JP2011052302A - Method for producing grain-oriented electromagnetic steel sheet - Google Patents

Method for producing grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2011052302A
JP2011052302A JP2009204205A JP2009204205A JP2011052302A JP 2011052302 A JP2011052302 A JP 2011052302A JP 2009204205 A JP2009204205 A JP 2009204205A JP 2009204205 A JP2009204205 A JP 2009204205A JP 2011052302 A JP2011052302 A JP 2011052302A
Authority
JP
Japan
Prior art keywords
mass
annealing
rolling
hot
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009204205A
Other languages
Japanese (ja)
Other versions
JP5287615B2 (en
Inventor
Minoru Takashima
高島  稔
Masanori Takenaka
雅紀 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009204205A priority Critical patent/JP5287615B2/en
Publication of JP2011052302A publication Critical patent/JP2011052302A/en
Application granted granted Critical
Publication of JP5287615B2 publication Critical patent/JP5287615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a grain-oriented electromagnetic steel sheet having excellent magnetic characteristic by using a material containing no inhibitor. <P>SOLUTION: The method for producing the grain-oriented silicon steel sheet in which a steel slab containing ≤7.0 mass% Si without any inhibitor is hot-rolled, a hot-rolled plate is annealed, and cold-rolled to the final thickness in one cold rolling, or the hot-rolled plate is annealed as necessary after the hot-rolling, and cold-rolled to the final thickness in two or more cold rolling including the intermediate annealing, and thereafter, the primary recrystallization annealing and the secondary recrystallization annealing are executed, the hot-rolled plate annealing with one cold-rolling or the intermediate annealing immediately before the final cold rolling with two or more cold-rolling comprises the soaking treatment of keeping the steel plate at the temperature of 750-1,200°C for 2-300sec, the quenching treatment of cooling the steel plate from 750°C to 400°C at the average cooling rate of 10-200°C/sec, and the strain imparting treatment of imparting strain corresponding to the rolling draft of 0.2-50% within 900 seconds after reaching 400°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、変圧器その他の電気機器の鉄心などに用いられる磁気特性に優れた方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties used for iron cores of transformers and other electrical equipment.

電磁鋼板の鉄損特性を改善する方法としては、インヒビタと呼ばれるAlやS,Se等の析出物を使用して、最終仕上焼鈍中に、ゴス方位粒と呼ばれる{011}<100>方位粒を優先的に二次再結晶・成長させることにより、磁化容易軸<100>の圧延方向への集積率を高め、磁気特性を改善する技術が一般的に使用されている。   As a method of improving the iron loss characteristics of the electrical steel sheet, a precipitate such as an inhibitor called Al, S, or Se is used, and {011} <100> oriented grains called goth oriented grains are used during final finish annealing. A technique is generally used in which the secondary recrystallization / growth preferentially increases the accumulation rate of the easy axis <100> in the rolling direction and improves the magnetic properties.

一方、インヒビタを使用しないで、表面エネルギーを駆動力として{011}面を優先的に成長させる技術が特許文献1〜3等に開示されている。しかし、これらの技術では、原理的には{011}面の選択のみが可能であり、圧延方向に<100>方向が揃ったゴス粒が得られないという問題があった。この問題を解決する技術として、特許文献4には、インヒビタを含有しない素材を用いてゴス方位粒を二次再結晶により発達させる技術が開示されている。   On the other hand, techniques for preferentially growing the {011} plane using surface energy as a driving force without using an inhibitor are disclosed in Patent Documents 1-3. However, these techniques have a problem that, in principle, only the {011} plane can be selected, and goth grains having the <100> direction aligned in the rolling direction cannot be obtained. As a technique for solving this problem, Patent Document 4 discloses a technique for developing Goss-oriented grains by secondary recrystallization using a material that does not contain an inhibitor.

ところで、近年、省エネルギーに対する意識の高まりから、従来にも増して磁気特性に優れた方向性電磁鋼板が強く求められるようになってきている。磁気特性の改善には、磁化容易軸<100>の圧延方向への集積率をより高める必要があるが、そのためには、二次再結晶前、一次再結晶後の鋼板の集合組織を適正に制御すること、すなわち、ゴス方位粒の存在頻度を高めるとともに、{111}<112>方位粒など、ゴス方位粒が蚕食しやすい方位粒の存在頻度を高めることが重要であり、そのための技術が開発されている。例えば、最終冷間圧延を高圧下率とする技術、最終冷間圧延を温間で行う技術、最終冷間圧延前の鋼板中に炭化物を微細分散させる技術等が挙げられる。   By the way, in recent years, with the growing awareness of energy saving, there is a strong demand for grain-oriented electrical steel sheets that are more excellent in magnetic properties than ever before. In order to improve the magnetic properties, it is necessary to further increase the accumulation ratio of the easy axis <100> in the rolling direction. For this purpose, the texture of the steel sheet before and after the secondary recrystallization is appropriately set. It is important to control, that is, to increase the existence frequency of Goss orientation grains, and to increase the existence frequency of orientation grains such as {111} <112> orientation grains that are likely to be eroded by Goss orientation grains. Has been developed. For example, a technique for reducing the final cold rolling under high pressure, a technique for performing the final cold rolling warm, a technique for finely dispersing carbide in the steel plate before the final cold rolling, and the like can be mentioned.

発明者らは、インヒビタを含まない素材を用いて方向性電磁鋼板を製造する方法において、一次再結晶後の鋼板の集合組織をさらに改善することによって、二次再結晶焼鈍後の鋼板(製品)の鉄損特性を改善する方法について研究を重ねてきた。その結果、最終冷間圧延前における鋼板中の固溶炭素量を増加させてやることにより、その後の一次再結晶後の集合組織が改善され、ひいては製品の鉄損特性が改善されることを見出した。そして、その具体的な方法として、特許文献5に、最終冷間圧延直前の焼鈍後から最終冷間圧延までの間の鋼板温度を低温に保持して鋼中の固溶炭素の析出(時効析出)を抑制し、最終冷間圧延開始前の鋼板中の固溶炭素量を増加させることを提案した。   The inventors have further improved the texture of the steel sheet after the primary recrystallization in the method for producing a grain-oriented electrical steel sheet using a material that does not contain an inhibitor, thereby providing a steel sheet (product) after the secondary recrystallization annealing. Research has been conducted on how to improve the iron loss characteristics of steel. As a result, it has been found that by increasing the amount of solute carbon in the steel plate before the final cold rolling, the texture after the subsequent primary recrystallization is improved, and consequently the iron loss characteristics of the product are improved. It was. As a specific method, Patent Document 5 describes precipitation of solute carbon (aging precipitation) in steel while maintaining the steel sheet temperature at a low temperature from annealing immediately before final cold rolling to final cold rolling. It was proposed to increase the amount of solute carbon in the steel plate before the start of the final cold rolling.

特開昭64− 55339号公報JP-A 64-55339 特開平02− 57635号公報Japanese Patent Laid-Open No. 02-57635 特開平07−197126号公報JP 07-197126 A 特開2000−129356号公報JP 2000-129356 A 特開2003−253335号公報JP 2003-253335 A

しかしながら、最終冷間圧延直前までコイルを低温に保持すること、特に工場内の温度が高温となる夏季においてコイルを低温に保持することは、巨大な冷却設備を必要とすること等から、設備的にもまたコスト的にも、工業的規模での実施は難しいという問題があった。   However, maintaining the coil at a low temperature until just before the final cold rolling, especially maintaining the coil at a low temperature in the summer when the temperature in the factory is high, requires a huge cooling facility. In addition, there is a problem that it is difficult to implement on an industrial scale in terms of cost.

そこで、本発明に目的は、最終冷間圧延直前の焼鈍後の高い固溶炭素量をより安定して保持することができ、ひいては、一次再結晶後の鋼板集合組織の改善を通じて、二次再結晶後の製品磁気特性を有利に改善することができる方向性電磁鋼板の製造方法を提案することにある。   Therefore, an object of the present invention is to more stably maintain a high amount of solute carbon after annealing immediately before the final cold rolling, and, in turn, through the improvement of the steel sheet texture after the primary recrystallization, The object is to propose a method for producing grain-oriented electrical steel sheets that can advantageously improve the product magnetic properties after crystallization.

発明者らは、コイルを低温に保持する従来技術に代わる、最終冷間圧延直前の固溶炭素量をより安定して高位に保持する方法について、鋭意検討を重ねた。その結果、固溶炭素の存在状態を変えてやる、すなわち、最終冷間圧延直前の焼鈍での急冷直後に歪付与処理を施して鋼板中に多数の転位を導入し、これに固溶炭素をトラップ(固着)させることにより、最終冷間圧延直前の焼鈍後から最終冷間圧延開始までの間の固溶炭素の析出を抑制する方法が、固溶炭素量の確保に極めて有効であることを見出し、本発明を完成するに至った。   The inventors have made extensive studies on a method for maintaining the amount of solute carbon immediately before the final cold rolling at a high level in place of the conventional technique for holding the coil at a low temperature. As a result, the existence state of the solute carbon is changed, that is, immediately after quenching in the annealing immediately before the final cold rolling, a straining treatment is performed to introduce a number of dislocations in the steel sheet, and the solute carbon is By trapping (fixing), the method of suppressing the precipitation of solute carbon from the annealing immediately before the final cold rolling to the start of the final cold rolling is extremely effective in securing the amount of solute carbon. The headline and the present invention were completed.

すなわち、本発明は、C:0.005〜0.15mass%、Si:7.0mass%以下およびMn:0.005〜3.0mass%を含有し、かつ、Al:0.0100mass%未満、SおよびSeを各々0.0050mass%以下に低減し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延後、熱延板焼鈍し、1回の冷間圧延で最終板厚とし、その後、一次再結晶焼鈍と二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記熱延板焼鈍が、
(1)750〜1200℃の温度で2〜300sec間保持する均熱処理と、
(2)750℃から400℃までを10〜200℃/secの平均冷却速度で冷却する急冷処理と、
(3)400℃到達後900秒以内に圧延圧下率0.2〜50%相当の歪を付与する歪付与処理と、からなることを特徴とする方向性電磁鋼板の製造方法である。
That is, the present invention contains C: 0.005-0.15 mass%, Si: 7.0 mass% or less and Mn: 0.005-3.0 mass%, and Al: less than 0.0100 mass%, S And Se are each reduced to 0.0050 mass% or less, and the steel slab consisting of Fe and inevitable impurities in the balance is hot-rolled and then hot-rolled sheet annealed to obtain the final sheet thickness by one cold rolling, In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing primary recrystallization annealing and secondary recrystallization annealing, the hot-rolled sheet annealing is performed as follows:
(1) Soaking treatment that is maintained at a temperature of 750 to 1200 ° C. for 2 to 300 seconds;
(2) a rapid cooling process for cooling from 750 ° C. to 400 ° C. at an average cooling rate of 10 to 200 ° C./sec;
(3) A method for producing a grain-oriented electrical steel sheet, comprising: a strain imparting treatment that imparts a strain corresponding to a rolling reduction of 0.2 to 50% within 900 seconds after reaching 400 ° C.

また、本発明は、C:0.005〜0.15mass%、Si:7.0mass%以下およびMn:0.005〜3.0mass%を含有し、かつ、Al:0.0100mass%未満、SおよびSeを各々0.0050mass%以下に低減し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延後、必要に応じて熱延板焼鈍し、中間焼鈍を挟む2回以上の冷間圧延で最終板厚とし、その後、一次再結晶焼鈍と二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記最終板厚とする冷間圧延前の中間焼鈍が、
(1)750〜1200℃の温度で2〜300sec間保持する均熱処理と、
(2)750℃から400℃までを10〜200℃/secの平均冷却速度で冷却する急冷処理と、
(3)400℃到達後900秒以内に圧延圧下率0.2〜50%相当の歪を付与する歪付与処理と、からなることを特徴とする方向性電磁鋼板の製造方法である。
Further, the present invention contains C: 0.005 to 0.15 mass%, Si: 7.0 mass% or less and Mn: 0.005 to 3.0 mass%, Al: less than 0.0100 mass%, S And Se are each reduced to 0.0050 mass% or less, and after the steel slab consisting of Fe and inevitable impurities is hot-rolled, it is subjected to hot-rolled sheet annealing as necessary, and two or more colds sandwiching the intermediate annealing. In the manufacturing method of the grain-oriented electrical steel sheet consisting of a series of steps of performing the final sheet thickness by rolling and then performing the primary recrystallization annealing and the secondary recrystallization annealing, the intermediate annealing before cold rolling to the final sheet thickness is
(1) Soaking treatment that is maintained at a temperature of 750 to 1200 ° C. for 2 to 300 seconds;
(2) a rapid cooling process for cooling from 750 ° C. to 400 ° C. at an average cooling rate of 10 to 200 ° C./sec;
(3) A method for producing a grain-oriented electrical steel sheet, comprising: a strain imparting treatment that imparts a strain corresponding to a rolling reduction of 0.2 to 50% within 900 seconds after reaching 400 ° C.

本発明における上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.005〜1.5mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.005〜1.5mass%、P:0.005〜0.50mass%およびCr:0.005〜1.5mass%の中から選ばれる1種または2種以上を含有することを特徴とする。   In the steel slab in the present invention, in addition to the above component composition, Ni: 0.005-1.5 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Cu : One or more selected from 0.005 to 1.5 mass%, P: 0.005 to 0.50 mass% and Cr: 0.005 to 1.5 mass% .

本発明によれば、コイルを低温に保持する従来技術と比較して、最終冷間圧延直前の固溶炭素量をより高いレベルに保持することができるので、一次再結晶後の鋼板の集合組織を安定して制御することが可能となり、ひいては、磁気特性に優れる方向性電磁鋼板を安定して提供することが可能となる。   According to the present invention, since the amount of solute carbon immediately before the final cold rolling can be maintained at a higher level as compared with the prior art that maintains the coil at a low temperature, the texture of the steel sheet after the primary recrystallization Can be stably controlled. As a result, a grain-oriented electrical steel sheet having excellent magnetic properties can be stably provided.

本発明における最終冷間圧延直前の焼鈍サイクルを説明する図である。It is a figure explaining the annealing cycle just before the last cold rolling in this invention.

先ず、本発明を開発する契機となった実験について説明する。
C:0.09mass%、Si:2.8mass%、Mn:0.03mass%、Al:0.0020mass%、S:0.0020mass%およびSe:0.0001mass%を含有する鋼スラブを1200℃に加熱後、熱間圧延して板厚が2.0mmのA,B2種類の熱延板とした。次いで、Aの熱延板については、1000℃で60sec間保持する均熱処理後、750℃から400℃までを40℃/secの平均冷却速度で冷却する急冷処理し、鋼板温度が400℃に到達してから100sec後に圧延して圧下率1%の歪を付与する歪付与処理を施す一連の工程からなる熱延板焼鈍を施した。一方、Bの熱延板には、上記と同じ均熱処理と急冷処理を施すのみで、歪付与処理を行わない熱延板焼鈍を施した。
First, an experiment that triggered the development of the present invention will be described.
Steel slab containing C: 0.09 mass%, Si: 2.8 mass%, Mn: 0.03 mass%, Al: 0.0020 mass%, S: 0.0020 mass% and Se: 0.0001 mass% at 1200 ° C After heating, it was hot-rolled to obtain two types of A and B hot-rolled plates having a plate thickness of 2.0 mm. Next, the hot rolled sheet A is subjected to a soaking treatment that is held at 1000 ° C. for 60 seconds, followed by a rapid cooling process in which cooling is performed from 750 ° C. to 400 ° C. at an average cooling rate of 40 ° C./sec, and the steel plate temperature reaches 400 ° C. Then, hot-rolled sheet annealing comprising a series of steps of applying a strain applying treatment for applying a strain with a rolling reduction of 1% by rolling after 100 seconds was performed. On the other hand, the hot-rolled sheet of B was subjected to hot-rolled sheet annealing which was only subjected to the same soaking and quenching process as described above and not subjected to the strain imparting process.

次いで、上記熱延板焼鈍後のA,Bの鋼板に、夏季の工場内での時効の影響をシミュレートするため、80℃で500hr保持する時効処理を施したのち、1回の冷間圧延で最終板厚が0.30mmの冷延板とし、850℃×120secの脱炭焼鈍を兼ねた一次再結晶焼鈍後、1200℃×15hrの純化を兼ねた二次再結晶焼鈍を施して、A,B2種類の方向性電磁鋼板を得た。   Next, in order to simulate the effect of aging in the factory in the summer, the steel sheets A and B after the hot-rolled sheet annealing are subjected to aging treatment that is held at 80 ° C. for 500 hours, and then cold-rolled once. Then, a cold rolled sheet having a final sheet thickness of 0.30 mm is formed, and after the primary recrystallization annealing also serving as decarburization annealing at 850 ° C. × 120 seconds, the secondary recrystallization annealing also serving as purification at 1200 ° C. × 15 hours is performed, and A , B2 types of grain-oriented electrical steel sheets were obtained.

これらの鋼板について圧延方向の磁気特性(B)を測定したところ、Aの熱延板から得た電磁鋼板のBは1.93T、Bの熱延板から得た電磁鋼板のBは1.85Tであった。この結果から、Aの熱延板から得た電磁鋼板のBの方が、Bの熱延板から得た電磁鋼板のBより高い理由は、最終冷間圧延直前の焼鈍(上記実験では熱延板焼鈍)における歪付与処理によって、上記焼鈍後から最終冷間圧延開始までの間における炭素の析出が抑制されて、最終冷間圧延前の固溶炭素量が増加したためと考えられた。
本発明は、上記の新規知見に基づき開発したものである。
These steel sheets were measured the magnetic properties in the rolling direction (B 8), B 8 of the electromagnetic steel sheets from hot-rolled sheets of A 1.93 T, B 8 of the electromagnetic steel sheets from hot-rolled sheets of B is 1.85T. From this result, towards the B 8 of the electromagnetic steel sheets from hot-rolled sheets of A is higher than B 8 of the electromagnetic steel sheets reasons obtained from hot-rolled sheets of B, the final cold rolling immediately before the annealing (in the experiment It was considered that the strain imparting process in the hot-rolled sheet annealing) suppressed the precipitation of carbon between the annealing and the start of the final cold rolling, and increased the amount of solute carbon before the final cold rolling.
The present invention has been developed based on the above novel findings.

次に、本発明の方向性電磁鋼板の素材となる鋼スラブの成分組成について説明する。
C:0.005〜0.15mass%
Cは、0.005mass%に満たないと、一次再結晶組織の改善効果が小さく、磁気特性の改善効果が得られない。一方、0.15mass%を超えると、製品中のC量を、磁気時効の起こらない0.0050mass%以下に低減するのが難しくなる。よって、Cは0.005〜0.15mass%の範囲とする。好ましくは、0.01〜0.10mass%の範囲である。
Next, the component composition of the steel slab used as the raw material of the grain-oriented electrical steel sheet according to the present invention will be described.
C: 0.005-0.15 mass%
If C is less than 0.005 mass%, the effect of improving the primary recrystallization structure is small, and the effect of improving the magnetic properties cannot be obtained. On the other hand, if it exceeds 0.15 mass%, it becomes difficult to reduce the amount of C in the product to 0.0050 mass% or less at which magnetic aging does not occur. Therefore, C is in the range of 0.005 to 0.15 mass%. Preferably, it is the range of 0.01-0.10 mass%.

Si:7.0mass%以下
Siは、鋼の電気抵抗を増大し、鉄損を低減する有用な元素であるので、2.0mass%以上含有させるのが好ましい。しかし、7.0mass%を超えて添加すると、加工性が著しく低下して冷間圧延するのが困難となる。よって、Siは7.0mass%以下とする。より好ましくは、2.0〜4.0mass%の範囲である。
Si: 7.0 mass% or less Since Si is a useful element that increases the electrical resistance of steel and reduces iron loss, it is preferably contained in an amount of 2.0 mass% or more. However, if added over 7.0 mass%, the workability is remarkably lowered and it becomes difficult to cold-roll. Therefore, Si is set to 7.0 mass% or less. More preferably, it is the range of 2.0-4.0 mass%.

Mn:0.005〜3.0mass%
Mnは、Sによる熱間脆性を防止し、熱間加工性を改善するために有用な元素であり、0.005mass%以上含有させる必要がある。しかし、3.0mass%を超える添加は、磁束密度の低下を招く。よって、Mnは0.005〜3.0mass%の範囲とする。好ましくは、0.01〜1.0mass%の範囲である。
Mn: 0.005 to 3.0 mass%
Mn is an element useful for preventing hot brittleness due to S and improving hot workability, and it is necessary to contain 0.005 mass% or more. However, addition exceeding 3.0 mass% causes a decrease in magnetic flux density. Therefore, Mn is in the range of 0.005 to 3.0 mass%. Preferably, it is the range of 0.01-1.0 mass%.

Al:0.0100mass%未満、S,Se:それぞれ0.0050mass%未満
本発明の方向性電磁鋼板の製造方法は、AlやS,Se等のインヒビタを使用しないで二次再結晶を起こさせる技術である。したがって、本発明においては、Al,SおよびSeは、不可避的不純物として位置付けられる元素であり、良好な二次再結晶を起こさせるためには、Alは0.0100mass%未満、SおよびSeはそれぞれ0.0050mass%未満に制限する必要がある。好ましくは、Alは0.0090mass%以下、SおよびSeはそれぞれ0.0040mass%以下である。
Al: less than 0.0100 mass%, S, Se: each less than 0.0050 mass% The method for producing a grain-oriented electrical steel sheet according to the present invention is a technique for causing secondary recrystallization without using an inhibitor such as Al, S, or Se. It is. Therefore, in the present invention, Al, S and Se are elements that are positioned as inevitable impurities, and in order to cause good secondary recrystallization, Al is less than 0.0100 mass%, and S and Se are respectively It is necessary to limit to less than 0.0050 mass%. Preferably, Al is 0.0090 mass% or less, and S and Se are each 0.0040 mass% or less.

本発明の方向性電磁鋼板は、上記の必須成分およびインヒビタ成分以外に、Ni,Sn,Sb,Cu,PおよびCrのうちから選ばれる1種以上を、Ni:0.005〜1.5mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.005〜1.5mass%、P:0.005〜0.50mass%、Cr:0.005〜1.5mass%の範囲で添加することができる。
Niは、熱延板組織を改善して磁気特性を向上させる効果を有する元素である。しかし、含有量が0.005mass%未満では、上記効果が小さく、一方、1.5mass%を超えて添加すると、二次再結晶が不安定になり、却って磁気特性が低下する。よって、Niは0.005〜1.5mass%の範囲で添加するのが好ましい。
また、Sn,Sb,Cu,PおよびCrは、それぞれ鉄損の向上に有効な元素であるが、いずれも上記下限値に満たないと鉄損向上効果が小さく、一方、上記上限値を超えると二次再結晶粒の発達が阻害されるようになる。よって、Ni,Sn,Sb,Cu,PおよびCrはそれぞれ、上記範囲で添加するのが好ましい。
The grain-oriented electrical steel sheet according to the present invention contains at least one selected from Ni, Sn, Sb, Cu, P and Cr in addition to the essential components and inhibitor components described above. Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Cu: 0.005-1.5 mass%, P: 0.005-0.50 mass%, Cr: 0.005 It can add in the range of -1.5 mass%.
Ni is an element having the effect of improving the hot rolled sheet structure and improving the magnetic properties. However, if the content is less than 0.005 mass%, the above effect is small. On the other hand, if the content exceeds 1.5 mass%, the secondary recrystallization becomes unstable, and the magnetic properties deteriorate. Therefore, Ni is preferably added in the range of 0.005 to 1.5 mass%.
Sn, Sb, Cu, P, and Cr are elements that are effective for improving the iron loss. If any of these elements does not satisfy the above lower limit value, the effect of improving the iron loss is small. Development of secondary recrystallized grains is inhibited. Therefore, it is preferable to add Ni, Sn, Sb, Cu, P, and Cr in the above ranges, respectively.

なお、本発明の方向性電磁鋼板において、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、上述したように、本発明はインヒビタを用いない技術であるので、従来技術において添加されていた窒化物形成元素であるTi,Nb,B,Ta,V等についても、鉄損の低下を防止する観点から、それぞれ0.0050mass%以下に低減するのが望ましい。   In the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities. However, as described above, since the present invention is a technique that does not use an inhibitor, the reduction in iron loss can be achieved even for the nitride forming elements Ti, Nb, B, Ta, V, etc., which have been added in the prior art. From the viewpoint of prevention, it is desirable to reduce each to 0.0050 mass% or less.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板を製造するに当たっては、上記好適成分組成に調整した鋼を転炉や電気炉などを用いて、さらに必要に応じて真空処理などを施す公知の方法で溶製したのち、常法の造塊法あるいは連続鋳造法を用いて鋼スラブを製造するのが好ましい。その後、上記鋼スラブを熱間圧延に供するが、この際、加熱炉で再加熱してから熱間圧延する通常の方法、あるいは、鋳造後、再加熱することなく直ちに熱間圧延する方法のいずれを採用してもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
In producing the grain-oriented electrical steel sheet of the present invention, the steel adjusted to the above-mentioned preferred component composition is melted by a known method using a converter, an electric furnace, or the like, and further subjected to vacuum treatment, if necessary. The steel slab is preferably produced using a conventional ingot-making method or continuous casting method. Thereafter, the steel slab is subjected to hot rolling. At this time, either a normal method of reheating in a heating furnace and then hot rolling, or a method of hot rolling immediately after casting without reheating is performed. May be adopted.

なお、スラブを再加熱する場合の加熱温度は、不可避的に混入してくるインヒビタ成分が部分的に固溶し、後工程で析出することによる悪影響を回避し、最終冷延後の一次再結晶焼鈍で得られる結晶組織を微細かつ均一な整粒とするために、1250℃以下とするのが好ましい。また、スラブ加熱時のスケール生成量を低減する観点からも、スラブ加熱温度は低いほど好ましい。   In addition, the heating temperature in the case of reheating the slab is such that the inhibitor component that is inevitably mixed partially dissolves and avoids the adverse effects caused by precipitation in the subsequent process, and the primary recrystallization after the final cold rolling. In order to make the crystal structure obtained by annealing fine and uniform, the temperature is preferably 1250 ° C. or lower. Also, from the viewpoint of reducing the amount of scale generated during slab heating, the slab heating temperature is preferably as low as possible.

上記鋼スラブから熱延板を得る熱間圧延条件は、常法に従って行えばよく、特に制限はないが、仕上圧延終了温度は、700〜1000℃、コイル巻取温度は、500〜700℃の範囲とするのが好ましい。   The hot rolling conditions for obtaining a hot-rolled sheet from the steel slab may be performed according to a conventional method, and there is no particular limitation. However, the finish rolling finish temperature is 700 to 1000 ° C, and the coil winding temperature is 500 to 700 ° C. The range is preferable.

上記熱間圧延後の熱延板は、その後、熱延板焼鈍を施したのち、1回の冷間圧延で最終板厚に仕上げる冷延1回法か、あるいは、必要に応じて熱延板焼鈍を施したのち、中間焼鈍を挟む2回以上の冷間圧延によって最終板厚に仕上げる。例えば、中間焼鈍を挟む2回の冷間圧延によって最終板厚に仕上る冷延2回法または中間焼鈍を挟む3回の冷間圧延によって最終板厚に仕上げる冷延3回法によって、冷延板とするのが好ましい。   The hot-rolled sheet after the hot rolling is then subjected to hot-rolled sheet annealing and then cold-rolled once to finish to the final sheet thickness by one cold rolling, or hot-rolled sheet as necessary After annealing, the final thickness is finished by two or more cold rollings with intermediate annealing. For example, a cold-rolled sheet is obtained by a cold-rolling two-time method in which the final sheet thickness is finished by two cold rollings with intermediate annealing or a cold-rolling three-time method in which the final sheet thickness is finished by three cold rollings with intermediate annealing. Is preferable.

ここで、本発明の製造方法において最も重要な点は、最終冷間圧延直前の焼鈍、即ち、冷延1回法の場合には熱延板焼鈍、冷延2回法あるいは冷延3回法以上の場合には、最終冷間圧延直前の中間焼鈍において、図1に示した処理工程からなる熱処理を施す、すなわち、
(1)750〜1200℃の温度で2〜300sec間保持する均熱処理と、
(2)750℃から400℃までを10〜200℃/secの平均冷却速度で冷却する急冷処理と、
(3)400℃到達後900秒以内に圧延圧下率0.2〜50%相当の歪を付与する歪付与処理と、
からなる焼鈍を施すことである。以下、上記焼鈍条件を限定する理由について説明する。
Here, in the production method of the present invention, the most important point is annealing immediately before the final cold rolling, that is, in the case of the cold rolling one-time method, hot-rolled sheet annealing, the cold-rolling two-time method or the cold-rolling three-time method. In the above case, in the intermediate annealing immediately before the final cold rolling, heat treatment consisting of the processing steps shown in FIG.
(1) Soaking treatment that is maintained at a temperature of 750 to 1200 ° C. for 2 to 300 seconds;
(2) a rapid cooling process for cooling from 750 ° C. to 400 ° C. at an average cooling rate of 10 to 200 ° C./sec;
(3) a strain imparting treatment that imparts a strain corresponding to a rolling reduction of 0.2 to 50% within 900 seconds after reaching 400 ° C .;
It is to give the annealing which consists of. Hereinafter, the reason for limiting the annealing conditions will be described.

均熱処理
均熱処理温度は、750〜1200℃の範囲とする。750℃未満では、熱延板あるいは最終冷延板の再結晶が十分進行せず、未再結晶組織が一部に残存するため、一次再結晶後の鋼板組織を微細かつ整粒とすることが困難となり、二次再結晶組織の成長が阻害されて、製品の磁気特性が低下するからである。一方、均熱温度が1200℃を超えると、不可避的に混入するインヒビタ等の不純物成分が再固溶し、冷却時に不均一に再析出するため、一次再結晶後の鋼板組織を整粒化することが困難となり、やはり二次再結晶組織の成長が阻害されて、製品板の磁気特性が低下するからである。好ましくは、900〜1100℃の範囲である。
また、上記均熱処理温度への保持時間は2〜300secの範囲とする。保持時間が2sec未満では、やはり未再結晶組織が残存し、一次再結晶組織を微細化、整粒化することが困難となり、製品板の磁気特性が低下する。一方、保持時間が300secを超えると、焼鈍効果が飽和し、コストアップとなるだけだからである。好ましくは、10〜200secの範囲である。
Soaking treatment The soaking temperature is in the range of 750 to 1200 ° C. If the temperature is lower than 750 ° C., the recrystallization of the hot-rolled sheet or the final cold-rolled sheet does not proceed sufficiently, and the non-recrystallized structure remains in part, so that the steel sheet structure after the primary recrystallization can be made fine and sized. This is because the growth of the secondary recrystallized structure is hindered and the magnetic properties of the product are deteriorated. On the other hand, when the soaking temperature exceeds 1200 ° C., impurity components such as inhibitors that are inevitably mixed are re-dissolved and re-precipitated non-uniformly during cooling, so that the steel sheet structure after primary recrystallization is grain-sized. This is because the growth of the secondary recrystallized structure is hindered and the magnetic properties of the product plate are deteriorated. Preferably, it is the range of 900-1100 degreeC.
The holding time at the soaking temperature is in the range of 2 to 300 seconds. If the holding time is less than 2 seconds, an unrecrystallized structure still remains, and it becomes difficult to refine and size the primary recrystallized structure, and the magnetic properties of the product plate are deteriorated. On the other hand, if the holding time exceeds 300 sec, the annealing effect is saturated and only the cost is increased. Preferably, it is the range of 10-200 sec.

急冷処理
均熱処理に続く急冷処理は、750℃から400℃までを10〜200℃/secの平均冷却速度で冷却することが必要である。平均冷却速度が10℃/sec未満では、鋼中に固溶していたCがカーバイトとなって析出し、固溶炭素量が低減するため、一次再結晶集合組織が劣化し、製品板の磁気特性が低下するからである。一方、平均冷却速度が200℃/secを超えると、硬質のマルテンサイト相が生成するため、やはり一次再結晶組織が劣化し、製品の磁気特性が劣化するからである。好ましくは、700℃から400℃までの平均冷却速度は15〜100℃/secの範囲である。
Rapid Cooling Treatment The rapid cooling treatment following the soaking process requires cooling from 750 ° C. to 400 ° C. at an average cooling rate of 10 to 200 ° C./sec. When the average cooling rate is less than 10 ° C./sec, C dissolved in the steel is precipitated as carbide and the amount of dissolved carbon is reduced, so that the primary recrystallization texture deteriorates, and the product plate This is because the magnetic properties deteriorate. On the other hand, when the average cooling rate exceeds 200 ° C./sec, a hard martensite phase is generated, so that the primary recrystallization structure is deteriorated and the magnetic properties of the product are deteriorated. Preferably, the average cooling rate from 700 ° C. to 400 ° C. is in the range of 15-100 ° C./sec.

歪付与処理
本発明の最終冷間圧延直前の焼鈍においては、上記急冷処理で鋼板温度が400℃に到達後、900sec以内に、何らかの方法で、圧延圧下率で0.2〜50%に相当する歪を付与する歪付与処理を施すことが必要である。この歪付与処理によって、鋼板中に多数の転位が導入され、鋼中の固溶炭素がこの転位に固着されて、最終冷間圧延直前の焼鈍後から最終冷間圧延までの間に固溶炭素がカーバイトとなって析出するのが抑制され、その結果、最終冷間圧延直前の固溶炭素量が高い状態のまま維持されるので、一次再結晶集合組織が改善され、製品板の磁気特性が向上する。
ここで、歪付与温度の上限を400℃とする理由は、400℃を超える温度では、歪を付与しても回復を起こすため、歪付与効果が減少してしまうからである。また、400℃到達後、900sec以内に歪を付与する理由は、900secを超えると、固溶炭素がカーバイトとなって析出して固溶炭素量が減少し、やはり歪付与効果が十分に得られないからである。
In the annealing immediately before the final cold rolling according to the present invention, the steel sheet temperature reaches 400 ° C. in the rapid cooling treatment, and within 900 sec, it corresponds to a rolling reduction ratio of 0.2 to 50% by some method. It is necessary to perform a strain imparting process for imparting strain. By this straining treatment, a number of dislocations are introduced into the steel sheet, and the solid solution carbon in the steel is fixed to the dislocation, and after the annealing immediately before the final cold rolling to the final cold rolling, As a result, the amount of dissolved carbon immediately before the final cold rolling is kept high, so that the primary recrystallization texture is improved and the magnetic properties of the product plate are improved. Will improve.
Here, the reason why the upper limit of the strain imparting temperature is set to 400 ° C. is that at a temperature exceeding 400 ° C., the strain imparting effect is reduced because recovery occurs even when strain is imparted. Moreover, after reaching 400 ° C., the reason for imparting strain within 900 sec is that if it exceeds 900 sec, the solute carbon is precipitated as carbide and the amount of solute carbon is reduced, and the effect of imparting strain is sufficiently obtained. Because it is not possible.

また、付与する歪量を、圧延圧下率にして0.2〜50%とする理由は、歪量が圧延圧下率にして0.2%未満では、導入される転位数が少ないため、歪付与の効果が十分に得られず、一方、50%超えでは、歪付与効果が飽和し、コストアップとなるからである。なお、歪付与の目的が転位の導入にあることから、圧延圧下率で0.2〜50%相当の歪(転位)が導入できれば、歪付与の方法には特に制限はない。したがって、圧延法以外に、繰り返し曲げを施す方法を用いてもよいが、コスト的には圧延法の方が好ましい。   Further, the reason why the amount of strain to be applied is 0.2 to 50% in terms of rolling reduction is that if the amount of strain is less than 0.2% in terms of rolling reduction, the number of dislocations to be introduced is small, so that strain is applied. This is because the effect of imparting the strain is saturated and the cost is increased if it exceeds 50%. In addition, since the purpose of imparting strain is to introduce dislocations, the strain imparting method is not particularly limited as long as strain (dislocation) corresponding to 0.2 to 50% in terms of rolling reduction can be introduced. Therefore, in addition to the rolling method, a method of repeatedly bending may be used, but the rolling method is preferable in terms of cost.

上記熱処理を施した冷延板は、その後、最終冷間圧延によって最終板厚としたのち、一次再結晶焼鈍と二次再結晶焼鈍を施して、方向性電磁鋼板とする。一次再結晶焼鈍の焼鈍温度は、700〜1000℃の範囲とするのが好ましい。また、この一次再結晶焼鈍は、湿水素雰囲気中で、脱炭焼鈍を兼ねて行ってもよい。また、続く二次再結晶焼鈍は、700〜1250℃の温度範囲で行うのが好ましく、この際、鋼板同士が融着するのを防止するため、焼鈍前に鋼板表面にMgOなど公知の焼鈍分離剤を塗布しておくのが好ましい。また、この二次再結晶焼鈍は、水素雰囲気中で純化焼鈍を兼ねて行ってもよい。   The cold-rolled sheet subjected to the heat treatment is then subjected to final cold rolling to a final thickness, and then subjected to primary recrystallization annealing and secondary recrystallization annealing to obtain a grain-oriented electrical steel sheet. The annealing temperature for primary recrystallization annealing is preferably in the range of 700 to 1000 ° C. In addition, this primary recrystallization annealing may be performed in a wet hydrogen atmosphere also as decarburization annealing. Further, the subsequent secondary recrystallization annealing is preferably performed in a temperature range of 700 to 1250 ° C. At this time, in order to prevent the steel plates from fusing together, a known annealing separation such as MgO on the steel plate surface before annealing is performed. It is preferable to apply an agent. In addition, this secondary recrystallization annealing may be performed in the hydrogen atmosphere also as purification annealing.

二次再結晶焼鈍後の鋼板は、その後、平坦化焼鈍により形状を矯正し、さらに上記平坦化焼鈍に続いて、鉄損の改善を目的として、鋼板表面に張力を付与する絶縁コーティングを施し、製品とするのが好ましい。
なお、本発明の方向性電磁鋼板の製造方法においては、上記冷間圧延後から製品化するまでのいずれかの工程において、公知の磁区細分化技術を適用してもよいことはいうまでもない。
The steel sheet after the secondary recrystallization annealing is then straightened by flattening annealing, and further to the above flattening annealing, for the purpose of improving iron loss, the steel sheet surface is subjected to an insulating coating that gives tension. Preferably it is a product.
In addition, in the manufacturing method of the grain-oriented electrical steel sheet according to the present invention, it is needless to say that a known magnetic domain refinement technique may be applied in any step from the cold rolling to commercialization. .

C:0.01mass%、Si:3.8mass%、Mn:1.0mass%、Al:0.0080mass%、S:0.0002mass%、Se:0.0010mass%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを1100℃に加熱後、熱間圧延して板厚が2.0mmの熱延板とした。次いで、この熱延板に、均熱温度1000℃で30sec保持する熱延板焼鈍を施した後、冷間圧延して板厚が1.6mmの冷延板とし、その後、表1に示した均熱処理条件、急冷処理条件、歪付与処理条件からなる中間焼鈍を施したのち、最終冷間圧延して板厚が0.22mmの冷延板とした。なお、上記最終冷間圧延に当たっては、Si含有量が高いことによる脆性破断を防止するため、圧延前に鋼板温度を200℃×1hr加熱後、直ちに最終板厚まで圧延した。
次いで、上記最終冷延板に800℃×10secの一次再結晶焼鈍を施してから、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布し、1150℃×50hrの純化を兼ねた二次再結晶焼鈍を施して、最終の方向性電磁鋼板を得た。
C: 0.01 mass%, Si: 3.8 mass%, Mn: 1.0 mass%, Al: 0.0080 mass%, S: 0.0002 mass%, Se: 0.0010 mass%, the balance being Fe and inevitable A steel slab composed of mechanical impurities was heated to 1100 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.0 mm. Next, the hot-rolled sheet was subjected to hot-rolled sheet annealing that was maintained at a soaking temperature of 1000 ° C. for 30 seconds, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 1.6 mm. After performing an intermediate annealing consisting of soaking conditions, rapid cooling conditions, and strain imparting conditions, final cold rolling was performed to obtain a cold-rolled sheet having a sheet thickness of 0.22 mm. In the final cold rolling, in order to prevent brittle fracture due to the high Si content, the steel plate temperature was heated to 200 ° C. × 1 hr before rolling and immediately rolled to the final plate thickness.
Next, the final cold-rolled sheet is subjected to primary recrystallization annealing at 800 ° C. for 10 seconds, and then an annealing separator mainly composed of MgO is applied to the surface of the steel sheet to perform secondary re-treatment that also serves as purification at 1150 ° C. × 50 hours. Crystal annealing was performed to obtain a final grain-oriented electrical steel sheet.

上記のようにして得た方向性電磁鋼板について、圧延方向の磁気特性(B)を測定した結果を表1に併記した。表1から、本発明に適合する方法で製造された発明例の鋼板は、いずれも1.91T以上の優れた磁気特性(B)が得られていることがわかる。これは、最終冷間圧延直前の焼鈍(本実施例においては中間焼鈍)における歪付与処理によって、焼鈍後から最終冷間圧延までの間の炭素の析出(時効)が抑制されて、固溶炭素量が増加したためであると考えられる。 The results of measuring the magnetic properties (B 8 ) in the rolling direction of the grain-oriented electrical steel sheet obtained as described above are also shown in Table 1. From Table 1, it can be seen that all the steel sheets of the inventive examples manufactured by the method suitable for the present invention have excellent magnetic properties (B 8 ) of 1.91 T or more. This is because the precipitation (aging) of carbon between the annealing and the final cold rolling is suppressed by the strain imparting treatment in the annealing immediately before the final cold rolling (intermediate annealing in the present embodiment), so that solid solution carbon This is probably because the amount increased.

Figure 2011052302
Figure 2011052302

C:0.03mass%、Si:3.0mass%、Mn:0.01mass%、Al:0.0010mass%、S:0.0020mass%、Se:0.0010mass%を含有し、さらに、表2に示した添加成分を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを1250℃に加熱後、熱間圧延して板厚が3.0mmの熱延板とした。その後、この熱延板を熱延板焼鈍することなく、1回目の冷間圧延により板厚が2.0mmの冷延板とした。   C: 0.03 mass%, Si: 3.0 mass%, Mn: 0.01 mass%, Al: 0.0010 mass%, S: 0.0020 mass%, Se: 0.0010 mass%, and further in Table 2 A steel slab containing the indicated additive components, the balance being Fe and inevitable impurities, was heated to 1250 ° C. and then hot rolled to obtain a hot rolled sheet having a sheet thickness of 3.0 mm. Thereafter, the hot-rolled sheet was formed into a cold-rolled sheet having a thickness of 2.0 mm by the first cold rolling without annealing the hot-rolled sheet.

次いで、上記冷延板に900℃×30secの1回目の中間焼鈍を施した後、2回目の冷間圧延により板厚1.5mmの冷延板としたのち、下記の条件1および条件2の2回目の中間焼鈍を施した。
・条件1:1100℃×10secで均熱後、750℃から400℃までを80℃/secで急冷し、400℃到達後30sec後に圧下率5%の圧延歪を付与する。
・条件2:1100℃×10secで均熱後、750℃から400℃までを80℃/secで急冷し、400℃到達後、500sec後に圧下率15%の圧延歪を付与する。
・条件3:1100℃×10secで均熱後、750℃から400℃までを80℃/secで急冷する(歪付与処理なし)。
Next, after the first intermediate annealing at 900 ° C. × 30 sec is performed on the cold-rolled sheet, a cold-rolled sheet having a thickness of 1.5 mm is formed by the second cold rolling, and then the following conditions 1 and 2 are satisfied. A second intermediate annealing was performed.
Condition 1: After soaking at 1100 ° C. × 10 sec, quench from 750 ° C. to 400 ° C. at 80 ° C./sec, and give a rolling strain of 5% reduction 30 sec after reaching 400 ° C.
Condition 2: After soaking at 1100 ° C. × 10 sec, quench from 80 ° C. to 400 ° C. at 80 ° C./sec, and after reaching 400 ° C., give a rolling strain of 15% reduction after 500 sec.
Condition 3: After soaking at 1100 ° C. × 10 sec, rapid cooling from 750 ° C. to 400 ° C. at 80 ° C./sec (no strain imparting treatment).

その後、夏季の工場内での時効をシミュレートした70℃で1000hr保持する時効処理を施したのち、最終冷間圧延して板厚が0.20mmまで冷延板とし、次いで、900℃×10secの脱炭を兼ねた一次再結晶焼鈍後、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布したのち、1200℃×15hrの純化を兼ねた二次再結晶焼鈍を施して、方向性電磁鋼板を得た。   Then, after aging treatment was performed for 1000 hours at 70 ° C. simulating aging in a factory in summer, the final cold rolling was performed to obtain a cold-rolled sheet to a thickness of 0.20 mm, and then 900 ° C. × 10 sec. After primary recrystallization annealing that also serves as decarburization of steel, after applying an annealing separator mainly composed of MgO to the surface of the steel sheet, secondary recrystallization annealing that also serves as purification at 1200 ° C. × 15 hr is performed, and directional electromagnetic A steel plate was obtained.

上記のようにして得た方向性電磁鋼板の圧延方向の磁気特性(B)の測定結果を表2に併記した。表2から、いずれの成分においても、圧延歪を付与した条件1(発明例)の方が、Bが優れていることがわかる。これは、最終冷間圧延前の焼鈍(本実施例においては2回目の中間焼鈍)での歪付与処理により、焼鈍後から最終冷間圧延までの間の炭素の析出(時効)が抑制された結果、最終冷間圧延前の固溶炭素量が増加したためと考えられる。 The measurement results of the magnetic properties (B 8 ) in the rolling direction of the grain-oriented electrical steel sheets obtained as described above are also shown in Table 2. From Table 2, it can be seen that, in any of the components, B 8 is superior in the condition 1 (invention example) imparted with rolling strain. This is because the carbon deposition (aging) after annealing to the final cold rolling was suppressed by the strain imparting treatment in the annealing before the final cold rolling (second annealing in the present example). As a result, it is considered that the amount of solute carbon before the final cold rolling increased.

Figure 2011052302
Figure 2011052302

Claims (3)

C:0.005〜0.15mass%、Si:7.0mass%以下およびMn:0.005〜3.0mass%を含有し、かつ、Al:0.0100mass%未満、SおよびSeを各々0.0050mass%以下に低減し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延後、熱延板焼鈍し、1回の冷間圧延で最終板厚とし、その後、一次再結晶焼鈍と二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記熱延板焼鈍が、
(1)750〜1200℃の温度で2〜300sec間保持する均熱処理と、
(2)750℃から400℃までを10〜200℃/secの平均冷却速度で冷却する急冷処理と、
(3)400℃到達後900秒以内に圧延圧下率0.2〜50%相当の歪を付与する歪付与処理と、からなることを特徴とする方向性電磁鋼板の製造方法。
C: 0.005 to 0.15 mass%, Si: 7.0 mass% or less and Mn: 0.005 to 3.0 mass%, Al: less than 0.0100 mass%, and S and Se are each set to 0.00. The steel slab is reduced to 0050 mass% or less, and the balance is Fe and inevitable impurities. After hot rolling, hot-rolled sheet annealing is performed to obtain a final sheet thickness by one cold rolling, followed by primary recrystallization annealing and two steps. In the manufacturing method of the grain-oriented electrical steel sheet comprising a series of steps for performing the next recrystallization annealing, the hot-rolled sheet annealing is performed as follows:
(1) Soaking treatment that is maintained at a temperature of 750 to 1200 ° C. for 2 to 300 seconds;
(2) a rapid cooling process for cooling from 750 ° C. to 400 ° C. at an average cooling rate of 10 to 200 ° C./sec;
(3) A method for producing a grain-oriented electrical steel sheet, comprising: a strain imparting process that imparts a strain corresponding to a rolling reduction of 0.2 to 50% within 900 seconds after reaching 400 ° C.
C:0.005〜0.15mass%、Si:7.0mass%以下およびMn:0.005〜3.0mass%を含有し、かつ、Al:0.0100mass%未満、SおよびSeを各々0.0050mass%以下に低減し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延後、必要に応じて熱延板焼鈍し、中間焼鈍を挟む2回以上の冷間圧延で最終板厚とし、その後、一次再結晶焼鈍と二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記最終板厚とする冷間圧延前の中間焼鈍が、
(1)750〜1200℃の温度で2〜300sec間保持する均熱処理と、
(2)750℃から400℃までを10〜200℃/secの平均冷却速度で冷却する急冷処理と、
(3)400℃到達後900秒以内に圧延圧下率0.2〜50%相当の歪を付与する歪付与処理と、からなることを特徴とする方向性電磁鋼板の製造方法。
C: 0.005 to 0.15 mass%, Si: 7.0 mass% or less and Mn: 0.005 to 3.0 mass%, Al: less than 0.0100 mass%, and S and Se are each set to 0.00. The steel slab is reduced to 0050 mass% or less, and the balance is made of Fe and unavoidable impurities. After hot rolling, hot-rolled sheet annealing is performed as necessary, and the final sheet thickness is obtained by two or more cold rollings sandwiching the intermediate annealing. Then, in the method for producing a grain-oriented electrical steel sheet comprising a series of steps for performing primary recrystallization annealing and secondary recrystallization annealing, intermediate annealing before cold rolling to be the final sheet thickness is as follows.
(1) Soaking treatment that is maintained at a temperature of 750 to 1200 ° C. for 2 to 300 seconds;
(2) a rapid cooling process for cooling from 750 ° C. to 400 ° C. at an average cooling rate of 10 to 200 ° C./sec;
(3) A method for producing a grain-oriented electrical steel sheet, comprising: a strain imparting process that imparts a strain corresponding to a rolling reduction of 0.2 to 50% within 900 seconds after reaching 400 ° C.
上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.005〜1.5mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.005〜1.5mass%、P:0.005〜0.50mass%およびCr:0.005〜1.5mass%の中から選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the steel slab further includes Ni: 0.005-1.5 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Cu: 0.00. It contains one or more selected from 005 to 1.5 mass%, P: 0.005 to 0.50 mass% and Cr: 0.005 to 1.5 mass%. Or the manufacturing method of the grain-oriented electrical steel sheet of 2.
JP2009204205A 2009-09-04 2009-09-04 Method for producing grain-oriented electrical steel sheet Active JP5287615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204205A JP5287615B2 (en) 2009-09-04 2009-09-04 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204205A JP5287615B2 (en) 2009-09-04 2009-09-04 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2011052302A true JP2011052302A (en) 2011-03-17
JP5287615B2 JP5287615B2 (en) 2013-09-11

Family

ID=43941598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204205A Active JP5287615B2 (en) 2009-09-04 2009-09-04 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5287615B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016099191A1 (en) * 2014-12-18 2016-06-23 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
KR20190034622A (en) * 2016-07-29 2019-04-02 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for directional electric steel sheet, manufacturing method thereof, and manufacturing method of directional electric steel sheet
WO2022250113A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
WO2023063426A1 (en) * 2021-10-15 2023-04-20 Jfeスチール株式会社 Aging treatment method and oriented electromagnetic steel sheet manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149432A (en) * 1984-12-25 1986-07-08 Kawasaki Steel Corp Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH05214445A (en) * 1992-02-03 1993-08-24 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having extremely high magnetic flux density
JPH0784615B2 (en) * 1990-07-27 1995-09-13 川崎製鉄株式会社 Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149432A (en) * 1984-12-25 1986-07-08 Kawasaki Steel Corp Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH0784615B2 (en) * 1990-07-27 1995-09-13 川崎製鉄株式会社 Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density
JPH05214445A (en) * 1992-02-03 1993-08-24 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having extremely high magnetic flux density

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016099191A1 (en) * 2014-12-18 2016-06-23 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
EP3235914A4 (en) * 2014-12-18 2017-11-08 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
US10851431B2 (en) 2014-12-18 2020-12-01 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
KR20190034622A (en) * 2016-07-29 2019-04-02 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for directional electric steel sheet, manufacturing method thereof, and manufacturing method of directional electric steel sheet
KR102260531B1 (en) 2016-07-29 2021-06-03 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for grain-oriented electrical steel sheet and method of producing same, and method of producing grain-oriented electrical steel sheet
WO2022250113A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
WO2023063426A1 (en) * 2021-10-15 2023-04-20 Jfeスチール株式会社 Aging treatment method and oriented electromagnetic steel sheet manufacturing method

Also Published As

Publication number Publication date
JP5287615B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5668460B2 (en) Method for producing non-oriented electrical steel sheet
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
JP5991484B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JP5434999B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
WO2014129034A1 (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP6617827B2 (en) Method for producing grain-oriented electrical steel sheet
US20150243419A1 (en) Method for producing grain-oriented electrical steel sheet
US20200032363A1 (en) Method for producing grain-oriented electrical steel sheet
WO2013080891A1 (en) Process for producing non-oriented electrical steel sheet
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
JP2022542380A (en) Highly magnetically inductive oriented silicon steel and its manufacturing method
JP2007217744A (en) Non-oriented silicon steel sheet and its production method
JP2014508858A (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP5287615B2 (en) Method for producing grain-oriented electrical steel sheet
JP6344263B2 (en) Method for producing grain-oriented electrical steel sheet
JP4207231B2 (en) Method for producing non-oriented electrical steel sheet
JP6056675B2 (en) Method for producing grain-oriented electrical steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP4259269B2 (en) Method for producing grain-oriented electrical steel sheet
WO2019131853A1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP2015212403A (en) Method for manufacturing nonoriented electromagnetic steel sheet
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JP7081725B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2006104530A (en) Method for producing nonoriented silicon steel sheet having excellent magnetic property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250