大化を防ぐ効果が
ある。この熱延板の板厚中心での再結晶率を95%以下
と規定した。これは、図2に示したように、この範囲
で、B8 ≧1.95Tなる良好な磁気特性が得られるか
らである。再結晶率の下限値は、特に限定しないが、再
結晶率を低下させると、磁気特性を良好とするための冷
延率が低下する傾向がある。再結晶率を制御する方法に
ついては特に限定するものではないが、仕上熱延温度、
特に仕上熱延終了温度を制御する方法、仕上熱延の圧下
配分を制御する方法、仕上熱延後の水冷開始までの時間
を制御する方法等を用いることができる。
The method of forced cooling after winding is not particularly limited. In any method such as immersing the coil in a water tank, pouring water or water mist into the coil, immersing the coil in an oil tank, etc., precipitation of fine carbonitrides is prevented and coarsening is prevented by increasing the cooling rate. effective. The recrystallization rate at the plate thickness center of this hot rolled sheet was defined as 95% or less. This is because, as shown in FIG. 2, good magnetic properties of B 8 ≧ 1.95 T can be obtained in this range. The lower limit of the recrystallization rate is not particularly limited, but if the recrystallization rate is reduced, the cold rolling rate for improving the magnetic properties tends to be reduced. The method for controlling the recrystallization rate is not particularly limited, but the finishing hot rolling temperature,
In particular, a method of controlling the finish hot rolling finish temperature, a method of controlling the reduction distribution of the finish hot rolling, a method of controlling the time until the start of water cooling after the finish hot rolling can be used.

【0040】引き続き、熱延板は、800〜1200℃
の温度の熱延板焼鈍が施され、冷却過程の200〜65
0℃の間で冷却速度5℃/秒以上で冷却される。これら
の処理は、磁気特性を高位安定化する上で更に好まし
い。これらの条件は、熱延板における微細炭窒化物を一
旦溶解し、改めてこの微細炭窒化物を均一析出させるに
必要な条件である。本発明の場合、熱延板の炭窒化物の
分散状態が通常の熱延板より微細かつ均一になっている
ので、上記熱延板焼鈍の熱サイクル制御効果が得られや
すい。
Subsequently, the hot-rolled sheet is 800 to 1200 ° C.
The hot rolled sheet is annealed at the temperature of 200 to 65 during the cooling process.
It is cooled at a cooling rate of 5 ° C / sec or more between 0 ° C. These treatments are more preferable for stabilizing the magnetic properties at a high level. These conditions are necessary to once dissolve the fine carbonitrides in the hot-rolled sheet and then to uniformly precipitate the fine carbonitrides. In the case of the present invention, the state of dispersion of carbonitrides in the hot-rolled sheet is finer and more uniform than in the ordinary hot-rolled sheet, so that the heat cycle control effect of the hot-rolled sheet annealing can be easily obtained.

【0041】上述の熱延板焼鈍された鋼板は次いで冷延
されるが冷延の圧下率を80%以上としたのは、この範
囲で、一次再結晶集合組織中に、適正量の{110}<
001>方位粒と、その{110}<001>方位粒が
二次再結晶する時に蚕食されやすい適正量の対応方位粒
({111}<112>等)が得られるからである。か
かる冷延後の鋼板は通常の方法で脱炭焼鈍、焼鈍分離剤
塗布、最終仕上焼鈍が施されて最終製品となる。ここで
脱炭焼鈍完了後、最終仕上焼鈍開始までの間の一次再結
晶粒の平均粒径を18〜35μmとしたのは、この値の
範囲で良好な磁束密度が得られやすく、かつ粒径変動に
対する磁束密度の変化が少ないからである。
The annealed steel sheet is then cold-rolled, but the reduction ratio of cold-rolling is set to 80% or more. In this range, an appropriate amount of {110 is included in the primary recrystallization texture. } <
This is because an appropriate amount of corresponding oriented grains ({111} <112>, etc.) that are likely to be silkworm eroded when the 001> oriented grains and their {110} <001> oriented grains are subjected to secondary recrystallization. The steel sheet after such cold rolling is subjected to decarburization annealing, applying an annealing separating agent, and finally finishing annealing by a usual method to obtain a final product. Here, the average grain size of the primary recrystallized grains from the completion of decarburization annealing to the start of final finish annealing is set to 18 to 35 μm, because a good magnetic flux density is easily obtained within this value range, and the grain size is This is because there is little change in the magnetic flux density due to fluctuations.

【0042】そして、熱延後最終仕上焼鈍の二次再結晶
開始までの間に鋼板に増窒素量で0.0020%以上の
窒化処理を施すと規定したのは、本発明の如き低温スラ
ブ加熱を前提とするプロセスでは、二次再結晶に必要な
インヒビター強度を不足がちになるからである。窒化の
方法としては特に限定するものではなく、脱炭焼鈍後引
き続き焼鈍雰囲気にNH3 ガスを混入させ窒化する方
法、窒素雰囲気中心プラズマを用いて窒化させる方法、
焼鈍分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に
窒化物が分解してできた窒素を鋼板に吸収させる方法、
最終仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒
化する方法等何れの方法でもよい。窒化量については、
インヒビター効果を十分発揮させるためには、増窒素量
で0.0020%以上は必要である。
After the hot rolling and before the start of secondary recrystallization in the final finish annealing, it is specified that the steel sheet is subjected to a nitriding treatment of 0.0020% or more with a nitrogen increase amount, that is, low temperature slab heating as in the present invention. This is because the process premised on (2) tends to lack the inhibitor strength required for secondary recrystallization. The method of nitriding is not particularly limited, and after decarburization annealing, a method of nitriding by subsequently mixing NH 3 gas in an annealing atmosphere, a method of nitriding using nitrogen atmosphere center plasma,
A method in which nitride is added to an annealing separator, and nitrogen generated by decomposition of nitride during absorption of temperature in final finish annealing is absorbed in a steel sheet,
Any method such as a method of increasing the N 2 partial pressure in the atmosphere of final finish annealing and nitriding the steel sheet may be used. For the amount of nitriding,
In order to exert the inhibitor effect sufficiently, the amount of nitrogen increase needs to be 0.0020% or more.

【0043】最終仕上焼鈍の昇温時900〜1200℃
の間の焼鈍雰囲気を窒素分圧を15%以上と規定した。
これは、焼鈍後の巻取りに引き続く冷却速度が速いため
に、微細な窒化物(Fe162 )が形成されるが、この
析出物は、脱炭焼鈍昇温時分解して微細なAlNが析出
する。この微細なAlNは粒成長の抑制力が強く、また
結晶粒径を適性な範囲に制御するため、脱炭焼鈍温度を
高めたり、時間を延ばしたりする必要が生じる。このよ
うなインヒビター強度が高い状態での粒成長の場合、粒
界移動の粒界性格依存性が強調されるので、一部の方位
粒が異常粒成長し、混粒組織となりやすい。この現象
は、二次再結晶の不安定化を引き起こすので、最終仕上
焼鈍時の二次再結晶温度域である900〜1200℃の
間での焼鈍雰囲気の窒素分圧を15%以上とし、二次再
結晶時のインヒビターの分解を抑制する必要がある。
When the temperature of the final finish annealing is increased, 900 to 1200 ° C.
The annealing atmosphere was defined as a nitrogen partial pressure of 15% or more.
This is because a fine nitride (Fe 16 N 2 ) is formed because the cooling rate following the winding after annealing is high, and this precipitate is decomposed at the time of decarburization annealing temperature rise to generate fine AlN. Is deposited. This fine AlN has a strong grain growth inhibitory force and controls the crystal grain size within an appropriate range. Therefore, it is necessary to raise the decarburization annealing temperature or extend the time. In the case of grain growth in a state where the inhibitor strength is high, since the grain boundary character dependence of grain boundary movement is emphasized, some oriented grains grow abnormally and a mixed grain structure tends to occur. This phenomenon causes destabilization of the secondary recrystallization. Therefore, the nitrogen partial pressure of the annealing atmosphere in the secondary recrystallization temperature range of 900 to 1200 ° C. during the final finish annealing is set to 15% or more. It is necessary to suppress the decomposition of the inhibitor during the next recrystallization.

【0044】[0044]

【実施例】【Example】

〔実施例1〕C:0.051%(重量%、以下同じ)、
Si:3.08%、酸可溶性Al:0.032%、N:
0.0061%を含有し、残部Fe及び不可避的不純物
からなる250mm厚の10トンスラブ12本を製造し
た。
[Example 1] C: 0.051% (wt%, the same applies hereinafter),
Si: 3.08%, acid-soluble Al: 0.032%, N:
Twelve 10-ton slabs containing 0.0061% and having a balance of Fe and unavoidable impurities and having a thickness of 250 mm were produced.

【0045】かかるスラブを1110℃で約60分均熱
した後、直ちに熱延を開始して、5パスの粗熱延で40
mm厚とした後、6パスの仕上熱延で2.8mm厚の熱延コ
イルとした。仕上熱延終了温度は851〜898℃であ
った。次いで、熱延後約2秒間空冷し、約5秒間水冷し
て、(a)705〜718℃、(b)611〜625
℃、(c)515〜523℃の3水準で巻取り、(1)
空冷、(2)水槽中浸漬冷却の2通りで冷却した。かか
る熱延コイルに、熱延板焼鈍を施すことなく、圧下率約
88%で冷延して0.335mmの冷延板とし、840℃
で150秒保持する脱炭焼鈍を施した。しかる後、75
0℃で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH
3 ガスを混入させ鋼板に窒素を吸収せしめた。窒化後の
この鋼板のN量は0.0189〜0.0230%であっ
た。また、この窒化処理後の鋼板の一次再結晶粒の平均
粒径は、22〜24μmであった。次いで、この鋼板に
MgOを主成分とする焼鈍分離剤を塗布し、15℃/時
で1200℃まで昇温し、1200℃に20時間保持す
る最終仕上焼鈍を行った。この最終仕上焼鈍の雰囲気条
件として、(I)1200℃までの昇温中N2 :10
%,H2 :90%、1200℃保定中100%H2
(II)800℃までの昇温中N2 :10%,H2 :90
%、800℃〜1200℃までN2 :50%,H2 :5
0%、1200℃保定中100%H2 、なる2通りで処
理した。実験条件と磁気特性の結果を表1に示す。
After soaking the slab at 1110 ° C. for about 60 minutes, hot rolling is immediately started, and the hot rolling of 5 passes is carried out at 40 ° C.
After the thickness was set to mm, a 6-pass hot rolling was performed to obtain a hot rolled coil having a thickness of 2.8 mm. The final hot rolling finish temperature was 851 to 898 ° C. Then, after hot rolling, it is air-cooled for about 2 seconds, water-cooled for about 5 seconds, and (a) 705 to 718 ° C., (b) 611 to 625.
℃, (c) 515 ~ 523 ℃ rolled up at three levels, (1)
It was cooled in two ways: air cooling and (2) immersion cooling in a water tank. The hot-rolled coil was cold-rolled at a rolling reduction of about 88% to obtain a 0.335-mm cold-rolled sheet without annealing the hot-rolled sheet at 840 ° C.
Then, decarburization annealing was performed for 150 seconds. After that, 75
Annealing is carried out by holding at 0 ° C for 30 seconds.
Nitrogen was absorbed in the steel sheet by mixing 3 gases. The N content of this steel sheet after nitriding was 0.0189 to 0.0230%. The average grain size of the primary recrystallized grains after the nitriding treatment was 22 to 24 μm. Next, an annealing separator having MgO as a main component was applied to this steel sheet, and the final finishing annealing was performed at 15 ° C./hour to 1200 ° C. and holding at 1200 ° C. for 20 hours. As an atmosphere condition for this final finish annealing, (I) during temperature increase up to 1200 ° C. N 2 : 10
%, H 2 : 90%, 100% H 2 during retention at 1200 ° C.,
(II) During heating up to 800 ° C., N 2 : 10%, H 2 : 90
%, From 800 ° C. to 1200 ° C. N 2 : 50%, H 2 : 5
Two treatments were performed: 0%, 100% H 2 during 1200 ° C. retention. Table 1 shows the experimental conditions and the results of magnetic properties.

【0046】[0046]

【表1】 [Table 1]

【0047】〔実施例2〕 (1)C:0.048%、Si:3.17%、Mn:
0.03%、S:0.002%、酸可溶性Al:0.0
27%、N:0.0060%、(2)C,Si,酸可溶
性Al,N量を(1)と同じとし、更にMn:0.10
%、S:0.007%を含有し、残部Fe及び不可避的
不純物からなる250mm厚の10トンスラブを4本製造
した。かかるスラブを1120℃で約60分均熱した
後、直ちに熱延を開始し、5パスの粗熱延で40mm厚と
した後、6パスの仕上熱延で2.6mm厚の熱延コイルと
した。この時、仕上熱延終了温度は、901〜956℃
であった。
Example 2 (1) C: 0.048%, Si: 3.17%, Mn:
0.03%, S: 0.002%, acid-soluble Al: 0.0
27%, N: 0.0060%, (2) C, Si, acid-soluble Al, N content is the same as (1), and Mn: 0.10.
%, S: 0.007%, and four 10 ton slabs having a thickness of 250 mm and consisting of the balance Fe and unavoidable impurities were manufactured. After soaking the slab at 1120 ° C. for about 60 minutes, hot rolling was immediately started, and after 5 passes of rough hot rolling to 40 mm thickness, 6 passes of finish hot rolling to form a hot rolled coil of 2.6 mm thickness. did. At this time, the finish hot rolling finish temperature is 901 to 956 ° C.
Met.

【0048】次いで、熱延後約3秒間空冷し、約5秒間
水冷して、457〜470℃で巻取り、水槽中で浸漬冷
却した。かかる熱延コイルを(a)熱延板焼鈍なし、
(b)1000℃に3分間保持した後に650℃まで3
℃/秒で冷却後、650℃から200℃まで20℃/秒
の冷速で冷却後空冷なる2条件で処理した。かかるコイ
ルを圧下率約89%で冷延して0.285mm厚冷延コイ
ルとした。
Then, after hot rolling, it was air-cooled for about 3 seconds, water-cooled for about 5 seconds, wound at 457 to 470 ° C., and immersion-cooled in a water tank. Such a hot rolled coil is (a) without hot rolled sheet annealing,
(B) Hold at 1000 ° C. for 3 minutes and then increase to 650 ° C.
After cooling at ℃ / sec, cooling was performed from 650 ° C to 200 ° C at a cooling rate of 20 ° C / sec, followed by air cooling. This coil was cold rolled at a rolling reduction of about 89% to obtain a 0.285 mm thick cold rolled coil.

【0049】次いでこの冷延コイルに835℃で150
秒保持する脱炭焼鈍を施した。しかる後、770℃で3
0秒保持する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを
混入させ鋼板に窒素吸収を生ぜしめた。窒化後の鋼板の
N量は、0.0201〜0.0213%であった。ま
た、この窒化処理後の鋼板の一次再結晶粒の平均粒径
は、22〜25μmであった。
Next, this cold rolled coil was subjected to 150 ° C. at 835 ° C.
Decarburization annealing was performed for 2 seconds. After that, 3 at 770 ℃
Annealing was carried out for 0 second, and NH 3 gas was mixed in the annealing atmosphere to cause nitrogen absorption in the steel sheet. The N content of the steel sheet after nitriding was 0.0201 to 0.0213%. The average grain size of the primary recrystallized grains after the nitriding treatment was 22 to 25 μm.

【0050】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、10℃/時で1200℃まで昇温
し、1200℃に20時間保持する。最終仕上焼鈍を行
った。実験条件と磁気特性の結果を表2に示す。
Then, an annealing separator containing MgO as a main component is applied to the steel sheet, the temperature is raised to 1200 ° C. at 10 ° C./hour, and the temperature is held at 1200 ° C. for 20 hours. Final finish annealing was performed. Table 2 shows the experimental conditions and the results of magnetic properties.

【0051】[0051]

【表2】 [Table 2]

【0052】〔実施例3〕C:0.050%、Si:
3.21%、酸可溶性Al:0.032%、N:0.0
065%、を含有し、残部Fe及び不可避的不純物から
なる2種類の250mm厚の10トンスラブを6本製造し
た。かかるスラブを1200℃の温度で約60分均熱し
た後、直ちに熱延を開始し、5パスの粗熱延で40mm厚
とした後、6パスで仕上熱延して2.3mm厚の熱延コイ
ルとした。
[Example 3] C: 0.050%, Si:
3.21%, acid-soluble Al: 0.032%, N: 0.0
Two 10-ton slabs containing 065% and having a balance of Fe and unavoidable impurities and having a thickness of 250 mm were produced. This slab was soaked at a temperature of 1200 ° C. for about 60 minutes, immediately followed by hot rolling, and after 5 passes of rough hot rolling to 40 mm thickness, finish hot rolling with 6 passes to heat 2.3 mm thick. It was a rolled coil.

【0053】この時、仕上熱延開始温度を1100
℃、1050℃、1000℃の3条件とし、仕上熱
延の各パスの板厚及び圧下配分を、(a)40→20→
10→5→4→3→2.3mm(50→50→50→20
→25→23%)、(b)40→30→18→11→7
→4→2.3mm(25→40→39→36→43→43
%)の2通りとした。次いで熱延終了後約3秒間空冷
後、501〜532℃で巻取り、水槽中で浸漬冷却し
た。しかる後、熱延板焼鈍を施すことなく、圧下率約8
5%で冷延して0.335mm厚の冷延板とし、835℃
で150秒保持する脱炭焼鈍に引き続き、770℃で3
0秒保持する焼鈍中にNH3 ガスを混入させ鋼板に窒素
を吸収せしめた。窒化後のこの鋼板のN量は、0.01
90〜0.0217%であった。次いでこの鋼板にMg
Oを主成分とする焼鈍分離剤を塗布し、1200℃に2
0時間保持する最終仕上焼鈍を行った。この最終仕上焼
鈍の昇温時の焼鈍雰囲気をN2 :40%、H2 :60%
とした。
At this time, the finish hot rolling start temperature was set to 1100.
C., 1050.degree. C., 1000.degree. C. under three conditions, the plate thickness and reduction distribution of each pass of finish hot rolling are (a) 40 → 20 →
10 → 5 → 4 → 3 → 2.3mm (50 → 50 → 50 → 20
(→ 25 → 23%), (b) 40 → 30 → 18 → 11 → 7
→ 4 → 2.3mm (25 → 40 → 39 → 36 → 43 → 43
%). Then, after the hot rolling was finished, the mixture was air-cooled for about 3 seconds, wound at 501 to 532 ° C., and immersed and cooled in a water tank. After that, the reduction ratio of about 8 without hot-rolled sheet annealing.
Cold rolled at 5% to make a 0.335 mm thick cold rolled sheet at 835 ° C.
Decarburization annealing for 150 seconds, followed by 3 at 770 ° C
During the annealing for 0 second, NH 3 gas was mixed into the steel sheet to absorb nitrogen. The N content of this steel sheet after nitriding is 0.01
It was 90 to 0.0217%. Then, on this steel sheet,
Applying an annealing separator containing O as the main component, and applying 1200 ° C for 2
A final finish annealing was carried out for 0 hour. The annealing atmosphere during the temperature rise of this final finish annealing was N 2 : 40%, H 2 : 60%.
And

【0054】実験条件と磁気特性の結果を表3に示す。Table 3 shows the experimental conditions and the results of the magnetic properties.

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【発明の効果】本発明においては、熱延後の巻取り温度
を制御し、巻取り後強制冷却を施し、熱延板の再結晶率
を制御し、脱炭焼鈍完了後最終仕上焼鈍開始までの一次
再結晶粒の平均粒径を制御し、熱延後最終仕上焼鈍の二
次再結晶開始までの間に鋼板に所定量の窒化処理を施
し、最終仕上焼鈍昇温時の焼鈍雰囲気を制御することに
より、低温スラブ加熱で、熱延板焼鈍を省略してもな
お、良好な磁気特性を安定して得られるので、その工業
的効果は極めて大である。
According to the present invention, the winding temperature after hot rolling is controlled, forced cooling is performed after winding, the recrystallization rate of the hot rolled sheet is controlled, and after the completion of decarburizing annealing until the start of final finishing annealing. The average grain size of the primary recrystallized grains is controlled, and a predetermined amount of nitriding treatment is applied to the steel sheet after hot rolling until the start of secondary recrystallization in the final finish annealing, and the annealing atmosphere at the time of final finish annealing temperature rise is controlled. By doing so, even if the hot rolled sheet annealing is omitted by the low temperature slab heating, good magnetic characteristics can be stably obtained, so that its industrial effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延後の巻取り温度と引き続く冷却条件及び最
終仕上焼鈍昇温時の雰囲気条件が磁気特性に与える影響
を表わすグラフである。
FIG. 1 is a graph showing the influence of the winding temperature after hot rolling, the subsequent cooling conditions, and the atmospheric conditions during the final finish annealing temperature increase on the magnetic properties.

【図2】熱延板の板厚中心での再結晶率と磁気特性の関
係を表わすグラフである。
FIG. 2 is a graph showing the relationship between the recrystallization rate at the plate thickness center of the hot rolled sheet and the magnetic characteristics.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、 C:0.025〜0.075%、 Si:2.5〜4.5%、 酸可溶性Al:0.010〜0.060%、 N:0.0010〜0.0130%、を含有し、残部が
Fe及び不可避的不純物からなるスラブを1280℃未
満の温度で加熱し、熱延し、引き続き、圧下率80%以
上の冷延を施し、次いで脱炭焼鈍、最終仕上焼鈍を施し
て一方向性電磁鋼板を製造する方法において、該熱延終
了後の巻取り温度を650℃以下とし、巻取り後のコイ
ルを空冷以上の冷却速度で強制冷却して熱延板の板厚中
心の再結晶率を95%以下とし、脱炭焼鈍完了後最終仕
上焼鈍開始までの一次再結晶粒の平均粒径を18〜35
μmとし、熱延後最終仕上焼鈍の二次再結晶開始までの
間に鋼板に増窒素量で0.0020%以上の窒化処理を
施し、最終仕上焼鈍の昇温時900〜1200℃の間を
窒素分圧15%以上の焼鈍雰囲気中で焼鈍することを特
徴とする磁束密度の極めて高い一方向性電磁鋼板の製造
方法。
1. By weight ratio, C: 0.025 to 0.075%, Si: 2.5 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: 0.0010. A slab containing 0.0130% and the balance consisting of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., hot rolled, and subsequently cold rolled at a reduction rate of 80% or more, and then decarburized and annealed. In the method of producing a grain-oriented electrical steel sheet by performing final finish annealing, the coiling temperature after the hot rolling is set to 650 ° C. or less, and the coil after coiling is forcibly cooled at a cooling rate of air cooling or higher to heat the coil. The recrystallization rate at the plate thickness center of the rolled sheet is set to 95% or less, and the average grain size of the primary recrystallized grains after completion of decarburization annealing until the start of final finishing annealing is 18 to 35.
μm, the steel sheet is subjected to a nitriding treatment of 0.0020% or more with a nitrogen increase amount before the secondary recrystallization of the final finishing annealing after hot rolling, and the temperature of 900 to 1200 ° C. during the final finishing annealing is increased. A method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density, characterized by annealing in an annealing atmosphere having a nitrogen partial pressure of 15% or more.
【請求項2】 鋼成分として更に重量比でS+0.40
5Se:0.005〜0.020%、Mn:0.05〜
0.8%、を含有するスラブを用いることを特徴とする
請求項1記載の磁束密度の極めて高い一方向性電磁鋼板
の製造方法。
2. A steel component further comprising S + 0.40 in a weight ratio.
5Se: 0.005-0.020%, Mn: 0.05-
The slab containing 0.8% is used, The manufacturing method of the grain-oriented electrical steel sheet with extremely high magnetic flux density of Claim 1 characterized by the above-mentioned.
【請求項3】 800〜1200℃の温度で熱延板焼鈍
を施し、200〜650℃の間の冷却速度を5℃/秒以
上とすることを特徴とする請求項1又は2記載の磁束密
度の極めて高い一方向性電磁鋼板の製造方法。
3. The magnetic flux density according to claim 1, wherein the hot-rolled sheet is annealed at a temperature of 800 to 1200 ° C., and the cooling rate between 200 and 650 ° C. is 5 ° C./sec or more. Of highly oriented grain-oriented electrical steel sheet.
JP7258824A 1995-10-05 1995-10-05 Production of grain-oriented silicon steel sheet extremely high in magnetic flux density Withdrawn JPH09104922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7258824A JPH09104922A (en) 1995-10-05 1995-10-05 Production of grain-oriented silicon steel sheet extremely high in magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7258824A JPH09104922A (en) 1995-10-05 1995-10-05 Production of grain-oriented silicon steel sheet extremely high in magnetic flux density

Publications (1)

Publication Number Publication Date
JPH09104922A true JPH09104922A (en) 1997-04-22

Family

ID=17325553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7258824A Withdrawn JPH09104922A (en) 1995-10-05 1995-10-05 Production of grain-oriented silicon steel sheet extremely high in magnetic flux density

Country Status (1)

Country Link
JP (1) JPH09104922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479995B1 (en) * 1999-12-06 2005-03-30 주식회사 포스코 A method for producing high permeability grain-oriented silicon steel sheet
WO2014013615A1 (en) 2012-07-20 2014-01-23 新日鐵住金株式会社 Process for producing grain-oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479995B1 (en) * 1999-12-06 2005-03-30 주식회사 포스코 A method for producing high permeability grain-oriented silicon steel sheet
WO2014013615A1 (en) 2012-07-20 2014-01-23 新日鐵住金株式会社 Process for producing grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JPH0753885B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2003166019A (en) Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH09104922A (en) Production of grain-oriented silicon steel sheet extremely high in magnetic flux density
JPH06228646A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2878501B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3348217B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH086139B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties
JPH06145802A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107