JP2006104530A - Method for producing nonoriented silicon steel sheet having excellent magnetic property - Google Patents

Method for producing nonoriented silicon steel sheet having excellent magnetic property Download PDF

Info

Publication number
JP2006104530A
JP2006104530A JP2004293922A JP2004293922A JP2006104530A JP 2006104530 A JP2006104530 A JP 2006104530A JP 2004293922 A JP2004293922 A JP 2004293922A JP 2004293922 A JP2004293922 A JP 2004293922A JP 2006104530 A JP2006104530 A JP 2006104530A
Authority
JP
Japan
Prior art keywords
annealing
hot
rolled
steel sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004293922A
Other languages
Japanese (ja)
Other versions
JP4701669B2 (en
Inventor
Yoshihiko Oda
善彦 尾田
Masaaki Kono
雅昭 河野
Tomoyuki Okubo
智幸 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004293922A priority Critical patent/JP4701669B2/en
Priority to KR1020050071093A priority patent/KR100683471B1/en
Priority to CN200510088542XA priority patent/CN1803389B/en
Publication of JP2006104530A publication Critical patent/JP2006104530A/en
Application granted granted Critical
Publication of JP4701669B2 publication Critical patent/JP4701669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonoriented silicon steel sheet having higher magnetic flux density and lower core loss compared with those of the conventional one. <P>SOLUTION: The nonoriented silicon steel sheet is produced by subjecting a steel having a composition comprising, by mass, 0.01 to 0.2% C, ≤3% Si, 0.05 to 3.0% Mn, ≤1% Al and ≤0.005% N, and P, S and Se restrained into the range satisfying the inequality of P+100×S+300×Se≤0.5, and the balance Fe with inevitable impurities to a series of steps of hot rolling, hot rolled sheet annealing, rolling to a final sheet thickness and decarburizing annealing and finish annealing, wherein the hot rolled sheet annealing is performed in the temperature range of an Ac<SB>3</SB>point or higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、モータやEIコアの鉄心材料等に使用して好適な無方向性電磁鋼板の有利な製造方法に関するものである。   The present invention relates to an advantageous method for producing a non-oriented electrical steel sheet suitable for use in a motor, an EI core iron core material, and the like.

近年、省エネルギーに対するニーズの高まりに伴い、モータの高効率化への要望も高まっている。モータの高効率化を達成するためには、コア材として使用される電磁鋼板の高性能化が不可欠であることから、これまで以上に磁束密度が高くかつ鉄損の低い電磁鋼板が強く求められている。   In recent years, with increasing needs for energy saving, there is an increasing demand for higher motor efficiency. In order to achieve high motor efficiency, it is essential to improve the performance of the electrical steel sheet used as the core material. Therefore, there is a strong demand for electrical steel sheets with higher magnetic flux density and lower iron loss than ever before. ing.

電磁鋼板の磁束密度を高めるためには、冷間圧延前の結晶粒を粗大化させることが効果的であることから、熱延鋼板にスキンパスを付与して焼鈍を行う技術(例えば特許文献1)や、熱間圧延後に高温巻取りを行い、鋼帯の保有する熱で自己焼鈍を行う技術(例えば特許文献2)が提案されている。
また、冷間圧延前に二次再結晶を生じさせて結晶粒を粗大にすることにより、磁気特性を向上させる技術(例えば特許文献3)も提案されている。
In order to increase the magnetic flux density of the electrical steel sheet, it is effective to coarsen the crystal grains before cold rolling, and therefore a technique for performing annealing by imparting a skin pass to the hot-rolled steel sheet (for example, Patent Document 1). Or the technique (for example, patent document 2) which performs high temperature winding after hot rolling and performs self-annealing with the heat which a steel strip holds is proposed.
In addition, a technique (for example, Patent Document 3) for improving magnetic properties by causing secondary recrystallization before cold rolling to make crystal grains coarse has been proposed.

特公昭45−22211号公報Japanese Examined Patent Publication No. 45-22211 特公昭57−43132号公報Japanese Patent Publication No.57-43132 特開平3−211258号公報JP-A-3-21258

しかしながら、近年では、前述したようなモータ高効率化に対する強い要望から、さらに磁束密度の高い材料が求められている。
本発明は、上記の実状に鑑み開発されたもので、従来に比し磁束密度が高くかつ鉄損が低い、磁気特性に優れた無方向性電磁鋼板の有利な製造方法を提供することを目的とする。
However, in recent years, a material having a higher magnetic flux density has been demanded from the strong demand for higher motor efficiency as described above.
The present invention was developed in view of the above-mentioned actual situation, and an object thereof is to provide an advantageous method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss as compared with the prior art and excellent in magnetic properties. And

さて、発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、以下に述べる知見を得た。
(a) 従来、磁気特性の観点からは、鋼中のC量は少ない方が良いとされていたが、発明者らの研究によれば、むしろ鋼中C量を多めにして、熱延板焼鈍時フェライト中にセメンタイトが微細に分散した組織とすることが、磁気特性の改善には有利である。
(b) また、鋼中のP,SおよびSeを適正な範囲に規制すると、安定した脱炭焼鈍が可能となり、鉄損の時効劣化が効果的に抑制される。
(c) さらに、温間圧延との組み合わせると、磁束密度がより一層向上する。
本発明は、上記の知見に立脚するものである。
As a result of intensive studies to solve the above problems, the inventors have obtained the following knowledge.
(a) Conventionally, from the viewpoint of magnetic properties, it was better that the amount of C in steel was small. However, according to the study by the inventors, rather, the amount of C in steel was rather increased, and hot-rolled sheet A structure in which cementite is finely dispersed in ferrite during annealing is advantageous for improving magnetic properties.
(b) Moreover, if P, S, and Se in steel are regulated to an appropriate range, stable decarburization annealing becomes possible, and aging deterioration of iron loss is effectively suppressed.
(c) Furthermore, when combined with warm rolling, the magnetic flux density is further improved.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)質量%で、
C:0.01〜0.2%、
Si:3%以下、
Mn:0.05〜3.0%、
Al:1%以下および
N:0.005%以下
を含み、かつP,SおよびSeを、次式、
P+100×S+300×Se≦0.5
を満たす範囲に抑制し、残部はFeおよび不可避的不純物の組成になる鋼材を、熱間圧延し、熱延板焼鈍後、最終板厚まで圧延し、ついで脱炭焼鈍および仕上焼鈍を施す一連の工程によって無方向性電磁鋼板を製造するに際し、熱延板焼鈍をAc3点以上の温度域で行うことを特徴とする磁気特性に優れた無方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) In mass%,
C: 0.01-0.2%
Si: 3% or less,
Mn: 0.05-3.0%
Al: 1% or less and N: 0.005% or less, and P, S and Se are represented by the following formula:
P + 100 × S + 300 × Se ≦ 0.5
A series of steel materials with a composition of Fe and inevitable impurities in the balance, hot-rolled, hot-rolled sheet annealed, rolled to the final thickness, and then decarburized and finish annealed. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties, characterized by performing hot-rolled sheet annealing in a temperature range of Ac 3 or higher when producing a non-oriented electrical steel sheet by a process.

(2)質量%で、
C:0.01〜0.2%、
Si:3%以下、
Mn:0.05〜3.0%、
Al:1%以下および
N:0.005%以下
を含み、かつP,SおよびSeを、次式、
P+100×S+300×Se≦0.5
を満たす範囲に抑制し、残部はFeおよび不可避的不純物の組成になる鋼材を、熱間圧延し、熱延板焼鈍後、最終板厚まで圧延し、ついで脱炭焼鈍および仕上焼鈍を施す一連の工程によって無方向性電磁鋼板を製造するに際し、熱延板焼鈍をAc3点以上の温度域で行い、引き続き70〜400℃の温度域にて温間圧延を行うことを特徴とする磁気特性に優れた無方向性電磁鋼板の製造方法。
(2) In mass%,
C: 0.01-0.2%
Si: 3% or less,
Mn: 0.05-3.0%
Al: 1% or less and N: 0.005% or less, and P, S and Se are represented by the following formula:
P + 100 × S + 300 × Se ≦ 0.5
A series of steel materials with a composition of Fe and inevitable impurities in the balance, hot-rolled, hot-rolled sheet annealed, rolled to the final thickness, and then decarburized and finish annealed. When producing non-oriented electrical steel sheets by the process, the hot rolling annealing is performed in the temperature range of Ac 3 points or higher, and then the hot rolling is performed in the temperature range of 70 to 400 ° C. A method for producing an excellent non-oriented electrical steel sheet.

(3)上記(1)または(2)において、脱炭焼鈍を、露点:10〜40℃、焼鈍温度:700〜900℃、焼鈍時間:30〜3600sの条件下で行うことを特徴とする磁気特性に優れた無方向性電磁鋼板の製造方法。 (3) In the above (1) or (2), the decarburization annealing is performed under conditions of dew point: 10 to 40 ° C., annealing temperature: 700 to 900 ° C., and annealing time: 30 to 3600 s. A method for producing a non-oriented electrical steel sheet having excellent characteristics.

本発明によれば、磁束密度が高くかつ鉄損が低い無方向性電磁鋼板を得ることができ、従って、本発明の電磁鋼板を使用すれば、例えば高効率誘導モータやEIコアの高効率化に大きく貢献する。   According to the present invention, a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss can be obtained. Therefore, when the electrical steel sheet of the present invention is used, for example, high efficiency induction motors and high efficiency of EI cores can be obtained. Greatly contribute to

以下、本発明を由来するに至った実験結果について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
まず、磁束密度に及ぼす熱延板焼鈍条件の影響を調査するため、C:0.02%、Si:0.35%、Mn:0.05%、Al:tr、N:0.002%、P:0.05%、S:0.0020%およびSe:trを含有し、残部はFeおよび不可避的不純物の組成になる鋼を、真空溶解し、熱延後、800〜1150℃,30sの熱延板焼鈍を行ったのち、板厚:0.5mmまで冷間圧延(25℃)した。引き続き 20vol%H2−80vol%N2、露点:35℃の雰囲気中にて800℃,60sの脱炭焼鈍を行い、さらに 25vol%H2−75vol%N2雰囲気中にて850℃,10sの仕上焼鈍を行った。
Hereinafter, the experimental results that led to the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
First, in order to investigate the influence of hot-rolled sheet annealing conditions on magnetic flux density, C: 0.02%, Si: 0.35%, Mn: 0.05%, Al: tr, N: 0.002%, P: 0.05%, S: 0.0020 % And Se: tr, with the balance being Fe and inevitable impurities, steel is vacuum melted, hot-rolled, and then annealed at 800 to 1150 ° C. for 30 s, and then the thickness: Cold-rolled (25 ° C.) to 0.5 mm. Subsequently, decarburization annealing was performed in an atmosphere of 20 vol% H 2 −80 vol% N 2 , dew point: 35 ° C. and 800 ° C. for 60 s, and further 850 ° C. and 10 s in a 25 vol% H 2 −75 vol% N 2 atmosphere. Finish annealing was performed.

図1に、熱延板焼鈍温度と磁束密度との関係について調べた結果を示す。
同図より、熱延板焼鈍温度が1000℃以上の場合に、磁束密度が大きく向上することが分かる。
In FIG. 1, the result of having investigated about the relationship between hot-rolled sheet annealing temperature and magnetic flux density is shown.
It can be seen from the figure that the magnetic flux density is greatly improved when the hot-rolled sheet annealing temperature is 1000 ° C. or higher.

この原因を調査するため、熱延板焼鈍後における鋼板の組織観察を行った。
その結果、1000℃以上の温度で熱延板焼鈍を行った材料では、旧オーステナイト粒界が認められ、さらにフェライト中にセメンタイトが微細に分散した組織となっていた。
このような組織観察の結果より、1000℃以上の熱延板焼鈍段階では、組織はオーステナイトになっていたものと考えられる。
In order to investigate this cause, the structure of the steel sheet after hot-rolled sheet annealing was observed.
As a result, in the material subjected to hot-rolled sheet annealing at a temperature of 1000 ° C. or higher, prior austenite grain boundaries were observed, and a structure in which cementite was finely dispersed in ferrite was obtained.
From the results of such structure observation, it is considered that the structure was austenite at the hot-rolled sheet annealing stage at 1000 ° C. or higher.

そこで、本材料のAc3変態点を、フォーマスター試験機を用い、30℃/sの昇温中の熱膨張率を測定することにより調査した。その結果、本材料のAc3点は1000℃であることが判明した。
このことから、上記組織は、熱延板焼鈍をAc3点以上で行ったことにより、熱延板焼鈍時に一旦オーステナイト域となり、冷却時のγ→α変態に伴うCの溶解度量の低下により微細なセメンタイトが析出したものと考えられる。
Therefore, the Ac 3 transformation point of this material was investigated by measuring the coefficient of thermal expansion during a temperature rise of 30 ° C./s using a Formaster tester. As a result, the Ac 3 point of this material was found to be 1000 ° C.
From this, the above-mentioned structure is austenite region at the time of hot-rolled sheet annealing by performing hot-rolled sheet annealing at Ac 3 points or more, and it becomes finer due to a decrease in the solubility amount of C accompanying γ → α transformation at the time of cooling. It is thought that a lot of cementite was precipitated.

上記のような条件で、Cを比較的多量に含有する素材を熱延板焼鈍することにより、磁束密度が向上した理由は、明確に解明されたわけではないが、セメンタイトの第二相が存在することにより、セメンタイト周りからの再結晶が生じ、これにより、磁束密度に好ましい集合組織が形成されたものと考えられる。
なお、かようなセメンタイトは、その後の脱炭焼鈍により、一旦鋼中に固溶された後、鋼中から除去される。
The reason why the magnetic flux density is improved by annealing a material containing a relatively large amount of C under the above conditions is not clearly clarified, but there is a second phase of cementite. Thus, recrystallization from around the cementite occurs, and it is considered that a texture favorable to the magnetic flux density was formed.
Such cementite is once dissolved in steel by subsequent decarburization annealing and then removed from the steel.

次に、発明者らは、適正なC量を調査するために、C:0.002〜0.2%、Si:0.35%、Mn:0.2%、Al:tr、N:0.002%、P:0.05%、S:0.0020%およびSe:trを含有し、残部はFeおよび不可避的不純物の組成になる鋼を、真空溶解し、熱延後、1150℃,30sの熱延板焼鈍を行ったのち、冷間圧延(25℃)と温間圧延(150℃)により、それぞれ板厚:0.5mmまで圧延した。引き続き、C量に応じて、20vol%H2−80vol%N2、露点:35℃の雰囲気中にて800℃,60〜1200sの脱炭焼鈍を行い、さらに25vol%H2−75vol%N2雰囲気中にて850℃,10sの仕上焼鈍を行った。 Next, the inventors examined C: 0.002 to 0.2%, Si: 0.35%, Mn: 0.2%, Al: tr, N: 0.002%, P: 0.05%, S in order to investigate an appropriate amount of C. : Steel containing 0.0020% and Se: tr, the balance being Fe and inevitable impurities, vacuum-melted, hot-rolled and annealed at 1150 ° C for 30s, then cold rolled (25 ° C.) and warm rolling (150 ° C.), respectively, to a thickness of 0.5 mm. Subsequently, according to the amount of C, decarburization annealing is performed in an atmosphere of 20 vol% H 2 −80 vol% N 2 , dew point: 35 ° C. at 800 ° C. for 60 to 1200 s, and further 25 vol% H 2 −75 vol% N 2 Finish annealing was performed at 850 ° C for 10 s in the atmosphere.

図2に、磁束密度に及ぼす熱延板のC量と熱延板焼鈍後の圧延温度(以下、最終圧延温度という)の影響について調べた結果を示す。
まず最初に、熱延板のC量に着目すると、C量が0.01%以上で磁束密度が向上することが分かる。この理由は、C量が0.01%未満では、Ac3変態点以上で熱延板焼鈍を行っても集合組織に影響を及ぼすほどのセメンタイトが析出しないためと考えられる。
次に、最終圧延温度に着目すると、温間圧延を行うことにより、一層磁束密度が向上することが分かる。
FIG. 2 shows the results of examining the influence of the C amount of hot-rolled sheet and the rolling temperature after hot-rolled sheet annealing (hereinafter referred to as final rolling temperature) on the magnetic flux density.
First, focusing on the C content of the hot-rolled sheet, it can be seen that the magnetic flux density is improved when the C content is 0.01% or more. The reason for this is considered to be that when the C content is less than 0.01%, cementite that affects the texture does not precipitate even when hot-rolled sheet annealing is performed at the Ac 3 transformation point or higher.
Next, focusing on the final rolling temperature, it can be seen that the magnetic flux density is further improved by performing warm rolling.

そこで、次に発明者らは、磁束密度に及ぼす最終圧延温度の影響について調査するため、C:0.02%、Si:0.35%、Mn:0.18%、Al:tr、N:0.0018%、P:0.05%、S:0.0020%およびSe:trを含有し、残部はFeおよび不可避的不純物の組成になる鋼を、真空溶解し、熱延後、1150℃,30sの熱延板焼鈍を行ったのち、板厚:0.5mmまで圧延温度:20〜400℃にて圧延を行った。引き続き、20vol%H2−80vol%N2、露点:35℃の雰囲気中にて800℃,60sの脱炭焼鈍を行い、さらに25vol%H2−75vol%N2雰囲気中にて850℃,10sの仕上焼鈍を行った。 Then, in order to investigate the influence of the final rolling temperature on the magnetic flux density, the inventors next made C: 0.02%, Si: 0.35%, Mn: 0.18%, Al: tr, N: 0.0018%, P: 0.05. %, S: 0.0020% and Se: tr, with the balance being Fe and inevitable impurities, steel was melted in vacuum, hot-rolled, and then annealed at 1150 ° C for 30s, Sheet thickness: Rolling was performed at a rolling temperature of 20 to 400 ° C. to 0.5 mm. Subsequently, decarburization annealing was performed in an atmosphere of 20 vol% H 2 -80 vol% N 2 , dew point: 35 ° C. at 800 ° C. for 60 s, and further 850 ° C., 10 s in a 25 vol% H 2 -75 vol% N 2 atmosphere. Finish annealing was performed.

図3に、最終圧延温度と磁束密度との関係について調べた結果を示す。
同図に示したとおり、圧延温度を70℃以上とすることによって磁束密度が大幅に向上することが分かる。
このように、最終圧延を温間圧延とすることによって磁束密度が向上した理由は、圧延時の動的歪時効により磁気特性に好ましい集合組織が発達したためと考えられる。
FIG. 3 shows the result of examining the relationship between the final rolling temperature and the magnetic flux density.
As shown in the figure, it can be seen that the magnetic flux density is greatly improved by setting the rolling temperature to 70 ° C. or higher.
Thus, the reason why the magnetic flux density is improved by making the final rolling warm is considered to be that a texture favorable to magnetic properties has developed due to dynamic strain aging during rolling.

ところで、Elコアやモータ等は10年以上の長期にわたって使用されるため、磁気特性が経時変化しないことが必要となる。電磁鋼板の経時変化として、鋼中Cが長期間の使用中にセメンタイトとして析出することにより、磁壁移動が阻害されて鉄損が増大する磁気時効がある。これの評価としては、一般に150℃, 100h程度の時効処理を行い、時効処理後の鉄損を測定して判断する。   By the way, since the El core, the motor, etc. are used for a long period of 10 years or more, it is necessary that the magnetic characteristics do not change with time. As the time-dependent change of the electromagnetic steel sheet, there is a magnetic aging in which C in the steel precipitates as cementite during long-term use, thereby inhibiting the domain wall movement and increasing the iron loss. For this evaluation, an aging treatment is generally performed at 150 ° C. for about 100 hours, and the iron loss after the aging treatment is measured and judged.

そこで次に、鋼板の経時変化を調査するため、C:0.03%、Si:0.33%、Mn:0.2 %、Al:tr、N=0.002%、P:0.11%、Se:trおよびS:0.003%とした鋼種AとS:0.005%とした鋼種Bの2種類の鋼を、真空溶解し、熱延後、1150℃,30sの熱延板焼鈍を行った後、板厚:0.5mmまで150℃にて温間圧延を行った。引き続き、20vol%H2−80vol%N2、露点:35℃の雰囲気中にて800℃,60sの脱炭焼鈍を行い、さらに25vol%H2−75vol%N2雰囲気中にて850℃,10sの仕上焼鈍を行った。 Then, in order to investigate the change with time of the steel sheet, C: 0.03%, Si: 0.33%, Mn: 0.2%, Al: tr, N = 0.002%, P: 0.11%, Se: tr and S: 0.003% Steel grade A and S: 0.005% steel grade B were vacuum melted, hot-rolled and then subjected to hot-rolled sheet annealing at 1150 ° C for 30 seconds, and then plate thickness: 0.5 ° C to 150 ° C And warm rolling. Subsequently, decarburization annealing was performed in an atmosphere of 20 vol% H 2 -80 vol% N 2 , dew point: 35 ° C. at 800 ° C. for 60 s, and further 850 ° C., 10 s in a 25 vol% H 2 -75 vol% N 2 atmosphere. Finish annealing was performed.

その後、得られた鋼板それぞれに、150℃, 100hの時効処理を行ったのち、鉄損を測定した。なお、いずれの鋼板も、時効処理前の鉄損W15/50は 4.4 W/kgであった。
その結果、鋼種Aの鉄損W15/50は 4.5 W/kgであったのに対し、鋼種Bの鉄損W15/50は 5.4 W/kgに劣化していた。
Thereafter, each steel plate obtained was subjected to an aging treatment at 150 ° C. for 100 hours, and then the iron loss was measured. In each steel sheet, the iron loss W 15/50 before aging treatment was 4.4 W / kg.
As a result, the iron loss W 15/50 of steel type A was 4.5 W / kg, while the iron loss W 15/50 of steel type B was deteriorated to 5.4 W / kg.

これより、鋼種Bでは時効処理により鉄損が著しく増大していることが分かる。
この原因を調査するため材料組織を調査したところ、鋼種Bでは微細なセメンタイトが観察され、このセメンタイトの析出が磁気特性を劣化させている原因であること、そしてセメンタイトは時効処理中に析出していることが明らかとなった。
また、製品板の成分分析の結果、鋼種Bでは鋼中C量が0.007%であり、充分に脱炭で きていないことも判明した。
From this, it can be seen that in steel type B, the iron loss is remarkably increased by the aging treatment.
When investigating the material structure to investigate this cause, fine cementite was observed in steel type B, the precipitation of cementite was the cause of the deterioration of the magnetic properties, and cementite was precipitated during the aging treatment. It became clear that
In addition, as a result of component analysis of the product plate, it was found that steel type B had a C content of 0.007% and was not fully decarburized.

このようにSの高い鋼で脱炭不良となった原因は、次のように考えられる。
すなわち、Sは偏析し易い元素であることから、熱延板焼鈍時に析出したセメンタイトの周りにSが偏析し、脱炭焼鈍時におけるセメンタイトの固溶を遅延させると共に、表面偏析したSが鋼板表面への酸素の吸着を抑制し、鋼中Cの酸化反応が進まなかったため、脱炭が充分に進まなかったものと考えられる。
なお、このような状態でも、その後の高温仕上焼鈍によって残存するセメンタイトは鋼中に固溶するため、仕上焼鈍直後は脱炭不良による悪影響は発現しない。しかしながら、長期間使用を続けると、固溶していたCが鋼中にセメンタイトとして析出してくるため、磁気特性は劣化する。
The cause of the decarburization failure in the steel with high S as described above is considered as follows.
That is, since S is an element that is easily segregated, S segregates around the cementite precipitated during hot-rolled sheet annealing, delays the solid solution of cementite during decarburization annealing, and the surface segregated S It is considered that decarburization did not sufficiently proceed because the adsorption of oxygen to the steel was suppressed and the oxidation reaction of C in the steel did not proceed.
Even in such a state, the cementite remaining by the subsequent high-temperature finish annealing is dissolved in the steel, so that no adverse effects due to the decarburization failure appear immediately after the finish annealing. However, if used for a long period of time, the solid solution C precipitates as cementite in the steel, so the magnetic properties deteriorate.

このことから、S以外のP,Seといった偏析型元素も脱炭反応を阻害することが懸念される。
そこで次に、発明者らは、S,P,Se量と時効処理後の鉄損との関係について調査を行うため、C:0.03%、Si:0.32%、Mn:0.18%、Al:tr、N:0.002%とし、S,P,Seを種々変化させた鋼を、真空溶解し、熱延後、1150℃, 30sの熱延板焼鈍を行ったのち、板厚:0.5mmまで150℃にて温間圧延を行った。引き続き、20vol%H2−80vol%N2、露点:35℃の雰囲気中にて800℃,60sの脱炭焼鈍を行い、さらに25vol%H2−75vol%N2雰囲気中にて850℃,10sの仕上焼鈍を行い、その後さらに 150℃, 100hの時効処理を施したのち、鉄損を測定した。
From this, there is a concern that segregation-type elements other than S, such as P and Se, inhibit the decarburization reaction.
Then, in order to investigate about the relationship between the amount of S, P, Se and the iron loss after aging treatment, the inventors then made C: 0.03%, Si: 0.32%, Mn: 0.18%, Al: tr, N: 0.002% steel with various changes of S, P, Se was vacuum melted, hot-rolled, and then subjected to hot-rolled sheet annealing at 1150 ° C for 30s. Then, warm rolling was performed. Subsequently, decarburization annealing was performed in an atmosphere of 20 vol% H 2 -80 vol% N 2 , dew point: 35 ° C. at 800 ° C. for 60 s, and further 850 ° C., 10 s in a 25 vol% H 2 -75 vol% N 2 atmosphere. After finishing annealing, after further aging treatment at 150 ° C. for 100 hours, the iron loss was measured.

図4に、S,P,Se量と鉄損との関係について調べた結果を、(P+100×S+300×Se)をパラメータとして示す。
同図に示したとおり、パラメータ(P+100×S+300×Se)が0.5以下の場合に、鉄損が低下していることが分かる。
この理由は、これらの元素を低減することにより、脱炭焼鈍時にセメンタイトの鋼中への固溶が容易となり、脱炭が進行するためと考えられる。
FIG. 4 shows the result of examining the relationship between the amount of S, P, Se and iron loss, with (P + 100 × S + 300 × Se) as a parameter.
As shown in the figure, it is understood that the iron loss is reduced when the parameter (P + 100 × S + 300 × Se) is 0.5 or less.
The reason for this is considered to be that by reducing these elements, cementite is easily dissolved in steel during decarburization annealing, and decarburization proceeds.

次に、本発明における鋼の好適成分組成範囲について説明する。
C:0.01〜0.2%
本発明では、熱延板焼鈍時に、フェライト中にセメンタイトを微細に分散させ、磁束密度に好適な集合組織を形成させるために、少なくとも0.01%のCを必要とする。好ましくは0.15%以上である。しかしながら、C量が0.2%超になると脱炭に長時間を要し、いたずらにコストアップを招くため、C量の上限は0.2%とした。
Next, the preferred component composition range of the steel in the present invention will be described.
C: 0.01 to 0.2%
In the present invention, at the time of hot-rolled sheet annealing, at least 0.01% of C is required in order to finely disperse cementite in ferrite and form a texture suitable for magnetic flux density. Preferably it is 0.15% or more. However, if the amount of C exceeds 0.2%, it takes a long time for decarburization and unnecessarily increases the cost. Therefore, the upper limit of the amount of C is set to 0.2%.

Si:3%以下
Siは、鋼板の固有抵抗を上げるために有効な元素であるが、3%を超えるとAc3点超えの焼鈍が困難となるだけでなく、熱延板の変形抵抗が上昇して冷間圧延が難しくなる。このためSi量の上限は3%とした。
Si: 3% or less
Si is an effective element for increasing the specific resistance of the steel sheet, but if it exceeds 3%, not only annealing beyond the Ac 3 point becomes difficult, but the deformation resistance of the hot-rolled sheet increases and cold rolling is performed. Becomes difficult. For this reason, the upper limit of the amount of Si was made into 3%.

Mn:0.05〜3.0%
Mnは、熱間圧延時の赤熱脆性を防止するために0.05%以上の含有を必要とするが、3.0%超になると磁束密度を低下させるので、0.05〜3.0%とした。
Mn: 0.05-3.0%
Mn needs to be contained in an amount of 0.05% or more in order to prevent red hot brittleness during hot rolling. However, if it exceeds 3.0%, the magnetic flux density is lowered, so 0.05 to 3.0% was set.

Al:1%以下
Alは、Siと同様、固有抵抗を上げるために有効な元素であるが、1%を超えるとAc3点が高くなり、熱延板焼鈍においてオーステナイト域で焼鈍することが困難となるため、上限を1%とした。なお、このAlは、必要に応じて省略することもできる。
Al: 1% or less
Al, like Si, is an effective element for increasing the specific resistance. However, if it exceeds 1%, the Ac 3 point becomes high, and it becomes difficult to anneal in the austenite region in hot-rolled sheet annealing. Was 1%. In addition, this Al can also be abbreviate | omitted as needed.

N:0.005%以下
Nは、0.005%超になると窒化物量が多くなり、鉄損が増大するため、0.005%以下とした。
N: 0.005% or less N is 0.005% or less because if N exceeds 0.005%, the amount of nitride increases and iron loss increases.

(P+100×S+300×Se)≦ 0.5
前掲図4に示したとおり、鋼中のS,P,Se量が、パラメータ(P+100×S+300×Se)で0.5を超えると、脱炭が安定して進行せず、その結果、十分に低い鉄損を得ることが困難になるので、S,P,Se量は、パラメータ(P+100×S+300×Se)で0.5以下に限定した。
(P + 100 × S + 300 × Se) ≦ 0.5
As shown in FIG. 4, when the amount of S, P, and Se in the steel exceeds 0.5 by the parameter (P + 100 × S + 300 × Se), decarburization does not proceed stably, and as a result, sufficiently low iron Since it is difficult to obtain a loss, the amount of S, P, and Se is limited to 0.5 or less by a parameter (P + 100 × S + 300 × Se).

以上、基本成分について説明したが、本発明では、その他にも磁気特性向上の観点からSb,Sn,Ni,Cr,CoおよびCu等を適宜添加することができる。
これら元素の好ましい添加範囲は次のとおりである。
Sb:0.005〜0.05%
Sn:0.005〜0.1%
Ni:0.1〜5%
Cr:0.5〜5%
Co:0.1〜10%
Cu:0.01〜1%
Although the basic components have been described above, in the present invention, Sb, Sn, Ni, Cr, Co, Cu, and the like can be appropriately added from the viewpoint of improving the magnetic characteristics.
The preferable addition range of these elements is as follows.
Sb: 0.005-0.05%
Sn: 0.005-0.1%
Ni: 0.1-5%
Cr: 0.5-5%
Co: 0.1-10%
Cu: 0.01 to 1%

次に、本発明に従う無方向性電磁鋼板の製造方法について説明する。
本発明の無方向性電磁鋼板は、成分および熱延板焼鈍条件、さらには温間圧延条件が所定の範囲内であれば、他の製造工程は特に限定されず、通常の方法で構わない。
すなわち、本発明の鋼板を得るには、転炉で吹練した溶鋼を脱ガス処理し所定の成分に調整し、引き続き鋳造、熱間圧延を行う。この時、熱間圧延時の仕上焼鈍温度、巻取り温度は特に規定する必要はなく、通常でかまわない。
Next, the manufacturing method of the non-oriented electrical steel sheet according to the present invention will be described.
The non-oriented electrical steel sheet of the present invention is not particularly limited as long as the components, hot-rolled sheet annealing conditions, and warm-rolling conditions are within a predetermined range, and may be a normal method.
That is, in order to obtain the steel sheet of the present invention, the molten steel blown in the converter is degassed and adjusted to a predetermined component, followed by casting and hot rolling. At this time, the finish annealing temperature and the coiling temperature at the time of hot rolling do not need to be particularly defined, and may be normal.

ついで、熱間圧延後、熱延板焼鈍を行う。この熱延板焼鈍温度は成分により決まるAc3変態点以上の温度とする。
というのは、熱延板焼鈍温度が、Ac3変態点未満では、前掲図1に示したように、良好な磁束密度の改善が望めないからである。なお、熱延板焼鈍温度の上限は特に限定されるものではないが、あまりに高温の焼鈍はいたずらにコストアップの原因となるため、1250℃以下程度とするのが好ましい。
また、熱延板焼鈍時間も特に限定されることはないが、10s以上の焼鈍により安定した冷間(温間)圧延前組織とすることができる。
Next, hot rolling is performed after hot rolling. This hot-rolled sheet annealing temperature is set to a temperature equal to or higher than the Ac 3 transformation point determined by the components.
This is because, if the hot-rolled sheet annealing temperature is lower than the Ac 3 transformation point, as shown in FIG. 1, good magnetic flux density improvement cannot be expected. Although the upper limit of the hot-rolled sheet annealing temperature is not particularly limited, it is preferable to set the temperature to about 1250 ° C. or less because annealing at an excessively high temperature unnecessarily increases costs.
Moreover, although the hot-rolled sheet annealing time is not particularly limited, a stable structure before cold (warm) rolling can be obtained by annealing for 10 seconds or more.

引き続き、冷間もしくは温間にて最終板厚まで圧延を行うが、特に70〜400℃の温間で圧延することにより、より一層磁束密度を向上させることができる。
すなわち、前掲図3に示したように、圧延温度が70℃以上になると、磁束密度が大幅に改善される。そこで、温間圧延時における温度の下限は70℃とした。より好ましくは100℃以上である。なお、温間圧延温度が400℃を超えても磁束密度の向上効果はあるが、いたずらにコストアップを招くため、温間圧延時における温度の上限は400℃とした。
Subsequently, the steel sheet is rolled to the final thickness in the cold or warm state, and the magnetic flux density can be further improved by rolling at a particularly high temperature of 70 to 400 ° C.
That is, as shown in FIG. 3, the magnetic flux density is greatly improved when the rolling temperature is 70 ° C. or higher. Therefore, the lower limit of the temperature during warm rolling was set to 70 ° C. More preferably, it is 100 ° C. or higher. Note that even if the warm rolling temperature exceeds 400 ° C., there is an effect of improving the magnetic flux density, but since the cost is unnecessarily increased, the upper limit of the temperature during the warm rolling is set to 400 ° C.

その後、鋼中C量に応じた脱炭焼鈍を施したのち、所定の磁気特性を得るための仕上焼鈍を行って製品とする。ここで、脱炭焼鈍の好適条件は、焼鈍温度:700〜900℃、焼鈍時間:30〜3600s、露点:10〜40℃である。
というのは、脱炭焼鈍温度が700℃未満では脱炭が不十分となり、一方900℃を超えると内部酸化が進み、鉄損増大の原因となるからである。
また、脱炭焼鈍時間が30sに満たないと脱炭が不十分となり、一方3600sを超えるといたずらにコストアップを招くからである。
さらに、露点が10℃未満では脱炭が不十分となり、一方40℃を超えると内部酸化が進んで、鉄損が増大するからである。
Then, after performing decarburization annealing according to the amount of C in steel, finish annealing for obtaining predetermined magnetic properties is performed to obtain a product. Here, suitable conditions for decarburization annealing are annealing temperature: 700 to 900 ° C., annealing time: 30 to 3600 s, and dew point: 10 to 40 ° C.
This is because if the decarburization annealing temperature is less than 700 ° C., decarburization is insufficient, while if it exceeds 900 ° C., internal oxidation proceeds and causes an increase in iron loss.
Further, if the decarburization annealing time is less than 30 s, decarburization is insufficient, while if it exceeds 3600 s, the cost is unnecessarily increased.
Furthermore, if the dew point is less than 10 ° C, decarburization becomes insufficient. On the other hand, if it exceeds 40 ° C, internal oxidation proceeds and iron loss increases.

表1に示す成分組成になる鋼を、転炉吹練および脱ガス処理により溶製し、連続鋳造後、得られたスラブを1200℃で1h加熱したのち、板厚:2.6mmまで熱間圧延した。熱延仕上げ温度は830℃、巻取り温度は610℃とした。
ついで、表2に示す条件で熱延板焼鈍後、板厚:0.5mmまでの冷間(25℃)または温間(50〜350℃)で圧延したのち、同じく表2に示す条件で脱炭焼鈍および仕上焼鈍を行って、無方向性電磁鋼板とした。
かくして得られた電磁鋼板について、磁気特性を行った。なお、磁気測定は、25cmエプスタイン試験片を用いて行った。
また、磁気測定後、150℃,100hの時効処理を行ったのち、再度磁気測定を行った。
得られた測定結果を表2に併記する。
なお、表中のAc3点は、フォーマスター試験機にて30℃/sでサンプルを加熱した際の熱膨張率を測定することにより求めた。
Steels with the composition shown in Table 1 were melted by converter blowing and degassing, and after continuous casting, the resulting slab was heated at 1200 ° C for 1 h, and then hot rolled to a thickness of 2.6 mm. did. The hot rolling finishing temperature was 830 ° C and the winding temperature was 610 ° C.
Next, after hot-rolled sheet annealing under the conditions shown in Table 2, the sheet thickness is rolled to cold (25 ° C) or warm (50-350 ° C) to 0.5 mm, and then decarburized under the conditions shown in Table 2 as well. Annealing and finish annealing were performed to obtain a non-oriented electrical steel sheet.
The magnetic properties were obtained for the magnetic steel sheet thus obtained. Magnetic measurement was performed using a 25 cm Epstein test piece.
In addition, after the magnetic measurement, after aging treatment at 150 ° C. for 100 hours, the magnetic measurement was performed again.
The obtained measurement results are also shown in Table 2.
In addition, Ac 3 point in a table | surface was calculated | required by measuring the thermal expansion coefficient at the time of heating a sample at 30 degrees C / s with a four master test machine.

Figure 2006104530
Figure 2006104530

Figure 2006104530
Figure 2006104530

表2から明らかなように、鋼成分および熱延板焼鈍条件を本発明の適正範囲に制御した発明例はいずれも、高い磁束密度と低い鉄損が併せて得られており、特に最終圧延として温間圧延を利用した場合には一層優れた磁気特性を得ることができた。
これに対し、鋼成分および熱延板焼鈍条件の一方または両方が、本発明の適正範囲から逸脱した比較例はいずれも、少なくとも磁束密度か鉄損のいずれかが十分でなく、発明例に比べると劣った磁気特性しか得られなかった。
As is clear from Table 2, all of the invention examples in which the steel components and the hot-rolled sheet annealing conditions were controlled within the appropriate range of the present invention were obtained in combination with a high magnetic flux density and a low iron loss. When warm rolling was used, even better magnetic properties could be obtained.
On the other hand, in any of the comparative examples in which one or both of the steel component and the hot-rolled sheet annealing condition deviate from the appropriate range of the present invention, at least either the magnetic flux density or the iron loss is not sufficient, and compared with the inventive example. Only inferior magnetic properties were obtained.

熱延板焼鈍温度と磁束密度との関係を示す図である。It is a figure which shows the relationship between hot-rolled sheet annealing temperature and magnetic flux density. 鋼中C量と磁束密度との関係を示す図である。It is a figure which shows the relationship between C amount in steel, and magnetic flux density. 最終圧延温度と磁束密度との関係を示す図である。It is a figure which shows the relationship between final rolling temperature and magnetic flux density. S,P,Se量と時効処理後の鉄損との関係を、(P+100×S+300×Se)をパラメータとして示す図である。It is a figure which shows the relationship between the amount of S, P, and Se and the iron loss after an aging treatment by using (P + 100 * S + 300 * Se) as a parameter.

Claims (3)

質量%で、
C:0.01〜0.2%、
Si:3%以下、
Mn:0.05〜3.0%、
Al:1%以下および
N:0.005%以下
を含み、かつP,SおよびSeを、次式、
P+100×S+300×Se≦0.5
を満たす範囲に抑制し、残部はFeおよび不可避的不純物の組成になる鋼材を、熱間圧延し、熱延板焼鈍後、最終板厚まで圧延し、ついで脱炭焼鈍および仕上焼鈍を施す一連の工程によって無方向性電磁鋼板を製造するに際し、熱延板焼鈍をAc3点以上の温度域で行うことを特徴とする磁気特性に優れた無方向性電磁鋼板の製造方法。
% By mass
C: 0.01-0.2%
Si: 3% or less,
Mn: 0.05-3.0%
Al: 1% or less and N: 0.005% or less, and P, S and Se are represented by the following formula:
P + 100 × S + 300 × Se ≦ 0.5
A series of steel materials with a composition of Fe and inevitable impurities in the balance, hot-rolled, hot-rolled sheet annealed, rolled to the final thickness, and then decarburized and finish annealed. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties, characterized by performing hot-rolled sheet annealing in a temperature range of Ac 3 or higher when producing a non-oriented electrical steel sheet by a process.
質量%で、
C:0.01〜0.2%、
Si:3%以下、
Mn:0.05〜3.0%、
Al:1%以下および
N:0.005%以下
を含み、かつP,SおよびSeを、次式、
P+100×S+300×Se≦0.5
を満たす範囲に抑制し、残部はFeおよび不可避的不純物の組成になる鋼材を、熱間圧延し、熱延板焼鈍後、最終板厚まで圧延し、ついで脱炭焼鈍および仕上焼鈍を施す一連の工程によって無方向性電磁鋼板を製造するに際し、熱延板焼鈍をAc3点以上の温度域で行い、引き続き70〜400℃の温度域にて温間圧延を行うことを特徴とする磁気特性に優れた無方向性電磁鋼板の製造方法。
% By mass
C: 0.01-0.2%
Si: 3% or less,
Mn: 0.05-3.0%
Al: 1% or less and N: 0.005% or less, and P, S and Se are represented by the following formula:
P + 100 × S + 300 × Se ≦ 0.5
A series of steel materials with a composition of Fe and inevitable impurities in the balance, hot-rolled, hot-rolled sheet annealed, rolled to the final thickness, and then decarburized and finish annealed. When producing non-oriented electrical steel sheets by the process, the hot rolling annealing is performed in the temperature range of Ac 3 points or higher, and then the hot rolling is performed in the temperature range of 70 to 400 ° C. A method for producing an excellent non-oriented electrical steel sheet.
請求項1または2において、脱炭焼鈍を、露点:10〜40℃、焼鈍温度:700〜900℃、焼鈍時間:30〜3600sの条件下で行うことを特徴とする磁気特性に優れた無方向性電磁鋼板の製造方法。   3. Non-directional excellent in magnetic characteristics, characterized in that decarburization annealing is performed under conditions of dew point: 10 to 40 ° C., annealing temperature: 700 to 900 ° C., and annealing time: 30 to 3600 s. Method for producing an electrical steel sheet.
JP2004293922A 2004-08-04 2004-10-06 Method for producing non-oriented electrical steel sheet Expired - Fee Related JP4701669B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004293922A JP4701669B2 (en) 2004-10-06 2004-10-06 Method for producing non-oriented electrical steel sheet
KR1020050071093A KR100683471B1 (en) 2004-08-04 2005-08-03 Method for processing non-directional electromagnetic steel plate and hot rolling steel plate with material for the non-directional electromagnetic steel plate
CN200510088542XA CN1803389B (en) 2004-08-04 2005-08-04 Method for manufacturing non-oriented electromagnetic steel sheet, and raw material hot rolling steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293922A JP4701669B2 (en) 2004-10-06 2004-10-06 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2006104530A true JP2006104530A (en) 2006-04-20
JP4701669B2 JP4701669B2 (en) 2011-06-15

Family

ID=36374602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293922A Expired - Fee Related JP4701669B2 (en) 2004-08-04 2004-10-06 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4701669B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192417A (en) * 2012-03-15 2013-09-26 Jfe Steel Corp Motor core and method of manufacturing the same
WO2015107967A1 (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-directional electromagnetic steel sheet having excellent magnetic properties
US10006109B2 (en) 2013-08-20 2018-06-26 Jfe Steel Corporation Non-oriented electrical steel sheet and hot rolled steel sheet thereof
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
US10597759B2 (en) 2013-08-20 2020-03-24 Jfe Steel Corporation Non-oriented electrical steel sheet having high magnetic flux density and motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157917A (en) * 1982-03-15 1983-09-20 Kawasaki Steel Corp Manufacture of unidirectional silicon steel plate with superior magnetic characteristic
JP2001158950A (en) * 1999-12-03 2001-06-12 Kawasaki Steel Corp Silicon steel sheet for small-size electrical equipment, and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157917A (en) * 1982-03-15 1983-09-20 Kawasaki Steel Corp Manufacture of unidirectional silicon steel plate with superior magnetic characteristic
JP2001158950A (en) * 1999-12-03 2001-06-12 Kawasaki Steel Corp Silicon steel sheet for small-size electrical equipment, and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192417A (en) * 2012-03-15 2013-09-26 Jfe Steel Corp Motor core and method of manufacturing the same
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
US10006109B2 (en) 2013-08-20 2018-06-26 Jfe Steel Corporation Non-oriented electrical steel sheet and hot rolled steel sheet thereof
US10597759B2 (en) 2013-08-20 2020-03-24 Jfe Steel Corporation Non-oriented electrical steel sheet having high magnetic flux density and motor
WO2015107967A1 (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-directional electromagnetic steel sheet having excellent magnetic properties
JP2015131993A (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-oriented silicon steel sheet having excellent magnetic property
EP3095887A1 (en) * 2014-01-14 2016-11-23 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties
EP3095887A4 (en) * 2014-01-14 2017-04-05 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties

Also Published As

Publication number Publication date
JP4701669B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP5892327B2 (en) Method for producing non-oriented electrical steel sheet
RU2580776C1 (en) Method of making sheet of textured electrical steel
JP7507157B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP5853983B2 (en) Method for producing hot-rolled steel sheet for non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP2005226111A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic characteristic
JP5287615B2 (en) Method for producing grain-oriented electrical steel sheet
JP5369454B2 (en) Method for producing non-oriented electrical steel sheet
JP2007162082A (en) Method for producing cold-rolled steel sheet having excellent strain aging-resistant property and less intra-plane anisotropy
JP4701669B2 (en) Method for producing non-oriented electrical steel sheet
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP2019116680A (en) Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6950748B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2007177282A (en) Method for producing nonoriented electromagnetic steel sheet having high magnetic flux density
JPH055126A (en) Production of nonoriented silicon steel sheet
JP4613611B2 (en) Method for producing non-oriented electrical steel sheet
JP4013262B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR100370547B1 (en) Non-oriented electrical steel sheet excellent in permeability and method of producing the same
JP7525081B1 (en) Non-oriented electrical steel sheet and its manufacturing method
JPH07113120A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPS60190521A (en) Manufacture of nonoriented electrical steel sheet
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0897023A (en) Manufacture of nonoriented silicon steel plate of excellent iron-loss characteristics
KR100721926B1 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4701669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees